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Basic Notions

Back to Data Mining and Intro
to Graph Mining



Data Mining

, also called , In computer
science, the process of discovering interesting and useful patterns and
relationships in large volumes of data.

The field combines tools from statistics and artificial intelligence (such as neural
networks and machine learning) with database management to analyze large
digital collections, known as data sets.

Data mining is widely used in business (insurance, banking, retail), science
research (astronomy, medicine), and government security (detection of
criminals and terrorists).

Clifton, Christopher. "Data mining". Encyclopedia Britannica, 20 Dec. 2019,
Graph Theory and Algorithms (PhD Course) — Marco Viviani .Accessed 9 May 2021.


https://www.britannica.com/science/computer-science
https://www.britannica.com/science/statistics
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/technology/neural-network
https://www.britannica.com/technology/machine
https://www.britannica.com/technology/database
https://www.britannica.com/technology/data-mining

Mining Frequent Patterns

. . a pattern (a set of items, subsequences,
substructures, etc.) that occurs frequently in a data set.

. . Finding inherent regularities in data
- What products were often purchased together?
- What are the subsequent purchases after buying a PC?
- What kinds of DNA are sensitive to this new drug?
- Can we classify Web documents using frequent patterns?

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph Mining: A Possible Definition

is the set of tools and techniques used to:

(a) analyze the properties of real-world graphs,

(b) predict how the structure and properties of a given graph might affect some
application, and

(c) develop models that can generate realistic graphs that match the patterns
found in real-world graphs of interest.

Chakrabarti D. (2011) Graph Mining. In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine
Graph Theory and Algorithms (PhD Course) — Marco Viviani Learning. Springer, Boston, MA.


https://doi.org/10.1007/978-0-387-30164-8_350

Graph Mining: Possible Research Areas

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph Mining: Some Applications

. (This lecture)

. (This lecture)

. (Dedicated lecture)

. (High-level treatment in this lecture)

. (Dedicated
lecture)

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Subgraph Matching
(aka Isomorphism) Problem

« Agraph gisa of another graph g’ if there exists a graph
iIsomorphism* from g to g'.

* support(g) (or, frequency(g)): number of graphs in D = {Gy, Gy, ..., G}
where g is a sub-graph.

Graph Theory and Algorithms (PhD Course) — Marco Viviani *For the definition of graph isomorphism, please refer to previous lectures.
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Frequent Subgraphs

* A (sub)graph is if its support in a given dataset is no less
than a minimum support threshold.

* What is ? —intuitively the occurred frequency: the number of
transactions containing a single occurrence.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Frequent Subgraphs ... Cont'd

« Given a graph dataset D = {G4, G,, ..., G, }, find subgraph(s) G such that:
support(G) = minSup

where support(G) is the frequency (or the percentage) of graphs in D
containing G and minSup is a selected threashold.

. . satisfies minSup (@ minimum support threshold).

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Frequent Subgraphs (Example 1)

* Graph dataset (chemical compounds):

NOANTS e TYY\

* Frequent subgraphs
(minSup = 2): N%
N/\o <_/N
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Frequent Subgraphs (Example 2)

* Graph dataset
(Execution flow):

* Frequent subgraphs
(minSup = 2):

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Some Approaches

- Based on the merging (join) of sub-graphs.

- Based on the growth of sub-graphs.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Apriori vs Pattern-growth approach

k+1

join
Apriori-Based Approach

Graph Theory and Algorithms (PhD Course) — Marco Viviani

k+2

grow

VS. Pattern-Growth Approach



Apriori-based Approach

mining method.
. Size of is increased by 1.
- Generated by
- Frequency is then checked.

e Start with a

« Generate candidates with

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Apriori-based Approach ... Cont'd

Algorithm: AprioriGraph. Apriori-based frequent substructure mining.
Input:

D, a graph data set;

min_sup, the minimum support threshold.
Output:

Sk, the frequent substructure set.

