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Chapter 1

Introduction to Optimal
Control

1.1 Some examples

Example 1.1.1. The curve of minimal length and the isoperimetric prob-
lem
Suppose we are interested to find the curve of minimal length joining two distinct
points in the plane. Suppose that the two points are (0, 0) and (a, b). Clearly
we can suppose that a = 1. Hence we are looking for a function x : [0, 1] → R
such that x(0) = 0 and x(1) = b.
The length of such curve is defined by∫ 1

0
ds, i.e. as the “sum” of arcs of in-

finitesimal length ds; using the picture
and the Theorem of Pitagora we obtain

( ds)2 = ( dt)2 + ( dx)2

⇒ ds =
√

1 + ẋ2 dt,

where ẋ = dx(t)
dt .

x

1

t

ds

t+dtt

x+dx

x

b

Hence the problem is 
min
x

∫ 1

0

√
1 + ẋ2(t) dt

x(0) = 0
x(1) = b

(1.1)

It is well known that the solution is a line. We will solve this problem in
subsection 2.5.1.

A more complicate problem is to find the closed curve in the plane of assigned
length such that the area inside such curve is maximum: we call this problem
the foundation of Cartagena.1 This is the isoperimetric problem. Without loss

1When Cartagena was founded, it was granted for its construction as much land as a man
could circumscribe in one day with his plow: what form should have the groove because it
obtains the maximum possible land, being given to the length of the groove that can dig a man
in a day? Or, mathematically speaking, what is the shape with the maximum area among all
the figures with the same perimeter?

1
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of generality, we consider a curve x : [0, 1] → R such that x(0) = x(1) = 0.

Clearly the area delimited by the curve and the t axis is given by
∫ 1

0
x(t) dt.

Hence the problem is 

max
x

∫ 1

0

x(t) dt

x(0) = 0
x(1) = 0∫ 1

0

√
1 + ẋ2(t) dt = A > 1

(1.2)

Note that the length of the interval [0, 1] is exactly 1 and, clearly, it is reasonable
to require A > 1. We will present the solution in subsection 4.3.3.

Example 1.1.2. A problem of business strategy
A factory produces a unique good with a rate x(t), at time t. At every moment,
such production can either be reinvested to expand the productive capacity
or sold. The initial productive capacity is α > 0; such capacity grows as the
reinvestment rate. Taking into account that the selling price is constant, what
fraction u(t) of the output at time t should be reinvested to maximize total sales
over the fixed period [0, T ]?
Let us introduce the function u : [0, T ]→ [0, 1]; clearly, if u(t) is the fraction of
the output x(t) that we reinvest, (1 − u(t))x(t) is the part of x(t) that we sell
at time t at the fixed price P > 0. Hence the problem is

max
u∈C

∫ T

0

(1− u(t))x(t)P dt

ẋ = ux
x(0) = α,
C = {u : [0, T ]→ [0, 1] ⊂ R, u ∈ KC}

(1.3)

where α and T are positive and fixed. We will present the solution in subsection
2.5.2 and in subsection 5.5.1.

Example 1.1.3. The building of a mountain road
The altitude of a mountain is given by a differentiable function y, with y :
[t0, t1] → R. We have to construct a road: let us determinate the shape of
the road, i.e. the altitude x = x(t) of the road in [t0, t1], such that the slope
of the road never exceeds α, with α > 0, and such that the total cost of the
construction ∫ t1

t0

(x(t)− y(t))2 dt

is minimal. Clearly the problem is
min
u∈C

∫ t1

t0

(x(t)− y(t))2 dt

ẋ = u
C = {u : [t0, t1]→ [−α, α] ⊂ R, u ∈ KC}

(1.4)

where y is an assigned and continuous function. We will present the solution in
subsection 2.6.1 of this problem introduced in chapter IV in [23].
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Example 1.1.4. “In boat with Pontryagin”.
Suppose we are on a boat that at time t0 = 0 has distance d0 > 0 from the pier
of the port and has velocity v0 in the direction of the port. The boat is equipped
with a motor that provides an acceleration or a deceleration. We are looking
for a strategy to arrive to the pier in the shortest time with a “soft docking”,
i.e. with vanishing speed in the final time T.
We denote by x = x(t) the distance from the pier at time t, by ẋ the velocity of
the boat and by ẍ = u the acceleration (ẍ > 0) or deceleration (ẍ < 0). In order
to obtain a “soft docking”, we require x(T ) = ẋ(T ) = 0, where the final time T
is clearly unknown. We note that our strategy depends only on our choice, at
every time, on u(t). Hence the problem is the following

min
u∈C

T

ẍ = u
x(0) = d0
ẋ(0) = v0
x(T ) = ẋ(T ) = 0
C = {u : [0,∞)→ [−1, 1] ⊂ R}

(1.5)

where d0 and v0 are fixed and T is free.
This is one of the possible ways to introduce a classic example due to Pon-

tryagin; it shows the various and complex situations in the optimal control
problems (see page 23 in [23]). We will solve this problem in subsection 3.5.1.
4

Example 1.1.5. A model of optimal consumption.
Consider an investor who, at time t = 0, is endowed with an initial capital x(0) =
x0 > 0. At any time he and his heirs decide about their rate of consumption
c(t) ≥ 0. Thus the capital stock evolves according to

ẋ = rx− c

where r > 0 is a given and fixed rate to return. The investor’s time utility for
consuming at rate c(t) is U(c(t)). The investor’s problem is to find a consumption
plain so as to maximize his discounted utility∫ ∞

0

e−δtU(c(t))dt

where δ, with δ ≥ r, is a given discount rate, subject to the solvency constraint
that the capital stock x(t) must be positive for all t ≥ 0 and such that vanishes
at ∞. Then the problem is

max
c∈C

∫ ∞
0

e−δtU(c) dt

ẋ = rx− c
x(0) = x0 > 0
x ≥ 0
lim
t→∞

x(t) = 0

C = {c : [0,∞)→ [0,∞)}

(1.6)

with δ ≥ r ≥ 0 fixed constants. We will solve this problem in subsections 3.7.1
and 5.7.4 for a logarithmic utility function, and in subsection 5.7.2 for a HARA
utility function. 4
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One of the real problems that inspired and motivated the study of optimal
control problems is the next and so called “moonlanding problem”.

Example 1.1.6. The moonlanding problem.

Consider the problem of a spacecraft attempting to make a soft landing on the
moon using a minimum amount of fuel. To define a simplified version of this
problem, let m = m(t) ≥ 0 denote the mass, h = h(t) ≥ 0 and v = v(t) denote
the height and vertical velocity of the spacecraft above the moon, and u = u(t)
denote the thrust of the spacecraft’s engine. Hence in the initial time t0 = 0,
we have initial height and vertical velocity of the spacecraft as h(0) = h0 > 0
and v(0) = v0 < 0; in the final time T, equal to the first time the spacecraft
reaches the moon, we require h(T ) = 0 and v(T ) = 0. Such final time T is not
fixed. Clearly

ḣ = v.

Let M denote the mass of the spacecraft without fuel, F the initial amount of
fuel and g the gravitational acceleration of the moon. The equations of motion
of the spacecraft is

mv̇ = u−mg

where m = M+c and c(t) is the amount of fuel at time t. Let α be the maximum
thrust attainable by the spacecraft’s engine (α > 0 and fixed): the thrust u,
0 ≤ u(t) ≤ α, of the spacecraft’s engine is the control for the problem and is in
relation with the amount of fuel with

ṁ = ċ = −ku,

with k a positive constant.

Moon

h

spacecraft h0

v0

Moon

mg

u

spacecraft

On the left, the spacecraft at time t = 0 and, on the right, the forces that act on it.

