Upper Urinary Tract Obstruction and Urinary Stones

Prof. Luigi Da Pozzo

Urology *Oûron* (urine) $-\lambda o \gamma i \alpha$ (study)

Urological Organs

Urological Areas of interest

- BPH (benign Prostatic Hyperplasia)
- Stones
- Oncology
- Pediatrics
- Transplant surgery

Emergency Surgery

- LUTS (Lower Urinary Tract Symptoms)
- Infections
- Trauma
- Neurology
- Gynecology/incontinence
- Sexual function

Urologist = Surgeon

RETROPERITONEUM

PELVIS

Open Surgery

Azienda Ospedaliera Papa Giovanni XXIII Bergamo

Laparoscopy

Robotic Surgery

Endoscopic Surgery

RIGID, SEMIRIGID & FLEXIBLE URS

Urinary tract

Basic function:

- formation of ultrafiltrate that is free of protein with appropriate amount of water, electrolytes, and end products of metabolic pathways to maintain homeostasis.
- Remaining portion of UT
 - Eliminate and/or store urine

Urine production and transportion

- Pressure gradient from glomerulus to Bowman capsule.
- Peristalsis of renal pelvis and ureter.
- Effects of gravity.

Urinary tract obstruction

- Common cause of acute and chronic renal failure
- Potentially curable form of kidney disease

Definition of terms:

- Obstructive uropathy
- Obstructive nephropathy
- Hydronephrosis

Upper Urinary Tract Obstruction

Aetiology

Causes of obstruction

Mechanical blockade

- ✓ Intrinsic
- ✓ Extrinsic

Functional defects

- ✓ Acquired
- ✓ Congenital

Congenital

Common Congenital Causes of Urinary Tract Obstruction

Ureter	Bladder Outlet	Urethra
	CONGENITAL	
Ureteropelvic junction narrowing or obstruction	Bladder neck obstruction	Posterior urethral valves
Ureterovesical junction narrowing or obstruction and reflux	Ureterocele	Anterior urethral valves
Ureterocele	Damage to S2- 4	Stricture
Retrocaval ureter		Meatal stenosis
VUR	VUR	Phimosis

Uric acid

crystals

drugs and alpha

adrenergic

antagonists

© ELSEVIER, INC. - NETTERIMAGES.COM

Acquired Extrinsic Defects

Ureter

Bladder Outlet Urethra

Retroperitoneal fibrosis

Retroperitoneal cancer

Acquired Extrinsic Defects		
	Pregnant uterus	Carcinoma of trauma cervix, uterus colon, rectum
	Retroperitoneal fibrosis	Trauma
	Aortic aneurysm	
	Uterine leiomyomata	A Venica Ivilica Aceta Abdominalia Venica Ivilica VAD
	Carcinoma of, prostate, bladder, testis	
	lymphoma	
	Pelvic inflammatory disease, endometriosis	Retroperitoneal post- traumatic haematoma
	Accidental surgical ligation	

Pathophysiology

- Complete or incomplete?
- Unilateral (UUO)?
- Bilateral (BUO)?
- Obstruction relieved or not?
- Time to obstruction

Global Renal Function Changes

- Obstruction can affect hemodynamic variables and GFR
- **GFR**= $K_f(P_{GC}-P_T-\Pi_{GC})$

 $K_{\rm f}\text{-}$ glomerular ultrafiltration coeffecient related to the surface area and permeability of the capillary membrane $P_{GC}\text{-}$ glomerular capillary pressure. Influenced by renal plasma flow and the resistance of the afferent and efferent arterioles

 P_{T} - Hydraulic pressure of fluid in the tubule

 $\Pi\mathchar`$ the oncotic pressure of the proteins in the glomerular capillary and efferent arteriolar blood

Renal Blood Flow= (aortic pressure-renal venous pressure)

renal vascular resistance

- Influences P_{GC}
- Constriction of the afferent arteriole will result in a decrease of P_{GC} and GFR
- > An increase in efferent arteriolar resistance will increase P_{GC}

Urinary obstruction (Unilateral- Bilateral)

- Ureteral pressure higherin BUO than in UUO
- Effective Renal Blood Flow is markedly decreased after 48 hours
- GFR is significantly decreased after 48 hours

Pathophysiology

Consequences of urinary tract obstruction

- I. Reduced glomerular filtration rate
- 2. Reduced renal blood flow (after initial rise)
- 3. Impaired renal concentrating ability
- 4. Impaired distal tubular function
 - ✓ Nephrogenic diabetes insipidus
 - ✓ Renal salt wasting
 - ✓ Renal tubular acidosis
 - ✓ Impaired potassium concentration

