

Prostate Cancer

Prof. Luigi F. Da Pozzo

Clinical case - 1

Doctor... I'm 45 years old

- My grandfather died of a prostate cancer.
- My father had surgery for prostate cancer 5 years ago (familiarity).
- I am in good health. I have no urinary symptom.

When should I start checking my prostate? Which checks?

Clinical case – 2

Doctor... I am 57 years old

- My PSA is 6.5 ng/mL
- I also did a transrectal ultrasound of the prostate and the radiologist reassured me: there's nothing wrong.
- I have no lower urinary tract symptoms (dysuria)

I can rest easy, can't I?

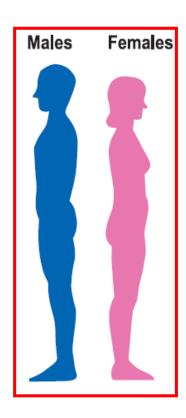
Clinical case – 3

Doctor... I am 57 years old

- My PSA is 6.5 ng/mL.
- Your colleague prescribed me a multiparametric Magnetic Resonance Imaging of the prostate and it's negative...

I can rest easy, can't I?

Clinical case – 4

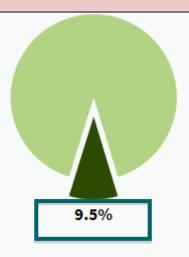

Doctor...

- I did prostate biopsies and they found me cancer.
- it's defined as a prostate adenocarcinoma Gleason 3+3,
 Grading Group 1.

There is no time to waste. I want to be operated as soon as possible...before it's too late.

Cancer Statistics Incidence Prostate Cancer

- **1. Prostate 19%**
- 2. Lung 14%
- 3. Colon 9%
- 4. Bladder 7%
- 5. Melanoma 6%
- 6. Kidney 5%

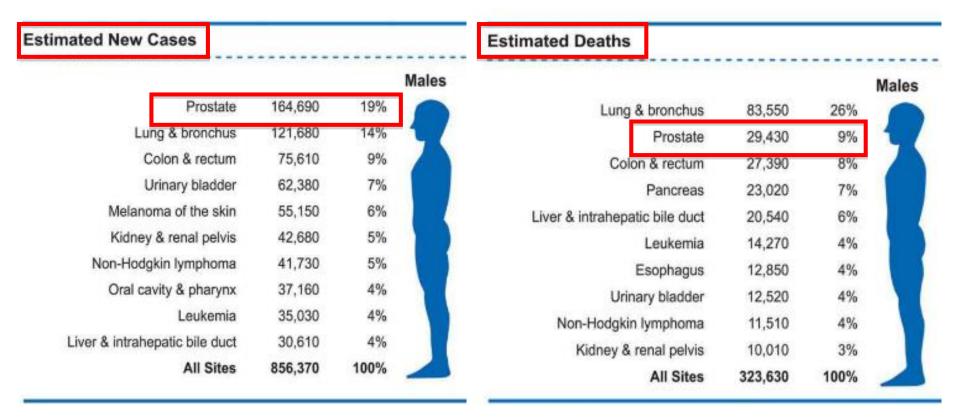


- 1. Breast 28%
- 2. Lung 14%
- 3. Colon 9%
- 4. Uterus 7%
- 5. Thyroid 5%
- 6. NH-Lymphoma 4%
- 7. Kidney 3%

EPIDEMIOLOGY INCIDENCE

	Common Types of Cancer	Estimated New Cases 2018	Estimated Deaths 2018
1.	Breast Cancer (Female)	266,120	40,920
2.	Lung and Bronchus Cancer	234,030	154,050
3.	Prostate Cancer	164,690	29,430
4.	Colorectal Cancer	140,250	50,630
5.	Melanoma of the Skin	91,270	9,320
6.	Bladder Cancer	81,190	17,240
7.	Non-Hodgkin Lymphoma	74,680	19,910
8.	Kidney and Renal Pelvis Cancer	65,340	14,970
9.	Uterine Cancer	63,230	11,350
10.	Leukemia	60,300	24,370

Prostate cancer represents 9.5% of all new cancer cases in the U.S.

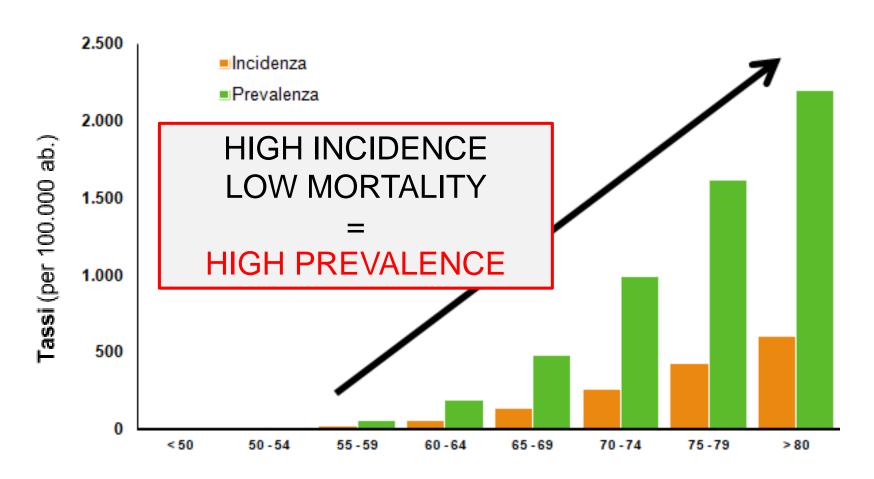


20% of all new cases in **men** in the U.S.

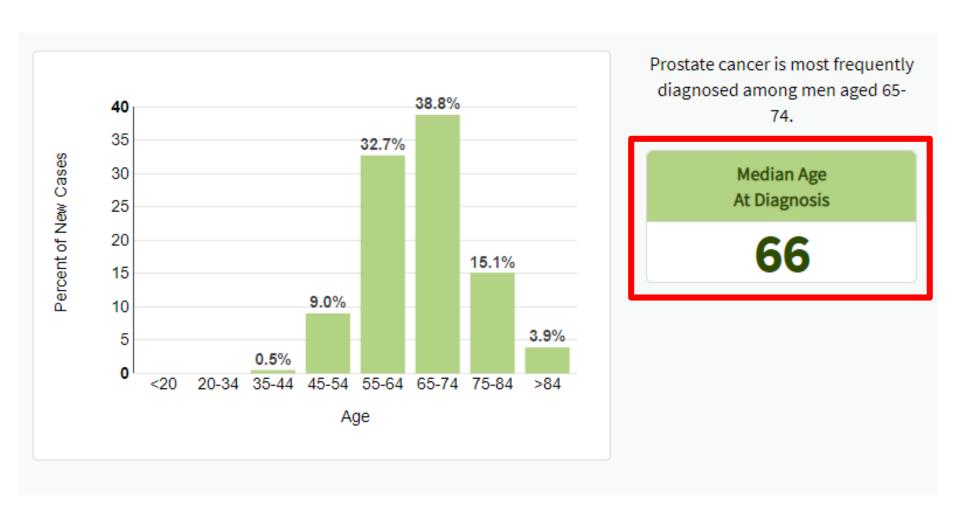
EPIDEMIOLOGY INCIDENCE

- Most frequent solid cancer in men.
- Incidence increases with age from 45-50 years.
- Nearly 11.2% of men will be diagnosed with prostate cancer during their lifetime.
- Microscopic foci of adenocarcinoma are found in more than 60% of autopsies in men older than 80 years

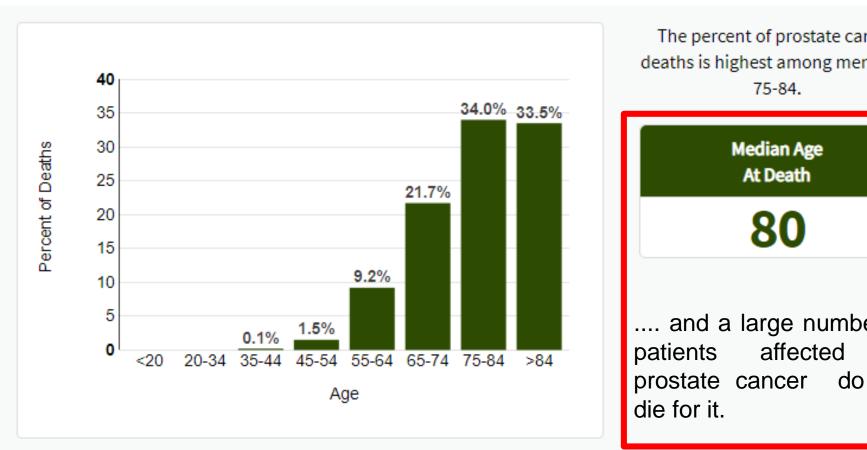
EPIDEMIOLOGY MORTALITY



EPIDEMIOLOGY LIFE EXPECTANCY


https://seer.cancer.gov/statfacts/html/prost.html

EPIDEMIOLOGY PREVALENCE



INCIDENCE AND PREVALENCE OF PROSTATE CANCER BY AGE, IN ITALY

EPIDEMIOLOGY

EPIDEMIOLOGY

The percent of prostate cancer deaths is highest among men aged

.... and a large number of by prostate cancer do not

RISK FACTORS

Age

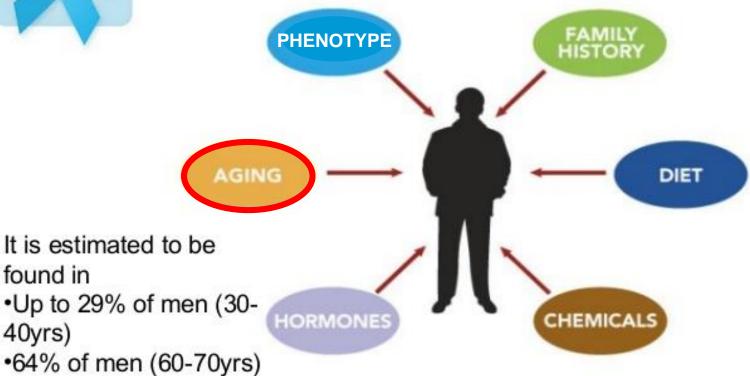
Hormonal factors (testosterone)

Genetic factors (familiarity)

Phenotipe (African descent)

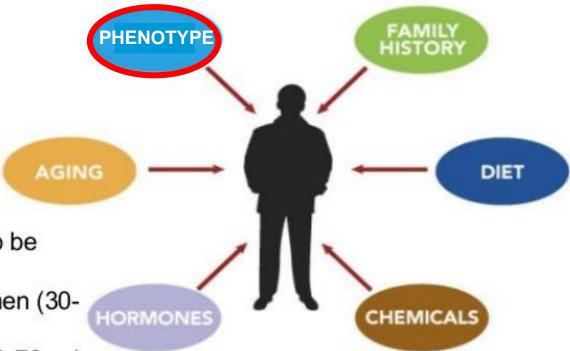
Dietary factors (animal fat, smoke)

Occupational factors (exposure to cadmium)


found in

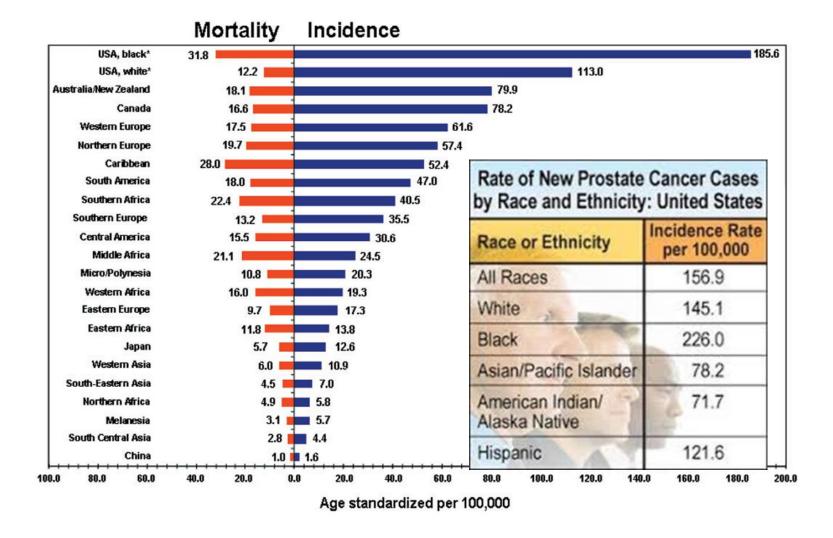
40yrs)

the age of 90

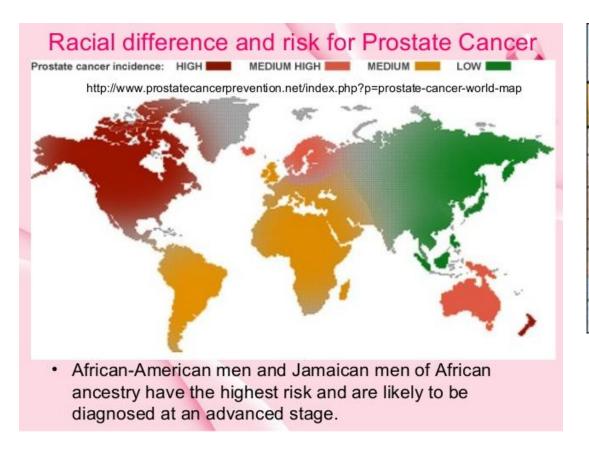

•in almost all men over

Risk Factors to Prostate Cancer

Risk Factors to Prostate Cancer



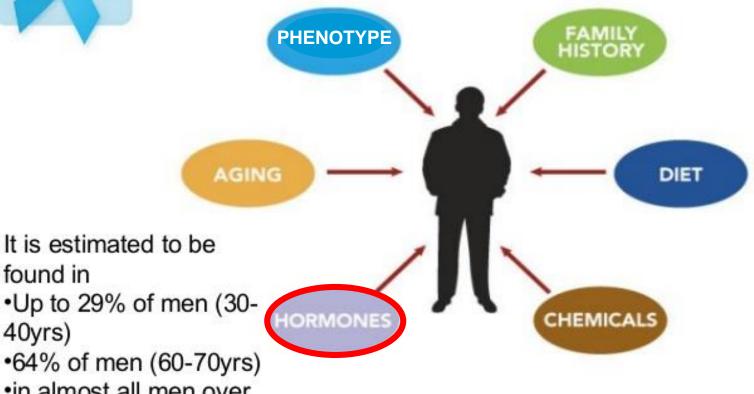
It is estimated to be found in


- Up to 29% of men (30-40yrs)
- •64% of men (60-70yrs)
- in almost all men over the age of 90

Premise: There are no different races within the *homo sapiens species* but only different phenotypes

RISK FACTORS Phenotype and Ethnicity

RISK FACTORS Geophraphic Distributon



Rate of New Prostate Cancer Cases by Race and Ethnicity: United States		
Race or Ethnicity	Incidence Rate per 100,000	
All Races	156.9	
White	145.1	
Black	226.0	
Asian/Pacific Islander	78.2	
American Indian/ Alaska Native	71.7	
Hispanic	121.6	

found in

Risk Factors to Prostate Cancer

40yrs)

•64% of men (60-70yrs)

•in almost all men over the age of 90

HORMONAL FACTORS

There is evidence in the literature that sex steroid hormones, especially androgens, play a role in the etiology and pathogenesis of prostate cancer

Gann PH, et al. J Natl Cancer Inst, 88:1118-26, 1996 Carter HB, et al. Prostate, 27:25-31, 1995 Eaton NE, et al. Br J Cancer, 80:930-4, 1999 Garcia JM, et al. Cancer, 106:2583-91, 2006

In fact, sex hormones are involved in prostate carcinogenesis and it seems that they modulate cell growth by altering the balance between cell proliferation and apoptosis

> Yuen MT, et al. Int J Oncol, 27:1685-95, 2005 Webber MM, et al. Prostate, 30:58-64, 1997

Urol Oncol. 2016 Nov;34(11):482.e1-482.e4. doi: 10.1016/j.urolonc.2016.05.023. Epub 2016 Jul 14.

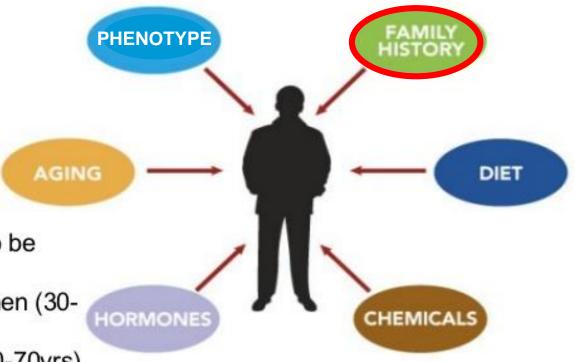
The testosterone conundrum: The putative relationship between testosterone levels and prostate cancer.

Loughlin KR1.

Abstract

Background: The controversy surrounding the relationship between testosterone and prostate cancer has existed for decades. The literature surrounding this topic is confusing and at times contradictory. There is no level-one quality evidence that confirms or refutes the relationship between either high or low serum testosterone levels and the subsequent development of prostate cancer. This commentary aims to review the issues involved and to provide an interpretation as to the causes of the confusion and to provide a framework for ongoing discussion and investigation.

Materials and methods: A Medline and PubMed search was conducted using search terms: testosterone levels and prostate cancer to identify pertinent literature.


Results: There is no consistent evidence that a single testosterone level is predictive of prostate cancer risk.

Conclusion: The development of prostate cancer is a complex biologic process potentially involving genetics, dietary, life style and hormonal factors. Serum testosterone levels do not accurately reflect the internal prostatic milieu. Finally, if testosterone levels are to be considered in the etiology of prostate cancer they should be measured and interpreted on a chronic basis with multiple measurements over a period of years. © 2016 Elsevier Inc. All rights reserved.

Serum testosterone levels are not directly associated with an increased risk of prostate cancer

Risk Factors to Prostate Cancer

It is estimated to be found in

- •Up to 29% of men (30-40yrs)
- •64% of men (60-70yrs)
- in almost all men over the age of 90

- ✓ Only a small subpopulation of men with prostate cancer (~9%) has true hereditary disease.
- ✓ The risk of prostate cancer is higher in relatives of affected men.

Positive family history is an important prognostic information useful for genetic clinical counseling and can lead to the adoption of preventive measures for high-risk men

Family history and Prostate Cancer

FAMILY HISTORY	RELATIVE RISK 95% CONFIDENCE INTERVAL	
None	1	
Father affected	2.17	1.90-2.49
Brother affected	3.37	2.97-3.83
First-degree family member affected, age less than 65 years at diagnosis	3.34	2.64-4.23
Greater than two first-degree relatives affected	5.08	3.31-7.79
Second-degree relative affected	1.68	1.07-2.64

Men with <u>first-degree relatives</u> with prostate cancer have an <u>increased risk of two to five times</u> that of the general population.

Family history and Prostate Cancer

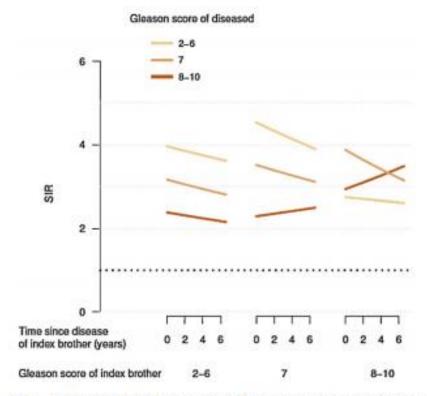
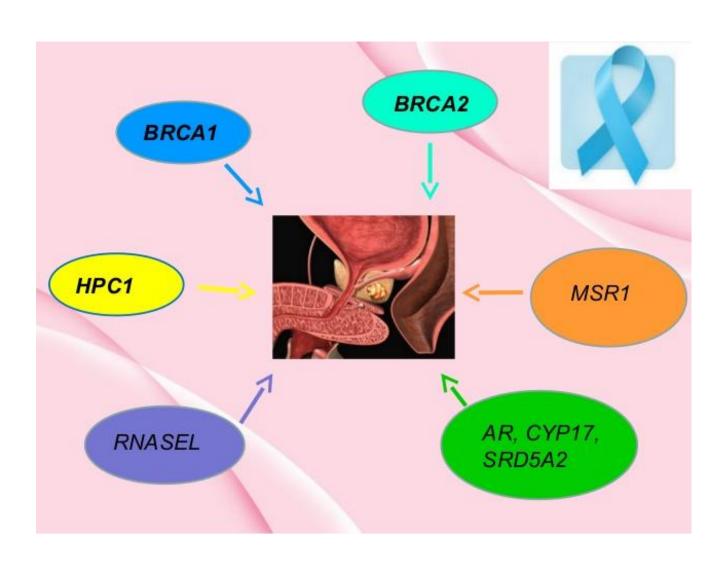


Fig. 1 – Relative risk of Gleason score-specific prostate cancer over time in the cohort of brothers was estimated by using the standardized incidence ratio (SIR) stratified by Gleason score of the index case.

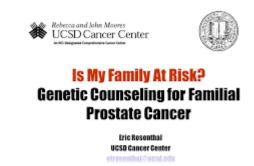
Brothers or sons of men with highgrade sancer have a higher risk of developing a high-grade prostate cancer.

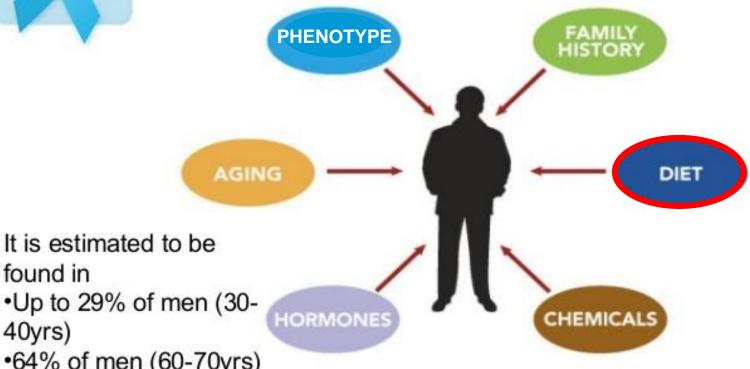


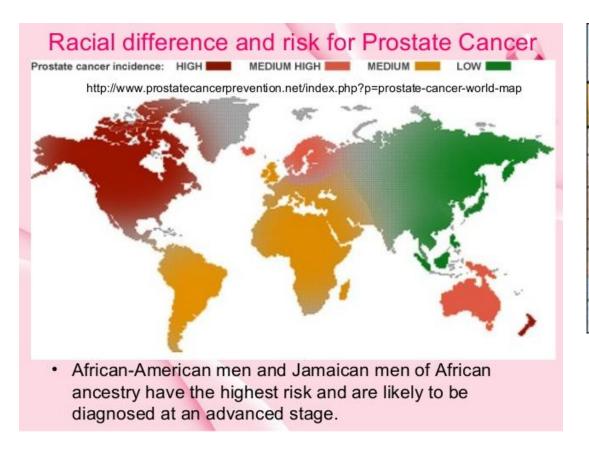
Jansson KF et al, Eur Urol 2012

It is estimated that **9% of prostate cancers are** hereditary forms:

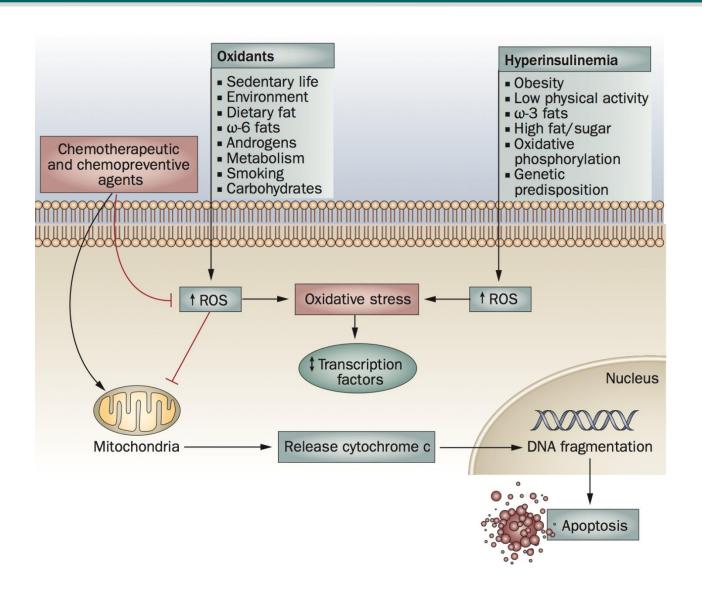
- ✓ The onco-soppressor genes BRCA1 and BRCA2, involved in the pathogenesis of breast cancer, seem to play an important role in the development of prostate cancer, and mutations in these genes increase the risk of prostate cancer.
- ✓ Mutations in onco-suppressor genes are often associated with more aggressive forms of prostate cancer.