The problem is to land using a minimum amount of fuel:

min
(
m(0)−m(T )

)
= M + F −maxm(T )
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Let us summarize the problem

max
u∈C

m(T )

ḣ = v
mv̇ = u−mg
ṁ = −ku
h(0) = h0, h(T ) = 0
v(0) = v0, v(T ) = 0
m(0) = M + F
m(t) ≥M, h(t) ≥ 0
C = {u : [0, T ]→ [0, α]}

(1.7)

where h0, M, F, g, −v0, k and α are positive and fixed constants; the final
time T is free. The solution for this problem is very hard; we will present it in
subsection 3.2.4. 4

1.2 Statement of problems of Optimal Control

1.2.1 Admissible control and associated trajectory

Let us consider a problem where the development of the system is given by a
function

x : [t0, t1]→ Rn, with x = (x1, x2, . . . , xn),

with n ≥ 1. At every time t, the value x(t) describes our system. We call x state
variable (or trajectory): the state variable is at least a continuous function. We
suppose that the system has an initial condition, i.e.

x(t0) = α, (1.8)

where α = (α1, α2, . . . , αn) ∈ Rn. In many situation we require that the trajec-
tory satisfies x satisfies a final condition; in order to do that, let us introduce a
set T ⊂ [t0,∞)× Rn called target set. In this case the final condition is

(t1,x(t1)) ∈ T . (1.9)

For example, the final condition x(t1) = β with β fixed in Rn has T = {(t1, β)}
as target set; if we have a fixed final time t1 and no conditions on the trajectory
at such final time, then the target set is T = {t1} × Rn.

Let us suppose that our system depends on some particular choice (or strat-
egy), at every time. Essentially we suppose that the strategy of our system is
given by a measurable2 function

u : [t0, t1]→ U, with u = (u1, u2, . . . , uk),

2In many situations that follows we will restrict our attention to the class of piecewise
continuous functions (and replace “measurable” with “KC”); more precisely, we denote by
KC([t0, t1]) the space of piecewise continuous function u on [t0, t1], i.e. u is continuous in
[t0, t1] up to a finite number of points τ such that lim

t→τ+
u(t) and lim

t→τ−
u(t) exist and are

finite. We will denote by KC1 the functions such that the derivative exists up to a finite
number of points and such derivative is in KC.
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where U is a fixed closed set in Rk called control set. We call such function
u control variable. However, it is reasonable is some situations and models to
require that the admissible controls are in KC and not only measurable (this is
the point of view in the book [14]).

The fact that u determines the system is represented by the dynamics, i.e.
the relation

ẋ(t) = g(t,x(t),u(t)), (1.10)

where g : [t0, t1] × Rn × Rk → Rn. From a mathematical point of view we are
interesting in solving the Ordinary Differential Equation (ODE) of the form ẋ = g(t,x,u) in [t0, t1]

x(t0) = α
(t1,x(t1)) ∈ T

(1.11)

where u is an assigned function. In general, without assumption on g and u, it
is not possible to guarantee that there exists a unique solution for (1.10) defined
in all the interval [t0, t1]; moreover, since the function t 7→ g(t,x,u(t)) can be
not regular, we have to be precise on the notion of “solution” of such ODE. In
the next pages we will give a more precise definition of solution x for (1.11).

Controllability

Let us give some examples that show the difficulty to associated a trajectory to
a control:

Example 1.2.1. Let us consider {
ẋ = 2u

√
x in [0, 1]

x(0) = 0

Prove that the function u(t) = a, with a positive constant, is not an admissible control since
the two functions x1(t) = 0 and x2(t) = a2t2 solve the previous ODE.

Example 1.2.2. Let us consider {
ẋ = ux2 in [0, 1]
x(0) = 1

Prove that the function u(t) = a, with a constant, is an admissible control if and only if a < 1.
Prove that the trajectory associated to such control is x(t) = 1

1−at .

Example 1.2.3. Let us consider 
ẋ = ux in [0, 2]
x(0) = 1
x(2) = 36

|u| ≤ 1

Prove3 that the set of admissible control is empty.

The problem to investigate the possibility to find admissible control for an
optimal controls problem is called controllability (see section 3.4). In order to
guarantee the solution of (1.11), the following well–known theorem is funda-
mental

Theorem 1.1. Let us consider G = G(t,x) : [t0, t1] × Rn → Rn and let G be
continuous and Lipschitz continuous with respect to x in an open set D ⊆ Rn+1

3Note that 0 ≤ ẋ = ux ≤ 3x and x(0) = 1 imply 0 ≤ x(t) ≤ e3t.
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with (t0,α) ∈ D ⊂ R× Rn. Then, there exists a neighborhood I ⊂ R of t0 such
that the ODE {

ẋ = G(t,x)
x(t0) = α

admits a unique solution x : I → Rn, x in C1.
Moreover, if there exist two positive constants A and B such that ‖G(t,x)‖ ≤

A‖x‖+B for all (t,x) ∈ [t0, t1]×Rn, then the solution of the previous ODE is
defined in all the interval [t0, t1].

Now, let u : [t0, t1] → U be a function in KC, i.e. continuous in [t0, t1] up
to the points τ1, τ2, . . . , τN , with t0 = τ0 < τ1 < τ2 < . . . < τN < τN+1 = t1,
where u has a discontinuity of the first type. Let us suppose that there exists in
[t0, τ1] a solution x0 of the ODE (1.10) with initial condition x0(t0) = α. Let us
suppose that there exists x1 solution of (1.10) in [τ1, τ2] with initial condition
x0(τ1) = x1(τ1). In general for every i, 1 ≤ i ≤ N, let us suppose that there
exists xi solution for (1.10) in [τi, τi+1] with initial condition xi−1(τi) = xi(τi).
Finally we define the function x : [t0, t1]→ Rn by

x(t) = xi(t),

when t ∈ [τi, τi+1]. Such function x is the trajectory associated to the control u
and initial data x(t0) = α.

Example 1.2.4. Let {
ẋ = ux
x(0) = 1

and u the function defined by

u(t) =

 0 with t ∈ [0, 1)
1 with t ∈ [1, 2]
t with t ∈ (2, 3]

Prove that u is admissible and that the associated trajectory x is

x(t) =


1 with t ∈ [0, 1]
et−1 with t ∈ (1, 2]

et
2/2−1 with t ∈ (2, 3]

Now, if we consider a more general situation and consider a control u with
a low regularity, the previous Theorem 1.1 doesn’t give information about the
solution of (1.11). To be precise, let us fix a measurable function u : [t0, t1]→ U :
clearly t 7→ g(t,x,u(t)), for a fixed x ∈ Rn, in general is only a measurable
function.

Hence we need a more general notion of solution for a ODE. Let G : [t0, t1]×
Rn → Rn be a measurable function. We say that x is a solution for{

ẋ = G(t,x) in [t0, t1]
x(t0) = α

(1.12)

if x is an absolutely continuous function4 which satisfies the initial condition
and ẋ(t) = G(t,x(t)) for a.e. in t ∈ [t0, t1].
The next result is a more precise existence theorem (see for example [15]):

4We recall that (see for example [27])

Definition 1.1. We say that φ : [a, b]→ R is absolutely continuous (shortly ψ ∈ AC([a, b]))
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Theorem 1.3. Let us consider G = G(t,x) : [t0, t1]× Rn → Rn be such that

i. G is a measurable function;

ii. G is locally Lipschitz continuous with respect to x in the sense that for
every R > 0 there exists a function lR : [t0, t1]→ [0,∞) in L1 with

‖G(t,x)−G(t,x′)‖ ≤ lR(t)‖x− x′‖

for all x, x′ with ‖x‖ ≤ R, ‖x′‖ ≤ R and for a.e. t ∈ [t0, t1];

iii. G has at most a linear growth in the sense that there exist two functions
A : [t0, t1]→ [0,∞) and B : [t0, t1]→ [0,∞) both in L1 such that

‖G(t,x)‖ ≤ A(t)‖x‖+B(t)

for all x ∈ Rn and for a.e. t ∈ [t0, t1].