Consequences of urinary tract obstruction

Progressive and permanent changes to the kidney occur

- Tubulointerstitial fibrosis
- Tubular atrophy and apoptosis
- Interstitial inflammation

Clinical Presentation

- Acute Upper Urinary Obstruction: <u>PAIN</u>
 Renal Colic: a severe clinical presentation
- Cronic Upper Urinary
 Obstruction: <u>NO PAIN</u>
 Impaired renal function
 if bilateral or uni-lateral with
 pre-existing cronic renal failure

Treatment and management

- Stones most common causes of unilateral ureteral obstruction
 - 90% pass spontaneously (calculi <5.0-7.0 mm)</p>
 - Surgical drainage necessary if with unrelenting pain, UTI, persistent obstruction, progressive loss of renal function
 - Position of stone determines preferred method of removal

Treatment and management

- Bilateral ureteral obstruction always asymmetric process
 - mid to proximal ureter percutaneous nephrostomy
 - Distal obstruction cystoscopic placement of ureteral stent
 - Intrarenal obstruction secondary to crystals or protein casts hydration

Treatment and management

Consultations

- UROLOGIST when transurethral catheter cannot provide adequate drainage and surgical drainage and removal of obstruction is necessary
- NEPHROLOGIST when emergent hemodialysis is necessary

Complications

Post-obstructive diuresis

- Occurs in BUO or obstruction in a solitary kidney
- Physiologic caused by retained urea, Na and H2O
- Pathologic impairment of concentrating ability or Na reabsorption
- Iatrogenic due to high-volume glucose containing fluid replacement
- Most likely in patients with chronic obstruction, edema, CHF, HPN, weight gain, azotemia, uremic encephalopathy

Complications

Urinary tract infection

- Due to urinary stasis
- Appropriate antibiotic based on in vitro bacterial sensitivity and ability of drug to concentrate in the urine
- **UROSEPSIS:** can be fatal in up to 30-40% of cases

URINARY STONE DISEASE

Epidemiology of Urinary Stones

Prevalence of stone disease is estimated between 1% and 20 % Stone occurrence is **uncommon before age 20** Stone incidence peaks between 4th and 6th decades of life •Men:women ratio = 2-3:1 •**Phenotipic differences**: highest prevalence of stone diseases has been observed in whites (countries with high standard of life), followed by Hispanics, Asian and African-Americans

> Guidelines on urolithiasis, Eur Urol 2019 Pearle et al J Urol 2005;173:848-57 Yasui et al Urol 2008; 71:209-13 Soucie et al Kidney Int 1994; 46:893-899 Hiatt et al Am J Epidemol 1982; 115:255-65

EPIDEMIOLOGY

Prevalence in US: 8%

Incidence peak between 30-60 yrs

---- Stamatelou_et_al. Kidney_Int.2003 Croppi et al . Urol Res. 2012 Curhan et al. Urol Clin North Am. 2007

Epidemiology of Urinary Stones

Seasonal variations exist in the monthly urinary <u>calculi attack</u> rates with a peak between July and September.

Ambient temperature has been showed to be associated with monthly attack rates

PATHOGENESIS & PATHOPHYSIOLOGY

Urinary stones are aggregates composed of **crystalloids and organic matrix**

Crystal component

•Stones are composed primarily of crystalline component.

Steps involved in crystal formation:

nucleation aggregation growth

Matrix component

•The amount of matrix component ranges from 2 to 10% in different stones.

•Matrix is mainly composed of **proteins**, lipids, polysaccharides, which may serve as a nidus for crystal aggregation.

Stone Formation

Stone formation starts with urine becoming **supersaturated**, such that dissolved ions or molecules precipitate out of solution and come to form **crystals**

Crystals may flow out with urine or eventually aggregate leading to stone formation in certain conditions

•Local areas of obstruction or stasis in the upper urinary tract may prolong urinary transit time thus allowing crystal formation

Stone Formation

Inhibitors of crystal formation

Low concentration of inhibitors may facilitate stones formation

Molecules that raise the supersaturation needed to initiate crystal nucleation or reduce the rate of crystal aggregation

Citrate \rightarrow a deficiency is associated with stone formation like in patients with chronic diarrhoea or renal tubular acidosis type I