Powell IJ et al Arch Esp Urol 2011 Hemminki K. Word J Urol 2012 Sinclair CS et al. Cancer Research 2000.




Risk Factors to Prostate Cancer

found in •Up to 29% of men (30-40yrs)


- •64% of men (60-70yrs)
- •in almost all men over the age of 90

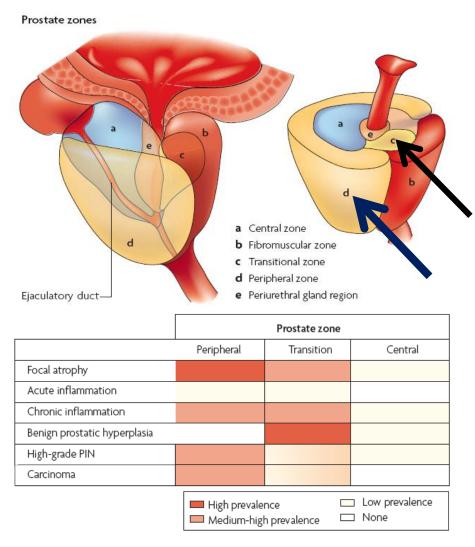
RISK FACTORS Geophraphic Distributon

Rate of New Prostate Cancer Cases by Race and Ethnicity: United States		
Race or Ethnicity	Incidence Rate per 100,000	
All Races	156.9	
White	145.1	
Black	226.0	
Asian/Pacific Islander	78.2	
American Indian/ Alaska Native	71.7	
Hispanic	121.6	

Dietary factors

Dietary factors

no definitive conclusions can be drawn for those seeking answers in this important


Table 3.1: Dietary factors Chat have been associated with PCa

Alcohol	High alcohol intake, but also total abstention from alcohol has been associated with a higher risk of PCa and PCa-specific mortality [34]. A meta-analysis shows a doseresponse relationship with PCa [35].		
Dairy 1	Dairy products such as milk, butter, cheese		
Fat	High total fat intake		
Lycopenes (carotenes)	A trend towards a favourable effect of lycopene on PCa incidence has been identified in meta-analyses [39]. Randomised controlled trials comparing lycopene with placebo did not identify a significant decrease in the incidence of PCa [40].		
Meat 👚	Increased meat intake		
Phytoestrogens	Phytoestrogen intake was significantly associated with a reduced risk of PCa in a meta-analysis [42].		
Vitamin D	A U-shaped association has been observed, with both low- and high vitamin-D concentrations being associated with an increased risk of PCa, and more strongly for high-grade disease [43, 44].		
Vitamin E/Selenium	An inverse association of blood, but mainly nail selenium levels (reflecting long-term exposure) with aggressive PCa have been found [45, 46]. Selenium and Vitamin E supplementation were, however, found not to affect PCa incidence [47].		

Protective factors

- ✓ Reduction of protein and fat intake
- ✓ Increased consumption of lycopene, soybeans, tomatoes
- √ Vitamin E
- ✓ Green tea (antioxidant flavonoids)

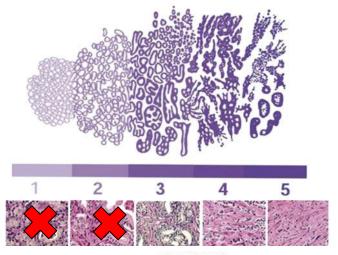
Anatomical location of Prostate Cancer

- Most cancers are located in the peripheral zone of the gland, a small part in the transition area while those of the central area are very rare.
- Benign Prostate
 Hyperplasia, on the other hand, develops in the transition zone which can be considerably increased

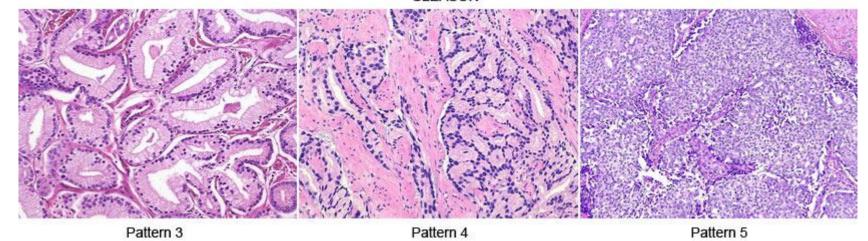
Histology

Epithelial origin

Stromal origin (rare)


- 95% Adenocarcinoma secretory columnar cells of the ducts and acini
- Rhabdomyosarcoma: higher incidence in <10 years old</p>

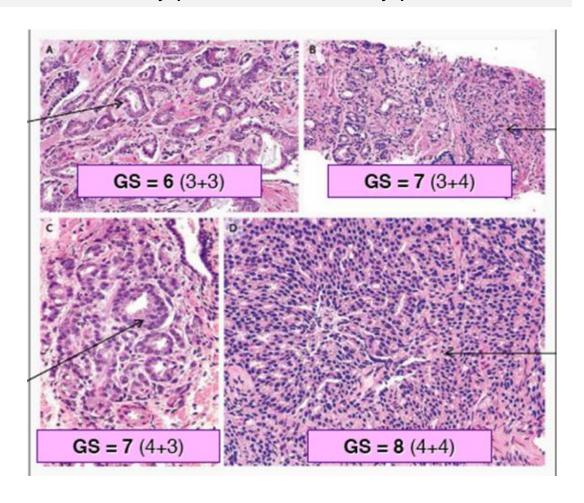
Transitional cell carcinoma (90%) Neuroendocrine carcinoma (serotonin cells)


Leiomiosarcoma:higher incidence in>40 years old

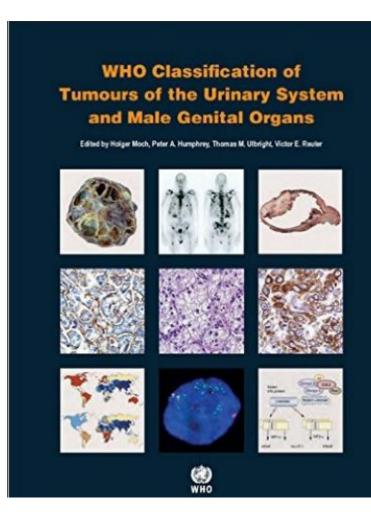
Prostate adenocarcinoma

Grading: Gleason classification

GLEASON


PROSTATE CANCERS are always a mosaic combination of the three patterns

Prostate adenocarcinoma


Grading: Gleason classification

GLEASON SCORE

Primary pattern + Secondary pattern

2016 WHO GU Classification

Table 3.03

Grade group 1: Gleason score ≤ 6

Only individual discrete well-formed glands

Grade group 2: Gleason score 3+4=7

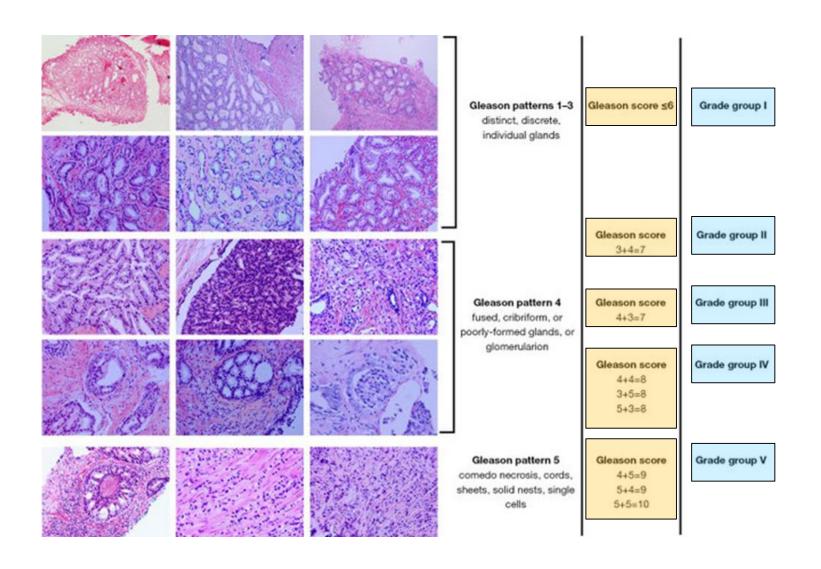
Predominantly well-formed glands with lesser component of poorly formed / fused / cribriform glands

Grade group 3: Gleason score 4+3=7

Predominantly poorly formed / fused / cribriform glands with lesser component of well-formed glands

Grade group 4: Gleason score 4+4=8; 3+5=8; 5+3=8

Only poorly formed / fused / cribriform glands


Predominantly well-formed glands and lesser component lacking glands Predominantly lacking glands and lesser component of well-formed glands

Grade group 5: Gleason scores 9-10

Lack gland formation (or with necrosis) with or without poorly formed / fused / cribriform glands

Prostate adenocarcinoma

Grading: WHO classification

NATURAL HISTORY OF PROSTATE CANCER

TNM

TX	Primary tumour cannot be assessed		
T0	No evidence of primary tumour		
T1	T = local extension		
	T1c Tumour identified by needle biopsy (e.g. because of elevated prostate-specific antigen [PSA]		
T2	Tumour that is palpable and confined within the prostate		
	T2a Tumour involves one half of one lobe or less		
	T2b Tumour involves more than half of one lobe, but not both lobes		
	T2c Tumour involves both lobes		
T3	Tumour extends through the prostatic capsule*		
	T3a Extracapsular extension (unilateral or bilateral) including microscopic bladder neck involvement		
	T3b Tumour invades seminal vesicle(s)		
T4	Tumour is fixed or invades adjacent structures other than seminal vesicles: external sphincter, rectum, levator muscles, and/or pelvic wall		
N - Re	gional Lymph Nodes ¹		
NX	<u></u>		
N0	N = nodal extension of a tumor		
N1	Regional lymph node metastasis		
M - Di	stant Metastasis ²		
M0	No distant metastasis		
M1	M = metastatic visceral extension of a tumor		
	M1b Bone(s)		
	M1c Other site(s)		

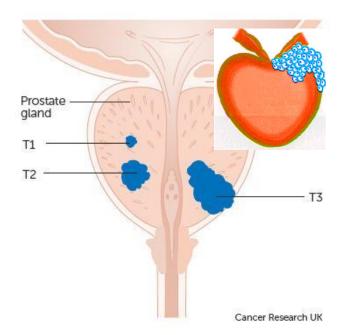
TNM classification (Clinical or Pathological) Local extension

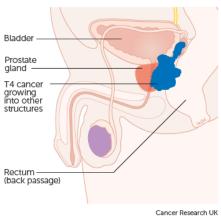
T1 stage (only clinical)

T1a-T1b incidental histological finding after TURP

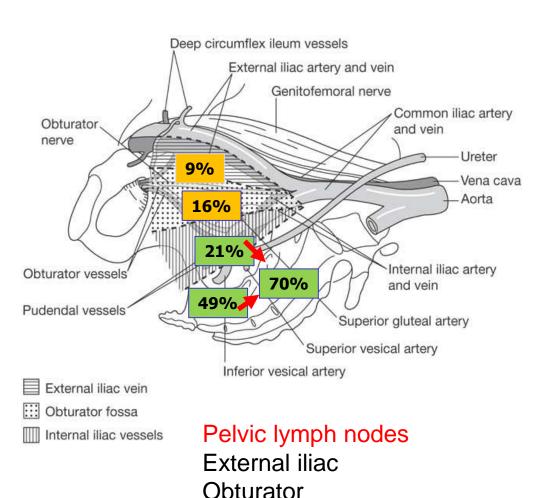
T1c tumor not visible at MRI and not palpable at digital rectal examination

T2 stage (clinical) tumor visible at MRI and/or palpable at digital rectal examination

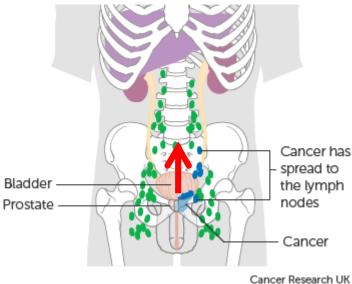

T2a small unilateral tumor


T2b bigger unilateral tumor

T2c bilateral tumor


T3 stage extracapsular extensionT3a extra-capsular infiltrationT3b infiltration of seminal vesicles

T4 stage invades adjacent structures (bladder, rectum)

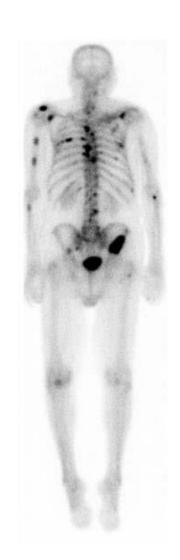


TNM classification (Clinical or Pathological) Lymphatic diffusion

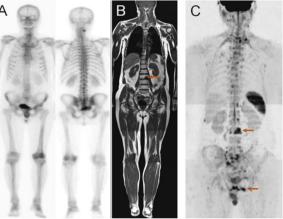
Internal iliac (hypogastric)

Retropertitoneal lymph nodes

No: No regional lymph node metastasis


N1: Regional lymph node

metastasis


TNM classification (Clinical or Pathological) Hematogenous diffusion

Bone metastasis: most frequent

Parenchymal metastasis:
Late, liver, lungs, etc

Prostate Cancer Symptoms

Prostate cancer rarely causes symptoms in the early stages, and most cases are diagnosed in a preclinical stage

Very frequently LUTS (dysuria) secondary to prostate hypertrophy coexist (Average age at diagnosis: 63 yrs)

Rare clinical manifestations

Locally advanced prostate cancer:

- Urethral obstruction, with LUTS or kidney failure
- Hematospermia
- Erectile dysfunction

Metastatic disease:

- Bone pain and pathological fractures
- Anemia

Diagnosis

First line

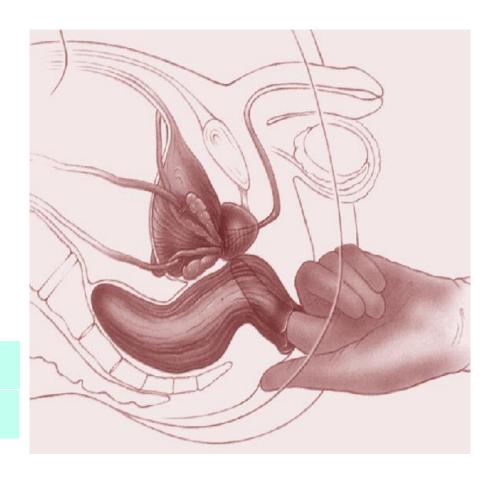
- PSA
- Digital rectal examination
- Transrectal ultrasound

Second line

- mpMRI

Definitive diagnosis

- Biopsy


DIGITAL RECTAL EXAMINATION

Aims:

- Nodules
- Consistency
- Size
- Mobility

Sensitivity: very low!

Specificity high (70-96%)

DIGITAL RECTAL EXAMINATION

Nowadays most prostate cancers are NOT appreciable at examination

Nodular area of increased consistency

Slight increase in consistency

Asymmetry of the gland

Negative examination

Classical presentation

Other presentations

Need for instrumental confirmation

PSA: Prostate Specific Antigen

- ✓ It is a glicoprotein, encoded by the KLK3 gene, and produced by the prostate gland
- ✓ Its physiological function is to keep the semen fluid after ejaculation, allowing sperm to move more easily through the uterine cervix
- ✓ A small fraction of PSA enters the blood flow and its
 dosage is used for the diagnosis of prostate cancer

It is an organ-specific but not a cancer-specific marker

PSA: Prostate Specific Antigen

SPECIFICITY DEFICIT:

- PSA is a specific marker of the prostate but not necessarily of cancer
- Serum PSA also increases in several benign pathologies and after manipulations or maneuvers of different types
- Not all elevated PSA levels are related to cancer.

SENSITIVITY DEFICIT:

Not all prostate cancers have a high PSA

Specificity

Traditional cut-off = 4 ng/m
PSA 4-10 ng/ml

70% of men do not have prostate cancer

Only 25% of biopsies are positive if PSA exceeds 4 ng/ml, while more than 50% of biopsies are positive if the value exceeds 10 ng/ml.

High PSA: causes

- Benign prostate hypertrophy
 (25% of men with IPB have
 PSA >4.0 ng/ml)
- Acute and chronic prostatitis
 (PSA <4 ng/ml in 71% of
 acute prostatitis and 15% of
 chronic prostatitis)
- Prostate cancer (3.5 ng/ml for each gram of tumor tissue)

- Intense physical activity
- Digital rectal examination
- Ejaculation
- Prostate massage
- Transrectal ultrasound
- Prostate biopsy
- Bladder catheter
- Cystoscopy

Sensitivity

ABOUT 25% OF MEN WITH PSA <4 ng/ml CAN HARBOUR PROSTATE CANCER

Table 5.2.1: Risk of PCa in relation to low PSA values

PSA level (ng/mL)	Risk of PCa (%)	Risk of Gleason ≥ 7 PCa (%)
0.0-0.5	6.6	0.8
0.6-1.0	10.1	1.0
1.1-2.0	17.0	2.0
2.1-3.0	23.9	4.6
3.1-4.0	26.9	6.7

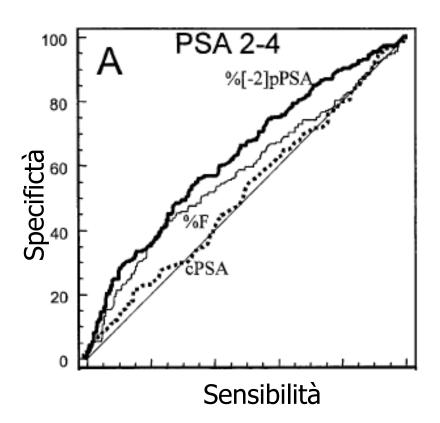
PSA is a continuous parameter: higher levels indicate a higher probability of prostate cancer

New markers for prostate cancer

PCA3 (urine test after digital rectal examination)

PCA3 prostate protein and corresponding MRI

2 Pro PSA (blood test)


Isoform of PSA

Prostate Health Index (PHI)

 $Phi = (p2PSA/fPSA) \times \sqrt{PSA}$

-2 Pro PSA

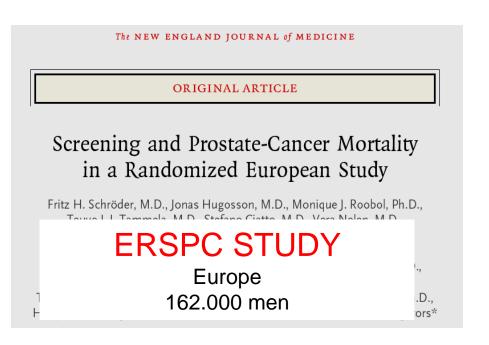
SERUM PRO PROSTATE SPECIFIC ANTIGEN IMPROVES CANCER DETECTION COMPARED TO FREE AND COMPLEXED PROSTATE SPECIFIC ANTIGEN IN MEN WITH PROSTATE SPECIFIC ANTIGEN 2 TO 4 NG/ML

Catalona has shown that ProPSA improves predictive accuracy in prostate cancer diagnosis when total PSA is between 2.0-4.0 ng/mL

This improvement was superior to all the other markers together

Screening Prostate cancer

Criteria


- Common disease with severe prognosis
- Simple and easy tests able to detect early-stage and asymptomatic disease
- Treatment of early-stage disease leads to a reduction of morbidity and mortality
- Favorable cost/effectiveness ratio: cost of test, of treatments, of complications

Application for PCa

- Yes. First tumor for incidence, second tumor for mortality
- Yes. PSA. (DRE?)