Then there exists a unique solution for (1.12).

Now we are in the position to give the precise notion of admissible control
and associated trajectory :

Definition 1.2. Let us consider a initial condition, a target set T , a control set
U and a measurable function g. We say that a measurable function u : [t0, t1]→
U is an admissible control (or shortly control) if there exists a unique solution
x of such ODE defined on [t0, t1], i.e. there exists an absolutely continuous
function x : [t0, t1]→ Rn such that is the unique solution of ẋ = g(t,x,u) a.e. in [t0, t1]

x(t0) = α
(t1,x(t1)) ∈ T

if for every ε > 0 there exists a δ such that

n∑
i=1

|φ(bi)− φ(ai)| ≤ ε

for any n and any collection of disjoint segments (a1, b1), . . . , (an, bn) in [a, b] with

n∑
i=1

(bi − ai) ≤ δ.

A fundamental characterization of such AC-functions is the following (see Theorem 7.20 in
[27]):

Theorem 1.2. A function φ is absolutely continuous in [a, b] if and only if φ has a derivative
φ′ a.e., such derivative is Lebesgue integrable and

φ(x) = φ(a) +

∫ x

a
φ′(s) ds, ∀x ∈ [a, b].

The previous theorem gives, clearly, that KC1([a, b]) ⊂ AC([a, b]).
The study of AC-functions lies outside the aim of this note: however let us mention that if

ψ and φ are two absolutely continuous functions, in general their composition ψ ◦ φ is not an
AC-function (see the Problem 43 in section 6.4 in [26]); in chapter 5 we will use the following
result (see the Problem 44 in section 6.4 in [26]):

Remark 1.1. Let φ[a, b]→ [c, d] ⊂ R be an absolutely continuous function and let ψ : [c, d]→
R be a Lipschitz function. Then ψ ◦ φ is an AC-function on [a, b].
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We call such solution x trajectory associated to u. We denote by Ct0,α the set
of the admissible control for α at time t0.

In the next three chapters, in order to simplify the notation, we put C = Ct0,α.
We say that a dynamics is linear if (1.10) is of the form

ẋ(t) = A(t)x(t) +B(t)u(t), (1.13)

where A(t) is a square matrix of order n and B(t) is a matrix of order n × k :
moreover the elements of such matrices are continuous function in [t0, t1]. A
fundamental property of controllability of the linear dynamics is the following

Proposition 1.1. If the dynamics is linear with continuous coefficients (i.e. the
functions A and B in (1.13)) and the trajectory has only a initial condition (i.e.
T = {t1} × Rn), then every piecewise continuous function u is an admissible
control for (1.11), i.e. exists the associated trajectory x.

The proof of the previous proposition is an easy application of the previous
Theorem 1.3. We remark that the previous proposition is false if we have a
initial and a final condition on trajectory (see example 1.2.3).

For every τ ∈ [t0, t1], we define the reachable set at time τ as the set
R(τ, t0,α) ⊆ Rn of the points xτ such that there exists an admissible con-
trol u and an associated trajectory x such that x(t0) = α and x(τ) = xτ .

If we consider the example 1.2.3, we have 36 6∈ R(2, 0, 1).

1.2.2 Optimal Control problems

Let us introduce the functional that we would like to optimize. Let us consider
the dynamics in (1.11), a function f : [t0,∞)×Rn+k → R, the so called running
cost (or running payoff) and a function ψ : [t0,∞)×Rn → R, the so called pay
off .

Let U ⊂ Rk and T ⊂ [t0,∞)×Rn be the closed control set and the target set
respectively. Let us consider the set of admissible control C. We define J : C → R
by

J(u) =

∫ T

t0

f(t,x(t),u(t)) dt+ ψ(T,x(T )),

where the function x is the (unique) trajectory associated to the control u that
satisfies the initial and the final condition. This is the reason why J depends
only on u. Hence our problem is

max
u∈C

J(u),

J(u) =

∫ T

t0

f(t,x,u) dt+ ψ(T,x(T ))

ẋ = g(t,x,u)
x(t0) = α
(T,x(T )) ∈ T
C = {u : [t0, T ]→ U ⊆ Rk, u admissible}

(1.14)

We say that u∗ ∈ C is an optimal control for (1.14) if

J(u) ≤ J(u∗), ∀u ∈ C.
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The trajectory x∗ associated to the optimal control u∗, is called optimal trajec-
tory.

In this problem and in more general problems, when f, g and ψ do not
depend directly on t, we say that the problem is autonomous.



Chapter 2

The simplest problem of
OC

In this chapter we are interested on the following problem

J(u) =

∫ t1

t0

f(t,x,u) dt

ẋ = g(t,x,u)
x(t0) = α
max
u∈C

J(u),

C = {u : [t0, t1]→ U ⊆ Rk, u admissible}

(2.1)

where t1 is fixed and U is closed. The problem (2.1) is called the simplest
problem of Optimal Control (in all that follows we shorten “Optimal Control”
with OC).

2.1 The necessary condition of Pontryagin

Let us introduce the function

(λ0,λ) = (λ0, λ1, . . . , λn) : [t0, t1]→ Rn+1.

We call such function multiplier (or costate variable). We define the Hamiltonian
function H : [t0, t1]× Rn × Rk × R× Rn → R by

H(t,x,u, λ0,λ) = λ0f(t,x,u) + λ · g(t,x,u).

The following result is fundamental:

Theorem 2.1 (Pontryagin). In the problem (2.1), let f and g be continuous
functions with continuous derivatives with respect to x.
Let u∗ be an optimal control and x∗ be the associated trajectory.
Then there exists a multiplier (λ∗0,λ

∗), with

� λ∗0 ≥ 0 constant,

� λ∗ : [t0, t1]→ Rn continuous,

11
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such that

i) (nontriviality of the multiplier) (λ∗0,λ
∗) 6= (0,0);

ii) (Pontryagin Maximum Principle, shortly PMP) for all t ∈ [t0, t1] we have

u∗(t) ∈ arg max
v∈U

H(t,x∗(t),v, λ∗0,λ
∗(t)), i.e.

H(t,x∗(t),u∗(t), λ∗0,λ
∗(t)) = max

v∈U
H(t,x∗(t),v, λ∗0,λ

∗(t)); (2.2)

iii) (adjoint equation, shortly AE) we have

λ̇∗(t) = −∇xH(t,x∗(t),u∗(t), λ∗0,λ
∗(t)), a.e. t ∈ [t0, t1]; (2.3)

iv) (transversality condition, shortly TC) λ∗(t1) = 0;

v) (normality) λ∗0 = 1.

If in addition the functions f and g are continuously differentiable in t, then for
all t ∈ [t0, t1]

H(t,x∗(t),u∗(t), λ∗0,λ
∗(t)) = H(t0,x

∗(t0),u∗(t0), λ∗0,λ
∗(t0)) +

+

∫ t

t0

∂H

∂t
(s,x∗(s),u∗(s), λ∗0,λ

∗(s)) ds (2.4)

The proof of this result is very long and difficult (see [23], [14], [10], [15], [31]):
in section 2.1.1 we give a proof in a particular situation. Now let us list some
comments and definitions.

An admissible control u∗ that satisfies the conclusions i)−−iv) of the the-
orem of Pontryagin is called extremal: we say that (λ∗0,λ

∗) is the associated
multiplier to the extremal u∗ if it is the function that satisfies the conclusion of
the mentioned theorem.

We mention that in the adjoint equation, since u∗ is a measurable function,
the multiplier λ∗ is a solution of a ODE

λ̇ = G(t,λ) in [t0, t1]

(here G is the second member of (2.3)), where G is a measurable function, affine
in the λ variable, i.e. is a linear differential equation in λ with measurable
coefficients. This notion of solution is as in (1.12) and hence λ∗ is an absolutely
continuous function.

