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Data Mining

Data mining, also called knowledge discovery in databases, in computer 
science, the process of discovering interesting and useful patterns and 
relationships in large volumes of data. 

The field combines tools from statistics and artificial intelligence (such as neural 
networks and machine learning) with database management to analyze large 
digital collections, known as data sets.

Data mining is widely used in business (insurance, banking, retail), science 
research (astronomy, medicine), and government security (detection of 
criminals and terrorists).

Clifton, Christopher. "Data mining". Encyclopedia Britannica, 20 Dec. 2019, 
https://www.britannica.com/technology/data-mining. Accessed 9 May 2021.

https://www.britannica.com/science/computer-science
https://www.britannica.com/science/statistics
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/technology/neural-network
https://www.britannica.com/technology/machine
https://www.britannica.com/technology/database
https://www.britannica.com/technology/data-mining
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Mining Frequent Patterns

• Frequent Pattern: a pattern (a set of items, subsequences, 
substructures, etc.) that occurs frequently in a data set.

• Motivation: Finding inherent regularities in data
• What products were often purchased together?
• What are the subsequent purchases after buying a PC?
• What kinds of DNA are sensitive to this new drug?
• Can we classify Web documents using frequent patterns?
• …
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Graph Mining: A Possible Definition

Graph mining is the set of tools and techniques used to:

(a) analyze the properties of real-world graphs, 
(b) predict how the structure and properties of a given graph might affect some 

application, and
(c) develop models that can generate realistic graphs that match the patterns 

found in real-world graphs of interest.

Chakrabarti D. (2011) Graph Mining. In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine 
Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_350

https://doi.org/10.1007/978-0-387-30164-8_350
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Graph Mining: Possible Research Areas

• Cheminformatics (Chemical Informatics)

• Bioinformatics

• Computer Vision / Video Indexing

• Text Retrieval

• Web Analysis

• Social Network Analysis

• …
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Graph Mining: Some Applications

• Frequent Subgraph Mining (This lecture)

• Graph Indexing for Graph Search (This lecture)

• Graph Summarization (Dedicated lecture)

• Graph Classification (High-level treatment in this lecture)

• Graph Clustering / Partitioning / Community Detection (Dedicated 
lecture)
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Subgraph Matching 
(aka Isomorphism) Problem

• A graph 𝑔 is a sub-graph of another graph 𝑔’ if there exists a graph
isomorphism* from 𝑔 to 𝑔’.

• 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔) (or, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑔)): number of graphs in 𝐷 = {𝐺1, 𝐺2, … , 𝐺𝑛}
where 𝑔 is a sub-graph.

*For the definition of graph isomorphism, please refer to previous lectures.
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Frequent Subgraphs

• A (sub)graph is frequent if its support in a given dataset is no less 
than a minimum support threshold.

• What is support? – intuitively the occurred frequency: the number of 
transactions containing a single occurrence.
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Frequent Subgraphs … Cont’d

• Given a graph dataset 𝐷 = {𝐺1, 𝐺2, … , 𝐺𝑛}, find subgraph(s) 𝐺 such that:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐺 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝

where 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐺) is the frequency (or the percentage) of graphs in 𝐷
containing 𝐺 and 𝑚𝑖𝑛𝑆𝑢𝑝 is a selected threashold.

• Frequent graph: satisfies 𝑚𝑖𝑛𝑆𝑢𝑝 (a minimum support threshold).
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Frequent Subgraphs (Example 1)

• Graph dataset (chemical compounds):

• Frequent subgraphs
(𝑚𝑖𝑛𝑆𝑢𝑝 = 2):
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Frequent Subgraphs (Example 2)

• Graph dataset
(Execution flow):

• Frequent subgraphs
(𝑚𝑖𝑛𝑆𝑢𝑝 = 2):
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Some Approaches

• Apriori-based approach
• Based on the merging (join) of sub-graphs.

• Pattern-growth approach
• Based on the growth of sub-graphs.
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Apriori vs Pattern-growth approach

𝑘 − size

𝑘 + 1

𝑘 + 1
𝑘 + 2

𝑘 − size
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Apriori-based Approach

• Apriori graph:
• Level-wise mining method.
• Size of new substructures is increased by 1.
• Generated by joining two similar but slightly different frequent subgraphs.
• Frequency is then checked.