Magnesium \rightarrow lack of dietary magnesium is associated with increased calcium **oxalate stone formation**

Glycosaminoglycans \rightarrow inhibit crystals nucleation and growth

Glycoproteins \rightarrow nephrocalcin and **Tamm-Horsfall glycoprotein** are potent inhibitor of calcium oxalate crystal aggregation. Tamm-Horsfall is the most abundant protein found in urine and is expressed by **renal epithelial cells**

Stone types

Non-infection stones		
Calcium oxalate		
Calcium phosphate,		
Uric acid		
Infection stones		
Magnesium ammonium phosphate STRUVITE		
Carbonate apatite		
Ammonium urate		
Genetic causes		
Cystine		
Xanthine		
2,8-dihydroxyadenine		
Drug stones		

- The most common component of urinary calculi is calcium (Calciun Oxalate Calcium Phosphate), which is a major constituent of nearly 75% of stones
- Uric acid and struvite (ammonium phosphate)stones occur approximately in 10% of cases and are related to infection.
- **Cystine** stones are rare (1%) ans associated to hereditary iper-cystinuria

Stones associated with medications are uncommon and preventable Campbell-Walsh Urology 2012 Wilson et al J Urol 1989;141:770-4

Risk Factors for Stone Formation

General Factors

Early onset of urolithiasis (children)

Familial stone formation

Diet

–High sodium intake

-Saturated and unsaturated fatty acids

-Animal protein

-Fluid intake: patients producing less than 1 L of urine per day are at highest risk

Obesity

Disease associated with stone formation

- Hyperparathyroidism
- Hypercalciuria

Sarcoidosis

- Gastrointestinal disease

Genetically determined stone

formation

- . Cystinuria
- Primary hyperoxaluria
- · Renal tubular acidosis type I
- · Xanthinuria

Anatomical abnormalities

- Medullary sponge kidney (tubular ectasia)
- · Ureteropelvic junction obstruction
- · Calyceal diverticulum
- Ureteral stricture
- · Horseshoe kidney

Stone Composition : Do you recognize our friends ?

EVOLUTION of STONES...

EVOLUTION of STONES...

Urates and Phosphate

Calcium Oxalate

Change in Diet !

 Animal Protein 	X	5
•Fat / lipid	X	10
•Sugar	X	20
•Salt	X	3
•Fibers		

CLINICAL PRESENTATION

Signs & Symptoms Pain

–Upper tract urinary stones usually cause PAIN only when they cause obstruction

-"Renal colic" actually refers to a collection of symptoms attributed to the kidney and ureter

-The character of pain depends on the **location of stones**

Renal pelvis

Stone > 1 cm commonly obstruct ureteropelvic junction causing severe pain in the costo-vertebral angle

•Pain is usually **CONSTANT and radiates to flank and anteriorly to the upper ipsilateral abdominal quadrant**

Differential diagnosis with **biliary colic** or **cholecystitis** if on the right side and with **gastritis, acute pancreatitis** or **peptic ulcer** if on the left side.

•Partial or complete **staghorn calculi** may be not obstructive: patient can has few symptoms. If untreated may lead to **renal deterioration and infectious complications**

Upper and Mid-ureter

•Pain may be <u>more</u> **SEVERE AND INTERMITTENT** if the stone is progressing down the ureter

Upper tract→ radiates to **lumbar region and flank**

Mid-ureter→ radiates caudally and anteriorly toward the mid and lower abdomen in a curved, band-like fashion

Differential diagnosis: appendicitis (on the right); **diverticulitis** (on the left)

Stationary calculi with **constant obstruction** may allow **autoregulatory reflexes** and pyelovenous and pyelolymphatic backflow to **decompress the upper tract with gradually easing pain**

Smith's General Urology 2008

Distal Ureter

·Pain often radiates to the groin or testicle

•Differential diagnosis with either testicular torsion or epididymitis

.May be associated with

- suprapubic pain
- urinary frequency
- urgency
- stranguria

Other signs or symptoms

Haematuria

- intermittent gross haematuria may be present
- most patients have micro-haematuria

Nausea and Vomiting

[frequently associated]

Smith's General Urology 2008

Other signs or symptoms

Infection

All stones may be associated with infections secondary to obstruction and stasis

Infection may contribute to **pain**, through local inflammation

Pyonephrosis

- an extreme form of infected hydronephrosis
- can cause severe **urosepsis**
- Signs of sepsis
- Fever
- Tachycardia
- Hypotension
- Cutaneous vasodilation