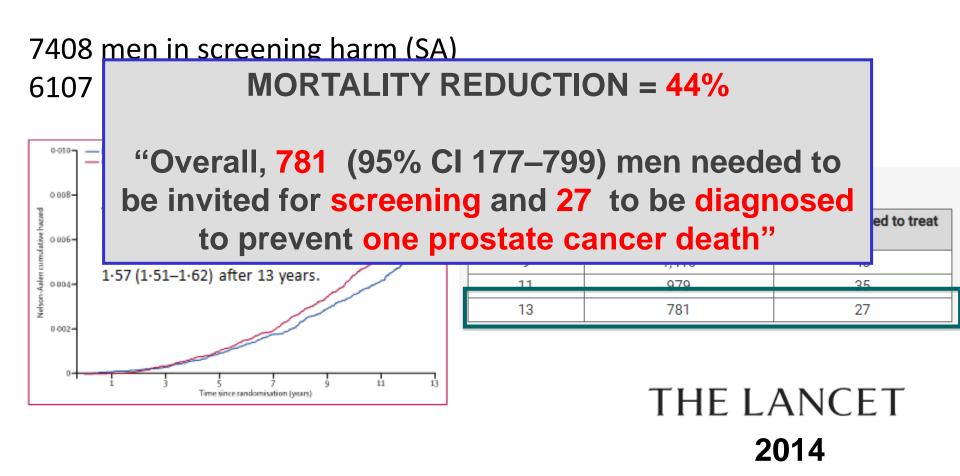
Not yet demonstrated

Prostate Cancer Screening in Europe and the USA

Mortality Results from a Randomized
Prostate-Cancer Screening Trial

Gerald L. Andriole, M.D., Robert L. Grubb III, M.D., Saundra S. Buys, M.D.,
David Chia, Ph.D., Timothy R. Church, Ph.D., Mona N. Fouad, M.D.,

PCLO STUDY
S.,
USA
F 76.000 men

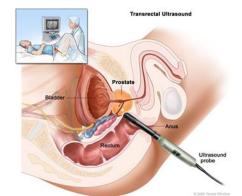

Sceening with PSA reduces prostate cancer mortality

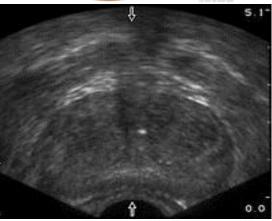
Sceening with PSA does not reduce prostate cancer mortality

N Engl J Med 2009

Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up

Fritz H Schröder, Jonas Hugosson, Monique J Roobol, Teuvo L J Tammela, Marco Zappa, Vera Nelen, Maciej Kwiatkowski, Marcos Lujan, Liisa Määttänen, Hans Lilja, Louis J Denis, Franz Recker, Alvaro Paez, Chris H Bangma, Sigrid Carlsson, Donella Puliti, Arnauld Villers, Xavier Rebillard, Matti Hakama, Ulf-Hakan Stenman, Paula Kujala, Kimmo Taari, Gunnar Aus, Andreas Huber, Theo H van der Kwast, Ron H N van Schaik, Harry J de Koning, Sue M Moss, Anssi Auvinen, for the ERSPC Investigators*

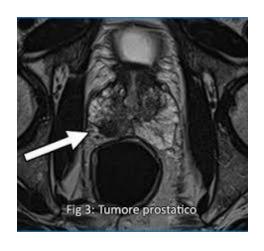


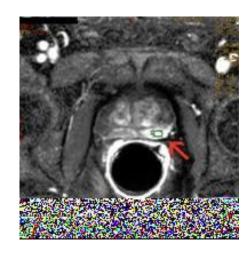

To decide for further diagnostic evaluations it is essential to always associate

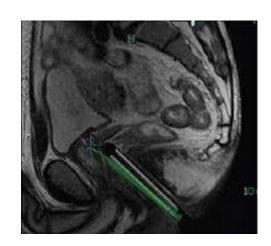
PSA + UROLOGICAL VISIT

Transrectal ultrasound of the prostate

- ✓ Transrectal ultrasound is not an accurate examination for local staging of prostate cancer
- √ Low sensitivity (false negative results)
- ✓ Low specificity (false positive results)
- ✓ The ability of transrectal ultrasound to predict extracapsular invasion ranges from 37 to 83%
- ✓ Transrectal ultrasound is similar to digital rectal examination in T staging


Multiparametric MRI


Multiparametric:

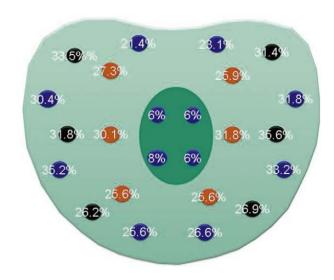

- **√ T2**
- ✓ Diffusion
- ✓ Contrast-enhanced

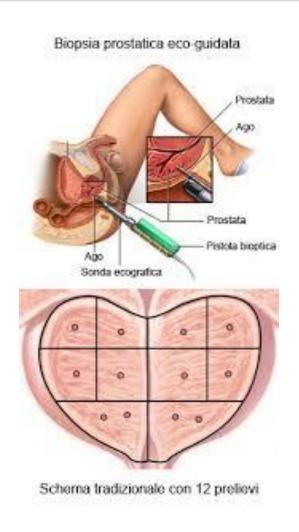
Classificazione PI-RADS	Definizione	Punteggio totale T2+DWI+DCE	Punteggio totale T2+DWI+DCE+MRS
1	Molto probabilmente benigna	3 - 4	4-5
II	Probabilmente benigna	5 - 6	6 - 8
III	Indeterminata	7-9	9 - 12
IV	Probabilmente maligna	10 - 12	13 – 15
٧	Molto probabilmente maligna	13 - 15	17 - 20

Tratta da Barentsz JO, Richenberg J, Clements R et al. ESUR prostate MR guidelines 2012. Eur Radiol 2012; 22:746-757

Multiparametric MRI

Sensitivity: 90% Specificity: 40%

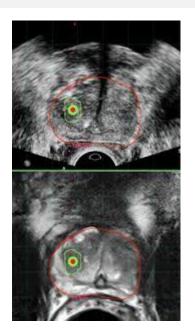

Negative predictive value: 80-85%


Positive predictive value: 60%

- ✓ It's not an alternative to biopsy
- ✓ It allows you to do more accurate biopsies (Fusion biopsies)

Systematic Prostate Biopsy

- ✓ Ultrasound assisted
- ✓ Transrectal or transperineal access



Fusion Prostate Biopsy

- ✓ Fusion biopsy: systematic (random) + target on suspicious lesion at MRI
- ✓ Merging MRI images with US images
- ✓ Biopsies can be precisely directed to target lesions

PROSTATE CANCER STAGING AND THERAPY

Prostate cancer Staging

Local staging: to carry out investigations aimed at assessing the local extent of the disease

Systemic staging: to carry out investigations aimed at evaluating any secondary metastatic lesions (lymph nodes or systemic)

RISK GROUPS

Grading: ISUP grade 1 - 2-3 - >3

PSA: <10 ng/ml - 10-20 ng/ml - >20 ng/ml

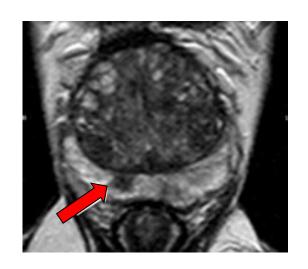
Clinical T stage: cT1/T2a - cT2b - cT2c - cT3-4

Definition								
Low-risk	Intermediate-risk	High-risk						
PSA < 10 ng/mL	PSA 10-20 ng/mL	PSA > 20 ng/mL	any PSA					
and GS < 7 (ISUP grade 1)	or GS 7 (ISUP grade 2/3)	or GS > 7 (ISUP grade 4/5)	any GS (any ISUP grade)					
and cT1-2a	or cT2b	or cT2c	cT3-4 or cN+					
Localised			Locally advanced					

GS = Gleason score; ISUP = International Society for Urological Pathology; PSA = prostate-specific antigen.

Prostate cancer Staging

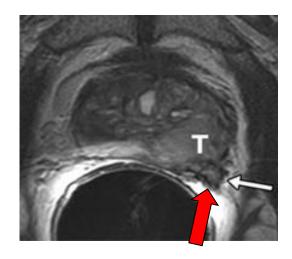
Low risk: no staging needed


Intermediate risk: local staging

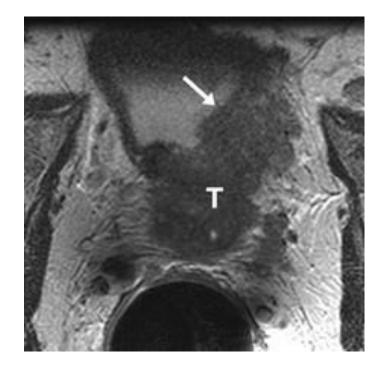
High risk: local and systemic staging

Locally advanced: local and systemic staging

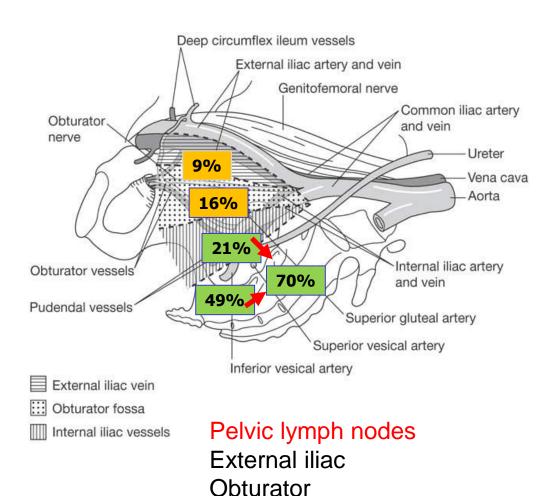
Multiparametric MRI Local staging


Diagnosis of extra-capsular disease

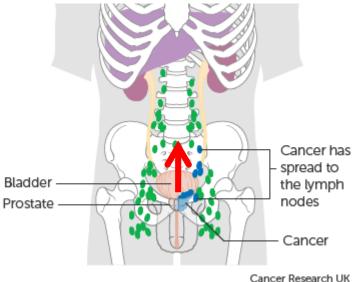
Probably EXTRA CAPSULAR



EXTRA CAPSULAR


Multiparametric MRI Local staging

Extra-capsular disease Seminal Vesicles – Bladder



Lymph node staging

Internal iliac (hypogastric)

Retropertitoneal lymph nodes

No: No regional lymph node metastasis

N1: Regional lymph node metastasis

Lymph node staging

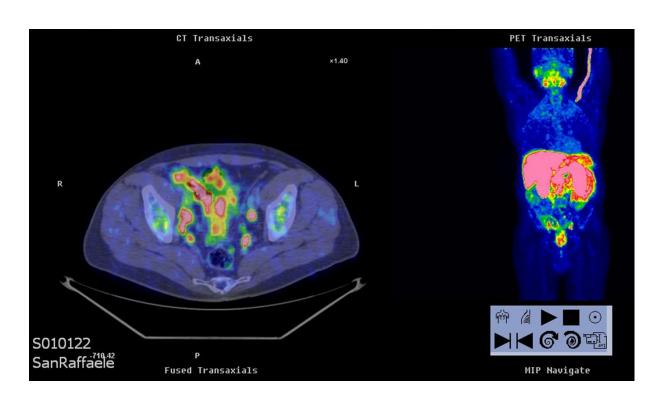
- It should be carried out only if it affects the treatment
- This is usually the case of patients for whom curative treatment has been planned
- Lymph node staging is required for clinical intermediate and high risk disease
- Nomograms should be used to define the risk of lymph node invasion

Lymph node staging CT of the abdomen and MRI

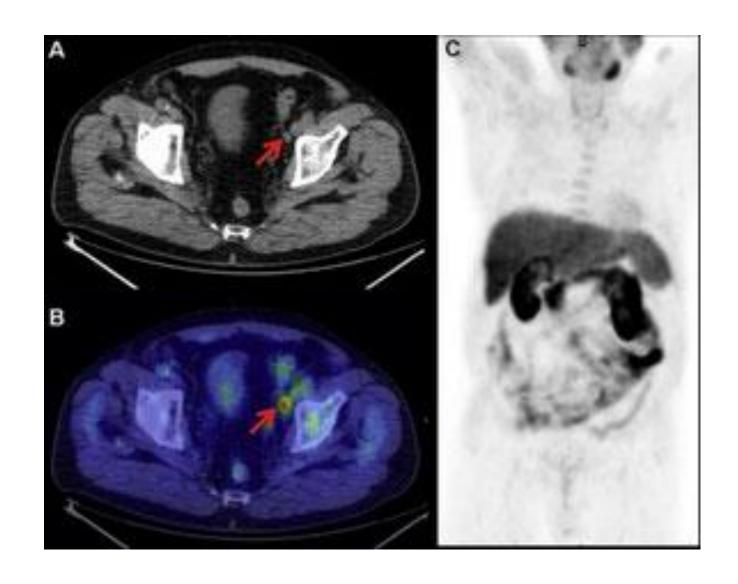
- CT and MRI have low sensitivity in detecting lymph node invasion (about 40%).
- This low sensitivity can be explained by the fact that the lymph node invasion is determined solely by dimensional criteria.
- MRI with DWI sequences can diagnose lymph node metastases in normal-sized lymph nodes, but its negativity does not exclude the presence of lymph node metastases.

Performance Characteristics of Computed Tomography in Detecting Lymph Node Metastases in Contemporary Patients with Prostate Cancer Treated with Extended Pelvic Lymph Node Dissection

	Sensitivity, %	Specificity, %	NPV, %	PPV, %	Accuracy, %
Overall population, n = 1541	13.0	96.0	89.1	32.9	54.6
Low-risk patients, $n = 471$	8.3	96.3	97.6	5.6	52.3
Intermediate-risk patients, n = 689	3.6	97.3	92.1	10.5	50.5
High-risk patients, $n = 381$	17.9	94.3	72.7	58.3	56.1
LNI calculated risk ≥ 30 , $n = 193$	22.0	95.5	78.3	62.4	58.7
LNI calculated risk ≥ 50 , $n = 161$	23.9	94.7	76.2	63.6	59.3

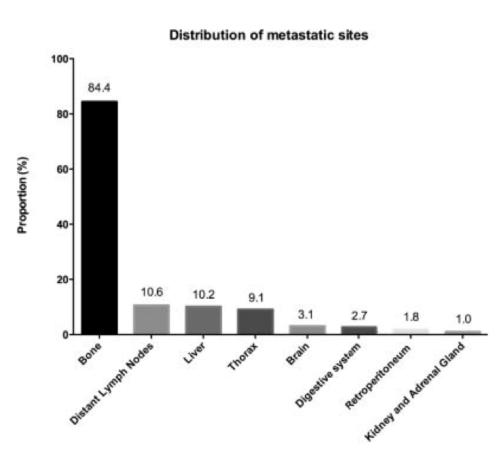

Predictors	Univariable ana	lyses	Multivariab	le analyses
			Base model	Full model
	OR (95% CI)	AUC, %	OR (95% CI)	OR (95% CI)
Prostate-specific antigen	1.04 (1.03-1.05) [†]	70.5	1.02 (1.01–1.03)†	1.02 (1.01-1.03) [†]
Clinical tumor stage				
T1c	1.00 (Ref.)	66.7	1.00 (Ref.)	1.00 (Ref.)
T2	1.88 (1.28-2.75) [†]		1.27 (0.84-1.92)	1.29 (0.85-1.96)
T3	5.96 (4.04-8.8) [†]		2.37 (1.5-3.72) [†]	2.33 (1.48-3.68)
Biopsy Gleason score				
≤6	1.00 (Ref.)	75.3	1.00 (Ref.)	1.00 (Ref.)
≤6 7	4.21 (2.8-6.33) [†]		3.41 (2.23-5.19) [†]	3.46 (2.27-5.28)†
≥8	16.98 (10.83-26.6) [†]		9.92 (6.06-16.22)†	9.37 (5.7–15.38)†
CT scan findings		_		
Negative	(Ref.) [†]	54.6		1.00 (Ref.)
Positive	3.1 (1.9-5.1) [†]		_	2.14 (1.1-4.13)‡
AUC, %	-	-	81.3	81.4
Gain in predictive accuracy	-	-	-	0.1

N-Staging - CT of the abdomen



N-staging - Choline PET/CT

- ✓ Sensitivity: 10%-73%
- ✓ Limited by the spatial resolution of the method (about 5 mm)
 - ✓ Not suitable for lymph node staging



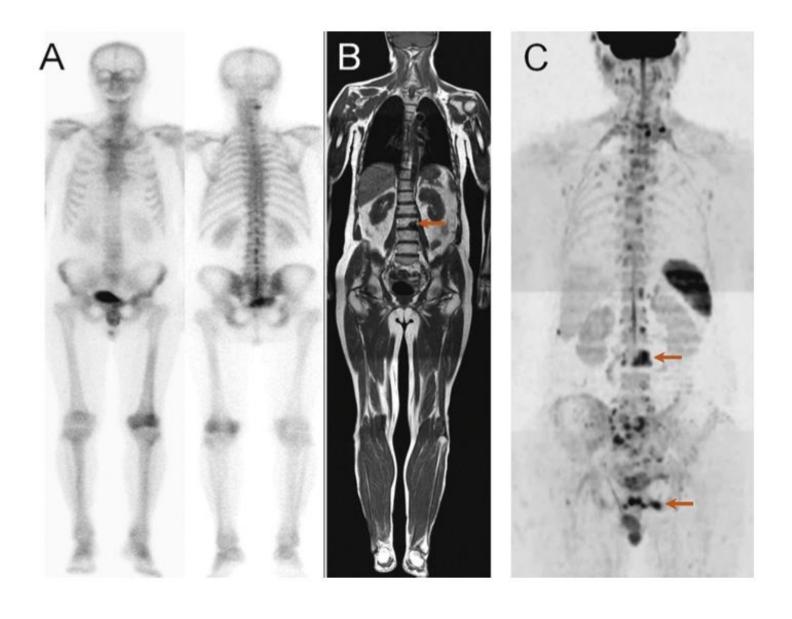
PSMA PET/CT

M-Staging Bone scintigraphy

- Axial skeleton is involved in 85% of patients with metastatic prostate cancer
- Early diagnosis of bone metastases allows to avoid pathological fractures
- Bone scintigraphy is still the gold standard for the diagnosis of bone metastases (sensitivity 79%; specificity 82%

Gandaglia et al. The Prostate 2014(2):210-6

EAU - ESTRO - ESUR - SIOG Guidelines on Prostate Cancer 2018


M-Staging MRI and choline PET/CT

- MRI is superior to bone scintigraphy in the diagnosis of bone metastases.
- It is not yet clear whether Choline or PSMA
 PET/CT are more sensitive than bone
 scintigraphy, but they are more specific.

 MRI and choline PET/CT may also highlight the presence of visceral metastases.

M-Staging

Prostate Cancer

TREATMENT

Risk Groups

Definition							
Low-risk	Intermediate-risk	High-risk					
PSA < 10 ng/mL	PSA 10-20 ng/mL	PSA > 20 ng/mL	any PSA				
and GS < 7 (ISUP grade 1)	or GS 7 (ISUP grade 2/3)	or GS > 7 (ISUP grade 4/5)	any GS (any ISUP grade)				
and cT1-2a	or cT2b	or cT2c	cT3-4 or cN+				
Localised			Locally advanced				

GS = Gleason score; ISUP = International Society for Urological Pathology; PSA = prostate-specific antigen.

Treatment options

✓ Active surveillance

- ✓ Surgery: Radical prostatectomy
 - ✓ Radiotherapy / Brachytherapy
 - ✓ Focal therapy

✓ Hormonal therapy

Treatment options

✓ Active surveillance

- ✓ Surgery: Radical prostatectomy
 - ✓ Radiotherapy / Brachytherapy
 - ✓ Focal therapy
 - ✓ Hormonal therapy

Active Surveillance

- ✓ Therapeutic option offered to patients with clinical low risk prostate cancer to avoid over treatment.
- ✓ Follow-up of patients over time with periodical restaging assessments: PSA, multiparametric MRI,
 biopsies (every three years).
- ✓ Offer a therapeutic option with radical intent if the disease switches to a higher risk category: 30% of cases.

Active Surveillance – Definition

Table 6.1.1: Definitions of active surveillance and watchful waiting [384]

	Active surveillance	Watchful waiting
Treatment intent	Curative	Palliative
Follow-up	Predefined schedule	Patient-specific
Assessment/markers used	DRE, PSA, re-biopsy, mpMRI	Not predefined
Life expectancy	> 10 years	< 10 years
Aim	Minimise treatment-related toxicity without compromising survival	Minimise treatment-related toxicity
Comments	Mainly low-risk patients	Can apply to patients with all stages

DRE = digital rectal examination; PSA = prostate-specific antigen; mpMRI = multiparametric magnetic resonance imaging.

Watchful Waiting – Definition

Table 6.1.1: Definitions of active surveillance and watchful waiting [384]

	Active surveillance	Watchful waiting
Treatment intent	Curative	Palliative
Follow-up	Predefined schedule	Patient-specific
Assessment/markers used	DRE, PSA, re-biopsy, mpMRI	Not predefined
Life expectancy	> 10 years	< 10 years
Aim	Minimise treatment-related toxicity without compromising survival	Minimise treatment-related toxicity
Comments	Mainly low-risk patients	Can apply to patients with all stages

DRE = digital rectal examination; PSA = prostate-specific antigen; mpMRI = multiparametric magnetic resonance imaging.

Active surveillance: Outcomes

Table 6.1.2: Active surveillance in screening-detected prostate cancer

Studies	N	Median FU (mo) pT3 in RP patients*		10-year	10-year
				OS (%)	CSS (%)
Van As, et al. 2008 [389]	326	22	8/18 (44%)	98	100
Carter, et al. 2007 [390]	407	41	10/49 (20%)	98	100
Adamy, et al. 2011 [391]	533-1,000	48	4/24 (17%)	90	99
Soloway, et al. 2010 [392]	99	45	0/2	100	100
Roemeling, et al. 2007 [393]	278	41	-	89	100
Khatami, et al. 2007 [394]	270	63	-	n.r.	100
Klotz, et al. 2015 [395]	993	77	-	85	98.1
Tosoian, et al. 2015 [388]	1,298	60	-	93	99.9
Total	4,204-4,671	46.5	-	93	100

^{*} Patients receiving active therapy following initial active surveillance.

CSS = cancer-specific survival; FU = follow-up; mo = months; n = number of patients; n.r. = not reported; OS = overall survival; RP = radical prostatectomy.

Active Surveillance Recommendations

Recommendations	Strength rating
Watchful waiting (WW)	
Offer a WW policy to asymptomatic patients with a life expectancy < ten years (based on comorbidities).	Strong
Active surveillance (AS)	
Offer AS to patients suitable for curative treatment but with low-risk PCa.	Strong
Perform multiparametric magnetic resonance imaging before a confirmatory biopsy.	Strong
During confirmatory biopsy include systematic and targeted biopsies.	Strong
Base follow up on digital rectal examination, prostate-specific antigen and repeated biopsies.	Strong
Counsel patients about the possibility of needing further treatment in the future.	Strong

FIRST OPTION FOR LOW RISK PROSTATE CANCER

Treatment options

✓ Active surveillance

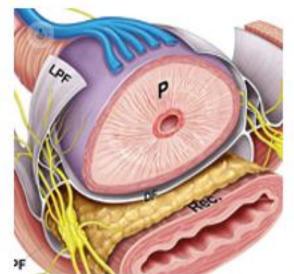
✓ Surgery: Radical Prostatectomy

✓ Radiotherapy / Brachytherapy

✓ Focal therapy

✓ Hormonal therapy

Radical prostatectomy

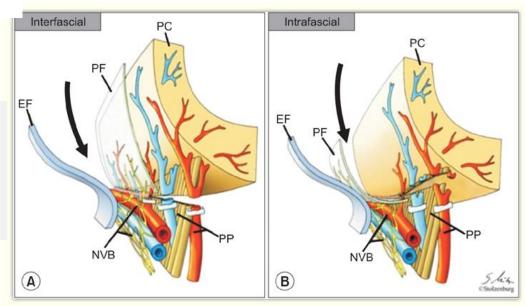

RADICAL PROSTATECTOMY

Surgical removal of the entire prostate gland + seminal vesicles + pelvic lymph nodes

Risks related to surgery:

- ✓ Incontinence
- Erectile disfunction

RADICAL PROSTATECTOMY


INTRINSIC SPHINCTER:

risk of incontinence

NEUROVASCULAR BUNDLES:

risk of erectile disfunction

NERVE SPARING SURGERY

Radical prostatectomy

Historically indicated for clinical low/intermediate risk disease

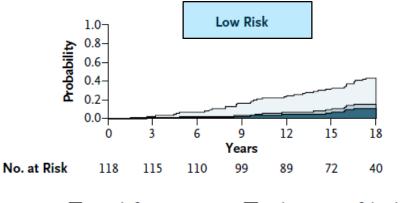
Table 6.1.4: Oncological results of radical prostatectomy in organ-confined disease in RCTs

Study	Acronym	•		Median FU (mo)	Risk category	CSS (%)
Bill-Axelson, et al. 2018 [400]	SPCG-4	Pre-PSA era	1989-1999	283	Low risk and Intermediate risk	80.4 (at 23 yr.)
Wilt, et al. 2017 [396]	PIVOT	Early years of PSA testing	1994-2002	152	Low risk Intermediate risk	95.9 91.5 (at 19.5 yr.)
Hamdy, et al. 2016 [386]	ProtecT	Screened population	1999-2009	120	Mainly low- and intermediate risk	99 (at 10 yr.)

CSS = cancer-specific survival; FU = follow-up; mo = months; PSA = prostate-specific antigen; yr. = year.

IS LOW RISK PROSTATE CANCER A LETHAL DISEASE?

The NEW ENGLAND JOURNAL of MEDICINE

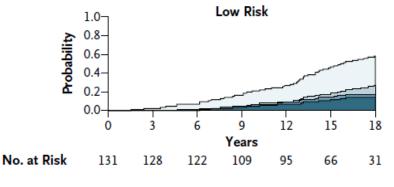

ORIGINAL ARTICLE

Radical Prostatectomy or Watchful Waiting in Early Prostate Cancer

695 MEN:

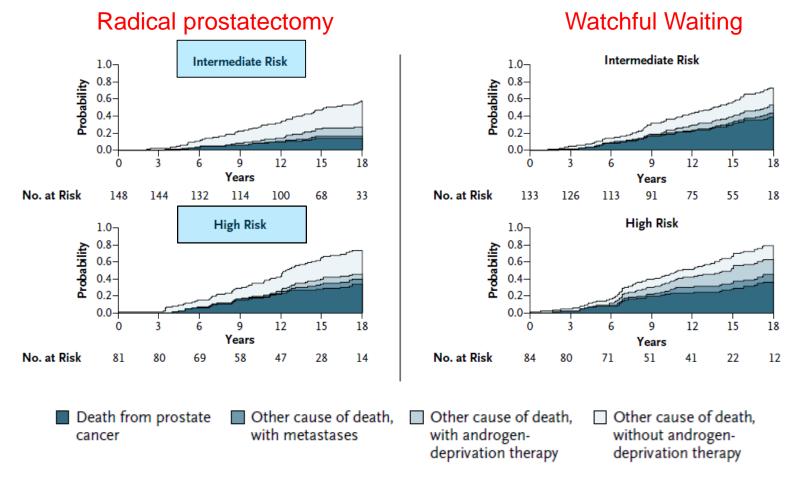
- √ 348 Radical prostatectomy
- √ 348 Watchful Waiting

Radical prostatectomy


Death from prostate cancer

Other cause of death, with metastases

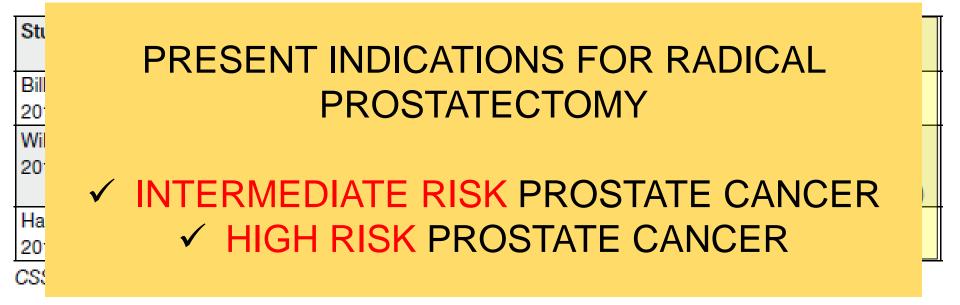
Other cause of death. with androgen-


deprivation therapy

Watchful Waiting

Other cause of death. without androgendeprivation therapy

ARE INTERMEDIATE AND <u>HIGH RISK</u> PROSTATE CANCER LETHAL DISEASES?