• Start with a graph of small size.

• Generate candidates with extra vertex/edge or path.
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Apriori-based Approach … Cont’d
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Apriori-based Approach … Cont’d
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Vertex-based Candidate Generation 
(AGM: Apriori-based Graph Mining)

• Increases sub-structures size by one vertex at each step.

• Two frequent 𝑘-size graphs are merged only if they share the same 
𝑘 − 1 subgraph (size: number of vertices).

• New candidate has 𝑘 − 1 sized component and the additional two 
vertices.
• Two different sub-structures can be formed.
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Edge-based Candidate Generation
(FSG: Frequent Sub-Graph mining)

• Increases sub-structures size by one-edge at each step.

• Two frequent 𝑘-size graphs are merged only if they share the same 
subgraph having 𝑘 − 1 edges (core).

• New candidate – has core and the two additional edges.
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Edge-based Candidate Generation … Cont’d
(FSG: Frequent Sub-Graph mining)
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Edge Disjoint Path Method

• Classify graphs by number of disjoint paths they have.

• Two paths are edge-disjoint if they do not share any common edge.

• A substructure pattern with 𝑘 + 1 disjoint paths is generated by 
joining sub-structures with 𝑘 disjoint paths.
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A Parentheses: The Disjoint Paths Problem

• Input: A graph 𝐺 with 𝑛 vertices and 𝑚 edges, 𝑘 pairs of vertices 
(𝑠1, 𝑡1), (𝑠2, 𝑡2), … , (𝑠𝑘 , 𝑡𝑘) in 𝐺.

• Output: (Vertex- or edge-) disjoint paths 𝑝1, 𝑝2, … , 𝑝𝑘 in 𝐺 such that 𝑝𝑖
joins 𝑠𝑖 and 𝑡𝑖 for 𝑖 = 1,2, … , 𝑘.

• If 𝑘 is a part of the input of the problem, this problem is known to be 
NP-complete.

Kawarabayashi, K. I. (2011, February). The disjoint paths problem: Algorithm and structure. In 
International Workshop on Algorithms and Computation (pp. 2-7). Springer, Berlin, Heidelberg
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Disadvantages of Apriori Approaches

• Overhead when joining two sub-structures.

• Uses BFS strategy: level-wise candidate generation:
• To check whether a 𝑘 + 1 graph is frequent, it must check all of its 𝑘-size 

subgraphs.
• May consume more memory.
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Pattern-growth Approach

• Uses BFS as well as DFS.

• A graph 𝑔 can be extended by adding a new edge 𝑒. The newly 
formed graph is denoted by 𝑔◇𝑥𝑒.
• Edge 𝑒 may or may not introduce a new vertex to 𝑔.

• Pattern-growth approach
• For each discovered graph 𝑔, performs extensions recursively until all 

frequent graphs with 𝑔 are found.
• Simple but inefficient.
• The same graph is discovered multiple times → duplicate graphs.
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Pattern-growth Approach … Cont’d
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Pattern-growth Approach … Cont’d
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gSpan

• gSpan adopts the Depth-First Search (DFS) strategy to mine 
frequent connected subgraphs efficiently.

• When performing a DFS in a graph, we construct a DFS tree. 

• One graph can have several different DFS trees.

Yan, X., & Han, J. (2002, December). gspan: Graph-based substructure pattern mining. In 2002 
IEEE International Conference on Data Mining, 2002. Proceedings. (pp. 721-724). IEEE.
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gSpan … Cont’d

bold line - forward edge 
dashed line - backward edge



Graph Theory and Algorithms (PhD Course) – Marco Viviani

gSpan … Cont’d

gSpan restricts the extension method:

• either a new edge can be added between the right-most vertex and 
another vertex on the right-most path (backward extension);

• or it can introduce a new vertex and connect to a vertex on the right-
most path (forward extension).

• Right-most extension, denoted by 𝑔◇𝑟𝑒.
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gSpan … Cont’d
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Indexing and IR

• Indexing is essential for efficient search and query processing.

• Fundamental in Information Retrieval (IR).