Method:

S| « frequent single-elements in the data set;
Call AprioriGraph(D, min_sup, S );

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Apriori-based Approach ... Cont'd

procedure AprioriGraph(D, min_sup, Sy)

(1) Sg41 <25

(2) for each frequent g; € Sy do

(3) for each frequent g; € S; do

(4) for each size (k + 1) graph g formed by the merge of g; and g; do
(5) if g is frequent in D and g & S; ;| then

(6) insert g into Sy 15

(7) ifsgy1 # @ then

(8)  AprioriGraph(D, min_sup, S 1);

(9) return;

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Vertex-based Candidate Generation
(AGM: Apriori-based Graph Mining)

* INncreases sub-structures size by

« Two frequent k-size graphs are merged only if they share the same
k — 1 subgraph (size: number of vertices).

 New candidate has k — 1 sized component and the additional two

vertices.
- Two different sub-structures can be formed.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Edge-based Candidate Generation
(FSG: Frequent Sub-Graph mining)

* INncreases sub-structures size by

« Two frequent k-size graphs are merged only if they share the same
subgraph having k — 1 edges (core).

 New candidate — has core and the two additional edges.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Edge-based Candidate Generation ... Cont'd
(FSG: Frequent Sub-Graph mining)

‘o)

U
age

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Edge Disjoint Path Method

» Classify graphs by number of they have.

« Two paths are edge-disjoint if they do not share any common edge.

* A substructure pattern with k + 1 disjoint paths is generated by
joining sub-structures with k disjoint paths.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



A Parentheses: The Disjoint Paths Problem

. : A graph G with n vertices and m edges, k pairs of vertices
(51; tl)! (52' tZ)t L) (Sk; tk) inG.

. . (Vertex- or edge-) disjoint paths py,ps, ..., pr IN G such that p;
joins s; and t; fori =1,2, .., k.

« If k is a part of the input of the problem, this problem is known to be

Kawarabayashi, K. I. (2011, February). The disjoint paths problem: Algorithm and structure. In
Graph Theory and Algorithms (PhD Course) — Marco Viviani International Workshop on Algorithms and Computation (pp. 2-7). Springer, Berlin, Heidelberg



Disadvantages of Apriori Approaches

. when joining two sub-structures.

* Uses . level-wise candidate generation:
- Tocheck whether a k + 1 graph is frequent, it must check all of its k-size
subgraphs.
- May consume more memory.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Pattern-growth Approach

 Uses as well as

« Agraph g can be e. The newly

formed graph is denoted by g<,e.
- Edge e may or may not introduce a new vertex to g.

- For each discovered graph g, performs extensions recursively until all

frequent graphs with g are found.

- Simple but inefficient.
« The same graph is discovered multiple times - duplicate graphs.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Pattern-growth Approach ... Cont'd

Algorithm: PatternGrowthGraph. Simplistic pattern growth-based frequent substructure
mining.

Input:
g, a frequent graph;
D, a graph data set;

min_sup, minimum support threshold.
Output:
The frequent graph set, S.

Method:

S — @;
Call PatternGrowthGraph(g, D, min_sup, S);

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Pattern-growth Approach ... Cont'd

procedure PatternGrowthGraph(g, D, min_sup, S)

(1) if g € S then return;
2) else insert g into S;

3) scan D once, find all the edges e such that g can be extended to g oy e;

(

(

(4) for each frequent goye do

(5) PatternGrowthGraph(g o, e, D, min_sup, S);
(

6) return;

Graph Theory and Algorithms (PhD Course) — Marco Viviani



oSpan

. adopts the strategy to mine
frequent connected subgraphs efficiently.

* When performing a DFS in a graph, we construct a

« One graph can have

Yan, X., & Han, J. (2002, December). gspan: Graph-based substructure pattern mining. In 2002
Graph Theory and Algorithms (PhD Course) — Marco Viviani IEEE International Conference on Data Mining, 2002. Proceedings. (pp. 721-724). IEEE.



Vo
(O
Y \d
d
’ bly./
N EY4 '
b 1
C \oC

Graph Theory and Algorithms (PhD Course) — Marco Viviani

(d)

bold line - forward edge
dashed line - backward edge



oSpan ... Cont'd

gSpan

* either can be added between the right-most vertex and
another vertex on the right-most path (backward extension);

* or it can introduce and connect to a vertex on the right-
most path (forward extension).