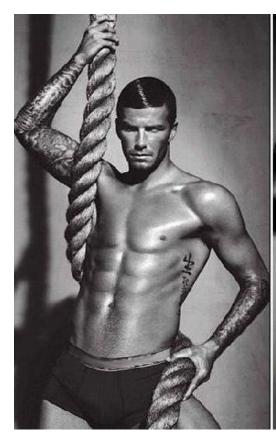

Long-term outcomes after RP in high-risk patients

	Year	N. HR pts	Time	BCR- free %	PFS %	CSS %	OS %	Adj Tx %	High risk def
Loeb et al	2007	288	10	Х	35	88	74	27	cT2b/cT3, PSA >15 , Gleason 8-10
Yossepowitch et al	2007	274-1752	10	х	41-74	х	Х	0	8 definitions
D' Amico et al	2007	660	5 (1 RF – 4RFs)	Х	х	97.7-80	Х	X	≥cT2b, PSA ≥10, Gleason ≥7, PSA velocitiy >2 ng/mL/year
Walz et al	2010	887	10	35.7	Х	х	Х	х	≥cT2c, PSA ≥20, Gleason 8-10
Ku et al	2011	199	5	49.2	х	х	Х	0	≥cT2b, PSA >20 , Gleason 8-10
Boorjian et al	2011	1238	10	Х	85	92	77	40	≥cT3, PSA ≥20, Gleason 8-10
Ploussard et al	2011	813	5	х	74.1	96.1	98.2	36	>cT2c, PSA >20 , Gleason 8-10
Hong et al	2011	206	5	60	х	х	х	0	≥cT2b, PSA >20 , Gleason 8-10
Briganti et al	2015	2,065	5	55.2	Х	85.2	Х	0	≥cT2b, PSA >20 , Gleason 8-10

Radical prostatectomy

Historically reserved for clinical low/intermediate risk disease

Table 6.1.4: Oncological results of radical prostatectomy in organ-confined disease in RCTs

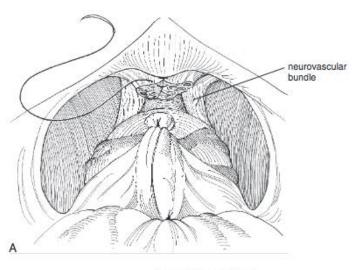

Radical prostatectomy

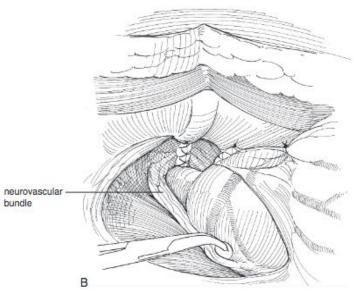
In addition to the characteristics of the pathology, it is important to evaluate the characteristics of the patient:

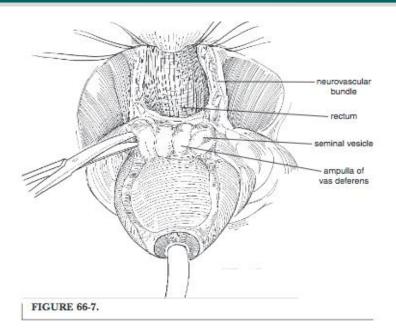
- ✓ Age
- ✓ Performance status
- ✓ Life expectancy

Rarely indicated in patients

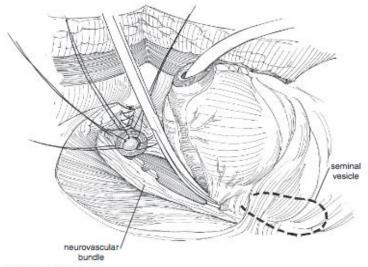
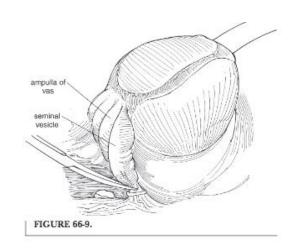
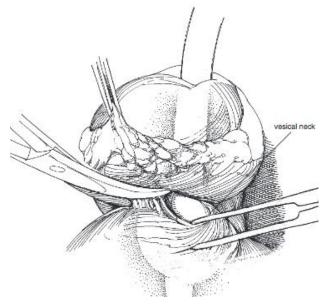
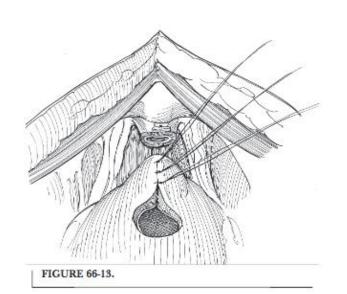
- √ Aged > 75 yrs
- ✓ Low performance status

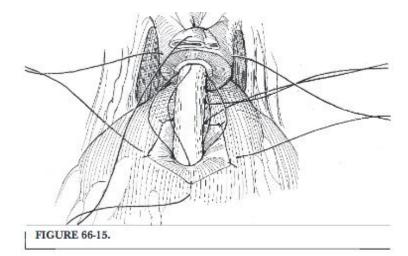



Open Surgery

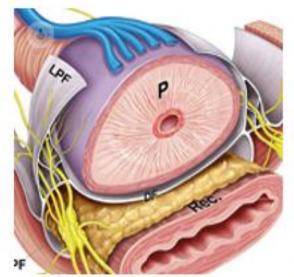


OPEN SURGICAL TECHNIQUE

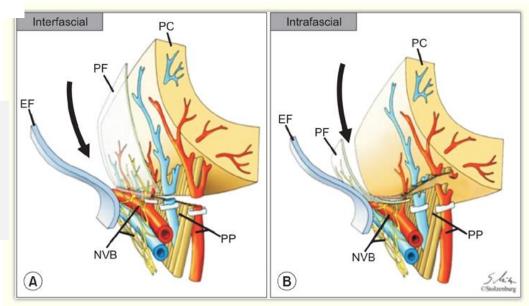






FIGURE 66-8.

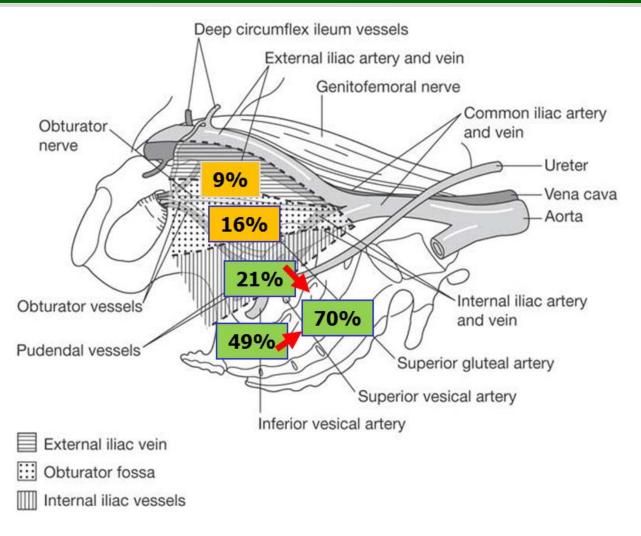
OPEN SURGICAL TECHNIQUE



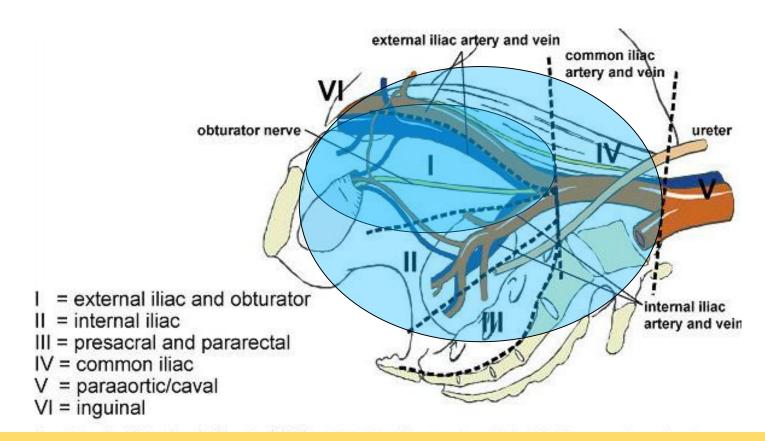
OPEN SURGICAL TECHNIQUE


INTRINSIC SPHINCTER:

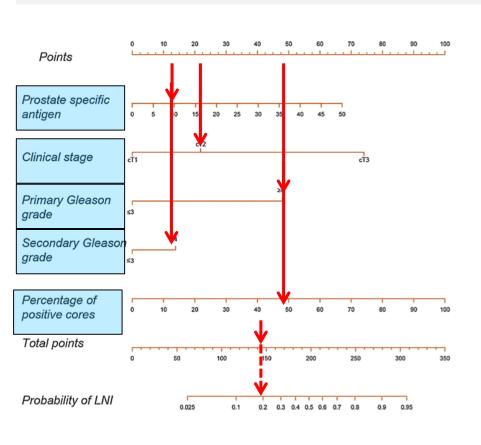
risk of incontinence

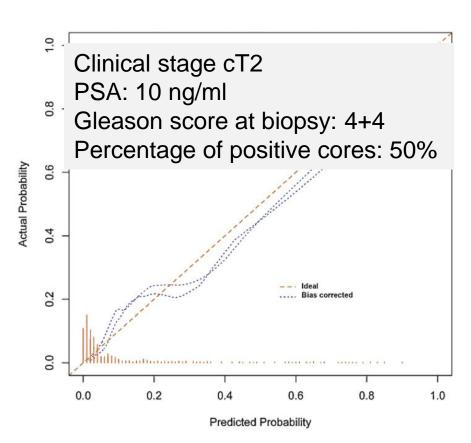

NEUROVASCULAR BUNDLES:

risk of erectile disfunction


NERVE SPARING SURGERY

Radical prostatectomy and lymphadenectomy


Radical prostatectomy and lymphadenectomy

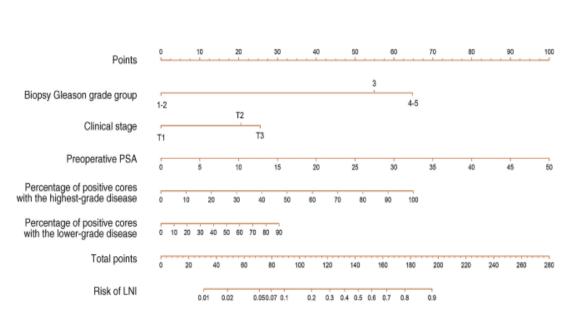


When a lymph node dissection (LND) is deemed necessary, perform an extended LND template for optimal staging.

Nomogram: mathematical tool to calculate the probability of an event

Nomogram for the risk of lymph node invasion

Risk of lymph node invasion: 20%


Briganti et al. Eur Urol 2012(61):480-7

Development and Internal Validation of a Novel Model to Identify the Candidates for Extended Pelvic Lymph Node Dissection in Prostate Cancer

Giorgio Gandaglia ^{a,b}, Nicola Fossati ^{a,b}, Emanuele Zaffuto ^{a,b,c}, Marco Bandini ^{a,b}, Paolo Dell'Oglio ^{a,b}, Carlo Andrea Bravi ^{a,b}, Giuseppe Fallara ^{a,b}, Francesco Pellegrino ^{a,b}, Luigi Nocera ^{a,b}, Pierre I. Karakiewicz ^c, Zhe Tian ^c, Massimo Freschi ^d, Rodolfo Montironi ^e, Francesco Montorsi ^{a,b}, Alberto Briganti ^{a,b,*}

^a Unit of Urology/Division of Oncology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; ^b Vita-Salute San Raffaele University, Milan, Italy; ^c Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Center, Montreal, Canada; ^d Unità Operativa Anatomia Patologica, IRCCS Ospedale San Raffaele, Milan, Italy; ^c Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy

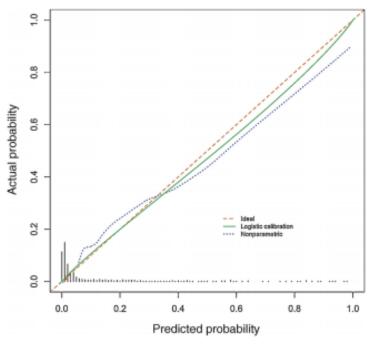
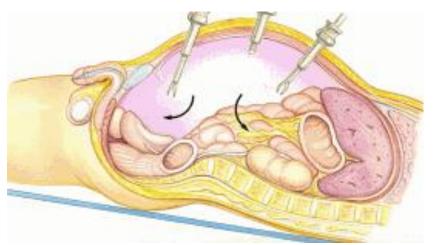



Fig. 2 – Calibration plot of observed proportion versus predicted probability of lymph node invasions of the novel nomogram.

Laparoscopic prostatectomy

Robotic Surgery: RARP

- Robotic surgery is developed laparoscopy.
- Robotic instruments are flexible and simulate surgeon's fingers and wrist movements.
- The operator can move them in a 3D up to 10 x magnificated vision.

Robotic Surgery: RARP

- Robotic radical prostatectomy (RARP) has shown shorter hospitalization times and reduced intra-operative blood loss, but the benefits relative to functional or oncological outcomes are still doubtful.
- Some studies show higher rates of erectile function recovery and faster continence recovery in patients treated with RARP. Others do not.

Robotic Surgery: Surgical Technique

Robot-Assisted Radical Prostatectomy (RARP)

 Robotic prostatectomy (RARP) is replacing open prostatectomy as the gold standard treatment for clinically localized prostate cancer.

 However, this trend is not supported by high level evidence demonstrating the superiority of a surgical technique over the other.

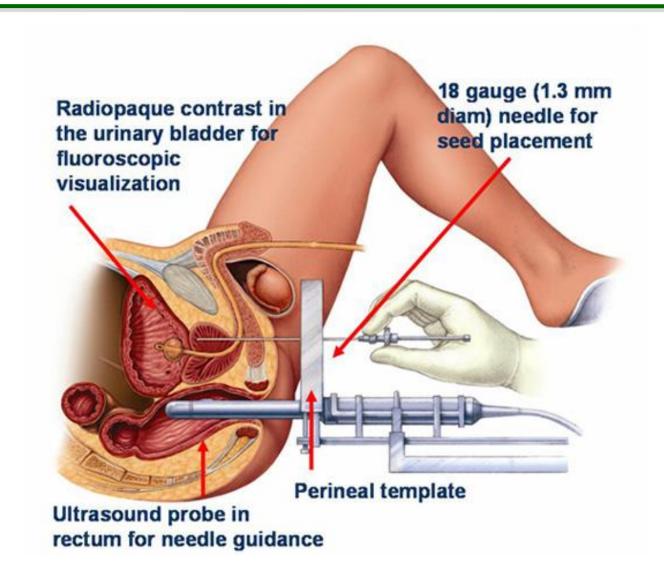
Treatment options

✓ Active surveillance

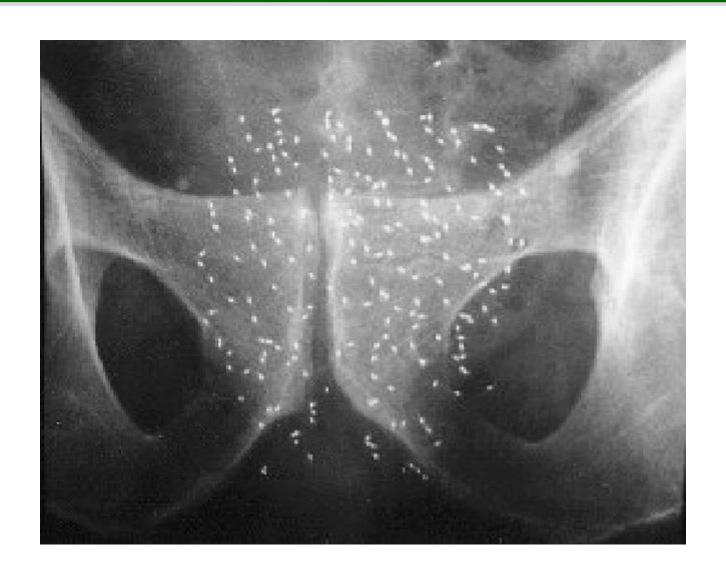
- ✓ Surgery: Radical prostatectomy
- ✓ Radiotherapy / Brachytherapy
 - ✓ Focal therapy
 - ✓ Hormonal therapy

External -beam Radiotherapy

External beam Radiotherapy


- Intensity-modulated radiotherapy (IMRT), with or without image-guided radiotherapy (IGRT), is the gold standard for external beam radiation therapy (EBRT)
- IMRT employs dynamic multileaf collimators, which automatically and continuously adapt to the contours of the target volume seen by each beam. The modulation of the radiation allows to diversify the radiation dose directed towards the tumor from that directed towards the surrounding tissues.
- Gastrointestinal and urinary side effects are common during and after EBRT.

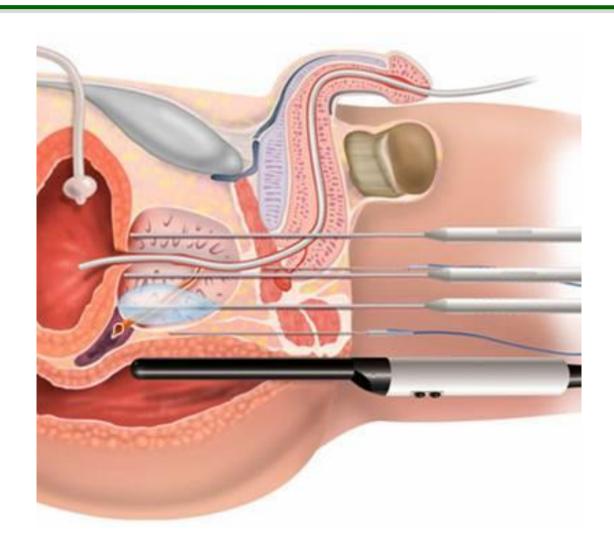
Intensity-modulated radiotherapy


Intermediate/high risk category

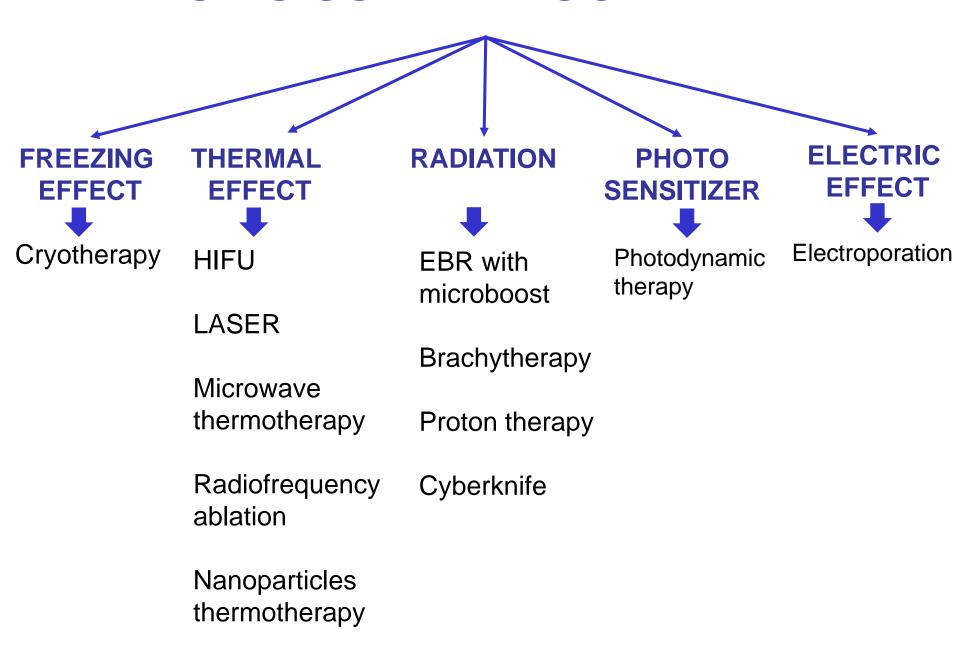
Brachytherapy

Brachytherapy

Treatment options


✓ Active surveillance

- ✓ Surgery: Radical prostatectomy
 - ✓ Radiotherapy / Brachytherapy
 - ✓ Focal therapy
 - ✓ Hormonal therapy


Focal Therapy

- ✓ Early identification of prostate cancer has reduced the use of radical treatments in favor of conservative approaches.
- ✓ However, many men are still reluctant to active surveillance or watchful waiting.
- ✓ For these patients, an alternative approach is focal therapy.

Focal Therapy

ENERGIES USED IN FOCAL THERAPY

Focal Therapy

- ✓ Focal therapy is today reserved only for patients with clinical low risk prostate cancer.
- ✓ Focal therapy is an alternative to active surveillance (cancer-specific mortality: 1%).

What is a better treatment than no treatment?