• The purpose of storing an index in IR is to optimize speed and 
performance in finding relevant documents for a search query.
• Without an index, the search engine would scan every document in the 

corpus, which would require considerable time and computing power.

• Indexing is an “off-line” phase.
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Indexing and IR … Cont’d

• Scheme of automatic indexing process:

Documents
in digital

format

Full-text

indexing

OUTPUT

Indexes

Indexing Phase

INPUT

Data structure for 
the organization of 

indexes

…
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Indexing and IR: The Inverted File

Motivations

• The organization of the indexes in a “static” data structure, for 
example a matrix of document/term occurrences would be inefficient 
(forward index).
• Since the matrix is sparse, space would be wasted to store also the “non-

occurrence” of the terms (e.g., Term3 in Doc1, next slide).
• Getting the list of documents that contain a specific term would be 

burdensome.
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Indexing and IR: The Inverted File … Cont’d

DocID Term1 Term2 Term3 Term4 Term5 Term6 Term7

Doc1 3 4 - - - - -

Doc2 - - 1 2 6 5 8

Doc3 - 2 - 1 3 - -

Doc4 - - - - 4 7 6
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Indexing and IR: The Inverted File … Cont’d

• The table of occurrences must be inverted (term/document) and 
organized in a dynamic data structure.

Term Doc1 Doc2 Doc3 Doc4

Term1 3 - - -

Term2 4 - 2 -

Term3 - 1 - -

Term4 - 2 1 -

Term5 - 6 3 4

Term6 - 5 - 7

Term7 - 8 - 6
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Indexing and IR: The Inverted File … Cont’d

• The index terms are organized in a dictionary. Each term "points" to a 
list containing the references to documents of which the term is an 
index. 

• Use of two files: dictionary and posting file (it contains the posting 
lists of all index terms).

DICTIONARY POSTING FILE

t2

t1 D1 5

D1 5

D2 1
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Graph Indexing

• Traditional approaches are not feasible for graphs.

• Graphs are complex structures.

• Queries in graph search are constituted by other graphs or patterns.

• There is the need of suitable indexing techniques.
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Graph Indexing – Techniques

• Indexing based on nodes / edges / paths / sub-graphs.

• Path-based Indexing Approach
• Enumerate all the paths in a database up to max length and index them
• Index is used to identify all graphs with the paths in query
• Not suitable for complex graph queries
• Structural information is lost when a query graph is broken apart
• Many false positives maybe returned
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Graph Indexing – Techniques … Cont’d

• gIndex: considers frequent and discriminative substructures as index 
features
• A frequent substructure is discriminative if its support cannot be 

approximated by the intersection of the graph sets.
• Achieves good performance at less cost.
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Graph Queries

In principle, queries in graph datasets can be broadly classified into the 
following three main categories:

• Subgraph queries
a. This category searches for a specific pattern in the graph dataset. 
b. The pattern can be either a small graph or a graph where some parts of it are 

uncertain.
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Example
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Subgraph Queries
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Graph Queries … Cont’d

• Supergraph queries
• This category searches for the graph database members of which their whole 

structures are contained in the input query.
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Supergraph Queries
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Graph Queries … Cont’d

• Similarity (approximate matching) queries
• This category finds graphs which are similar, but not necessarily isomorphic 

to a given query graph.

• This category of queries can be further classified to the following two 
kinds of queries:
• Substructure similarity search. These queries are used to discover all graphs 

that approximately contain the query graph.
• Reverse similarity search. These queries are used to discover all graphs that 

are approximately contained by the query graph.
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Similarity Queries 
(Example with Substructure similarity search)

* *
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Subgraph Query Processing
Graph

dataset
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GraphGrep: A Path-based Indexing Approach

Three basic components:

• Build the index to represent the dataset of graphs as sets of paths
(this step is done only once).

• Filter the dataset based on the submitted query and the index to 
reduce the search space.

• Perform exact matching.

Shasha, D., Wang, J. T., & Giugno, R. (2002, June). Algorithmics and applications of tree 
and graph searching. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART 

symposium on Principles of database systems (pp. 39-52).
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GraphGrep: Index Construction

• For each graph and for each node, find all paths that start at this
node and have lenght one (single node) up to a (small) constant
value.