Medical History

Pain should be evaluated in terms of:

-Onset

-Character and location

-Activity associated with exacerbation/relieve

-Associated nausea and vomiting or haematuria

-History of similar pain

Physical Examination

•Percussion of the costo-vertebral angle often localize the pain

(Giordano's maneuver)

In men **testes must be examined** because scrotal pathology may present with abdominal pain

•Systemic components have to be evaluated (tachycardia, hypotension, fever)

Ultrasonography

usually (real-life setting) used as the **primary diagnostic tool**

safe, reproducible and relatively inexpensive

- · US can identify stones located in:
- -Calices
- -Pelvis
- -Pyeloureteric junction
- -Vescicoureteric junction-

For these specific locations sensibility and specificity are of 96% and 100%, respectively for stones > 5 mm

Smith's General Urology 2008 EAU Guidelines on Urolithiasis 2020

Ultrasonography

Stones elsewhere in the ureter (between the pelvic-ureteric junction (PUJ) and VUJ) are **unlikely to be seen**

Secondary signs, such as dilation, which may suggest an obstructing stone, improve test sensitivity

Smith's General Urology 2008 EAU Guidelines on Urolithiasis 2020

Abdomen radiography

could be helpful in differentiating between radiolucent and radiopaque stones

[Sensitivity and specificity 44-77%]

should not be performed if NCCT is considered

Non-contrast enhanced CT (NCCT)

Has became the standard for diagnosis of urinary stones
[Sensitivity 93%; Specificity 96%]
NCCT has replaced iv urography

NCCT can determine **stone diameter** and **density**, thus differentiating radiolucent vs radioopaque stones

•NCCT can detect radiolucent stones like uric acid or xanthine stones

•To reduce radiation risk **low-dose CT** can be used \rightarrow diagnosis of urolithiasis with a sensitivity of 96.6% and specificity of 94.9%

•Constrast-enhanced CT is recommended in specific cases when stone removal is planned, in order to analyze the anatomy of the collecting system also with 3D reconstruction

ORIGINAL ARTICLE

Ultrasonography versus Computed Tomography for Suspected Nephrolithiasis

R. Smith-Bindman, C. Aubin, J. Bailitz, R.N. Bengiamin, C.A. Camargo, Jr., J. Corbo, A.J. Dean, R.B. Goldstein, R.T. Griffey, G.D. Jay, T.L. Kang, D.R. Kriesel, O. J. Ma, M. Mallin, W. Manson, J. Melnikow, D.L. Miglioretti, S.K. Miller, L.D. Mills, J.R. Miner, M. Moghadassi, V.E. Noble, G.M. Press, M.L. Stoller, V.E. Valencia, J. Wang, R.C. Wang, and S.R. Cummings

The NEW ENGLAND JOURNAL of MEDICINE

N Engl J Med 2014;371:1100-10.

METHODS

In this multicenter, pragmatic, comparative effectiveness trial, we randomly assigned patients 18 to 76 years of age who presented to the emergency department with suspected nephrolithiasis to undergo initial diagnostic <u>ultrasonography performed</u> by an emergency physician (point-of-care ultrasonography), ultrasonography performed by a radiologist (radiology ultrasonography), or abdominal CT. Subsequent management, including additional imaging, was at the discretion of the physician. We compared the three groups with respect to the 30-day incidence of high-risk diagnoses with complications that could be related to missed or delayed diagnosis and the 6-month cumulative radiation exposure. Secondary outcomes were serious adverse events, related serious adverse events (deemed attributable to study participation), pain (assessed on an 11-point visual-analogue scale, with higher scores indicating more severe pain), return emergency department visits, hospitalizations, and diagnostic accuracy.

Laboratory test analysis

Each emergency patient with urolithiasis needs a **biochemical work-up of urine and blood**

Recommendations: basic laboratory analysis - emergency urolithiasis patients	Strength rating	
Urine		
Dipstick test of spot urine sample:	Weak	
red cells;		
white cells;		
nitrites;		
 approximate urine pH; 		
urine microscopy and/or culture.		
Blood		
Serum blood sample:	Weak	
creatinine;		
• uric acid;		
(ionised) calcium;		
• sodium;		
potassium;		
blood cell count;		
C-reactive protein.		
Perform a coagulation test (partial thromboplastin time and international normalised ratio) if	Strong	
intervention is likely or planned.		
Perform stone analysis in first-time formers using a valid procedure (X-ray diffraction or	Strong	
infrared spectroscopy).		
Repeat stone analysis in patients presenting with:	Strong	
 recurrent stones despite drug therapy; 		
 early recurrence after complete stone clearance; 		
 late recurrence after a long stone-free period because stone composition may change. 		