Treatment options

✓ Active surveillance

- ✓ Surgery: Radical prostatectomy
 - ✓ Radiotherapy / Brachytherapy
 - ✓ Focal therapy

✓ Hormonal therapy

Charles Brenton Huggins, MD

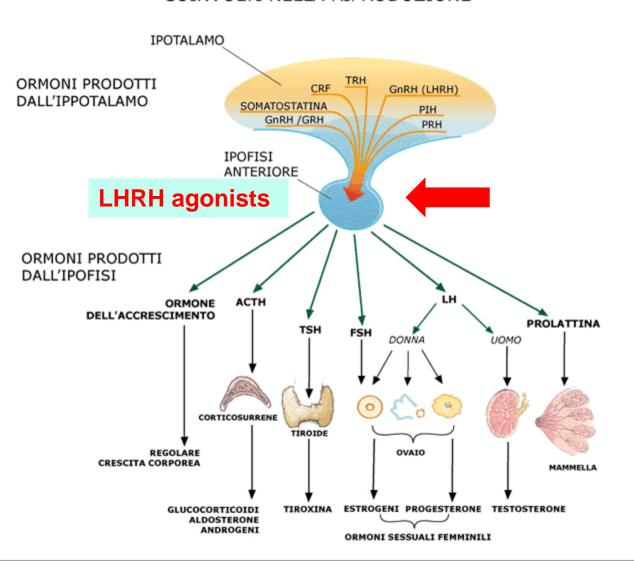
The prostate gland is under the control of male sex hormones

Hormone manipulation caused the tumors to shrink

Similar regulation of some forms of breast cancer later discovered

These discoveries formed the basis of hormone therapy prescribed for >50% of breast and prostate cancer

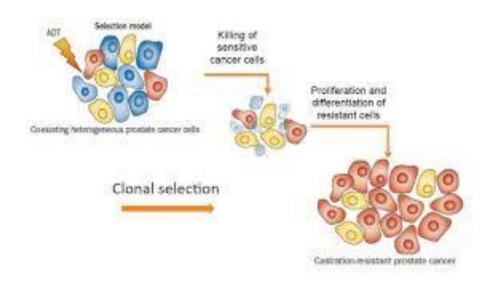
Patient operated on by Er. Haggiro 31 year


Medicine, 1966

Hormonal therapy

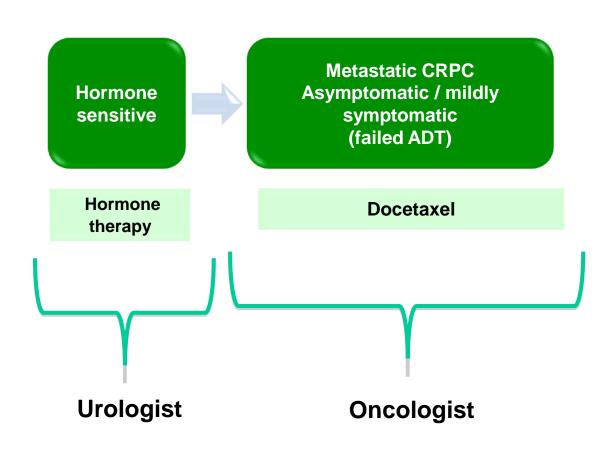
The reduction of serum testosterone levels, necessary to counteract the growth of cancer cells, can be achieved in various ways:

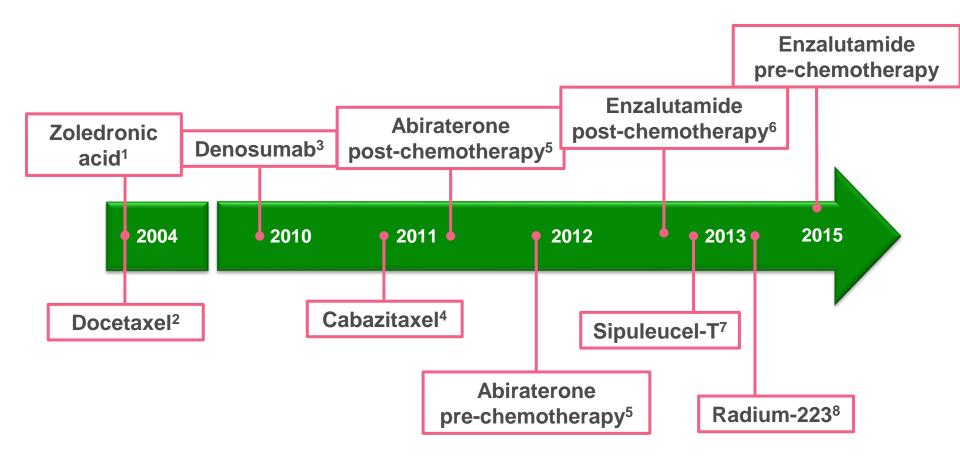
- Bilateral orchiectomy
- LHRH agonists act on the hypothalamus-pituitary axis blocking the testicular production of LH an thus testosterone (*Leuprolide* – *Triprorelina*)
- Peripheral antiandrogens block the interaction between the male sex hormone and its receptors, thus inhibiting tumor growth (Ciproterone acetato, Bicalutamide, Flutamide, Nilutamide)
- **LHRH antagonists** block, at the level of the hypothalamus, the initial stimulus from which the cascade of messages that pushes testicles to produce sex hormones starts (*Degarelix*)


SINTESI DEGLI ORMONI DELL'ASSE IPOTALAMO - IPOFISI - OVAIO COINVOLTI NELLA RIPRODUZIONE

Treatment of Metastatic Prostate Cancer LHRH agonists

- Offer immediate systemic treatment with androgen deprivation therapy (ADT) to palliate symptoms and reduce the risk for potentially serious sequelae of advanced disease (spinal cord compression, pathological fractures, ureteral obstruction) to M1 symptomatic patients.
- Offer immediate systemic treatment also to M1 asymptomatic patients to improve survival, postpone progression to a symptomatic stage and prevent serious complications related to the progression of the disease.


CASTRATION-RESISTANT PROSTATE CANCER DEFINITION


Castrate serum testosterone < 50 ng/dL or 1.7 nmol/L plus either:

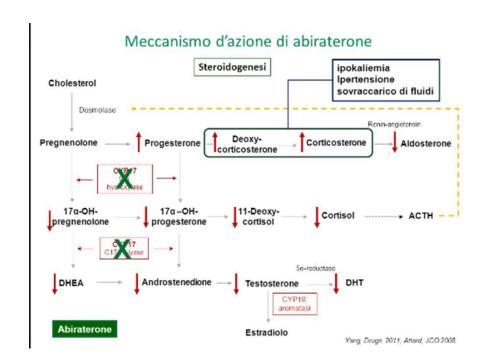
- Biochemical progression: Three consecutive rises in PSA at least one week apart resulting in two 50% increases over the nadir, and a PSA > 2 ng/mL or
- Radiological progression: The appearance of new lesions: either two or more new bone lesions on bone scan or a soft tissue lesion using RECIST (Response Evaluation Criteria in Solid Tumours).

Treatment of Metastatic Prostate Cancer

Changing in treatment paradigm

Dates correspond to EMA approval.

EMA=European Medicines Agency; mCRPC=metastatic castration-resistant prostate cancer.

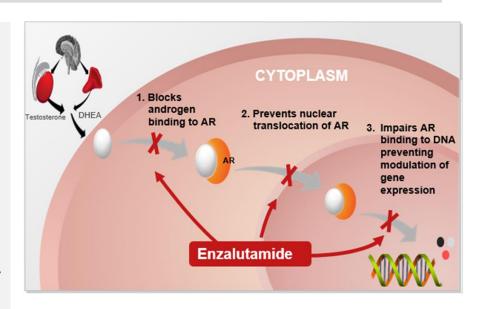

- 1.Zometa (zoledronic acid). Summary of product characteristics. February 2014.
- 2.Taxotere (docetaxel). Summary of product characteristics. August 2013.
- 3. Prolia (denosumab). Summary of product characteristics. May 2010.
- 4. Jevtana (cabazitaxel). Summary of product characteristics. September 2013.
- Zytiga (abiraterone). Summary of product characteristics. August 2013.
- Xtandi (enzalutamide). Summary of product characteristics. July 2013.
- Provenge (sipuleucel-T). Summary of product characteristics. October 2013.
- Xofigo (radium 223). Summary of product characteristics. November 2013.

NEW ANTIANDROGENS

ABIRATERONE ACETATE

Selective and irreversible CYP17 inhibitor that can significantly reduce intracellular testosterone levels.

It suppresses testosterone synthesis in the adrenals and within cancer cells.



NEW ANTIANDROGENS

ENZALUTAMIDE

New peripheral anti-androgen with greater affinity for AR receptor than bicalutamide.

It also blocks the nuclear transfer of AR thus suppressing its transcriptional activity.

PROSTATE CANCER UNIT

Core Team

Urologists Radioterapists **Oncologists Psychologists** Anatomopathologists **Professional Nurses**

Non Core Team

Radiotherapists (for brachytherapy) **Medical Physicists Nuclear Doctors** Radiologists Rehabilitators Specialists in Support and **Palliative Therapies**

Project Team*

Project Manager Secretary Research Nurses Data entry e management

Hematology

Prostate Cancer Unit Initiative in Europe: A position paper by the European School of Oncology

Riccardo Valdagni a,b,c,*, Hendrik Van Poppel d, Michael Aitchison d, Peter Albers f, Dominik Berthold 8, Alberto Bossi h, Maurizio Brausi i, Louis Denis j,k Lawrence Drudge-Coates 1, Maria De Santis 10,0, Günther Feick 3,0, Chris Harrison P. Karin Haustermans⁹, Donal Hollywood^{7,1}, Morton Hoyer⁸, Henk Hummel⁴, Malcolm Mason⁹, Vincenzo Mirone^v, Stefan C. Müller^w, Chris Parker^x, Mahasti Saghatchian^y, Cora N. Sternberg Z, Bertrand Tombal D, Erik van Muilekom B, Maggie Watson C, Simone Wesselmann dd, Thomas Wiegelee, Tiziana Magnani b, Alberto Costa a

mone Wesselmann ^{ad}, Thomas Wiegele's, Tiziana Magnani ^b, Alberto Costa

^a Praint Career Proj.

^b Praint Career Proj.

^c England Book of Occiding, Midn. Indip

^c Padatic Guerre Proj.

^c Robinson Cockey, I Indiacione IECC Intensis Consistent dei Tauric, Midn. Indip

^c Padatic Occiding I, Indiacione IECC Intensis Consistent dei Tauric, Midn. Indip

^d Page of Uniong, University Rospital of the Katholiuk University Indiacione Intensis Castane, Religione

^d Page of England Consistent (Intensis Intensis 3 Breast Concer Unit, Institut Gustave Roussy, Villejaif, France 3 Broast Career (Intl. Institute Control Researt, Willsjaf France;
1 Beyer of Medical Oxociety, Sen. Carelline and Prolitate Haspitate, Broase, Halv
1 Beyer of Medical Oxociety, Sen. Carelline and Prolitate Haspitate, Broase, Lidy
1 Beyer of Unders, Neitherlands Career Institute, Annotadon, The Neitherlands
1 Beyer of Unders, December and Medical Producty, Eleveriny Codey, London, U.K.
2 Bestards Europhespellichtel, German Career Society, Berlin, German Carellands
2 Beyer of Madicalon Oxociety, Oxocoryin (Horold Int. Uni, German)
2 Beyer of Madicalon Oxociety, Oxocoryin (Horold Int. Uni, German) Accepted 26 May 2015

1040-8428/O 2015 Elsevier Ireland Ltd. All rights reserved

Please cite this article in press as: Valdagni R, et al. Prostate Cancer Unit Initiative in Europe: A position paper by the European Schoo of Oncology. Crit Rev Oncod/Hennatol (2015), http://dx.doi.org/10.1016/j.crintevum/.2015.05.014

^{*} Corresponding author de Prostas Cancer Programme and Radiation Oncology 1, Fondazione IRCCS fatinto Nazionale dei Turnoti, viu Venezian 1, 20133. Milas, Baly, Tel.; +0039 02 2390304; fax; +0039 02 2390304; fax; -0039 02 2390304.
E-mull addures ricculum vallaging distintativaries mis (de. Valdagui).

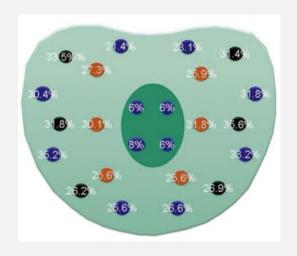
In memorian Prof. Donal Hollywood, President-Flort of the European Society for Radiotherany & Oncology 2011-2017

Clinical case – 1

Doctor... I'm 40 years old

- ✓ Tripled risk of developing prostate cancer (familiarity)
- ✓ The lack of symptoms has no relevance
- ✓ You must perform a PSA and a urological visit and then start screening.

When should I start screening? Which checks?


Clinical case – 2

PSA (ng/ml)	rischio di tumore	
< 1	8%	
1-2	17%	
2-4	25%	
4-10	47%	
> 10	59%	

No you cant!

Transrectal ultrasound of the prostate: very low sensitivity You should have e multiparametric MRI of the prostate ... and biopsies

Clinical case – 3

It is nice to have a negative MRI but

Multiparametric MRI → negative predictive value: 80-85%

We should take in consideration systematic biopsies

Clinical case - 4

Table 6.1.2: Active surveillance in screening-detected prostate cancer

Studies	n	Median FU (mo)	pT3 in RP patients	OS (%)	CSS (%)
Van As, et al. 2008 [325]	326	22	8/18 (44%)	98	100
Carter, et al. 2007 [326]	407	41	10/49 (20%)	98	100
Adamy, et al. 2011 [327]	533-1,000	48	4/24 (17%)	90	99
Soloway, et al. 2010 [328]	99	45	0/2	100	100
Roemeling, et al. 2007 [329]	278	41	-	89	100
Khatami, et al. 2007 [330]	270	63	-	n.r.	100
Klotz, et al. 2015 [322]	993	77	-	85	98.1
Total	2,130-3,000	43		90	99.7

^{*} Patients receiving active therapy following initial active surveillance.

CSS = cancer-specific survival; FU = follow-up; mo = months; n = number of patients; n.r. = not reported; OS = overall survival; RP = radical prostatectomy.

FOLLOW-UP

Follow-up after treatment with curative intent

7.1.5 Summary of evidence and guidelines for follow-up after treatment with curative intent

Summary of evidence	LE
After radical prostatectomy rising serum PSA level is considered a BCR.	3
After radiotherapy, an increase in PSA > 2 ng/mL above the nadir, rather than a specific threshold	3
value, is considered as clinically meaningful BCR.	
Palpable nodules and increasing serum PSA are signs of local recurrence.	2a

Recommendations	Strength rating
Routinely follow up asymptomatic patients by obtaining at least a disease-specific history	Strong
and serum prostate-specific antigen (PSA) measurement. These should be performed at 3,	
6 and 12 months after treatment, then every 6 months until 3 years, and then annually.	
At recurrence, only perform imaging to detect local recurrence if the outcome will affect	Strong
treatment planning.	
Only offer bone scans and other imaging modalities to men with biochemical recurrence or	Strong
symptoms suggestive of progression without signs of biochemical relapse.	

Follow-up during hormonal treatment

7.2.7 Guidelines for follow-up during hormonal treatment

Recommendations	Strength rating
Evaluate patients at 3 to 6 months after the initiation of treatment.	Strong
The follow-up strategy must be individualised based on stage of disease, prior symptoms,	Strong
prognostic factors and the treatment given.	
In patients with stage M0 disease, schedule follow-up at least every 6 months. As a	Strong
minimum requirement, include a disease-specific history, serum prostate-specific antigen	
(PSA) determination, as well as liver and renal function in the diagnostic work-up.	
In patients with stage M1 disease, schedule follow-up every 3 to 6 months. As a minimum	Strong
requirement, include an initial FRAX-score assessment, disease-specific history, digital-	
rectal examination (DRE), serum PSA, haemoglobin, serum creatinine and alkaline	
phosphatase measurements in the diagnostic work-up. The testosterone level should	
be checked, especially during the first year. Pay attention to symptoms associated with	
metabolic syndrome as a side effect of androgen deprivation therapy. Phospholipid profiles	
and glucose levels should be checked and treated if abnormal.	
Counsel patients (especially with M1b status) about the clinical signs suggestive of spinal	Strong
cord compression.	
When disease progression is suspected, adapt/individualise follow-up.	Strong
In patients with suspected progression, assess the testosterone level. By definition,	Strong
castration resistant PCa requires a testosterone level < 50 ng/dL (< 1 mL/L).	
Do not offer routine imaging to otherwise stable asymptomatic patients.	Weak

Prostate Cancer

TREATMENT

First line treatment of prostate cancer

The therapeutic approach of prostate cancer, even when clinically localized, has become very complex due to the multiple approaches available depending on the stage

RISK GROUPS

Definition					
Low-risk	Intermediate-risk	High-risk			
PSA < 10 ng/mL	PSA 10-20 ng/mL	PSA > 20 ng/mL	any PSA		
and GS < 7 (ISUP grade 1)	or GS 7 (ISUP grade 2/3)	or GS > 7 (ISUP grade 4/5)	any GS (any ISUP grade)		
and cT1-2a	or cT2b	or cT2c	cT3-4 or cN+		
Localised			Locally advanced		

GS = Gleason score; ISUP = International Society for Urological Pathology; PSA = prostate-specific antigen.

Treatment options

✓ Active surveillance

✓ Surgery: Radical prostatectomy

✓ Radiotherapy / Brachytherapy

✓ Focal therapy

Recommendations Therapeutic Options

Recommendations	Strength rating
Inform patients that no active treatment modality has shown superiority over any other active management options in terms of survival.	Strong
Inform patients that all active treatments have side-effects.	Strong
Surgical treatment	
Inform patients that no surgical approach (open, laparoscopic- or robotic radical prostatectomy) has clearly shown superiority in terms of functional or oncological results.	Strong
Perform an extended lymph node dissection (LND), when a LND is deemed necessary.	Strong
Do not perform nerve sparing surgery when there is a risk of extracapsular extension (based on cT stage, Gleason score, nomogram, multiparametric magnetic resonance imaging).	Strong
Do not offer neoadjuvant androgen deprivation therapy before surgery.	Strong
Radiotherapeutic treatment	
Offer intensity-modulated radiation therapy (IMRT) or volumetric arc external-beam radiotherapy (VMAT) for definitive treatment of PCa by external-beam radiation therapy.	Strong
Only offer moderate hypofractionation (HFX) with IMRT/VMAT, including image-guided radiation therapy to the prostate, to carefully selected patients with localised disease.	Strong
Ensure that moderate HFX adheres to radiotherapy protocols from trials with equivalent outcome and toxicity, i.e. 60 Gy/20 fractions in four weeks or 70 Gy/28 fractions in six weeks.	Strong
Active therapeutic options outside surgery and radiotherapy	
Only offer cryotherapy and high-intensity focused ultrasound within a clinical trial setting.	Strong
Only offer focal therapy within a clinical trial setting.	Strong

Active surveillance

- Active surveillance is a therapeutic option for patients with low-risk, organ confined prostate cancer.
- The aim is to reduce overtreatment in patients in whom treatment can be avoided without giving up curative treatment in case of disease progression.
- Active surveillance may mean not treating patients older than 70 years, while treatment of younger patients can be postponed by several years, also postponing its side effects.

Active Surveillance – Definition

Table 6.1.1: Definitions of active surveillance and watchful waiting [384]

	A 111	147 - 171 - 121
	Active surveillance	Watchful waiting
Treatment intent	Curative	Palliative
Follow-up	Predefined schedule	Patient-specific
Assessment/markers used	DRE, PSA, re-biopsy, mpMRI	Not predefined
Life expectancy	> 10 years	< 10 years
Aim	Minimise treatment-related toxicity without compromising survival	Minimise treatment-related toxicity
Comments	Mainly low-risk patients	Can apply to patients with all stages

DRE = digital rectal examination; PSA = prostate-specific antigen; mpMRI = multiparametric magnetic resonance imaging.

Active surveillance: selection criteria

Authors	Criteria
Epstein et al	Clinical stage T1c PSA density <0.15 ng/ml No Gleason pattern 4 or 5 <3 positive cores <50% cancer per core
D'Amico et al	PSA level 10 ng/ml No Gleason pattern 4 or 5 Clinical stage T2a or lower
Soloway et al	Clinical stage T2 or lower PSA level <15 ng/ml No Gleason pattern 4 or 5 <50% cancer per two positive Cores
Dall'Era et al	Gleason sum 6 PSA level <10 ng/ml and stable PSA kinetics 50% single core involvement 33% positive cores
Van den Bergh et al. (PRIAS)	Clinical stage T1c–T2b No Gleason pattern 4 or 5 PSA density <0.20 ng/ml PSA level <10 ng/ml Fewer than three positive cores
Klotz et al.	Clinical stage T1c/T2a Age > 70: PSA <15 ng/ml; Gleason ≤3+4 Age < 70: PSA < 10 ng/ml; Gleason 6

Active surveillance: follow-up

	Toronto	Johns Hopkins	PRIAS	UCSF	Miami	Japan
PSA and DRE monitoring	3 monthly PSA and 6 monthly DRE for 2 years; 6 monthly PSA and annual DRE thereafter	6 monthly PSA and DRE	3 monthly PSA and 6 monthly DRE	3 monthly PSA with TRUS at 6-12 month interval	3-4 monthly PSA and DRE for 2 years; 6 monthly thereafter	2 monthly PSA for 6 months; 3 monthly tehreafter. DRE with TRUS every 6 months
Re-biopsy	6-12 months in the first year then every 2-3- years	annually	1, 2 and 7 years or cT3 or PSADT<3 yrs	Every 1-2 years	Annually or triffered by PSA or DRE	At 1 year
Trigger for intervention	PSADT<3 years	Surveillance biopsy breaching selection criteria	Gleason score > 6 or more than 2 positive cores	Gleason upgrade; increase in PSA velocity of 0.75 per year	Gleason upgrade; increase in tumor volume; >2 positive cores	PSADT < 2 yrs; pathological change breaching selection criteria

Active surveillance: PRIAS project

- PRIAS is an international multicenter active surveillance protocol: enrolled patients are followed with the same follow-up strategy
- In Italy SIUrO PRIAS ITA offers the opportunity to participate in the international protocol (Coordinating Centre: Programma Prostata, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano)
- Once the inclusion criteria and the absence of exclusion criteria have been verified, the patient is entered into the database by the coordinator center

Active surveillance: PRIAS project

- Follow-up is entrusted to the center to which the patient adheres through the website www.prias-project.org
- Follow-up
 - PSA every 3 months
 - PSA and DRE every 6 months
 - Biopsy at 12, 48 and 84 months after the first diagnosis
 - mpRM before re-biopsy
- If PSA Doubling Time less than 10 years: extra biopsy if not performed during the last 12 months; as an alternative to biopsy, prostate MRI, possibly followed by targeted biopsy of suspected lesions
- If PSA > 20 ng/ml: bone scintigraphy

Active surveillance: PRIAS project

• The interruption of the observational path is the responsibility of the coordinating centre

Criteria for interrupting the observational program

- Number of positive cores >2 at re-biopsy (upsizing) (if mpMRI not carried out at the time of inclusion)
- Gleason Score >3+3=6 at re-biopsy (upgrading)
- Clinical stage at digital rectal examination ≥T2b
- Patient choice

Active surveillance: Outcomes

Table 6.1.2: Active surveillance in screening-detected prostate cancer

Studies	N	Median FU (mo)	pT3 in RP patients*	10-year OS (%)	10-year CSS (%)
Van As, et al. 2008 [389]	326	22	8/18 (44%)	98	100
Carter, et al. 2007 [390]	407	41	10/49 (20%)	98	100
Adamy, et al. 2011 [391]	533-1,000	48	4/24 (17%)	90	99
Soloway, et al. 2010 [392]	99	45	0/2	100	100
Roemeling, et al. 2007 [393]	278	41	-	89	100
Khatami, et al. 2007 [394]	270	63	-	n.r.	100
Klotz, et al. 2015 [395]	993	77	-	85	98.1
Tosoian, et al. 2015 [388]	1,298	60	-	93	99.9
Total	4,204-4,671	46.5	-	93	100

^{*} Patients receiving active therapy following initial active surveillance.

CSS = cancer-specific survival; FU = follow-up; mo = months; n = number of patients; n.r. = not reported; OS = overall survival; RP = radical prostatectomy.

Watchful Waiting – Definition

Table 6.1.1: Definitions of active surveillance and watchful waiting [384]

	Active surveillance	Watchful waiting
Treatment intent	Curative	Palliative
Follow-up	Predefined schedule	Patient-specific
Assessment/markers used	DRE, PSA, re-biopsy, mpMRI	Not predefined
Life expectancy	> 10 years	< 10 years
Aim	Minimise treatment-related toxicity without compromising survival	Minimise treatment-related toxicity
Comments	Mainly low-risk patients	Can apply to patients with all stages

DRE = digital rectal examination; PSA = prostate-specific antigen; mpMRI = multiparametric magnetic resonance imaging.