• Because several paths may contain the same label sequence, we
group the id-paths associated with the same label-path in a set.

• The «path-representation» of a graph is the set of labeh-paths in the 
graph, where each label-path has a set of id-paths.

• The fingerprint of the dataset is a table where each row contains the 
number of id-paths associated with a «key» in each graph.
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GraphGrep: Example

𝑔1 𝑔2 𝑔3



Graph Theory and Algorithms (PhD Course) – Marco Viviani

GraphGrep: Filtering the Dataset

• The query graph is parsed to build its fingerprint.

• The graph dataset is filtered by comparing the fingerprint of the 
query with the fingerprint of the dataset.

• A graph, for which at least one value in its fingerprint is less than the 
corresponding value in the fingerprint of the query, is discarded.
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GraphGrep: Exact Matching

• Select the set of paths in the graph matching the patterns of the 
query: ABCA = {(1,0,3,1), (1,2,3,1)}, CB = {(3,0),(3,2)}

• Combine any list from ABCA with any list of CB: ABCACB = {[(1,0,3,1),(3,0)], 
[(1,0,3,1),(3,2)], [(1,2,3,1),(3,0)], [(1,2,3,1),(3,2)]}

query graph

query DFS

query 
fragments:
ABCA - CB
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GraphGrep: Exact Matching … Cont’d

• Remove lists from ABCACB if they contain equal id-nodes in non-
overlapping positions. Query = ABCA - CB

ABCACB = [(1,0,3,1),(3,0)]  NO
ABCACB = [(1,0,3,1),(3,2)]  OK
ABCACB = [(1,2,3,1),(3,0)]  OK
ABCACB = [(1,2,3,1),(3,2)]  NO

query graph

query DFS

query 
fragments:
ABCA - CB
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Path-based Indexing Approaches: Drawbacks

• Not suitable for complex graph queries.

• Structural information is lost when a query graph is broken apart.

• Many false positives maybe returned.
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gIndex

• Identify frequent structures in the dataset.
• The frequent structures are subgraphs that appear often in the graph 

dataset.

• Prune redundant frequent structures to maintain a small set of 
discriminative structures.

• Create an inverted index between discriminative frequent structures 
and graphs in the dataset.

Yan, X., Yu, P. S., & Han, J. (2004, June). Graph indexing: A frequent structure-based approach. In 
Proceedings of the 2004 ACM SIGMOD international conference on Management of data (pp. 335-346).
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gIndex: Frequent Fragments

• The number of graph structure is large.
• Index only frequent subgraphs.

• 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔)
• The number of graphs in 𝐷 (graph dataset), where 𝑔 is a subgraph.

• 𝑚𝑖𝑛𝑆𝑢𝑝
• Minimum support threshold.
• Index a fragment 𝑔 only if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝.

• Size-increasing support
• Low 𝑚𝑖𝑛𝑆𝑢𝑝 for small fragments, high 𝑚𝑖𝑛𝑆𝑢𝑝 for large fragments.
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gIndex: Size-increasing Support

• Size-increasing support
• Low 𝑚𝑖𝑛𝑆𝑢𝑝 for small fragments, high 𝑚𝑖𝑛𝑆𝑢𝑝 for large fragments.

• Example: a completely connected graph with 10 vertices, each of 
which has a distinct label. There are 45 1-edge subgraphs, 360 2-edge 
ones, and more than 1,814,400 8-edge ones.

• By enforcing the size-increasing support constraint, we bias the 
feature selection to small fragments with low minimum support and 
large fragments with high minimum support.
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gIndex: 
Redundant and Discriminative Fragments

• Redundant fragment
• The indexed graphs by a fragment are also indexed by its subgraphs.
• We don’t need to include redundant fragments.

• Discriminative fragment
• Fragments which are not redundant.

• Details on how to identify redundant and discriminative fragments
are illustrated in: «Yan, X., Yu, P. S., & Han, J. (2004, June). Graph 
indexing: A frequent structure-based approach. In Proceedings of the 
2004 ACM SIGMOD international conference on Management of data 
(pp. 335-346).»
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gIndex: gIndex Tree

• Once discriminative fragments are selected, gIndex has efficient data 
structures to store and retrieve them. 