We remark that we can rewrite the dynamics (1.10) as

ẋ = ∇λH.

Normal and abnormal controls

It is clearly, in the previous theorem with the simplest problem of OC (2.1),
that v. implies (λ∗0,λ

∗) 6= (0,0). If we consider a more generic problem (see for
example (1.14)), then it is not possible to guarantees λ∗0 = 1.

In general, there are two distinct possibilities for the constant λ∗0 :
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a. if λ∗0 = 0, we say that u∗ is abnormal. Then the Hamiltonian H, for such
λ∗0, does not depend on f and the Pontryagin Maximum Principle is of no
use;

b. if λ∗0 6= 0, we say that u∗ is normal: in this situation we may assume that
λ∗0 = 1.

Let us spend few words on this last assertion. Let u∗ be a normal extremal
control with x∗ and (λ∗0,λ

∗) associated trajectory and associated multiplier
respectively. It is an easy exercise to verify that (λ̃0, λ̃), defined by

λ̃0 = 1, λ̃ =
λ∗

λ∗0
,

is again a multiplier associated to the normal control u∗. Hence, if u∗ is normal,
we may assume that λ∗0 = 1. These arguments give that

Remark 2.1. In Theorem 2.1 we can replace λ∗0 ≥ 0 constant, with λ∗0 ∈ {0, 1}.

The previous theorem 2.1 guarantees that

Remark 2.2. In the simplest optimal control problem (2.1) every extremal is
normal.

We will see in example 2.5.7 an abnormal optimal control.

On Maximum Principle with much more regularity

An important necessary condition of optimality in convex analysis1 implies

Remark 2.3. Let f and g be as in Theorem 2.1 with the additional assumption
that they are differentiable with respect to the variable u. Let the control set
U be convex and u∗ be an extremal control (with associated trajectory x∗ and
multiplier (λ∗0,λ

∗)). Since, for every fixed t, u∗(t) is a maximum for u 7→
H(t,x∗(t),u, λ∗0,λ

∗(t)), the PMP implies

∇uH(τ,x∗(t),u∗(t), λ∗0,λ
∗(t)) · (u− u∗(t)) ≤ 0, (2.6)

for every u ∈ U, t ∈ [t0, t1].

1We have the following:

Theorem 2.2. Let U be a convex set in Rk and F : U → R be differentiable. If v∗ is a point
of maximum for F in U, then

∇F (v∗) · (v − v∗) ≤ 0, ∀v ∈ U. (2.5)

Proof: If v∗ is in the interior of U, then ∇F (v∗) = 0 and (2.5) is true. Let v∗ be on
the boundary of U : for all v ∈ U, let us consider the function f : [0, 1] → R defined by
f(s) = F ((1− s)v∗ + sv). The formula of Mc Laurin gives f(s)− f(0) = f ′(0)s+ o(s), where
o(s)/s→ 0 for s→ 0+. Since v∗ is maximum we have

0 ≥ F ((1− s)v∗ + sv)− F (v∗)

= f(s)− f(0)

= f ′(0)s+ o(s)

= ∇F (v∗) · (v − v∗)s+ o(s).

Since s ≥ 0, (2.5) is true.
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When the control set coincides with Rk we have the following modification for
the PMP:

Remark 2.4. In the assumption of Remark 2.3, let U = Rk be the control
set for (2.1). In theorem 2.1 we can replace the PMP with the following new
formulation

(PMP0) ∇uH(t,x∗(t),u∗(t), λ∗0,λ
∗(t)) = 0, ∀ t ∈ [t0, t1],

On the Hamiltonian along the optimal path

In (2.4) let us consider the function

t 7→ h(t) := H(t,x∗(t),u∗(t), λ∗0,λ
∗(t)) (2.7)

is a very regular function in [t0, t1] even though the control u∗ may be dis-
continuous. More precisely and the very interesting propriety of (2.4) is the
following

Remark 2.5. In the problem (2.1), let f and g be continuous functions with
continuous derivatives with respect to t and x. Let u∗ be a piecewise continuous
optimal control and x∗ be the associated trajectory. Let the control set U be
closed. Then

� relation (2.4) is a consequence of the Maximum Principle in ii) and the
adjoint equation iii) of Theorem 2.1;

� the function h in (2.7) is absolutely continuous in [t0, t1] and

ḣ(t) =
∂H

∂t
(t,x∗(t),u∗(t), λ∗0,λ

∗(t)).

This result is an easy consequence of the following lemma

Lemma 2.1. Let h̃ = h̃(t,u) : [t0, t1] × Rk → R be a continuous function
with continuous derivatives with respect to t. Let U ⊂ Rk be closed and let
u∗ : [t0, t1]→ U be a left piecewise continuous function2 such that

u∗(t) ∈ arg max
v∈U

h̃(t,v), ∀t ∈ [t0, t1].

Let ĥ : [t0, t1]→ R be the function defined by

ĥ(t) = max
v∈U

h̃(t,v) = h̃(t,u∗(t)), (2.8)

for t in [t0, t1]. Then ĥ is absolutely continuous in [t0, t1] and

ĥ(t) = ĥ(t0) +

∫ t

t0

∂h̃

∂t
(s,u∗(s)) ds, ∀t ∈ [t0, t1]. (2.9)

2To be clear, u∗ is piecewise continuous and left continuous.
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Proof. First let us prove that ĥ is continuous. By the assumption ĥ is left
piecewise continuous and hence we have only to prove ĥ is right continuous in
[t0, t1], i.e. for every fixed t ∈ [t0, t1]

lim
τ→0+

h̃(t+ τ,u∗(t+ τ)) = h̃(t,u∗(t)) :

since h̃ is continuous, the previous relation is equivalent to

lim
τ→0+

h̃(t,u∗(t+ τ)) = h̃(t,u∗(t)). (2.10)

Relation (2.8) implies that for a fixed t ∈ [t0, t1] and for every small τ we have

h̃(t,u∗(t+ τ)) ≤ h̃(t,u∗(t)), (2.11)

h̃(t+ τ,u∗(t)) ≤ h̃(t+ τ,u∗(t+ τ)). (2.12)

Hence considering the limits for τ → 0+ and using the continuity of h̃

lim
τ→0+

h̃(t,u∗(t+ τ)) ≤ lim
τ→0+

h̃(t,u∗(t)) = lim
τ→0+

h̃(t+ τ,u∗(t)) ≤

≤ lim
τ→0+

h̃(t+ τ,u∗(t+ τ)) = lim
τ→0+

h̃(t,u∗(t+ τ)).

Hence the previous inequalities are all equalities and (2.10) holds.

Now let t be a point of continuity of u∗. Since h̃ has derivative w.r.t. t,
the mean theorem implies that every small τ there exist θ1 and θ2 in [0, 1] such
that, using (2.11) and (2.12),

∂h̃

∂t
(t+ θ1τ,u

∗(t))τ = h̃(t+ τ,u∗(t))− h̃(t,u∗(t))

≤ h̃(t+ τ,u∗(t+ τ))− h̃(t,u∗(t))

≤ h̃(t+ τ,u∗(t+ τ))− h̃(t,u∗(t+ τ))

=
∂h̃

∂t
(t+ θ2τ,u

∗(t+ τ))τ

For τ > 0, let us divide by τ and we obtain

∂h̃

∂t
(t+ θ1τ,u

∗(t)) ≤ h̃(t+ τ,u∗(t+ τ))− h̃(t,u∗(t))

τ
≤ ∂h̃

∂t
(t+ θ2τ,u

∗(t+ τ));

if τ < 0 note that we obtain similar inequalities. Since ∂h̃
∂t is continuous and

t is a point of continuity of u∗, taking the limits as τ → 0 in the previous
inequalities we have

∂h̃

∂t
(t,u∗(t)) =

dh̃

dt
(t,u∗(t)) =

dĥ

dt
(t) = ĥ′(t), (2.13)

for every point of continuity for u∗. Since h̃ has continuous derivative with
respect to t, hence ĥ has a piecewise continuous derivative, i.e. ĥ ∈ KC1([t0, t1]):

hence ĥ is in AC([t0, t1]) and, using (2.13), we obtain (2.9).
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Let us notice that if h̃ has only piecewise continuous derivative w.r.t. t, the
previous proof holds and we obtain the relation (2.13) for the points t where u∗

and ∂h̃
∂t are continuous functions.