Recommendations

Recommendations	Strength rating
Watchful waiting (WW)	
Offer a WW policy to asymptomatic patients with a life expectancy < ten years (based on comorbidities).	Strong
Active surveillance (AS)	
Offer AS to patients suitable for curative treatment but with low-risk PCa.	Strong
Perform multiparametric magnetic resonance imaging before a confirmatory biopsy.	Strong
During confirmatory biopsy include systematic and targeted biopsies.	Strong
Base follow up on digital rectal examination, prostate-specific antigen and repeated biopsies.	Strong
Counsel patients about the possibility of needing further treatment in the future.	Strong

Treatment options

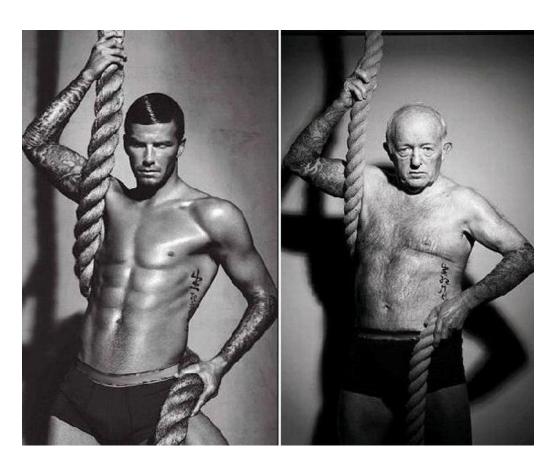
✓ Active surveillance

✓ Surgery: Radical prostatectomy

✓ Radiotherapy / Brachytherapy

✓ Focal therapy

Radical prostatectomy


Indications	LE
Patients with low- and intermediate-risk localized PCa (cT1a-T2b and Gleason score 6–7 and PSA \leq 20) and a life expectancy >10 yr	1b
Optional	
Patients with stage T1a disease and a life expectancy >15 yr or Gleason score 7	3
Selected patients with low-volume, high-risk, localized PCa (cT3a or Gleason score 8–10 or PSA >20 ng/ml)	3
Highly selected patients with very high-risk localized PCa (cT3b-T4N0 or any TN1) in the context of multimodality treatment	3
Short-term (3-mo) or long-term (9-mo) neoadjuvant therapy with gonadotrophin releasing-hormone analogs is not recommended in the treatment of clinically localized low-risk or high-risk PCa.	1a
Nerve-sparing surgery may be attempted in preoperatively potent patients with low risk for extracapsular disease (T1c and Gleason score $<$ 7 and PSA $<$ 10 ng/ml).	3
Unilateral nerve-sparing procedures are an option in stage T2a–T3a disease.	4
LE = level of evidence; PCa = prostate cancer; PSA = prostate-specific antigen.	

The aim of Radical Prostatectomy is to eradicate the disease and, when possible, preserve urinary continence and erectile function.

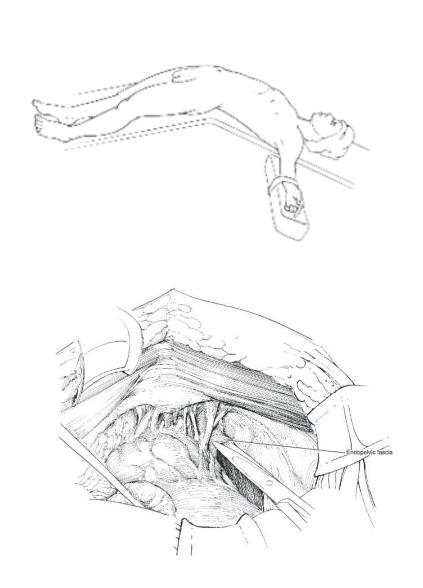
Radical prostatectomy

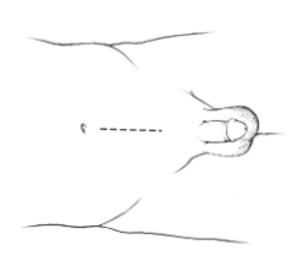
In addition to the characteristics of the pathology, it is important to evaluate the characteristics of the patient:

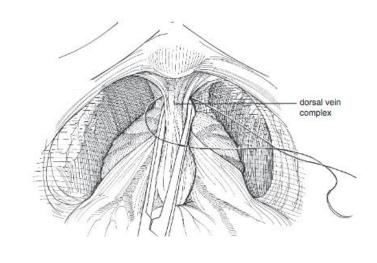
- ✓ Age
- ✓ Performance status
- ✓ Life expectancy

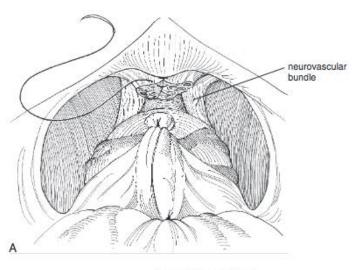
Radical Prostatectomy

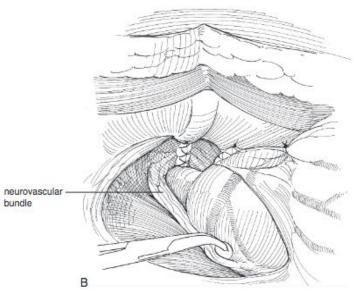
Table 6.1.4: Oncological results of radical prostatectomy in organ-confined disease in RCTs

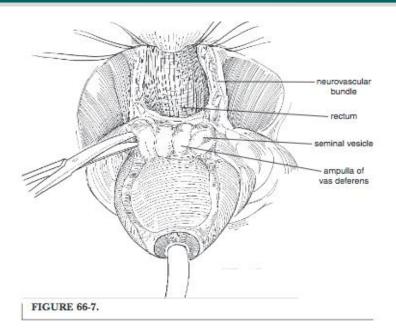

Study	Acronym	Population	Year of treatment	Median FU (mo)	Risk category	CSS (%)
Bill-Axelson, et al. 2018 [400]	SPCG-4	Pre-PSA era	1989-1999	283	Low risk and Intermediate risk	80.4 (at 23 yr.)
Wilt, et al. 2017 [396]	PIVOT	Early years of PSA testing	1994-2002	152	Low risk Intermediate risk	95.9 91.5 (at 19.5 yr.)
Hamdy, et al. 2016 [386]	ProtecT	Screened population	1999-2009	120	Mainly low- and intermediate risk	99 (at 10 yr.)

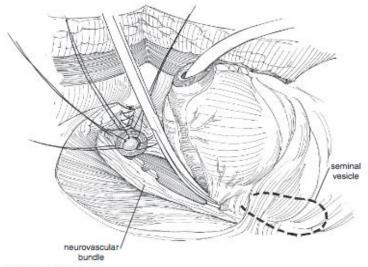
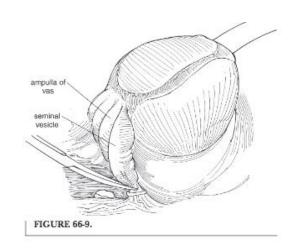
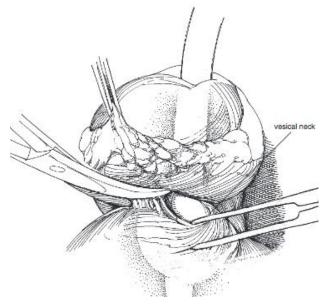
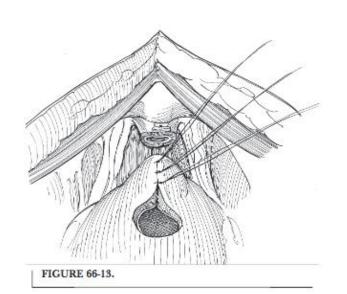
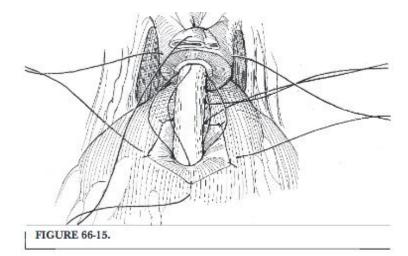

CSS = cancer-specific survival; FU = follow-up; mo = months; PSA = prostate-specific antigen; yr. = year.

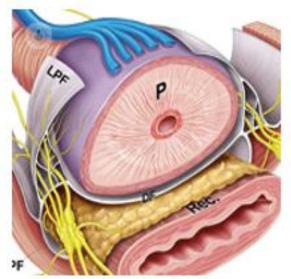

Open Surgery

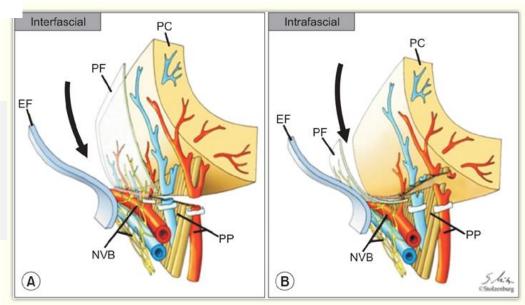







FIGURE 66-8.


INTRINSIC SPHINCTER:

risk of incontinence

NEUROVASCULAR BUNDLES:

risk of erectil disfunction

NERVE SPARING SURGER

Radical prostatectomy and lymphadenectomy

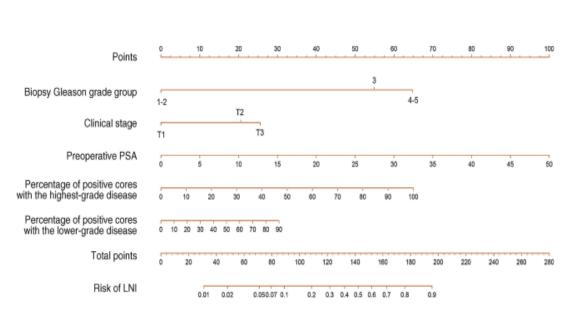
EUROPEAN UROLOGY 72 (2017) 84-109

available at www.sciencedirect.com journal homepage: www.europeanurology.com

Review – Prostate Cancer

The Benefits and Harms of Different Extents of Lymph Node Dissection During Radical Prostatectomy for Prostate Cancer: A Systematic Review

Nicola Fossati ^{a,1}, Peter-Paul M. Willemse ^{b,1}, Thomas Van den Broeck ^c, Roderick C.N. van den Bergh ^d, Cathy Yuhong Yuan ^e, Erik Briers ^f, Joaquim Bellmunt ^{g,h}, Michel Bolla ⁱ, Philip Cornford ^j, Maria De Santis ^k, Ekelechi MacPepple ^l, Ann M. Henry ^m, Malcolm D. Mason ⁿ, Vsevolod B. Matveev ^o, Henk G. van der Poel ^p, Theo H. van der Kwast ^q, Olivier Rouvière ^r, Ivo G. Schoots ^{s,t}, Thomas Wiegel ^u, Thomas B. Lam ^{v,w}, Nicolas Mottet ^x, Steven Joniau ^{c,*}


Conclusion: Performing pelvic lymph node dissection (PLND) during RP failed to improve oncological outcomes, including survival. However, it is generally accepted that extended pelvic LN dissection (eLND) provides important information for staging and prognosis which cannot be matched by any other currently available procedure

Development and Internal Validation of a Novel Model to Identify the Candidates for Extended Pelvic Lymph Node Dissection in Prostate Cancer

Giorgio Gandaglia ^{a,b}, Nicola Fossati ^{a,b}, Emanuele Zaffuto ^{a,b,c}, Marco Bandini ^{a,b}, Paolo Dell'Oglio ^{a,b}, Carlo Andrea Bravi ^{a,b}, Giuseppe Fallara ^{a,b}, Francesco Pellegrino ^{a,b}, Luigi Nocera ^{a,b}, Pierre I. Karakiewicz ^c, Zhe Tian ^c, Massimo Freschi ^d, Rodolfo Montironi ^e, Francesco Montorsi ^{a,b}, Alberto Briganti ^{a,b,*}

^a Unit of Urology/Division of Oncology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; ^b Vita-Salute San Raffaele University, Milan, Italy; ^c Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Center, Montreal, Canada; ^d Unità Operativa Anatomia Patologica, IRCCS Ospedale San Raffaele, Milan, Italy; ^c Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy

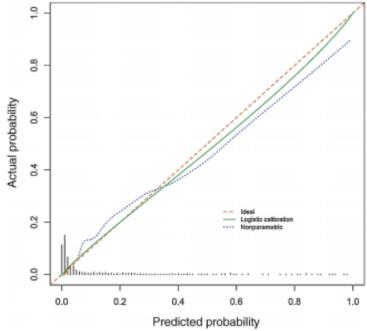
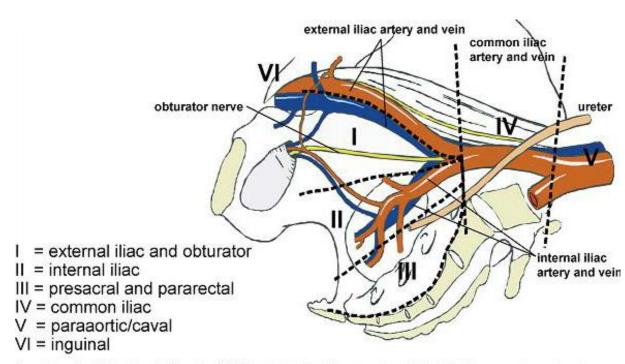
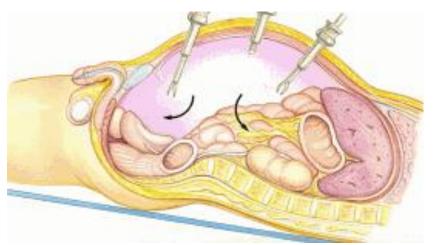



Fig. 2 – Calibration plot of observed proportion versus predicted probability of lymph node invasions of the novel nomogram.

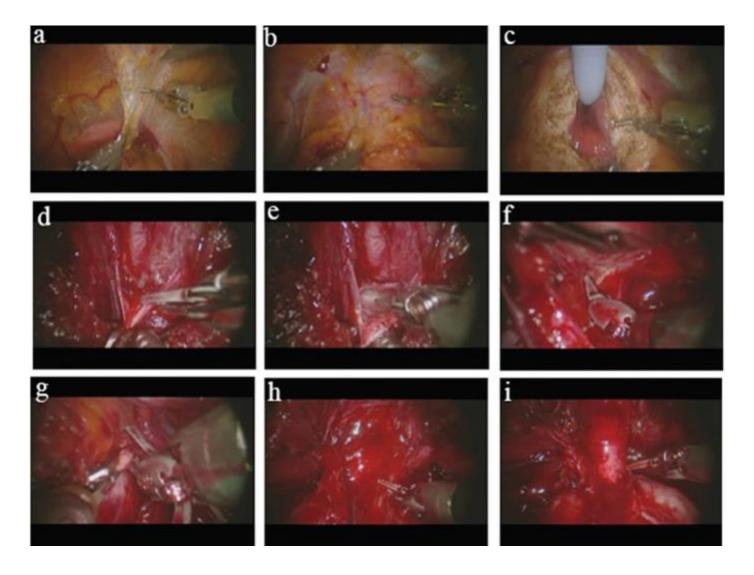
Radical prostatectomy and lymphadenectomy


When a lymph node dissection (LND) is deemed necessary, perform an extended LND template for optimal staging.

I + II = 94% of the men correctly staged

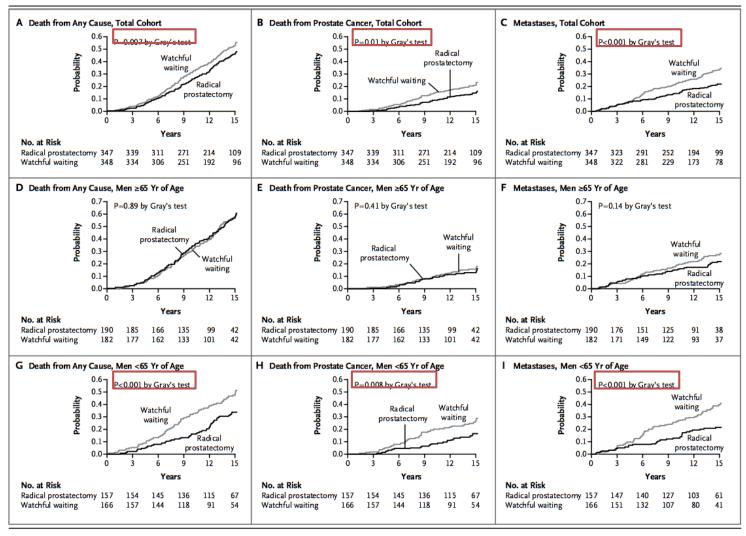
Boundaries of pelvic lymph node dissection (PLND) subdivided into different regions. "Limited" PLND removes tissue along the external iliac vein and from the obturator fossa corresponding to region I. "Extended" template PLND removes tissue along the major pelvic vessels (external iliac vein, obturator fossa and internal iliac artery and vein) corresponding to regions I and II.

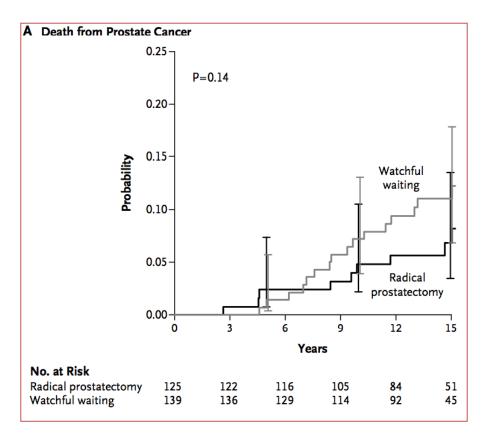
Laparoscopic prostatectomy

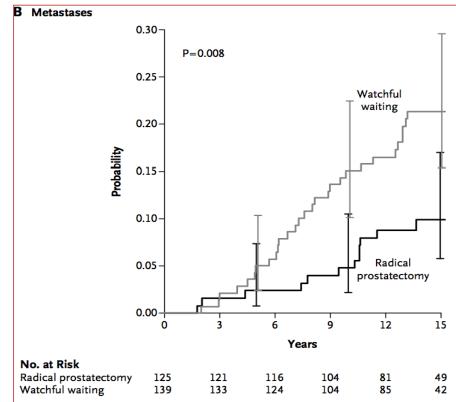

Robotic Surgery: RARP



- The robotic approach (RARP)
 has shown shorter
 hospitalization times and
 reduced intra-operative blood
 loss, but the benefits relative to
 functional or oncological
 outcomes are still doubtful.
- Some studies show higher rates of erectile function recovery and faster continence recovery in patients treated with RARP.


Robotic Surgery: Surgical Technique

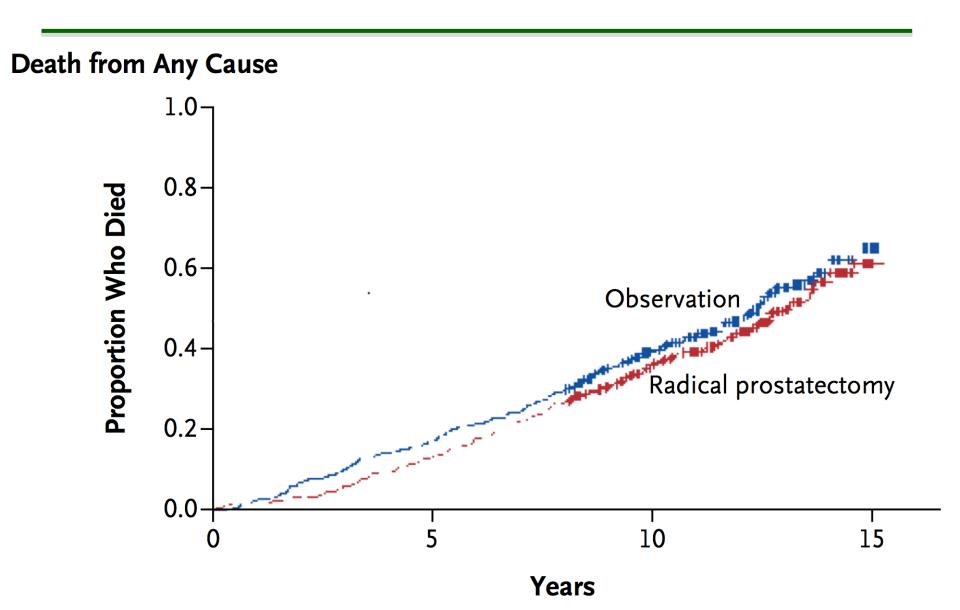

Robotic Surgery: Surgical Technique



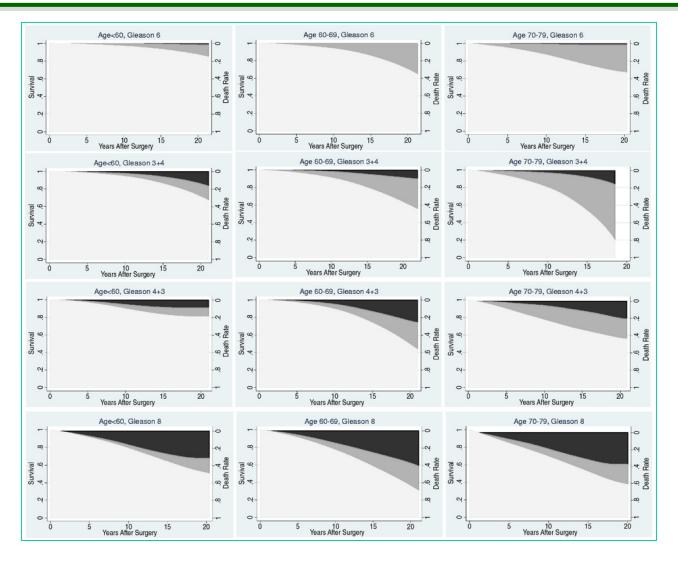
Cumulative incidence of death and metastases in low-risk prostate cancer

Cumulative incidence of death and metastases in low-risk prostate cancer

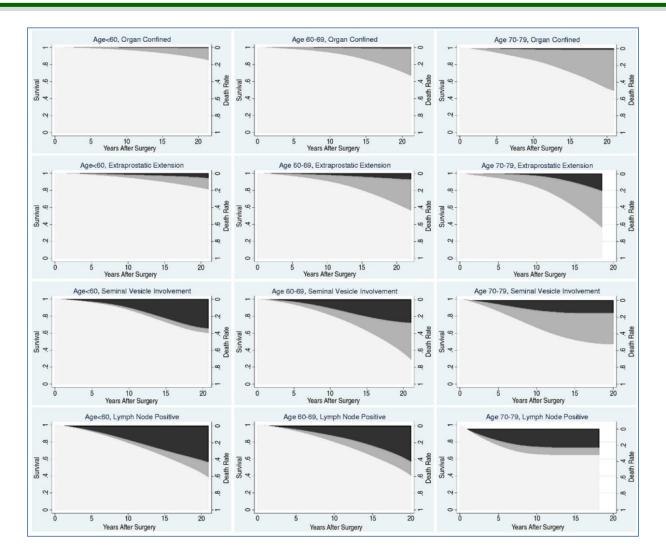
ORIGINAL ARTICLE


Radical Prostatectomy versus Watchful Waiting in Early Prostate Cancer

Relative risk of dying of prostate cancer after surgery = 0.62 (P=0.01)


Number of patients to treat: 15 considering all patients, 7 for men younger than 65 years old

Among men undergoing radical prostatectomy, those with an **extracapsular disease** have a 7-fold higher risk of death than those who do not have an extracapsular extension


Radical prostatectomy

Cancer-specific survival according to age and Gleason Score

Cancer-specific survival according to age and grade of disease

Radical prostatectomy

- In conclusion, only patients younger than 65 years of age with an intermediate or high risk of progression benefit from radical prostectomy.
- In patients at low risk of progression radical prostatectomy does not demonstrate an advantage in terms of overall survival and metastasis-specific survival.
- Robotic prostatectomy (RARP) is replacing open prostatectomy as the gold standard treatment for clinically localized prostate cancer.
- However, this trend is not supported by high-level evidence demonstrating the superiority of a surgical technique over the other.