* Right-most extension, denoted by g<,e.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



oSpan ... Cont'd

(a) (b) (c) (d) (e) ()

/‘7/\\ //|R

(b.0) (b.1) (b2) (b.3) (e.0) (e.l) (e2)

Graph Theory and Algorithms (PhD Course) — Marco Viviani
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Graph Indexing

From IR to Graph Search
(Sub-/Super-/Similarity-graph
Search)



Indexing and IR

. Is essential for efficient search and query processing,.

Fundamental in

The purpose of storing an index in IR is to

in finding relevant documents for a search query.
- Without an index, the search engine would scan every document in the
corpus, which would require considerable time and computing power.

Indexing isan “ " phase.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Indexing and IR ... Cont'd

* Scheme of automatic indexing process:

OuTPUT

Documents Full-text
INPUT E> in digital IZ> Ei} Indexes

indexing

W

Data structure for
the organization of
indexes

Indexing Phase

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Indexing and IR: The Inverted File

* The organization of the indexes in a “static” data structure, for
example a matrix of document/term occurrences would be inefficient
(forward index).

« Since the matrix is sparse, space would be wasted to store also the “non-
occurrence” of the terms (e.g., Term3 in Docl, next slide).

- Getting the list of documents that contain a specific term would be
burdensome.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Indexing and IR: The Inverted File ... Cont'd

- i i 1 2 6 5 8

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Indexing and IR: The Inverted File ... Cont'd

« The table of occurrences must be inverted (term/document) and
organized in a dynamic data structure.

Terml 3
Term2 4 - 2
Term3
Term4
Term5

Term6

o o1 o N
w
N

Term7

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Indexing and IR: The Inverted File ... Cont'd

 The index terms are organized in a dictionary. Each term "points" to a

list containing the references to documents of which the term is an
index.

« Use of two files: dictionary and posting file (it contains the posting
lists of all index terms).

tl D1 5 D2 1

t2 D1 5

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph Indexing

Traditional approaches are not feasible for graphs.

Graphs are complex structures.

Queries in graph search are constituted by other graphs or patterns.

There is the need of

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph Indexing — Techniques

+ Indexing based on nodes / edges / paths / sub-graphs.

- Enumerate all the paths in a database up to max length and index them
- Index is used to identify all graphs with the paths in query

- Not suitable for complex graph queries

- Structural information is lost when a query graph is broken apart

- Many false positives maybe returned

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph Indexing — Techniques ... Cont'd

. . considers frequent and discriminative substructures as index

features

- Afrequent substructure is discriminative if its support cannot be
approximated by the intersection of the graph sets.

- Achieves good performance at less cost.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph (Queries

In principle, queries in graph datasets can be broadly classified into the
following

a. This category searches for a specific pattern in the graph dataset.
b. The pattern can be either a small graph or a graph where some parts of it are
uncertain.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Example

z
00 O@ A‘
g & &3
(a) Sample graph database

(b) Graph queries

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Subgraph (Queries

(b) Graph queries

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph (Queries ... Cont'd

« This category searches for the graph database members of which their whole
structures are contained in the input query.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Supergraph (ueries

(a) Sample graph database

(b) Graph queries

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph (Queries ... Cont'd

- This category finds graphs which are similar, but not necessarily isomorphic
to a given query graph.

* This category of queries can be further classified to the following two
kinds of queries:
. . These queries are used to discover all graphs
that approximately contain the query graph.
. These queries are used to discover all graphs that
are approximately contained by the query graph.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Similarity Queries
(Example with Substructure similarity search)

L& I_L____ga._____J.l L g3

'

(b) Graph queries
Graph Theory and Algorithms (PhD Course) — Marco Viviani



Subgraph Query Processing

Graph query Graph
dataset
Off-line index construction
Query Probing
processor
Filtering phase
1 Yoo
! Candidate
I
I

answer set |

l Verification phase

sl
B
=R
=]
=}
17}
=
]
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GraphGrep: A Path-based Indexing Approach

. to represent the dataset of graphs as sets of paths
(this step is done only once).

. based on the submitted query and the index to
reduce the search space.