• It translates fragments into sequences and holds them in a prefix 
tree.

• Note: In computer science, a trie, also called digital tree or prefix tree, 
is a type of search tree, a tree data structure used for locating specific 
keys from within a set.

Bodon, F., & Rónyai, L. (2003). Trie: an alternative data structure for data mining 
algorithms. Mathematical and Computer Modelling, 38(7-9), 739-751.
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Example of a Trie
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gIndex: gIndex Tree … Cont’d
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gIndex: Searching
• Given a query 𝑞, gIndex enumerates all its fragments up to a 

maximum size and locates them in the index.
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Supergraph Query Processing

• Less investigated in the literature.

• It will not be detailed in this course.

• Possibility of investigating this problem as a possible 
assignement.
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Similarity Query Processing

• A key question in graph similarity queries is on how to measure the 
similarity between a target graph member of the database and the 
query graph. 

• It is difficult to give a precise definition of graph similarity.

• These approaches can allow for node mismatches, node gaps (gap 
node is a node in the query that cannot be mapped to any node in 
the target graph) as well as graph structural differences.
• Such techniques are employed in the case of noisy or incomplete graphs.
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Closure Tree

• A tree-based index structure named CTree (closure-tree).

• In this index structure, each node in the tree contains discriminative 
information about its descendants.

• The closure of a set of vertices is defined as a generalized vertex 
whose attribute is the union of the attribute values of the vertices.

• The closure of a set of edges is defined as a generalized edge whose 
attribute is the union of the attribute values of the edges.

He, H., & Singh, A. K. (2006, April). Closure-tree: An index structure for graph queries. In 22nd 
International Conference on Data Engineering (ICDE'06) (pp. 38-38). IEEE.
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Closure Tree … Cont’d

• The closure of two graphs 𝑔1 and 𝑔2 under a mapping 𝑀 is defined as 
a generalized graph 𝐺𝑐 = (𝑉, 𝐸) where 𝑉 is the set of vertex closures of 
the corresponding vertices and 𝐸 is the set of edge closures of the 
corresponding edges. 𝐺𝑐 = 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑔1, 𝑔2 .

• Hence, a graph closure has the same characteristics of a graph.

• The only difference is that the graph dataset member has singleton 
labels on vertices and edges while the graph closure can have 
multiple labels.

• For similarity queries, CTree defines graph similarity based on edit 
distance
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Closure Tree: Example
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SAGA

• SAGA: Substructure index-based Approximate Graph Alignment

• The distance model contains three components:
• The StructDist component measures the structural differences for the 

matching node pairs in the two graphs.
• The NodeMismatches component is the penalty associated with matching 

two nodes with different labels.
• The NodeGaps component is used to measure the penalty for the gap nodes 

in the query graph.

Tian, Y., Mceachin, R. C., Santos, C., States, D. J., & Patel, J. M. (2007). SAGA: a subgraph 
matching tool for biological graphs. Bioinformatics, 23(2), 232-239.
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SAGA … Cont’d

• SAGA index is built on small substructures of graphs in the dataset 
(fragment index).

• Each fragment is a set of 𝑘 nodes from the graphs in the dataset. The 
index does not enumerate all possible 𝑘-node sets.

• The fragments in SAGA do not always correspond to connected 
subgraphs. The reason behind this is to allow node gaps in the 
matching process.

• A DistanceIndex is also maintained. This index is used to look up the 
precomputed distance between any pair of nodes in a graph.
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SAGA … Cont’d

Graph matching process

• The query is broken into small fragments and the fragment index is 
probed to find database fragments that are similar to the query 
fragments.

• Also in this case, further details can be found in: “Tian, Y., Mceachin, R. 
C., Santos, C., States, D. J., & Patel, J. M. (2007). SAGA: a subgraph 
matching tool for biological graphs. Bioinformatics, 23(2), 232-239”.
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Basic Notions

• A graph database (GDB) is a database that uses graph structures for 
semantic queries with nodes, edges, and properties to represent and 
store data.