Proof of Remark 2.5. We apply the previous lemma 2.1 to the function

h̃(t,u) = H(t,x∗(t),u, λ∗0,λ
∗(t)) :

we have to prove that the assumptions of such lemma are satisfied. First, if
u∗ is not left piecewise continuous, then we have to modify the control in a
finite set of points. Now, it is clear that the function h̃ is continuous since H is

continuous in all its variables. Let us check that ∂h̃
∂t (t, u) is continuous for every

point t of continuity for u∗:

∂h̃

∂t
(t,u) =

∂H

∂t
(t,x∗(t),u, λ∗0,λ

∗(t)) +∇xH(t,x∗(t),u, λ∗0,λ
∗(t)) · ẋ∗(t) +

+∇λH(t,x∗(t),u, λ∗0,λ
∗(t)) · λ̇

∗
(t)

=
∂H

∂t
(t,x∗(t),u, λ∗0,λ

∗(t)) +

+∇xH(t,x∗(t),u, λ∗0,λ
∗(t)) · g(t,x∗(t),u∗(t)) +

−g(t,x∗(t),u) · ∇xH(t,x∗(t),u∗(t), λ∗0,λ
∗(t));

the assumptions on f and g give the claim.

An immediate consequence of (2.4) is the following important and useful
result

Remark 2.6 (autonomous problems). If the problem is autonomous, i.e. f and
g does not depend directly by t, and f, g are in C1, then (2.4) implies that

H(x∗(t),u∗(t), λ∗0,λ
∗(t)) = constant in [t0, t1] (2.14)

2.1.1 The proof in a particular situation

In this section we consider a “simplest” optimal control problem (2.1) with two
fundamental assumptions that simplify the proof of the theorem of Pontryagin:

a. we suppose that the control set is U = Rk.

b. We suppose that the set C = Ct0,α, i.e. the set of admissible controls, does
not contain discontinuous function, is non empty and is open.

In order to prove the mentioned theorem, we need a technical lemma:

Lemma 2.2. Let ϕ ∈ C([t0, t1]) and∫ t1

t0

ϕ(t)h(t) dt = 0 (2.15)

for every h ∈ C([t0, t1]). Then ϕ is identically zero on [t0, t1].



2.1. THE NECESSARY CONDITION OF PONTRYAGIN 17

Proof. Let us suppose that ϕ(t′) 6= 0 for some point t′ ∈ [t0, t1] : we suppose
that ϕ(t′) > 0 (if ϕ(t′) < 0 the proof is similar). Since ϕ is continuous, there
exists an interval [t′0, t

′
1] ⊂ [t0, t1] containing t′ such that ϕ is positive.

Let us define the function h : [t0, t1]→ R as

h(t) = −(t− t′0)(t− t′1) 1[t′0,t
′
1]

(t),

where 1A is the indicator function on the
set A. Hence

x

1

t

t0 tt’

h

t’0 t’1

∫ t1

t0

ϕ(t)h(t) dt = −
∫ t′1

t′0

ϕ(t) (t− t′0)(t− t′1) dt > 0. (2.16)

On the other hand, (2.15) implies that

∫ t1

t0

ϕ(t)h(t) dt = 0. Hence (2.16) is

absurd and there does not exist such point t′.

Theorem 2.3. Let us consider the problem (2.1) such that the assumptions a.
and b. hold, i.e. 

J(u) =

∫ t1

t0

f(t,x,u) dt

ẋ = g(t,x,u)
x(t0) = α
max
u∈C

J(u)

C =
{
u : [t0, t1]→ Rk, u ∈ C([t0, t1])

}
and with f ∈ C1([t0, t1]× Rn+k) and g ∈ C1([t0, t1]× Rn+k).
Let u∗ be the optimal control and x∗ be the optimal trajectory. Then there exists
a multiplier λ∗ : [t0, t1]→ Rn continuous such that

(PMP0) ∇uH(t,x∗(t),u∗(t),λ∗(t)) = 0, ∀t ∈ [t0, t1] (2.17)

(AE) ∇xH(t,x∗(t),u∗(t),λ∗(t)) = −λ̇
∗
(t), ∀t ∈ [t0, t1] (2.18)

(TC) λ∗(t1) = 0, (2.19)

where H(t,x,u,λ) = f(t,x,u) + λ · g(t,x,u).

Proof. Let u∗ ∈ C be optimal control and x∗ its trajectory. Let us fix a

continuous function h = (h1, . . . , hk) : [t0, t1] → Rk. For every constant ε ∈ Rk
we define the function uε : [t0, t1]→ Rk by

uε = u∗ + (ε1h1, . . . , εkhk) = (u∗1 + ε1h1, . . . , u
∗
k + εkhk). (2.20)

Since C is open, for every ε with ‖ε‖ sufficiently small, uε is an admissible
control.3 Hence, for such uε there exists the associated trajectory: we denote

3We remark that the assumption U = Rk is crucial. Suppose, for example, that U ⊂ R2 and
let us fix t ∈ [t0, t1]. If u∗(t) is an interior point of U, for every function h and for ε with modulo
sufficiently small, we have that uε(t) = (u∗1(t) + ε1h1(t), u∗2(t) + ε2h2(t)) ∈ U. If u∗(t) lies on
the boundary of U, it is impossible to guarantee that, for every h, u(t) = u∗(t) + ε ·h(t) ∈ U.
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by xε : [t0, t1] → Rn such trajectory associated4 to the control uε in (2.20).
Clearly

u0(t) = u∗(t), x0(t) = x∗(t), xε(t0) = α. (2.21)

Now, recalling that h is fixed, we define the function Jh : Rk → R as

Jh(ε) =

∫ t1

t0

f
(
t,xε(t),uε(t)

)
dt.

Since u∗ is optimal, Jh(0) ≥ Jh(ε), ∀ε; then ∇εJh(0) = 0. Let λ : [t0, t1]→ Rn
be a generic function in AC. Using the dynamics we have

Jh(ε) =

∫ t1

t0

[
f
(
t,xε,uε

)
+ λ ·

(
g
(
t,xε,uε

)
− ẋε

)]
dt

=

∫ t1

t0

[
H
(
t,xε,uε,λ

)
− λ · ẋε

]
dt

(by part) =

∫ t1

t0

[
H
(
t,xε,uε,λ) + λ̇ · xε

]
dt−

(
λ · xε

∣∣∣t1
t0

For every i, with 1 ≤ i ≤ k, we have

∂Jh
∂εi

=

∫ t1

t0

{
∇xH(t,xε,uε,λ) · ∇εixε(t) +

+∇uH(t,xε,uε,λ) · ∇εiuε(t) +

+λ̇ · ∇εixε(t)

}
dt+

−λ(t1) · ∇εixε(t1) + λ(t0) · ∇εixε(t0).

Note that (2.20) implies ∇εiuε(t) = (0, . . . , 0, hi, 0, . . . , 0), and (2.21) implies
∇εixε(t0) = 0. Hence, by (2.21), we obtain

∂Jh
∂εi

(0) =

∫ t1

t0

{[
∇xH(t,x∗,u∗,λ) + λ̇

]
·
(
∇εixε(t)

∣∣∣∣
ε=0

+

u*(t)

U
u* h(t)+ (t)e

u*(t)

U

The case u∗(t) in the interior of U ; the case u∗(t) on the boundary of U.