 Perform

Shasha, D., Wang, J. T., & Giugno, R. (2002, June). Algorithmics and applications of tree
and graph searching. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART

Graph Theory and Algorithms (PhD Course) — Marco Viviani symposium on Principles of database systems (pp. 39-52).



GraphGrep: Index Construction

« For each graph and for each node, find all paths that start at this
node and have lenght one (single node) up to a (small) constant
value.

* Because several paths may contain the same label sequence, we
group the associated with the same label-path in a set.

* The « » of a graph is the set of in the
graph, where each label-path has a set of id-paths.

* The of the dataset is a table where each row contains the
number of id-paths associated with a «key» in each graph.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



GraphGrep: Example

D |!
/ B
B 9 3]C g2 3lc
B E B C
All 2|B A |4 5 6 A 2 3
91 9> 93
A={(1)} AB={(1,0),(1,2)} AC={(l,3)} ACBA={...} Key 2; 2| 8
ABCA={(1.,0.3,1),(1,2,3, 1)} CB={(3,0)(3,2)} C={(3)}
CBAB={((3,0, 1,2),(3,2,1,0)} B={(0),(2)} BA={(0,1),(2,1)} h(CA) 1 0 1
BAB={(0,1,2), (2,1,0)} ABC ={(1, 3, 0), (1,3,2)} ACB={...}
ABCB={...) BC={...} BAC={...} BCB={...1 CBA={...} | | -----.
BABC={...]|CBAC={...] CABC={...] CAB={(3,1,0), (3,1,2)!
BACB={...}BCBA={...)BCAB={...} BCA={...) CA={(3,1)} h(ABCB) | 2 2 10

Graph Theory and Algorithms (PhD Course) — Marco Viviani




GraphGrep: Filtering the Dataset

* The Is parsed to build its fingerprint.

 The graph dataset is by comparing the fingerprint of the
query with the fingerprint of the dataset.

« A graph, for which at least one value in its fingerprint is less than the
corresponding value in the fingerprint of the query, is discarded.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



GraphGrep: Exact Matching

query DFS — —
B |1~ olc B |0 3|C
query query I graph
= - fragments: AL 2| B
AP ABCA - CB

* Select the set of paths in the graph matching the patterns of the
query: ABCA = {(1,0,3,1), (1,2,3,1)}, CB = {(3,0),(3.2)}

« Combine any list from ABCA with any list of CB: ABCACB = {[(1,0,3,1),(3,0)],
[(1,03,1).(3.2)], [(1.2,31).(3,0)], [(1.2,31),(32)]}

Graph Theory and Algorithms (PhD Course) — Marco Viviani



GraphGrep: Exact Matching ... Cont'd

query DFS — —
B |1~ olc B |0 3|C
query query I graph
= - fragments: AL 2| B
AP ABCA - CB

« Remove lists from ABCACB if they contain equal id-nodes in non-
overlapping positions. Query = ABCA - CB

ABCACB = [(1,0,3,1),(3,0)] € NO

ABCACB = [(1,2,3,1),(3,2)] € NO

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Path-based Indexing Approaches: Drawback

* Not suitable for complex graph queries.
» Structural information is lost when a query graph is broken apart.

* Many false positives maybe returned.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



olndex

« |ldentify in the dataset.
- The frequent structures are subgraphs that appear often in the graph
dataset.
. to maintain a small set of

discriminative structures.

. between discriminative frequent structures
and graphs in the dataset.

Yan, X., Yu, P. S., & Han, J. (2004, June). Graph indexing: A frequent structure-based approach. In
Graph Theory and Algorithms (PhD Course) — Marco Viviani Proceedings of the 2004 ACM SIGMOD international conference on Management of data (pp. 335-346).



oIndex: Frequent Fragments

The number of graph structure is large.
- Index only frequent subgraphs.

support(g)
- The number of graphs in D (graph dataset), where g is a subgraph.

* minSup
« Minimum support threshold.
« Index a fragment g only if support(g) = minSup.

« Low minSup for small fragments, high minSup for large fragments.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



olndex: Size-increasing Support

- Low minSup for small fragments, high minSup for large fragments.