• The graph relates the data items in the store to a collection of nodes 
and edges, the edges representing the relationships between the 
nodes.
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Basic Notions … Cont’d

• Graph databases are a type of NoSQL database, created to address 
the limitations of relational databases.

• While the graph model explicitly lays out the dependencies between 
nodes of data, the relational model and other NoSQL database 
models link the data by implicit connections.

• IMPORTANT: Relationships are a first-class citizen in a graph 
database and can be labelled, directed, and given properties.
• This is not the case in other database management systems, where we have 

to infer connections between entities using things like foreign keys.
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Basic Notions … Cont’d
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Basic Notions: Example
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Graph Database Management Systems

• A graph database management system (henceforth, a graph 
database) is an online database management system with Create, 
Read, Update, and Delete (CRUD) methods that expose a graph data 
model.
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Graph Database Management Systems … 
Cont’d
There are two properties of graph databases we should consider when 
investigating graph database technologies:

• The underlying storage

Some graph databases use native graph storage that is optimized and 
designed for storing and managing graphs. Not all graph database 
technologies use native graph storage, however.

• The processing engine

Some definitions require that a graph database use index-free adjacency, 
meaning that connected nodes physically “point” to each other in the database.

A slightly broader view: any database that from the user’s perspective behaves 
like a graph database (i.e., exposes a graph data model) qualifies as a graph 
database.
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The Underlying Storage

• The underlying storage mechanism of graph databases can vary. 

• Some depend on a relational engine and "store" the graph data in a 
table.
• Although a table is a logical element, therefore this approach imposes 

another level of abstraction between the graph database, the graph database 
management system and the physical devices where the data is actually 
stored.

• Others use a key–value store or document-oriented database for 
storage, making them inherently NoSQL structures.
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Relational Databases 
Lack Relationships
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Relational Databases 
Lack Relationships – Example
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Relational Databases 
Lack Relationships … Cont’d
• Join tables add accidental complexity.

• Foreign key constraints add additional development and maintenance 
overhead just to make the database work.

• Several expensive joins are needed just to discover what a customer 
bought.

• Reciprocal queries are even more costly. “What products did a customer 
buy?” is relatively cheap compared to “which customers bought this 
product?” which is the basis of Recommender Systems.

• We could introduce an index, but even with an index, recursive questions 
such as “which customers buying this product also bought that product?” 
quickly become prohibitively expensive as the degree of recursion 
increases.
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NOSQL Databases Also 
Lack Relationships

• Most NOSQL databases—whether key-value-, document-, or column-
oriented—store sets of disconnected documents/values/columns. 

• This makes it difficult to use them for connected data and graphs.
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NOSQL Databases Also 
Lack Relationships … Cont’d

• One well-known strategy for adding relationships to such stores is to 
embed an aggregate’s identifier inside the field belonging to 
another aggregate—effectively introducing foreign keys. 

• But this requires joining aggregates at the application level, which 
quickly becomes prohibitively expensive.
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NOSQL Databases Also 
Lack Relationships … Example
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Graph Databases Embrace Relationships

• In the graph world, connected data is stored as connected data.

• Relationships in a graph naturally form paths. 

• Querying—or traversing—the graph involves following paths. 

• Because of the fundamentally path-oriented nature of the data 
model, the majority of path-based graph database operations are 
highly aligned with the way in which the data is laid out, making 
them extremely efficient.
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Graph Databases Embrace Relationships … 
Cont’d
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The Labeled Property Graph Model
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The Labeled Property Graph Model … Cont’d
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Querying Graphs

• Colloquially, we ask the database to “find things like this.”



Graph Theory and Algorithms (PhD Course) – Marco Viviani

Querying Graphs – Example (Cypher)

•

•

•

https://neo4j.com/developer/cypher/

From: https://neo4j.com/blog/why-database-query-language-matters/

https://neo4j.com/developer/cypher/
https://neo4j.com/blog/why-database-query-language-matters/
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Querying Graphs – Example … Cont’d

•

•

From: https://neo4j.com/blog/why-database-query-language-matters/

https://neo4j.com/blog/why-database-query-language-matters/
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Querying Graphs – Example … Cont’d

•

From: https://neo4j.com/blog/why-database-query-language-matters/

https://neo4j.com/blog/why-database-query-language-matters/
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The Processing Engine

• Native approaches:
• Index-free adjacency.