Radical prostatectomy: complications

Table 3 Meta-analysis results: robot-assisted surgery versus open surgery								
Outcome	Measure	Studies	Sample	J ²	Effect	(95% CI)	P-value	Prediction interval
Operative time (min)	WMD	17	4325	97.8	37	(17, 58)	0.000	(–54, 129)
Hospital stay (days)								
All studies	WMD	18	5864	99.4	-2	(-2, -1)	0.000	(-4, 1)
European studies	WMD	5	846	96.2	-2.1	(-3.1, -1.1)	0.000	(-5.9, 1.6)
USA studies	WMD	9	3782	98.5	-0.7	(-1.2, -0.2)	0.006	(-2.5, 1.1)
Blood loss (mL)	WMD	17	5366	98.0	-564	(-664, -463)	0.000	(-999, -129)
Complications	RR	17	6384	71.8	0.74	(0.56, 1)	0.047	(0.27, 2.06)
Transfusion	RR	20	9246	16.8	0.23	(0.18, 0.29)	0.000	(0.14, 0.38)
Positive surgical margin								
рТ2	RR	15	2946	27.7	0.63	(0.49, 0.81)	0.000	(0.35, 1.15)
рТ3	RR	15	1179	57.7	1.06	(0.85, 1.34)	0.591	(0.51, 2.22)
Sexual function	RR	9	1949	69.8	1.60	(1.33, 1.93)	0.000	(0.95, 2.71)
Urinary function	RR	7	1820	50.7	1.06	(1.02, 1.11)	0.009	(0.94, 1.21)

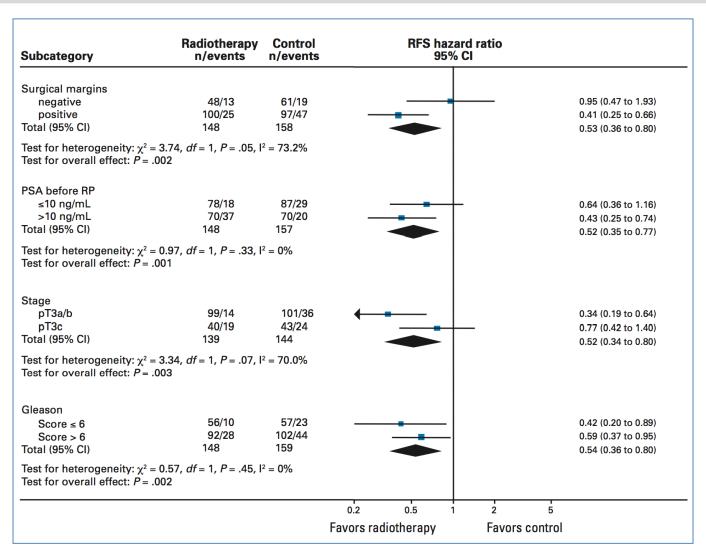
Radical prostatectomy: complications

Table 6.1.5: Intra-and peri-operative complications of retropubic RP and RALP (Adapted from [364])

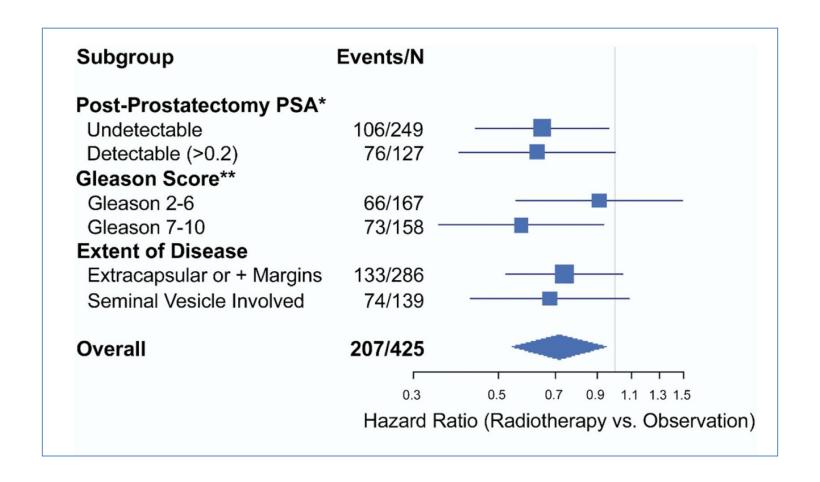
Predicted probability of event	RALP (%)	Laparoscopic RP (%)	RRP (%)
Bladder neck contracture	1.0	2.1	4.9
Anastomotic leak	1.0	4.4	3.3
Infection	0.8	1.1	4.8
Organ injury	0.4	2.9	0.8
lleus	1.1	2.4	0.3
Deep-vein thrombosis	0.6	0.2	1.4
Predicted rates of event	RALP (%)	Laparoscopic RP (%)	RRP (%)
Clavien I	2.1	4.1	4.2
Clavien II	3.9	7.2	17.5
Clavien IIIa	0.5	2.3	1.8
Clavien IIIb	0.9	3.6	2.5
Clavien IVa	0.6	0.8	2.1
Clavien V	< 0.1	0.2	0.2

RALP = robot-assisted laparoscopic prostatectomy; RP = radical prostatectomy; RRP = radical retropubic prostatectomy.

EAU - ESTRO - ESUR - SIOG Guidelines on Prostate Cancer 2018

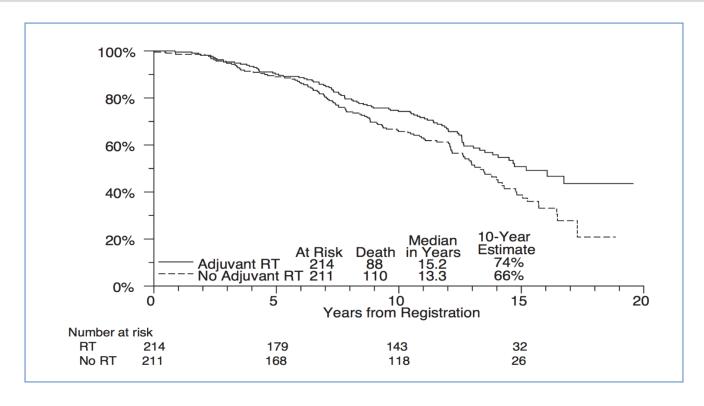

Radical prostatectomy in locally advanced prostate cancer

Phase III Postoperative Adjuvant Radiotherapy After Radical Prostatectomy Compared With Radical Prostatectomy Alone in pT3 Prostate Cancer With Postoperative Undetectable Prostate-Specific Antigen: ARO 96-02/AUO AP 09/95


Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911)

Adjuvant Radiotherapy for Pathological T3N0M0 Prostate Cancer Significantly Reduces Risk of Metastases and Improves Survival: Long-Term Followup of a Randomized Clinical Trial

ADJUVANT RADIOTHERAPY: RECURRENCE-FREE SURVIVAL


ADJUVANT RADIOTHERAPY: METASTASES-FREE SURVIVAL

ADJUVANT RATES

RADIOTHERAPY:

SURVIVAL

The HR for overall survival with adjuvant radiotherapy is 0.72 (95% CI 0.55, 0.96; p=0.023)

The number needed to treat with adjuvant radiotherapy to prevent 1 death at a median follow-up of 12.6 years is 9.1

Early Salvage Radiation Therapy Does Not Compromise Cancer Control in Patients with pT3N0 Prostate Cancer After Radical Prostatectomy: Results of a Match-controlled Multi-institutional Analysis

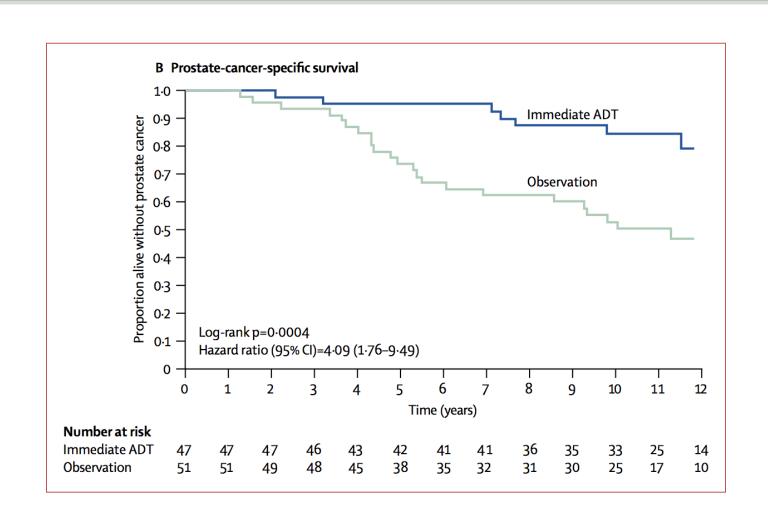
- 390 (43.8%) and 500 (56.2%) patients received aRT and initial observation, respectively
- Among patients undergoing initial observation, 225 (45.0%) of patients experienced BCR and underwent eSRT

PATIENT STRATIFICATION ACCORDING TO pT3 SUBSTAGE, SURGICAL MARGIN STATUS AND TREATMENT TYPE IN THE OVERALL MATCHED POPULATION

Disease characteristics	No. of patients (%)	aRT, n (%)	Observation, n (%)	Patients not recurring within the observation group, n (%)	Patients receiving eSRT within the observation group due to biochemical recurrence after RP, n (%)
pT3a any SM	535 (100)	261 (48.8)	274 (51.2)	158 (57.7)	116 (42.3)
pT3b any SM	245 (100)	129 (52.7)	116 (48.3)	41 (35.3)	75 (64.7)
NSM	297 (100)	145 (48.8)	152 (51.2)	97 (63.8)	55 (36.2)
PSM	483 (100)	245 (50.7)	238 (49.3)	102 (42.9)	136 (57.1)
pT3a with NSM	197 (100)	97 (49.2)	100 (50.8)	73 (73)	27 (27.0)
pT3a with PSM	338 (100)	164 (48.5)	174 (51.5)	85 (48.9)	89 (51.1)
pT3b with NSM	100 (100)	48 (48.0)	52 (52.0)	24 (46.2)	28 (53.8)

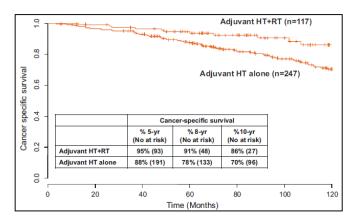
Hormonal therapy

The reduction of serum testosterone levels, necessary to counteract the growth of cancer cells, can be achieved in various ways:


- Bilateral orchiectomy allows to get the best results in the shortest time but is more difficult to accept psychologically.
- Estrogens increase the risk of thromboembolic events.
- **LHRH agonists** are also prescribed with antiandrogens to prevent so-called tumour flare. Treatment can be carried on continuously or be discontinued (intermittent therapy) for short periods, to reduce the impact of its side effects. (*Leuprolide Triprorelina*).
- **Peripheral antiandrogens:** Testosterone stimulates replication of prostate cancer cells by binding to specific receptors that are located on the surface of the cells. Antiandrogens are drugs that block the interaction between the male sex hormone and these receptors, thus inhibiting tumor growth. (*Ciproterone acetato, Bicalutamide, Flutamide, Nilutamide*).
- **LHRH antagonists** block, at the level of the hypothalamus, the initial stimulus from which the cascade of messages that pushes testicles to produce sex hormones starts. (*Degarelix*).

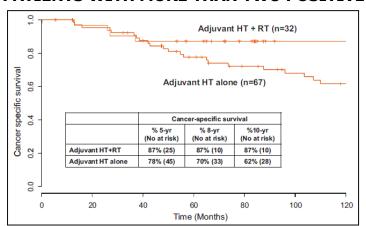
Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy

An early androgenic blockage is superior to deferred androgenic blockage in patients with lymph node metastases who have undergone radical prostatectomy and lymphadenectomy.


ADJUVANT ADT: SPECIFIC SURVIVAL

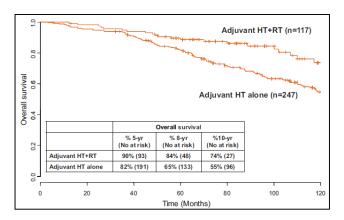
PROSTATE-CANCER

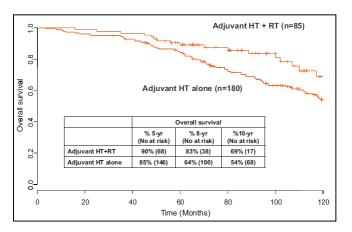
Combination of Adjuvant Hormonal and Radiation Therapy Significantly Prolongs Survival of Patients With pT2–4 pN+ Prostate Cancer: Results of a Matched Analysis


CSS ACCORDING TO THE TYPE OF ADJUVANT TREATMENT

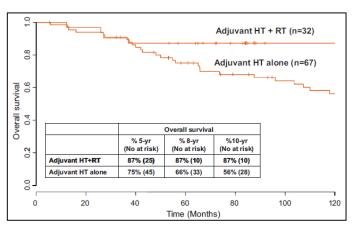
CSS ACCORDING TO THE TYPE OF TREATMENT IN PATIENTS WITH TWO OR FEWER POSITIVE NODES

Adjuvant HT + RT (n=85) Adjuvant HT alone (n=180) Adjuvant HT alone (n=180) Cancer-specific survival (No at risk) (No at risk) (No at risk) Adjuvant HT+RT 98% (68) 92% (38) 86% (17) Adjuvant HT alone 91% (146) 81% (100) 74% (68)


CSS ACCORDING TO THE TYPE OF TREATMENT IN PATIENTS WITH MORE THAN TWO POSITIVE NODES


Briganti A. et al. Eur Urol 59 (2011); 832-840

Combination of Adjuvant Hormonal and Radiation Therapy Significantly Prolongs Survival of Patients With pT2–4 pN+ Prostate Cancer: Results of a Matched Analysis


OS ACCORDING TO THE TYPE OF ADJUVANT TREATMENT

OS ACCORDING TO THE TYPE OF TREATMENT IN PATIENTS WITH TWO OR FEWER POSITIVE NODES

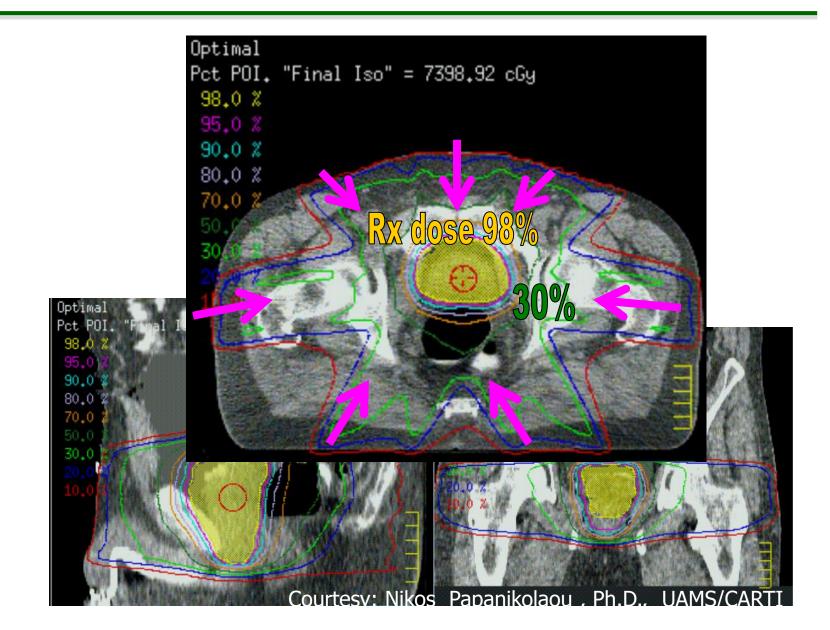
OS ACCORDING TO THE TYPE OF TREATMENT IN PATIENTS WITH MORE THAN TWO POSITIVE NODES

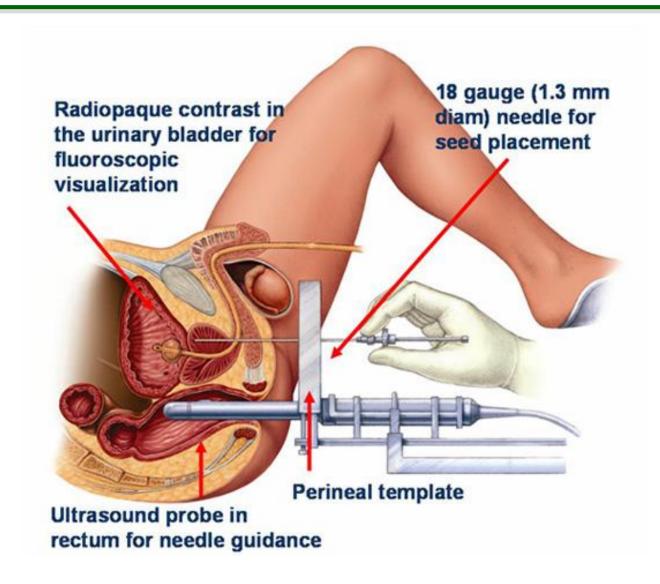
Briganti A. et al. Eur Urol 59 (2011); 832-840

Treatment options

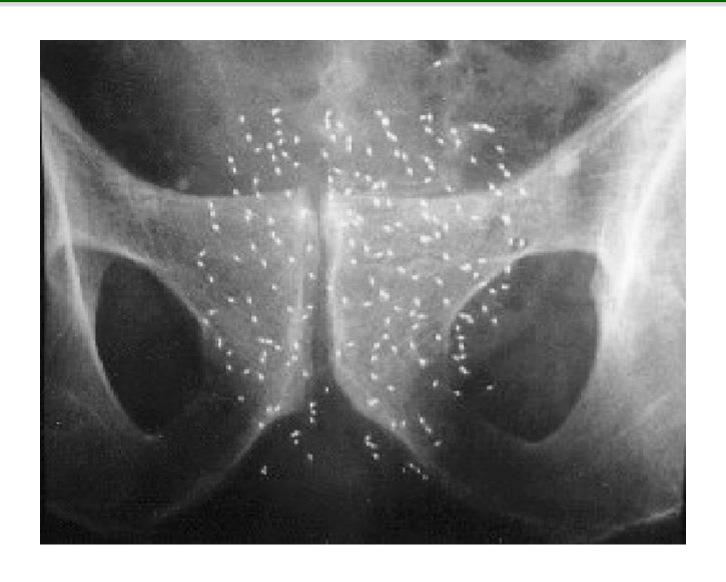
✓ Active surveillance

- ✓ Surgery: Radical prostatectomy
- ✓ Radiotherapy / Brachytherapy
 - ✓ Focal therapy


Radiotherapy


Radiotherapy

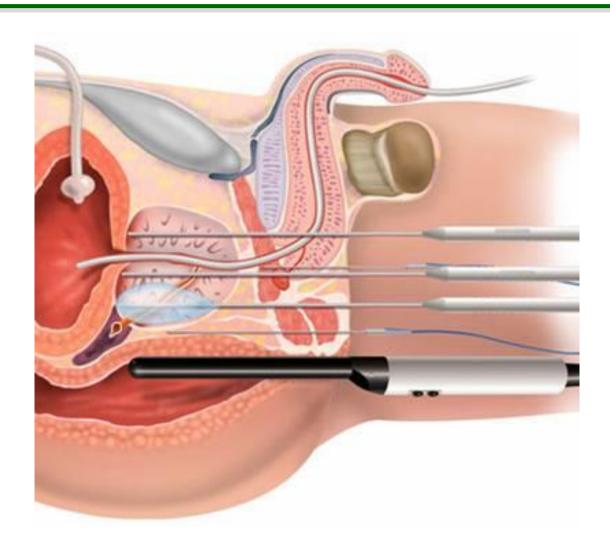
Guideline/recommendation	LE	GR
In localized PCa (T1c–T2cN0M0), 3D-CRT with or without IMRT is recommended even for young patients who refuse surgical intervention.	2	В
For high-risk patients, long-term ADT before and during RT is recommended, as it results in increased overall survival.	2a	В
In patients with locally advanced PCa (T3-T4N0M0) who are fit enough to receive EBRT, the recommended treatment is EBRT plus long-term ADT. The use of ADT alone is inappropriate.	1b	Α
Transperineal interstitial brachytherapy with permanent implants is an option for patients with cT1–T2a, Gleason score \leq 7a, PSA \leq 10 ng/ml, prostate volume \leq 50 ml, without a previous TURP and with a good IPSS.	2b	В
Immediate postoperative external irradiation after RP for patients with pathologic tumor stage T3N0M0 improves biochemical and clinical disease-free survival.	1	Α
In patients with pathologic tumor stage T3N0M0, immediate postoperative external irradiation after RP may improve biochemical and disease-free survival, with the highest impact in cases with positive surgical margins.	1b	Α
In patients with pathologic tumor stage T2–T3N0M0, salvage irradiation is indicated in cases of persisting PSA or biochemical failure with rising PSA levels \leq 0.5 ng/ml. Salvage RT might be initiated, even at low PSA levels of 0.1–0.2 ng/ml, if a continuous PSA increase has been documented.	3	В
In patients with locally advanced PCa, T3–T4N0M0,concomitant and adjuvant hormonal therapy for a total duration of 3 yr, with external-beam radiation for patients with WHO 0–2 performance status, is recommended, as it improves overall survival.	1b	Α
In a subset of patients with T2-T3N0M0 and Gleason score 2-6, short-term ADT before and during RT can be recommended, as it may favorably influence overall survival.	1b	Α
In patients with very-high-risk PCa, c-pN1M0, and no severe comorbidities, the therapeutic role of pelvic external irradiation and immediate long-term ADT is unclear; the adjuvant treatment options have to be discussed on an individual basis, taking into consideration the age of the patient, comorbidities, and biology of the cancer.	3	В


Radiotherapy

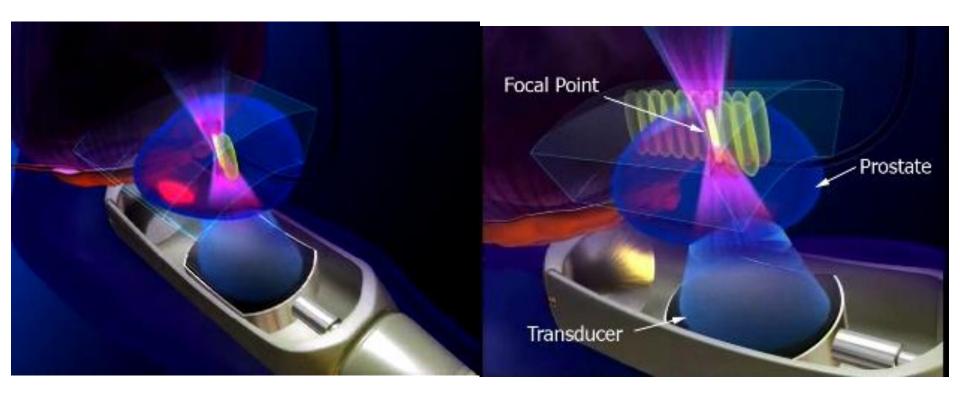
Brachytherapy

Brachytherapy

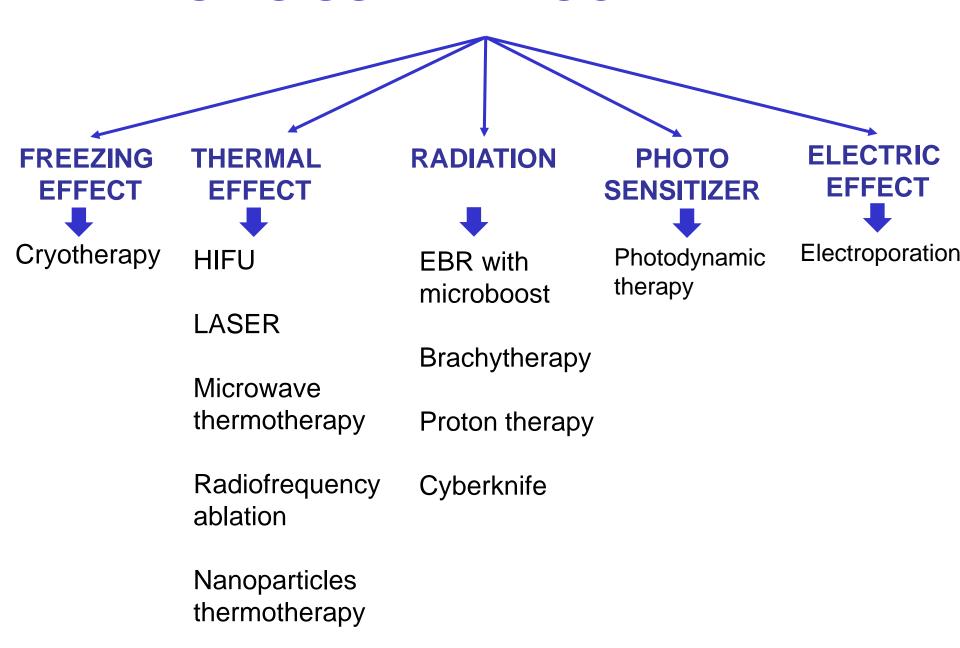
Treatment options


✓ Active surveillance

- ✓ Surgery: Radical prostatectomy
 - ✓ Radiotherapy / Brachytherapy
 - ✓ Focal therapy


Focal Therapy

- ✓ Early identification of prostate cancer has reduced the use of radical treatments in favor of conservative approaches.
- ✓ However, many men are still reluctant to active surveillance or watchful waiting.
- ✓ For these patients, an alternative approach is focal therapy.