. :a completely connected graph with 10 vertices, each of
which has a distinct label. There are 45 1-edge subgraphs, 2-edge
ones, and more than 8-edge ones.

« By enforcing the size-increasing support constraint, we bias the
feature selection to small fragments with low minimum support and
large fragments with high minimum support.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



olndex:
Redundant and Discriminative Fragments

- The indexed graphs by a fragment are also indexed by its subgraphs.
- We don't need to include redundant fragments.

- Fragments which are not redundant.

. on how to identify redundant and discriminative fragments
are illustrated in: «Yan, X,, Yu, P. S, & Han, J. (2004, June). Graph
indexing: A frequent structure-based approach. In Proceedings of the
2004 ACM SIGMOD international conference on Management of data
(pp. 335-346).»

Graph Theory and Algorithms (PhD Course) — Marco Viviani



olndex: gindex Tree

« Once discriminative fragments are selected, gindex has efficient
to store and retrieve them.

It translates fragments into sequences and holds them in a
. In computer science, a ~also called digital tree or prefix tree,

Is a type of search tree, a tree data structure used for locating specific
keys from within a set.

Bodon, F., & Ranyai, L. (2003). Trie: an alternative data structure for data mining
Graph Theory and Algorithms (PhD Course) — Marco Viviani algorithms. Mathematical and Computer Modelling, 38(7-9), 739-751.



Example of a Trie



olndex: gindex Tree ... Cont'd

level 0

level 1

level 2 discriminative
fragments

O intermediate node

Graph Theory and Algorithms (PhD Course) — Marco Viviani



olndex: Searching

* Given a query q, glndex enumerates all its fragments up to a
Mmaximum size and locates them in the index.

Algorithm 2 Search

Input: Graph database D, Feature set F', Query ¢,
and Maximum fragment size maxL.
Output: Candidate answer set Cj.

1: let Cq = D;

2: for each fragment = C ¢ and len(x) < maxL do
3: if x € F' then

4: Cq = Cq N Dg;

5

: return Cy;

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Supergraph (uery Processing

* Less investigated in the literature.

* |t will not be detailed in this course.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Similarity Query Processing

* A key question in graph similarity queries is on how to measure the
between a target graph member of the database and the

query graph.

* |t is difficult to give a precise definition of graph similarity.

* These approaches can allow for , (gap
node is a node in the query that cannot be mapped to any node in

the target graph) as well as .
« Such techniques are employed in the case of or graphs.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Closure Tree

A tree-based index structure named (closure-tree).

* In this index structure, each node in the tree contains discriminative
information about its descendants.

* The Is defined as a generalized vertex
whose attribute is the union of the attribute values of the vertices.

* The is defined as a generalized edge whose
attribute is the union of the attribute values of the edges.

He, H., & Singh, A. K. (2008, April). Closure-tree: An index structure for graph queries. In 22nd
Graph Theory and Algorithms (PhD Course) — Marco Viviani International Conference on Data Engineering (ICDE'06) (pp. 38-38). IEEE.



Closure Tree ... Cont'd

* The of two graphs g, and g, under a mapping M is defined as
a generalized graph G, = (V,E) where V is the of
the corresponding vertices and E is the of the

corresponding edges. G, = closure(g4, g,).

 Hence, a graph closure has the same characteristics of a graph.

« The only difference is that the graph dataset member has singleton
labels on vertices and edges while the graph closure can have
multiple labels.

« For similarity queries, CTree defines graph similarity based on

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Closure Tree: Example

*
. *
- Ld
L] -
* .
- L4
.. .0

* L]

* ..

g1 24) g3 Closure (&1> 82> 83)
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SAGA

* The distance model contains :
« The component measures the structural differences for the
matching node pairs in the two graphs.
- The component is the penalty associated with matching
two nodes with different labels.

- The component is used to measure the penalty for the gap nodes
in the query graph.

Tian, Y., Mceachin, R. C., Santos, C., States, D. J., & Patel, J. M. (2007). SAGA: a subgraph
Graph Theory and Algorithms (PhD Course) — Marco Viviani matching tool for biological graphs. Bioinformatics, 23(2), 232-239.



SAGA ... Cont'd

. is built on of graphs in the dataset
(fragment index).