4For example, if n = k = 1 and the dynamics is linear with continuous coefficients, we
have that for every ε, {

ẋε(t) = a(t)xε(t) + b(t)[u∗(t) + εh(t)]
xε(t0) = α

and hence xε(t) = e
∫ t
t0
a(s) ds

(
α+

∫ t

t0

b(s)[u∗(s) + εh(s)]e
−
∫ s
t0
a(w) dw

ds

)
.
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+
∂H

∂ui
(t,x∗,u∗,λ)hi(t)

}
dt+

−λ(t1) ·
(
∇εixε(t1)

∣∣∣∣
ε=0

= 0. (2.22)

Now let us choose the function λ as the solution of the following ODE:{
λ̇ = −∇xH(t,x∗,u∗,λ) for t ∈ [t0, t1]
λ(t1) = 0

(2.23)

Since
∇xH(t,x∗,u∗,λ) = ∇xf(t,x∗,u∗) + λ · ∇xg(t,x∗,u∗),

this implies that the previous differential equation is linear (in λ). Hence, the
assumption of the theorem implies that there exists a unique5 solution λ∗ ∈
AC([t0, t1]) of (2.23). Hence conditions (2.18) and (2.19) hold. For this choice
of the function λ = λ∗, we have by (2.22)∫ t1

t0

∂H

∂ui
(t,x∗,u∗,λ∗)hi dt = 0, (2.24)

for every i, with 1 ≤ i ≤ k, and h = (h1, . . . , hk) ∈ C([t0, t1]). Lemma 2.2 and
(2.24) imply that ∂H

∂ui
(t,x∗,u∗,λ∗) = 0 in [t0, t1] and hence (2.17).

2.2 Sufficient conditions

In order to study the problem (2.1), one of the main result about the sufficient
conditions for a control to be optimal is due to Mangasarian (see [21]). Recalling
that in the simplest problem every extremal control is normal (see remark 2.2),
we have:

Theorem 2.4 (Mangasarian). Let us consider the problem (2.1) with f ∈ C1

and g ∈ C1. Let the control set U be convex. Let u∗ be a normal extremal control,
x∗ the associated trajectory and λ∗ = (λ∗1, . . . , λ

∗
n) the associated multiplier (as

in theorem 2.1).
Consider the Hamiltonian function H and let us suppose that

v) the function (x,u) 7→ H(t,x,u,λ∗) is, for every t ∈ [t0, t1], concave.

Then u∗ is optimal.

Proof. Let t be fixed; the assumptions of regularity and concavity on H imply6

H(t,x,u,λ∗(t)) ≤ H(t,x∗(t),u∗(t),λ∗(t)) +

+∇xH(t,x∗(t),u∗(t),λ∗(t)) · (x− x∗(t)) +

+∇uH(t,x∗(t),u∗(t),λ∗(t)) · (u− u∗(t)), (2.25)

5We recall that for ODE of the first order with continuous coefficients, Theorem 1.1 holds.
6We recall that if F is a differentiable function on a convex set C ⊆ Rn, then F is concave

in C if and only if, for every v, v′ ∈ C, we have F (v) ≤ F (v′) +∇F (v′) · (v − v′).
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for every points x ∈ Rn and u ∈ U . Taking into account that U is convex, (2.6)
and the adjoint equation ii) imply in (2.25)

H(t,x,u,λ∗(t)) ≤ H(t,x∗(t),u∗(t),λ∗(t))− λ̇∗(t) · (x− x∗(t)), (2.26)

for a.e. t ∈ [t0, t1], every x ∈ Rn and u ∈ U . Now, for every admissible control
u, with associated trajectory x, we obtain

H(t,x(t),u(t),λ∗) ≤ H(t,x∗(t),u∗(t),λ∗(t))− λ̇∗(t) · (x(t)− x∗(t)),

for a.e. t. Hence, again for every admissible control u with associated trajectory
x, we have∫ t1

t0

f(t,x,u) dt ≤
∫ t1

t0

f(t,x∗,u∗) dt+
(
λ∗ · (x∗ − x)

∣∣∣t1
t0

(2.27)

=

∫ t1

t0

f(t,x∗,u∗) dt+

+λ∗(t1) ·
(
x∗(t1)− x(t1)

)
− λ∗(t0) ·

(
x∗(t0)− x(t0)

)
;

since x∗(t0) = x(t0) = α and the transversality condition iii) are satisfied, we
obtain that u∗ is optimal.

In order to apply such theorem, it is easy to prove the next note

Remark 2.7. If we replace the assumption v) of theorem 2.4 with one of the
following assumptions

v’) for every t ∈ [t0, t1], let f and g be concave in the variables x and u, and
let us suppose λ∗(t) ≥ 0, (i.e. for every i, 1 ≤ i ≤ n, λ∗i (t) ≥ 0);

v”) let the dynamics of problem (2.1) be linear and, for every t ∈ [t0, t1], let f
be concave in the variables x and u;

then u∗ is optimal.

A further sufficient condition is due to Arrow: we are interested in a the
problem (2.1), with U ⊂ Rk closed but we do not require the convexity of the
control set (see Theorem 2.4). Let us suppose that it is possible to define the
maximized Hamiltonian function H0 : [t0, t1]× Rn × Rn → R by

H0(t,x,λ) = max
u∈U

H(t,x,u,λ), (2.28)

where H(t,x,u,λ) = f(t,x,u) + λ · g(t,x,u) is the Hamiltonian (note that we
set λ0 = 1). We have the following result by Arrow (see [2], [9] section 8.3, [18]
part II section 15, theorem 2.5 in [29]):

Theorem 2.5 (Arrow). Let us consider the maximum problem (2.1) with f ∈
C1 and g ∈ C1. Let u∗ be a normal extremal control, x∗ be the associated
trajectory and λ∗ be the associated multiplier.
Let us suppose that the maximized Hamiltonian function H0 exists and, for
every t ∈ [t0, t1]× Rn, the function

x 7→ H0(t,x,λ∗(t))

is concave. Then u∗ is optimal.
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Proof. Let us consider t fixed in [t0, t1]. Our aim is to prove relation (2.26)
with our new assumptions. First of all we note that the definitions of H0 imply

H(t,x∗(t),u∗(t),λ∗(t)) = H0(t,x∗(t),λ∗(t)),

H(t,x,u,λ∗(t)) ≤ H0(t,x,λ∗(t)),

for every x ∈ Rn, u ∈ U . These relations give

H(t,x,u,λ∗(t))−H(t,x∗(t),u∗(t),λ∗(t)) ≤ H0(t,x,λ∗(t))−H0(t,x∗(t),λ∗(t)).
(2.29)

Since the function x 7→ H0(t,x,λ∗(t)), is concave (we recall that t is fixed) then
there exists a supergradient7 a in the point x∗(t), i.e.

H0(t,x,λ∗(t)) ≤ H0(t,x∗(t),λ∗(t)) + a · (x− x∗(t)), ∀x ∈ Rn. (2.30)

Clearly from (2.29) and (2.30) we have

H(t,x,u,λ∗(t))−H(t,x∗(t),u∗(t),λ∗(t)) ≤ a · (x− x∗(t)). (2.31)

In particular, choosing u = u∗(t), we have

H(t,x,u∗(t),λ∗(t))−H(t,x∗(t),u∗(t),λ∗(t)) ≤ a · (x− x∗(t)). (2.32)

Now let us define the function G : Rn → R by

G(x) = H(t,x,u∗(t),λ∗(t))−H(t,x∗(t),u∗(t),λ∗(t))− a · (x− x∗(t)).

Clearly, by (2.32), G has a maximum in the point x∗(t): moreover it is easy to
see that G is differentiable. We obtain

0 = ∇G(x∗(t)) = ∇xH(t,x∗(t),u∗(t),λ∗(t))− a.