Focal Therapy

Focal Therapy

ENERGIES USED IN FOCAL THERAPY

CONCLUSIONS

RISK GROUPS

Definition					
Low-risk	Intermediate-risk	High-risk			
PSA < 10 ng/mL	PSA 10-20 ng/mL	PSA > 20 ng/mL	any PSA		
and GS < 7 (ISUP grade 1)	or GS 7 (ISUP grade 2/3)	or GS > 7 (ISUP grade 4/5)	any GS (any ISUP grade)		
and cT1-2a	or cT2b	or cT2c	cT3-4 or cN+		
Localised			Locally advanced		

GS = Gleason score; ISUP = International Society for Urological Pathology; PSA = prostate-specific antigen.

Low-risk disease

Recommendations		Strength rating
Low-risk disease		
Active surveillance (AS)	Offer AS to patients with life expectancy > 10 years and low-risk disease.	Strong
	If a patient has had upfront multiparametric magnetic resonance imaging (mpMRI) followed by systematic and targeted biopsies there is no need for confirmatory biopsies.	Weak
	Patients with intraductal and cribiform histology on biopsy should be excluded from AS.	Strong
	If required, perform mpMRI before a confirmatory biopsy.	Strong
	Take both targeted biopsy (of any PI-RADS ≥ 3 lesion) and systematic biopsy if confirmatory biopsy performed.	Strong
	Perform serum prostate-specific antigen (PSA) assessment every 6 months.	Strong
	Perform digital rectal examination (DRE) every 12 months.	Strong
	Repeat biopsy should be performed if there is evidence of PSA progression, clinical progression on DRE or radiological progression on mpMRI.	Strong
	During follow-up, if mpMRI is negative (i.e., PI-RADS ≤ 2), and clinical suspicion of PCa progression is low (e.g. low PSA velocity, long PSA doubling time), omit biopsy based on shared decision making with the patient.	Weak
	Counsel patients about the possibility of needing further treatment in the future.	Strong
Active treatment	Offer surgery and radiotherapy (RT) as alternatives to AS to patients suitable for such treatments and who accept a trade-off between toxicity and prevention of disease progression.	Weak
Pelvic lymph node dissection (PLND)	Do not perform a PLND (estimated risk for pN+ ≤ 5%).	Strong
Radiotherapeutic treatment	Offer low-dose rate (LDR) brachytherapy to patients with low-risk PCa, without a previous transurethral resection of the prostate (TURP), with a good International Prostatic Symptom Score (IPSS) and a prostate volume < 50 mL.	Strong
	Use intensity-modulated radiation therapy (IMRT) with a total dose of 74-80 Gy or moderate hypofractionation (60 Gy/20 fx in 4 weeks, or 70 Gy/28 fx in 6 weeks), without androgen deprivation therapy (ADT).	Strong
Other options	Only offer whole gland treatment (such as cryotherapy, high-intensity focused ultrasound [HIFU], etc.) or focal treatment within a clinical trial setting or well-designed prospective cohort study.	Strong

Intermediate-risk disease

Intermediate-risk di	sease	
Active surveillance	Offer AS to highly selected patients (< 10% Gleason pattern 4) accepting the potential increased risk of further metastases.	Weak
Radical Prostatectomy	Offer RP to patients with intermediate-risk disease and a life expectancy > 10 years.	Strong
(RP)	Offer nerve-sparing surgery to patients with a low risk of extracapsular disease.	Strong
Extended pelvic lymph node dissection (ePLND)	Perform an ePLND in intermediate-risk disease if the estimated risk for positive lymph nodes exceeds 5%.	Strong
Radiotherapeutic treatment	Offer LDR brachytherapy to selected patients; patients without a previous TURP, with a good IPSS and a prostate volume < 50 mL.	Strong
	For external-beam radiation therapy (EBRT), use a total dose of 76-78 Gy or moderate hypofractionation (60 Gy/20 fx in 4 weeks or 70 Gy/28 fx in 6 weeks), in combination with short-term neoadjuvant plus concomitant ADT (4 to 6 months).	Strong
		Weak
Other therapeutic options	Only offer whole-gland ablative therapy (such as cryotherapy, HIFU, etc.) or focal ablative therapy for intermediate-risk disease within a clinical trial setting or well-designed prospective cohort study.	Strong
	Do not offer ADT monotherapy to intermediate-risk asymptomatic men not able to receive any local treatment.	Weak

High-risk localised disease

High-risk localised	High-risk localised disease				
Radical	Offer RP to selected patients with high-risk localised PCa, as part of	Strong			
prostatectomy	potential multi-modal therapy.				
Extended pelvic	Perform an ePLND in high-risk PCa.	Strong			
lymph node	Do not perform a frozen section of nodes during RP to decide whether	Strong			
dissection	to proceed with, or abandon, the procedure.				
Radiotherapeutic	In patients with high-risk localised disease, use ERBT with 76-78 Gy in	Strong			
treatments	combination with long-term ADT (2 to 3 years).				
	In patients with high-risk localised disease, use EBRT with	Weak			
	brachytherapy boost (either HDR or LDR), in combination with long-				
	term ADT (2 to 3 years).				
Therapeutic	Do not offer either whole gland or focal therapy to high-risk patients.	Strong			
options outside	Do not use ADT monotherapy in asymptomatic patients.	Strong			
surgery and					
radiotherapy					

Locally-advanced disease

Locally-advanced disease				
Radical	Offer RP to highly selected patients with cT3b-T4 N0 or any cN1 only	Strong		
prostatectomy	as part of multi-modal therapy.			
Extended pelvic	Perform an ePLND in high-risk PCa.	Strong		
lymph node				
dissection				
Radiotherapeutic	In patients with locally advanced cN0 disease, offer RT in combination	Strong		
treatments	with long-term ADT.			
	Offer long-term ADT for at least two years.	Weak		
Therapeutic	Do not offer whole gland treatment or focal treatment to high-risk	Strong		
options outside	patients.			
surgery and	Only offer ADT monotherapy to those patients unwilling or unable	Strong		
radiotherapy	to receive any form of local treatment if they have a PSA-doubling			
	time < 12 months, and either a PSA > 50 ng/mL, a poorly-			
	differentiated tumour or troublesome local disease-related symptoms.			
	Offer patients with cN1 disease a local treatment (either RP or EBRT)	Weak		
	plus long-term ADT.			

Adjuvant treatment after radical prostatectomy

Adjuvant treatment after radical prostatectomy				
		Do not prescribe adjuvant ADT in pN0 patients.	Strong	
		Offer adjuvant EBRT to the surgical field to highly-selected patients.	Strong	
		Discuss three management options with patients with pN+ disease	Weak	
		after an ePLND, based on nodal involvement characteristics:		
		1. Offer adjuvant ADT;		
		2. Offer adjuvant ADT with additional RT;		
		3. Offer observation (expectant management) to a patient after		
		eLND and \leq 2 nodes with microscopic involvement, and a		
		PSA < 0.1 ng/mL and absence of extranodal extension.		

FOLLOW-UP

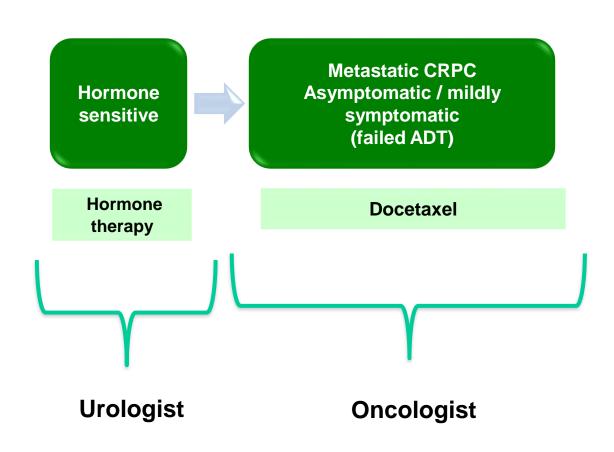
Follow-up after treatment with curative intent

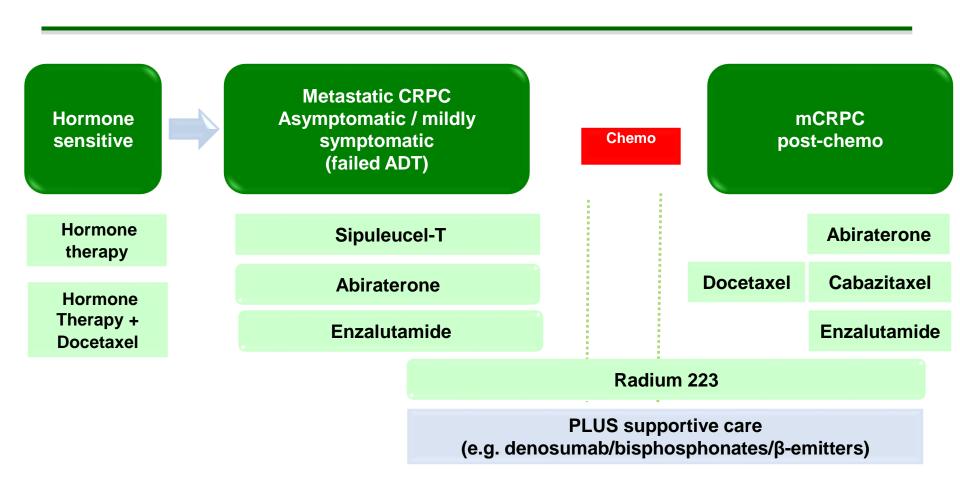
7.1.5 Summary of evidence and guidelines for follow-up after treatment with curative intent

Summary of evidence	LE
After radical prostatectomy rising serum PSA level is considered a BCR.	3
After radiotherapy, an increase in PSA > 2 ng/mL above the nadir, rather than a specific threshold	3
value, is considered as clinically meaningful BCR.	
Palpable nodules and increasing serum PSA are signs of local recurrence.	2a

Recommendations	Strength rating
Routinely follow up asymptomatic patients by obtaining at least a disease-specific history	Strong
and serum prostate-specific antigen (PSA) measurement. These should be performed at 3,	
6 and 12 months after treatment, then every 6 months until 3 years, and then annually.	
At recurrence, only perform imaging to detect local recurrence if the outcome will affect	Strong
treatment planning.	
Only offer bone scans and other imaging modalities to men with biochemical recurrence or	Strong
symptoms suggestive of progression without signs of biochemical relapse.	

Follow-up during hormonal treatment


7.2.7 Guidelines for follow-up during hormonal treatment


Recommendations	Strength rating
Evaluate patients at 3 to 6 months after the initiation of treatment.	Strong
The follow-up strategy must be individualised based on stage of disease, prior symptoms,	Strong
prognostic factors and the treatment given.	
In patients with stage M0 disease, schedule follow-up at least every 6 months. As a	Strong
minimum requirement, include a disease-specific history, serum prostate-specific antigen	
(PSA) determination, as well as liver and renal function in the diagnostic work-up.	
In patients with stage M1 disease, schedule follow-up every 3 to 6 months. As a minimum	Strong
requirement, include an initial FRAX-score assessment, disease-specific history, digital-	
rectal examination (DRE), serum PSA, haemoglobin, serum creatinine and alkaline	
phosphatase measurements in the diagnostic work-up. The testosterone level should	
be checked, especially during the first year. Pay attention to symptoms associated with	
metabolic syndrome as a side effect of androgen deprivation therapy. Phospholipid profiles	
and glucose levels should be checked and treated if abnormal.	
Counsel patients (especially with M1b status) about the clinical signs suggestive of spinal	Strong
cord compression.	
When disease progression is suspected, adapt/individualise follow-up.	Strong
In patients with suspected progression, assess the testosterone level. By definition,	Strong
castration resistant PCa requires a testosterone level < 50 ng/dL (< 1 mL/L).	
Do not offer routine imaging to otherwise stable asymptomatic patients.	Weak

Hormonal therapy Indications for castration	Benefits	LE
• M1 symptomatic	To palliate symptoms and to reduce the risk for potentially catastrophic sequelae of advanced disease (spinal cord compression, pathologic fractures, ureteral obstruction, extraskeletal metastasis).	1b
	Even without a controlled randomised trial, this is the standard of care and must be applied and considered as level 1 evidence.	1
• M1 asymptomatic	Immediate castration to defer progression to a symptomatic stage and prevent serious disease progression–related complications.	1b
	An active clinical surveillance protocol might be an acceptable option in clearly informed patients if survival is the main objective.	3
Antiandrogens		
• Short-term adminishow the keyword	ds for the currently selected Paper flare-up phenomenon in patients with advanced metastatic disease who are to receive an LHRH agonist.	1b
	It may be sufficient to give an antiandrogen for 3 wk of concomitant use, starting treatment on the same day as LHRH analogue treatment is started, or for up to 7 d before the first LHRH analogue injection.	4
 Long-term administration 	This is an option in highly selected and motivated patients with a low PSA.	3
Intermittent androgen deprivation	on	
Threshold to start and stop ADT	The threshold is empirically chosen. However, it should reproduce what has been used in clinical trials. In trials, treatment is usually stopped when the PSA level is <4 ng/ml (M1) and $<0.5-4$ ng/ml (relapsing).	4
	Treatment is usually restarted when the PSA is >4-10 (relapsing) and >10-15 ng/ml (M1).	
Drug	LHRH analogue plus flare-up prevention <i>or</i> combined treatment.	1
Population	Metastatic patients: asymptomatic, motivated, with a clear PSA response after the induction period. Relapsing after radiotherapy: patients with a clear response after the induction period.	2 1b
ADT = androgen-deprivation therapy	y; LE = level of evidence; LHRH = luteinising hormone-releasing hormone; PSA = prostate-specific antigen.	

Heidenreich et al. Eur Urol 2014, in press

Recommendations	GR
• Ideally, patients with CRPC should be counselled, managed, and treated in a multidisciplinary team.	В
• In nonmetastatic CRPC, cytotoxic therapy should only be considered in clinical trials.	В
• In patients with a rise in PSA only, two consecutive increases of PSA serum levels above a previous reference level should be documented.	В
• Prior to treatment, PSA serum levels should be >2 ng/ml to assure correct interpretation of therapeutic efficacy.	В
• Abiraterone/prednisone should be considered in CRPC patients with asymptomatic or mildly symptomatic metastases and a low metastatic burden due to its survival benefit.	Α
• In patients with metastatic CRPC and who are candidates for cytotoxic therapy, docetaxel 75 mg/m² every 3 wk has shown a significant survival benefit.	Α
• Abiraterone/prednisone should be considered in CRPC patients who received prior docetaxel treatment as an effective second-line treatment option due to its benefit in overall survival and radiographic progression-free survival and QoL.	Α
• Enzalutamide should be considered in CRPC patients as an effective second-line treatment due to its benefit in overall survival and radiographic progression-free survival and QoL.	В
• Cabazitaxel should be considered as effective second-line treatment following docetaxel.	Α
• Second-line docetaxel may be considered in previously responding patients to docetaxel. Otherwise, treatment is tailored to the individual patient.	C
• Radium-223 should be considered in CRPC patients with osseous metastases due to its benefit in overall survival, QoL, and pain.	Α
CRPC = castration-resistant prostate cancer; GR = grade of recommendation; PSA = prostate-specific antigen; QoL = quality of life.	

Multidisciplinary team

PROSTATE CANCER UNIT

Core Team

Urologists Radioterapists **Oncologists Psychologists** Anatomopathologists **Professional Nurses**

Non Core Team

Radiotherapists (for brachytherapy) **Medical Physicists Nuclear Doctors** Radiologists Rehabilitators Specialists in Support and **Palliative Therapies**

Project Team*

Project Manager Secretary Research Nurses Data entry e management

Hematology

Prostate Cancer Unit Initiative in Europe: A position paper by the European School of Oncology

Riccardo Valdagni a,b,c,*, Hendrik Van Poppel d, Michael Aitchison d, Peter Albers f, Dominik Berthold 8, Alberto Bossi h, Maurizio Brausi l, Louis Denis J,k Lawrence Drudge-Coates 1, Maria De Santis 10,0, Günther Feick 3,0, Chris Harrison P. Karin Haustermans⁹, Donal Hollywood^{7,1}, Morton Hoyer⁸, Henk Hummel⁴, Malcolm Mason⁹, Vincenzo Mirone^v, Stefan C. Müller^w, Chris Parker^x, Mahasti Saghatchian^y, Cora N. Sternberg Z, Bertrand Tombal D, Erik van Muilekom B, Maggie Watson C, Simone Wesselmann dd, Thomas Wiegelee, Tiziana Magnani b, Alberto Costa a

mone Wesselmann ^{ad}, Thomas Wiegele's, Tiziana Magnani ^b, Alberto Costa

^a Praint Career Proj.

^b Praint Career Proj.

^c England Book of Occiding, Midn. Indip

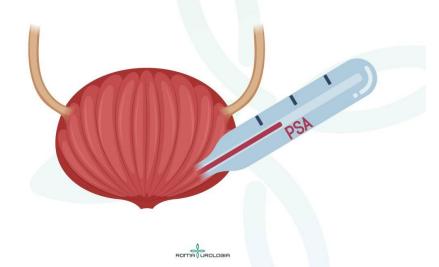
^c Padatic Guerre Proj.

^c Robin Concept Control of Cont 3 Breast Concer Unit, Institut Gustave Roussy, Villejaif, France 3 Broast Career (Intl. Institute Courses Bousey, Willsjaf France;
1 Beyer of Medical Occolege, Soc. Carellion and Prolineth Haspitate, Broase, Halv
1 Beyer of Medical Occolege, Soc. Carellion and Prolineth Haspitate, Broase, Lidy
1 Beyer of Unders, Schristerland Career Institute, Annotadon, The Netherland
1 Beyer of Unders, Beschwich Career Society, Eleventry Codege, Lowdon, UK
2 Beschok Enhyperallichaft, Grenast Career Society, Berlin, Germany
2 Beyer of Madinion Oncolory, Octoors/Philippool (Britis Unit, Germany
2 Beyer of Madinion Oncolory, Octoors/Philippool (Brit, Unit, Germany) Accepted 26 May 2015

1040-8428/O 2015 Elsevier Ireland Ltd. All rights reserved

Please cite this article in press as: Valdagni R, et al. Prostate Cancer Unit Initiative in Europe: A position paper by the European Schoo of Oncology. Crit Rev Oncol/Hennatol (2015), http://dx.doi.org/10.1016/j.crintevum/.2015.05.014

^{*} Corresponding author de Prostas Cancer Programme and Radiation Oncology 1, Fondazione IRCCS fatinto Nazionale dei Turnoti, viu Venezian 1, 20133. Milas, Baly, Tel.; +0039 02 2390304; fax: +0039 02 23903015.
E-mul addurer: incustanto vallagir distintativarie mia (B. Valdagui).

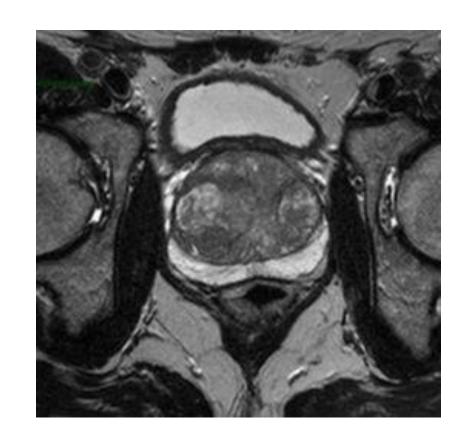

In memorian Prof. Donal Hollywood, President-Flort of the European Society for Radiotherany & Oncology 2011-2017

Clinical case – 1

Doctor... I'm 40 years old

- My grandfather died of prostate cancer.
- My father had surgery for prostate cancer 5 years ago (familiarity).
- I'm in good health. I don't have any symptoms.

Am I at risk?
When should I start screening?
Which checks?

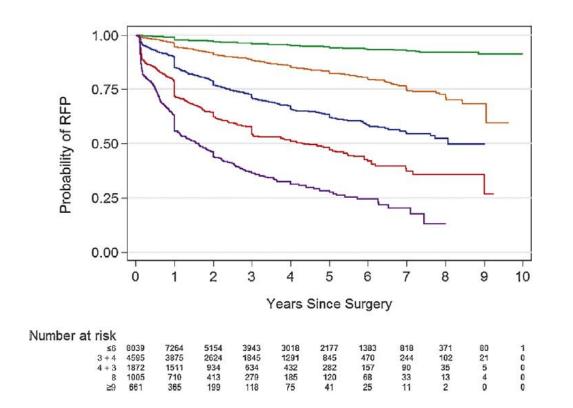

Clinical case – 2

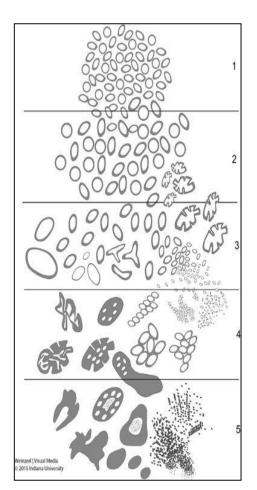
Doctor...

- I'm 55 years old and my PSA is 6.5 ng/mL
- Your colleague prescribed me a multiparametric magnetic resonance imaging of the prostate and it's negative...

I can rest easy, can't I?

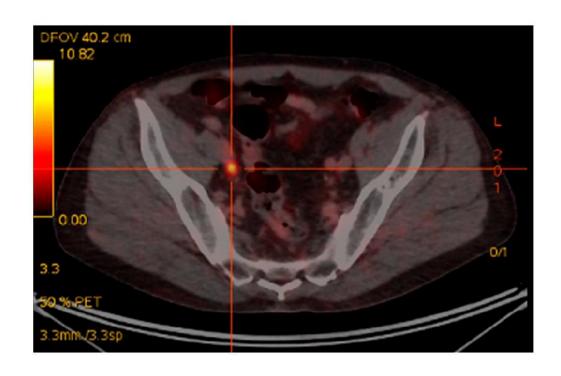
PSA (ng/ml)	rischio di tumore
< 1	8%
1-2	17%
2-4	25%
4-10	47%
> 10	59%

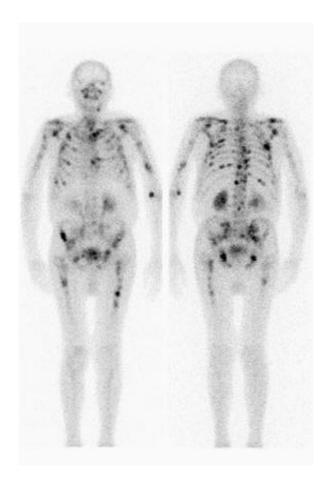



Clinical case - 3

Doctor...I did prostate biopsies and they found me prostate cancer, it's called Gleason 3+3, grading group 1.

Do I have to operate right now?





Clinical case - 4

Doctor...

- 3 years ago I had radical prostatectomy
- Now PSA is going up
- What can I do?