Each fragment is a set of k nodes from the graphs in the dataset. The
index does not enumerate all possible k-node sets.

The fragments in SAGA do not always correspond to connected
subgraphs. The reason behind this is to in the
matching process.

« A is also maintained. This index is used to look up the
precomputed distance between any pair of nodes in a graph.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



SAGA ... Cont'd

* The query is broken into small fragments and the fragment index is

probed to find database fragments that are similar to the query
fragments.

« Also in this case, further details can be found in: “Tian, Y., Mceachin, R.

C., Santos, C,, States, D. J.,, & Patel, J. M. (2007). SAGA: a subgraph
matching tool for biological graphs. Bioinformatics, 23(2), 232-239".

Graph Theory and Algorithms (PhD Course) — Marco Viviani
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Graph Databases

Basic Notions and
Representations



Basic Notions

« A (GDB) is a database that uses graph structures for

with nodes, edges, and properties to represent and
store data.

* The graph relates the data items in the store to a collection of nodes

and edges, the edges representing the relationships between the
nodes.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Basic Notions ... Cont'd

« Graph databases , Created to address
the limitations of relational databases.

 While the graph model explicitly lays out the dependencies between
nodes of data, the relational model and other NoSQL database
models link the data by

 IMPORTANT: are a first-class citizen in a graph

database and can be labelled, directed, and given properties.
- This is not the case in other database management systems, where we have
to infer connections between entities using things like foreign keys.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Basic Notions ... Cont'd

Key-Value Graph DB
® [ )
o]
o o
Column Family Document

7
1 1

1 1
1

1

Figure A-1. The NOSQL store quadrants
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Basic Notions: Example

Id: 2
MName: Bob

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph Database Management Systems

A (henceforth, a graph
database) is an online database management system with
(CRUD) methods that expose a

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph Database Management Systems ...
Cont'd

There are of graph databases we should consider when
investigating graph database technologies:

Some graph databases use that is optimized and
designed for storing and managing graphs. Not all graph database
technologies use native graph storage, however.

_ require that a graph database use index-free adjacency,
meaning that connected nodes physically “point” to each other in the database.

:any database that from the user’s perspective behaves
Ioilke abgraph database (i.e., exposes a graph data model) qualifies as a graph
atabase.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



The Underlying Storage

* The of graph databases can vary.

« Some depend on a relational engine and "store" the graph data in a

- Although a table is a logical element, therefore this approach imposes
between the graph database, the graph database
management system and the physical devices where the data is actually
stored.

« Others use a or for
storage, making them inherently NoSQL structures.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Relational Databases
Lack Relationships

Figure 2-2 shows a simple join-table arrangement for recording friendships.

Person PersonFriend
ID Person »| PersonlD | FriendID
1 Alice 1 2
2 Bob 2 1
2 99
99 Zach
99 1

Figure 2-2. Modeling friends and friends-of-friends in a relational database

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Relational Databases
Lack Relationships — Example

Example 2-1. Bobs friends Example 2-3. Alices friends-of-friends
SELECT pi.Person SELECT pl.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND
FROM Person pl JOIN PersonFriend FROM PersonFriend pf1l JOIN Person pl
ON PersonFriend.FriendID = pl1.ID ON pfl.PersonID = p1.ID
JOIN Person p2 JOIN PersonFriend pf2
ON PersonFriend.PersonID = p2.ID ON pf2.PersonID = pfl.FriendID
WHERE p2.Person = 'Bob' JOIN Person p2

ON pf2.FriendID = p2.ID
WHERE pl.Person = 'Alice' AND pf2.FriendID <> p1.ID
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Relational Databases
Lack Relationships ... Cont'd

. add accidental complexity.

. >y constraints add additional development and maintenance
overhead just to make the database work.

« Several are needed just to discover what a customer
bought.

. are even more costly. “What products did a customer

buy?” is relatively cheap compared to “which customers bought this
product?” which is the basis of Recommender Systemes.

. _ , but even with an index, recursive questions
such as “which customers buying this product also bought that product?”
quickly become prohibitively expensive as the degree of recursion
increases.
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NOSOL Databases Also
Lack Relationships

* Most NOSQL databases—whether key-value-, document-, or column-
oriented—store sets of disconnected documents/values/columns.