Now, the adjoint equation and (2.31) give

H(t,x,u,λ∗(t)) ≤ H(t,x∗(t),u∗(t),λ∗(t))− λ̇∗ · (x− x∗(t)),

for every t ∈ [t0, t1], x ∈ Rn and u ∈ U . Note that this last relation coincides
with (2.26): at this point, using the same arguments of the second part of the
proof of Theorem 2.4, we are able to conclude the proof.

7We recall that (see [25]) if we consider a function F : Rn → R, we say that a ∈ Rn is a
supergradient (respectively subgradient) for F in the point x0 if

F (x) ≤ F (x0) + a · (x− x0) ∀x ∈ Rn (respectivelly F (x) ≥ F (x0) + a · (x− x0) ).

For every point x0 ∈ Rn, we denote by ∂+F (x0) the set of all the supergradient for F in
x0 (∂−F (x0) for subgradient). Clearly, if F is differentiable in x0 and ∂+F (x0) 6= ∅, then
∂+F (x0) = {∇F (x0)}. A fundamental result in convex analysis is the following:

Theorem 2.6 (Rockafellar). Let F : Rn → R a concave (convex) function. Then, for every
x0 ∈ Rn, the set of the supergradients ∂+F (x0) (set of subgradients ∂−F (x0)) in x0 is non
empty.
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2.3 First generalizations

2.3.1 Initial/final conditions on the trajectory

What happens if we modify the initial or the final condition on the trajectory?
We have found the fundamental ideas in the proof of Theorem 2.3 (see (2.21)), in
the proof of Theorem 2.4 and hence in the proof of Theorem 2.5: more precisely,
using the notation in (2.21), if t̃ is the initial or the final point of the interval
[t0, t1], we have the following two possibilities:

� if x∗(t̃) = α̃ is fixed, then xε(t̃) = α̃ ∀ε; hence ∇εixε(t̃) = 0 and we have
no conditions on the value λ∗(t̃);

� if x∗(t̃) is free, then xε(t̃) is free ∀ε; hence we have no information on
∇εixε(t̃) and we have to require the condition λ∗(t̃) = 0.

We left to the reader the details, but it is clear that slight modifications on the
initial/final points of the trajectory of the problem (2.1), give us some slight
differences on the transversality conditions in Theorem 2.3, in Theorem 2.4 and
in Theorem 2.5.

Pay attention that if the initial and the final point of the trajectory are both
fixed, it is not possible to guarantee that λ∗0 is different from zero, i.e. that the
extremal control is normal: note that in the case of abnormal extremal control,
the previous sufficient conditions don’t work (see Example 2.5.3 and Example
2.5.7).

2.3.2 On minimum problems

Let us consider the problem (2.1) where we replace the maximum with a mini-
mum problem. Since

min

∫ t1

t0

f(t,x,u) dt = −max

∫ t1

t0

−f(t,x,u) dt,

clearly it is possible to solve a min problem passing to a max problem with some
minus.

Basically, a more direct approach consists in replace some “words” in all the
previous pages as follows

max → min

concave function → convex function.

In particular in (2.2) we obtain the Pontryagin Minimum Principle.

2.4 The case of Calculus of Variation

A very particular situation appears when the dynamics (1.10) is of the type
ẋ = g(t,x,u) = u (and hence k = n) and the control set U is Rn. Clearly it is
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possible to rewrite the problem8 (2.1) as
J(x) =

∫ t1

t0

f(t,x, ẋ) dt

x(t0) = α
max

x∈KC1
J(x)

(2.33)

This problems are called Calculus of Variation problems (shortly CoV). Clearly
in this problem the control does not appear. We say that x∗ ∈ KC1 is optimal
for (2.33) if

J(x) ≤ J(x∗), ∀x ∈ KC1, x(t0) = α.

In this section, we will show that the theorem of Euler of Calculus of Vari-
ation is an easy consequence of the theorem of Pontryagin of Optimal Control.
Hence we are interested in the problem max

x∈C1

∫ t1

t0

f(t,x, ẋ) dt

x(t0) = α

(2.34)

with α ∈ Rn fixed. We remark that here x is in KC1. We have the following
fundamental result

Theorem 2.7 (Euler). Let us consider the problem (2.34) with f ∈ C1.
Let x∗ be optimal. Then, for all t ∈ [t0, t1], we have

d

dt

(
∇ẋf(t,x∗(t), ẋ∗(t))

)
= ∇xf(t,x∗(t), ẋ∗(t)). (2.35)

In calculus of variation the equation (2.35) is called Euler equation (shortly
EU); a function that satisfies EU is called extremal. Let us prove this result. If
we consider a new variable u = ẋ, we rewrite problem (2.34) as

max
u∈C

∫ t1

t0

f(t,x,u) dt

ẋ = u
x(t0) = α

Theorem 2.3 guarantees that, for the Hamiltonian H(t,x,u,λ) = f(t,x,u) +
λ · u, we have

∇uH(t,x∗,u∗) = 0 ⇒ ∇uf + λ∗ = 0 (2.36)

∇xH(t,x∗,u∗) = −λ̇
∗
⇒ ∇xf = −λ̇

∗
(2.37)

If we consider a derivative with respect to the time in (2.36) and using (2.36)
we have

d

dt
(∇uf) = −λ̇

∗
= ∇xf ;

8We remark that in general in a Calculus of Variation problem one assume that x ∈ KC1;
in this note we are not interested in this general situation and we will assume that x ∈ C1.
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taking into account ẋ = u, we obtain (2.35). Moreover, we are able to find the
transversality condition of Calculus of Variation: (2.19) and (2.36), imply

∇ẋf(t1,x
∗(t1), ẋ∗(t1)) = 0.

As in subsection 2.3.1 we obtain

Remark 2.8. Consider the theorem 2.7, its assumptions and let us modify
slightly the conditions on the initial and the final points of x. We have the
following transversality conditions:

if x∗(ti) ∈ Rn, i.e. x∗(ti) is free ⇒ ∇ẋf(ti,x
∗(ti), ẋ

∗(ti)) = 0,

where ti is the initial or the final point of the interval [t0, t1].

An useful remark, in some situation, is that if f does not depend on x, i.e.
f = f(t, ẋ), then the equation of Euler (2.35) is

∇ẋf(t, ẋ∗) = c,

where c ∈ R is a constant. Moreover, the following remark is not so obvious:

Remark 2.9. If f = f(x, ẋ) does not depend directly on t, then the equation of
Euler (2.35) is

f(x∗, ẋ∗)− ẋ∗ · ∇ẋf(x∗, ẋ∗) = c, (2.38)

where c ∈ R is a constant.

Proof. Clearly

d

dt
f = ẋ · ∇xf + ẍ · ∇ẋf,

d

dt
(ẋ · ∇ẋf) = ẍ · ∇ẋf + ẋ · d

dt
(∇ẋf).

Now let us suppose that x∗ satisfies condition the Euler condition (2.35): hence,
using the previous two equalities we obtain

0 = ẋ∗ ·
(

d

dt

(
∇ẋf(x∗, ẋ∗)

)
−∇xf(x∗, ẋ∗)

)
=

d

dt

(
ẋ∗ · ∇ẋf(x∗, ẋ∗)

)
− d

dt

(
f(x∗, ẋ∗)

)
=

d

dt

(
ẋ∗ · ∇ẋf(x∗, ẋ∗)− f(x∗, ẋ∗)

)
.

Hence we obtain (2.38).