When can a patient be managed in a primary care or outpatient setting?

 Patients with clear diagnosis, with <u>adequate pain relief</u> and <u>no complicating</u> <u>factors (sepsis or impaired renal function)</u>

•Patients should be advised that **further episodes of pain are possible** and may be caused by stone passing

•Patients should be supplied with **non-steroidal anti-inflammatory drugs**, on demand for pain relief, and with **medical expulsive treatment** (α-blockers and calcium antagonist)

When does a patient require hospital admission? Inability to control pain

Patient with complicating factors

Box 1: Indications for acute hospital admission⁶

Diagnostic uncertainty (consider admission for patients older than 60 years, because a leaking aortic aneurysm could present with similar symptoms)

Inability to obtain or maintain adequate pain control
Presence of significant fever (>37.5°C) in association with suspected renal colic
Renal colic in patient with solitary or transplanted kidney
Suspected bilateral obstructing stones
Impending acute renal failure
Inability to arrange early investigation or urological assessment

Box 2: Signs of sepsis

Fever (>37.5°C)
Facial flushing
Tachycardia (especially once pain relieved)
Hypotension
Loin tenderness

Analgesia

•NSAIDs and opiates are the mainstay of treatment

NSAIDs should be used as first line analgesia

Diclofenac is suggested as first line treatment, although metaanalysis failed to determine which NSAID is best

Patient should be advised to increase oral fluid intake

In some cases intravenous fluid replacement is needed

If analgesia cannot be achieved medically, **drainage** using stenting or percutaneous nephrostomy or stone removal **should be performed**

Bultitude M et al. BMJ 2012;345:e5499

Sepsis secondary to stone-induced renal obstruction

Urgent decompression of the obstructed collecting system is needed

•Definitive stone removal should be delayed until the infection is cleared following a complete course of antimicrobial therapy

Sammon et al. Temporal Trends, Practice Patterns, and Treatment Outcomes for Infected Upper Urinary Tract Stones in the United States. Eur Urol 2013

Infected Upper Urinary Tract Stones in the United States. Eur Urol 2013

Statement	LE
For decompression of the renal collecting system, ureteral stents and percutaneous nephrostomy	1b
catheters are equally effective.	

Observation of Ureteral Stones

What is the chance of stones passing spontaneously and how long does it take?

Stone-passage rates depend on stone size and location

Stone size	Average time to pass	Percentage of passages (95% CI)
< 5 mm (n = 224)		68% (46-85%)
> 5 mm (n = 104)		47% (36-58%)
< 2 mm	31 days	
2-4 mm	40 days	
4-6 mm	39 days	

International guidelines stated that in newly diagnosed **ureteral stones < 10 mm** observation with periodic evaluation is an optional treatment

Medical Expulsive Therapy (MET)

Drugs that expel stones might act by relaxing ureteral smooth muscle through inhibition of calcium channel pumps or α -1 receptor blockade

Medical Expulsive Therapy (MET)

MET seems efficacious in the treatment of patients with ureteral stones who are amenable for conservative treatment.

 \cdot Tamsulosin \rightarrow is the most commonly used α -blockers

However several trials demonstrated an α -blocker-class effect

•Nifedipine \rightarrow is actually the only Ca-antagonist investigated

•Tamsulosin is significantly better than Nifedipine in relieving renal colic and facilitating and accelerating ureteral stone expulsion

Silodosin \rightarrow is a new selective **\alpha-blockers** which facilitates spontaneous passage of distal ureteral stone

Chemolytic Dissolution of Stones

Oral Chemolysis

Efficient only for uric acid stones
Based on alkalinisation with sodium bicarbonate or potassium citrate
Urine pH should be adjusted to 7-7.2

Active Stone Removal

Treatments

Extracorporeal shockwave lithotripsy [ESWL]

Endourology

- -Percutaneous nephrolithotomy (PNL)
- -Ureterorenoscopy (URS)

•Laparoscopic/open surgery
Extracorporeal shock wave lithotripsy (ESWL)

Shockwaves could **pass through living tissue** without discernible damage to the tissue but they are **able to fragment brittle materials like kidney stones**

Fragmentation of stones with shockwaves is achieved by complex phenomena of **pression, torsion, squeezing and cavitation** due to high pressure acoustic waves