• Non-native approaches
• Any database that from the user’s perspective behaves like a graph database 

(i.e., exposes a graph data model) qualifies as a graph database.
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Index-free Adjacency

• A graph database has native processing capabilities if it exhibits a 
property called index-free adjacency.

• A database engine that utilizes index-free adjacency is one in which 
each node maintains direct references to its adjacent nodes.

• Each node, therefore, acts as a micro-index of other nearby nodes, 
which is much cheaper than using global indexes.
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Global Indexing

• A non-native graph database engine, in contrast, uses (global) 
indexes to link nodes together.
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Graph Database Internals: Example
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Index-free Adjacency VS (Global) Indexing

• With index-free adjacency, bidirectional joins are effectively 
precomputed and stored in the database as relationships.

• In contrast, when using (global) indexes to simulate connections 
between records, there is no actual relationship stored in the 
database.
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Graph Database Internals: Neo4j
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Native Graph Storage: Neo4j

• If index-free adjacency is the key to high-performance traversals, queries, 
and writes, then one key aspect of the design of a graph database is the 
way in which graphs are stored.

• An efficient, native graph storage format supports extremely rapid 
traversals for arbitrary graph algorithms.

• Neo4j stores graph data in several different store files.
• Each store file contains the data for a specific part of the graph (e.g., there are 

separate stores for nodes, relationships, labels, and properties). 
• The division of storage responsibilities—particularly the separation of graph 

structure from property data—facilitates performant graph traversals, even though 
it means the user’s view of their graph and the actual records on disk are 
structurally dissimilar.
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Native Graph Storage: Neo4j … Cont’d
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A Reference Book

https://tinyurl.com/rxecdexk



Graph 
Classification

Basic Notions and Ideas

5
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Basic notions

• Mine frequent graph patterns
• Features that are frequent in one class but less in another: discriminative 

features.
• Model construction.

• Can adjust frequency, connectivity thresholds, …

• SVM and other supervised machine learning approaches are used.
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Basic Idea

• Mine the frequent sub-graphs, call them terms.

• Use “TF-IDF-like” measures for assigning the most characteristic 
terms to “documents”.

• Based on such measures and labelled graphs w.r.t. distinct 
categories, it is possible to perform classification.
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Subgraph Classification Rate 

• Basic assumption: Classification-relevant sub-graphs are more 
frequent in a specific category than in other categories.

• Subgraph Classification Rate (SCR)

• 𝑆𝐶𝐹(𝑔(𝑐𝑖)): Subgraph Class Frequency of subgraph 𝑔 in category 𝑐𝑖

• 𝐼𝑆𝐹(𝑔(𝑐𝑖)): Inverse Subgraph Frequency of subgraph 𝑔 in category 𝑐𝑖

𝑆𝐶𝑅 = 𝑆𝐶𝐹(𝑔(𝑐𝑖)) × 𝐼𝑆𝐹(𝑔 𝑐𝑖 )
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Inverse Subgraph Frequency

𝐼𝑆𝐹 𝑔 𝑐𝑖 =

log2
∑𝑁(𝑐𝑗)

∑𝐹 𝑔 𝑐𝑗
if ∑𝐹 𝑔 𝑐𝑗 > 0

log2 2 ∗ ∑𝑁 𝑐𝑗 if ∑𝐹 𝑔 𝑐𝑗 = 0

• 𝐼𝑆𝐹(𝑔(𝑐𝑖)): measure for the Inverse Frequency of subgraph 𝑔 in 
category 𝑐𝑖 .

• 𝑁 𝑐𝑗 : number of graphs in category 𝑐𝑗 .

• 𝐹 𝑔 𝑐𝑗 : number of graphs containing 𝑔 in category 𝑐𝑗 .
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Possible Assignment

• Investigate a specific approach to perform graph classification.

• Investigate and detail (with comparisons of pros and cons) possible 
"tf-idf-like" measures for performing graph classification.



Graph Partitioning 
(and Clustering)

Dedicated Lecture
Date to be announced
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