* This makes it difficult to use them for connected data and graphs.
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NOSOL Databases Also
Lack Relationships ... Cont'd

* One well-known strategy for adding relationships to such stores is to
embed an inside the field belonging to
another aggregate—effectively introducing foreign keys.

« But this requires joining aggregates at the application level, which
quickly becomes prohibitively expensive.
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NOSOL Databases Also
Lack Relationships ... Example

user: Alice
address: 123 Foo St.
phone: 12345678

email: alice@example.org
alternate: alice@neodj.org

order: 1234
order: 5678
order: 9012

Graph Theory and Algorithms (PhD Cour. _,

order: 9012

order: 5678

order: 1234
cost: 150.00

item: abcd
item: efab

item: efab

item: abcd

description: strawberry
ice cream
handling: freezer




Graph Databases Embrace Relationships

In the graph world, connected data

. in a graph naturally form

Querying—or —the graph involves following paths.

Because of the fundamentally path-oriented nature of the data
model, the majority of path-based graph database operations are
highly aligned with the way in which the data is laid out, making
them extremely efficient.
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Graph Databases Embrace Relationships ...
Cont'd

id: 1234
date: 20120808
status: delivered

id:5678
date: 20120816
status: dispatched

CONTAINS

description:

strawberry ice
cream

handling: freezer

description:

description:
brussels sprouts

espresso beans

Figure 2-6. Modeling a user’s order history in a graph
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The Labeled Property Graph Model

o A labeled property graph is made up of nodes, relationships, properties, and labels.

« Nodes contain properties. Think of nodes as documents that store properties in
the form of arbitrary key-value pairs. In Neo4j, the keys are strings and the values
are the Java string and primitive data types, plus arrays of these types.

« Nodes can be tagged with one or more labels. Labels group nodes together, and
indicate the roles they play within the dataset.
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The Labeled Property Graph Model ... Cont'd

 Relationships connect nodes and structure the graph. A relationship always has a
direction, a single name, and a start node and an end node—there are no dangling
relationships. Together, a relationships direction and name add semantic clarity

to the structuring of nodes.

« Like nodes, relationships can also have properties. The ability to add properties
to relationships is particularly useful for providing additional metadata for graph
algorithms, adding additional semantics to relationships (including quality and
weight), and for constraining queries at runtime.
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Querying Graphs

!

« Colloquially, we ask the database to “find things like this!’

Figure 3-1. A simple graph pattern, expressed using a diagram
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From:

Querying Graphs — Example (Cypher)

e If we want to express the pattern of this basic graph in Cypher, we would write:

This Cypher statement describes a path which forms a triangle that connects an node we call jim
to the two nodes we call johan and emil , and which also connects the johan node to the
emil node. As you can see, Cypher naturally follows the way we draw graphs on the whiteboard.

o Now, while this Cypher pattern describes a simple graph structure it doesn't yet refer to any
particular data in the database. To bind the pattern to specific nodes and relationships in an

existing dataset we first need to specify some property values and node labels that help locate the
relevant elements in the dataset.
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https://neo4j.com/blog/why-database-query-language-matters/

From:

Querying Graphs — Example ... Cont'd

o Here's our more fleshed-out query:

*Jim'})

'Johan'})

* Here we've bound each node to its identifier using its name property and Person label. The
emil identifier, for example, is bound to a node in the dataset with a label Person and a name
property whose value is Emil . Anchoring parts of the pattern to real data in this way is normal
Cypher practice.
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https://neo4j.com/blog/why-database-query-language-matters/

From:

Querying Graphs — Example ... Cont'd

* The simplest queries consist of a MATCH clause followed by a RETURN clause. Here's an example of
a Cypher query that uses these three clauses to find the mutual friends of a user named 3Jim :

'Jim'})-[ 1->(b)-[ 1->(c),
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The Processing Engine

- Index-free adjacency.