Extracorporeal shock wave lithotripsy (ESWL)

Imaging system of stone localization:

Fluoroscopy

Ability to **visualize radiopaque calculi** throughout the urinary tract

Ability to use iodinated contrast agents to aid in stone localization

Ultrasonography

•Eliminates radiation exposure to the patient

·Can identify radiolucent stones

Difficult visualization with obese
Confusing in identifying stone fragments

Extracorporeal shock wave lithotripsy (ESWL)

Complications			%
Related to stone	Steinstrasse		4 – 7
fragments	Regrowth of residual		21 – 59
	fragments		
	Renal colic		2 – 4
Infectious	Bacteriuria in non-		7.7 – 23
	infection stones		
	Sepsis		1 – 2.7
Tissue effect	Renal	Haematoma, symptomatic	< 1
		Haematoma, asymptomatic	4 – 19
	Cardiovascular	Dysrhythmia	11 – 59
		Morbid cardiac events	Case reports
	Gastrointestinal	Bowel perforation	Case reports
		Liver, spleen haematoma	Case reports

Percutaneous Nephrolithotomy Large Kidney Stones

•A percutaneous approach to stone removal

•A **Rigid** or **Flexible** nephroscope is introduced through a nephrostomy access •Small stones can be removed with **stone basket**

Percutaneous Nephrolithotomy

Larger stones can be fragmented

Ballistic lithotripsy

The ballistic lithotripsy provide an effective means for stone fragmentation in the entire urinary tract, **with a wide margin of safety**; however is associated with an **high rate of stone retropulsion**.

Ultrasonic lithotripsy

The ultrasound probe works by applying electrical energy to excite a piezoceramic plate in the ultrasound transducer The major advantage of ultrasonic lithotripsy is the **efficient combination of stone fragmentation and simultaneous fragment removal.** Fragments smaller than 2 mm **are aspirated through the hollow lithotrite** along with the

Percutaneous Nephrolithotomy

During PNL, ultrasonic and pneumatic systems are most commonly used for rigid nephroscopy.

Flexible endoscopes require laser lithotripsy to maintain tip deflection and the Holmium laser has become the standard, as for ureteroscopy

Summary of evidence	LE
Imaging of the kidney with US or CT can provide information regarding inter-positioned organs within	1a
the planned percutaneous path (e.g., spleen, liver, large bowel, pleura, and lung).	
Both prone and supine positions are equally safe, but neither has a proven advantage in operating	1a
time or SFR.	
Percutaneous nephrolithotomy performed with small instruments tends to be associated with	1a
significantly lower blood loss, but the duration of procedure tended to be significantly longer. There are	
no significant differences in SFR or any other complications.	
In uncomplicated cases, a totally tubeless PNL results in a shorter hospital stay, with no increase in	1a
complication rate.	

Uretero-renoscopy (URS) Uretero-lithotripsy

Ureteroscopy is performed with an endoscope that is passed through the urethra, bladder and then directly into the ureter

Ureteroscopes are available as **flexible** or **rigid** instruments.

Ureterorenoscopy (URS)

Rigid ureteroscopes

Flexible ureteroscopes

Ureterorenoscopy (URS)

Aim of URS is complete stone removal:

-stones can be extracted by **endoscopic** forceps or baskets

-stones that cannot be extracted directly must be disintegrated with **intracorporeal lithotripsy**

-The most effective lithotripsy system is the Holmium laser, which has become the gold standard for ureteroscopy and flexible nephroscopy

Active Stone Removal : surgical trends in US

Oberlin DT. Contemporary surgical trends in the management of upper tract calculi. J Urol 2015

Figure 3.1: Treatment algorithm for ureteral stones (if active stone removal is indicated)

SWL = shock wave lithotripsy; URS = Ureteroscopy.

EAU GUIDELINES 2020

Figure 3.4.1: Treatment algorithm for renal calculi

*The term 'Endourology' encompasses all PNL and URS interventions. PNL = percutaneous nephrolithotomy; RIRS = retrograde renal surgery; SFR = stone-free rate; SWL = shockwave lithotripsy; URS = ureterorenoscopy;

Summary

- UTO is an important urologic disorder and a common cause of acute and chronic renal failure
- Multiple causes, high clinical suspicion and acumen necessary

Summary

• UTO is a potentially reversible process

- Prompt recognition
- Prompt treatment
- Prompt consultation/referral