- Any database that from the user’s perspective behaves like a graph database
(i.e., exposes a graph data model) qualifies as a graph database.
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Index-free Adjacency

* A graph database has native processing capabilities if it exhibits a
property called

* A database engine that utilizes index-free adjacency is one in which
each node maintains

« Each node, therefore, acts as a of other nearby nodes,
which is much cheaper than using global indexes.
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Global Indexing

* A non-native graph database engine, in contrast, uses
to link nodes together.
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Graph Database Internals: Example

»| Alice Davina
»| Alice Charlie
»| Alice Bob
Bob Alice
Bob Charlie
Bob Davina
Charlie Bob
Charlie Davina
Charlie Alice
Davina Charlie
Davina Bob
Davina Alice
h 4 h 4 v
name: Alice name: Bob name: Charlie name: Davina

Figure 6-1. Nonnative graph processing engines use indexing to traverse between nodes
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Index-free Adjacency VS (Global) Indexing

* With , bidirectional joins are effectively
precomputed and stored in the database as relationships.

* In contrast, when using to simulate connections
between records, there is no actual relationship stored in the
database.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Graph Database Internals: Neo4

FRIEND

FRIEND

FRIEND

ERIEND FRIEND

FRIEND

FRIEND
FRIEND

name: Charlie

name: Davina

FRIEND

FRIEND

Figure 6-2. Neo4j uses relationships, not indexes, for fast traversals
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Native Graph Storage: Neo4|

« If index-free adjacency is the key to high-performance traversals, queries,
and writes, then one key aspect of the design of a graph database is the

way in which graphs are stored.

« An efficient, supports extremely rapid

traversals for arbitrary graph algorithmes.

. stores graph data in
- Each store file contains the data for a specific part of the graph (e.g., there are

- The —particularly the sepa ration of graph

structure from property data—facilitates performant graph traversals, even though
it means the user's view of their graph and the actual records on disk are

structurally dissimilar.
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Native Graph Storage: Neo4) ... Cont'd

Node (15 bytes)
inUse
nextRelld nextPropld labels extra

1 5 9 14
Relationship (34 bytes)
inUse firstPrevRelld secondPrevRelld nextPropld

firstNode  secondMNode relationshipType firstNextRelld secondNextRelld firstinChainMarker

1 5 9 13 17 21 25 29 3334

Figure 6-4. Neo4j node and relationship store file record structure
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A Reference Book

,. understanding what graph
_ databases are and how to use
them properly...

Databases | really liked reading it!"

- Krzysztof Ropiak, Customer

0 & "This book significantly helps in
,.%

lan Robinson,
Jim Webber & Emil Eifrem

Print Length: 224 Pages
Available Device Formats: PDF, Kindle, iBooks

Publisher: O'Reilly Media https://tinyurl.com/rxecdexk
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5] e

Graph
Classification

Basic Notions and Ideas




Basic notions

- Featuresthat are frequent in one class but less in another:

« Model construction.
« Can adjust frequency, connectivity thresholds, ...

. and other are used.

Graph Theory and Algorithms (PhD Course) — Marco Viviani



Basic Idea

* Mine the frequent sub-graphs, call them

« Use” " for assigning the most characteristic
terms to “documents”.

* Based on such measures and labelled graphs w.r.t. distinct
categories, it is possible to perform classification.
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Subgraph Classification Rate

. . Classification-relevant sub-graphs are more
frequent in a specific category than in other categories.

- SCF(g(c): of subgraph g in category ¢;
- ISF(g(cp)): of subgraph g in category c;

SCR = SCF(g(c)) x ISF(g(cy))
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Inverse Subgraph Frequency

( LN (¢))

log
ISF(g(cy) = | “yF (9(01)

log, (2+3N(g)) ifSF(g(c)) =0

] if$F (g(c)) > 0

* ISF(g(c;)): measure for the Inverse Frequency of subgraph g in
category c;.

» N(c¢;): number of graphs in category ;.
« F (g(cj)): number of graphs containing g in category ;.
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Possible Assignment

* Investigate a specific approach to perform graph classification.

* Investigate and detail (with comparisons of pros and cons) possible
"tf-idf-like" measures for performing graph classification.
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] e

Graph Partitioning
(and Clustering)

Dedicated Lecture
Date to be announced