If we are interested to find sufficient condition of optimality for the problem
(2.34), since the dynamics is linear, remark 2.7 implies

Remark 2.10. Let us consider an extremal x∗ for the problem (2.34) in the
assumption of theorem of Euler. Suppose that x∗ satisfies the transversality
conditions. If, for every t ∈ [t0, t1], the function f is concave on the variable x
and ẋ, then x∗ is optimal.
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2.5 Examples and applications

Example 2.5.1. Consider9 
max

∫ 1

0
(x− u2) dt

ẋ = u
x(0) = 2

1st method: Clearly the Hamiltonian is H = x− u2 + λu (note that the extremal is certainly
normal) and theorem 2.3 implies

∂H

∂u
= 0 ⇒ −2u∗ + λ∗ = 0 (2.39)

∂H

∂x
= −λ̇∗ ⇒ 1 = −λ̇∗ (2.40)

∂H

∂λ
= ẋ∗ ⇒ ẋ∗ = u∗ (2.41)

λ∗(1) = 0 (2.42)

Equations (2.40) and (2.42) give λ∗ = 1− t; consequently, by (2.39) we have u∗ = (1− t)/2;
since the dynamics is linear, sure the previous control u∗ is admissible (see Proposition 1.1).
Finally, since the Hamiltonian H is concave in x and u, the sufficient conditions of Mangasarian
in theorem 2.4 guarantees that the extremal u∗ is optimal.

If we are interested to find the optimal trajectory, the initial condition and (2.41) give
x∗ = (2t− t2)/4 + 2.

2nd method: The problem is, clearly, of calculus of variations, i.e.max

∫ 1

0
(x− ẋ2) dt

x(0) = 2

The necessary condition of Euler (2.35) and the transversality condition give

dfẋ

dt
(t, x∗, ẋ∗) = fx(t, x∗, ẋ∗) ⇒ −2ẍ∗ = 1

⇒ x∗(t) = −
1

4
t2 + at+ b, ∀a, b ∈ R

fẋ(1, x∗(1), ẋ∗(1)) = 0 ⇒ −2ẋ∗(1) = 0

An easy calculation, using the initial condition x(0) = 2, implies x∗(t) = −t2/4 + t/2 + 2.
Since the function (x, ẋ) 7→ (x− ẋ2) is concave, then x∗ is really the maximum of the problem.

Example 2.5.2. Consider10 
max

∫ 2

0
(2x− 4u) dt

ẋ = x+ u
x(0) = 5
0 ≤ u ≤ 2

Let us consider the Hamiltonian H = 2x− 4u+ λ(x+ u) (note that the extremal is certainly
normal). The theorem of Pontryagin gives

H(t, x∗, u∗, λ∗) = max
v∈[0,2]

H(t, x∗, v, λ∗) ⇒

⇒ 2x∗ − 4u∗ + λ∗(x∗ + u∗) = max
v∈[0,2]

(2x∗ − 4v + λ∗(x∗ + v)) (2.43)

∂H

∂x
= −λ̇∗ ⇒ 2 + λ∗ = −λ̇∗ (2.44)

∂H

∂λ
= ẋ∗ ⇒ ẋ∗ = x∗ + u∗ (2.45)

λ∗(2) = 0 (2.46)

9In the example 5.5.1 we solve the same problem with the dynamics programming.
10In the example 5.5.3 we solve the same problem with the dynamics programming.
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From (2.43) we have, for every t ∈ [0, 2],

u∗(t)(λ∗(t)− 4) = max
v∈[0,2]

(v(λ∗(t)− 4))

and hence

u∗(t) =

 2 for λ∗(t)− 4 > 0,
0 for λ∗(t)− 4 < 0,
? for λ∗(t)− 4 = 0.

(2.47)

(2.44) implies λ∗(t) = ae−t − 2, ∀a ∈ R : using (2.46) we obtain

λ∗(t) = 2(e2−t − 1). (2.48)

Since λ∗(t) > 4 if and only if t ∈ [0, 2− log 3), the extremal control is

u∗(t) =

{
2 for 0 ≤ t ≤ 2− log 3,
0 for 2− log 3 < t ≤ 2.

(2.49)

We remark that the value of the function u∗ in t = 2− log 3 is irrelevant. Since the dynamics
is linear, the previous control u∗ is admissible (see Proposition 1.1). Finally, the Hamiltonian
function H is concave in (x, u) for every λ fixed, and hence u∗ is optimal.

If we are interested to find the optimal trajectory, the relations (2.45) and (2.49), and the
initial condition give us to solve the ODE{

ẋ∗ = x∗ + 2 in [0, 2− log 3)
x(0) = 5

(2.50)

The solution is x∗(t) = 7et − 2. Taking into account that the trajectory is a continuous
function, by (2.50) we have x∗(2 − log 3) = 7e2−log 3 − 2 = 7e2/3 − 2. Hence the relations
(2.45) and (2.49) give us to solve the ODE{

ẋ∗ = x∗ in [2− log 3, 2]
x(2− log 3) = 7e2/3− 2

We obtain

x∗(t) =

{
7et − 2 for 0 ≤ t ≤ 2− log 3,
(7e2 − 6)et−2 for 2− log 3 < t ≤ 2.

(2.51)

t
0

u

2-log 3 2

2

t
0

x

2-log 3 2

5

We note that an easy computation gives H(t, x∗(t), u∗(t), λ∗(t)) = 14e2 − 12 for all t ∈ [0, 2].

4

Example 2.5.3. Find the optimal tern for
max

∫ 4

0
3xdt

ẋ = x+ u
x(0) = 0
x(4) = 3e4/2
0 ≤ u ≤ 2

Let us consider the Hamiltonian H = 3λ0x+λ(x+u); note that it is not possible to guarantee
that the extremal is normal, since the the trajectory is fixed in the initial and in the final
time. The theorem of Pontryagin gives11

(λ∗0, λ
∗) 6= (0, 0), λ∗0 ∈ {0, 1} (2.52)

H(t, x∗, u∗, λ∗0, λ
∗) = max

v∈[0,2]
H(t, x∗, v, λ∗0, λ

∗) ⇒ λ∗u∗ = max
v∈[0,2]

λ∗v

11Regarding λ∗0 in (2.52), let us recall Remark 2.1.
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⇒ u∗(t) =

 2 for λ∗(t) > 0,
0 for λ∗(t) < 0,
? for λ∗(t) = 0.

(2.53)

∂H

∂x
= −λ̇∗ ⇒ 3λ0 + λ∗ = −λ̇∗ ⇒ λ∗(t) = ae−t − 3λ∗0, ∀a ∈ R (2.54)

∂H

∂λ
= ẋ∗ ⇒ ẋ∗ = x∗ + u∗ (2.55)

First let us suppose that λ∗0 = 0 : regarding a in (2.54), we have the following three possibilities:

◦ if a > 0, then λ∗(t) > 0 in [0, 4] and (2.53) implies u∗(t) = 2 in [0, 4]; in this case the
dynamics is ẋ∗ = x∗ + 2 in [0, 4] and using the initial condition on the trajectory we
obtain x∗(t) = 2(et − 1): this contradicts the requirement x∗(4) = 3e4/2, i.e. the final
condition on the trajectory. Hence a > 0 is impossible;

◦ if a = 0, then λ∗(t) = 0 in [0, 4] and this is impossible by (2.52);

◦ if a < 0, then λ∗(t) < 0 in [0, 4] and (2.53) implies u∗(t) = 0 in [0, 4]; in this case the
dynamics is ẋ∗ = x∗ in [0, 4] and using the initial condition on the trajectory we obtain
x∗(t) = 0: this contradicts the requirement x∗(4) = 3e4/2, i.e. the final condition on
the trajectory. Hence a < 0 is impossible.

Hence we are in the position to guarantee that λ∗0 = 1.
Note that we have to maximize the area below the graph of the function t 7→ 3x(t) in the

interval [0, 4], with the value of such function fixed and positive in t = 0 and t = 4; hence it is
reasonable that the function x is increasing in an interval of the type [0, α) and it is reasonable
to suppose that there exists a positive constant α such that λ∗(t) > 0 for t ∈ [0, α). In this
case, (2.53) gives u∗ = 2. Hence we have to solve the ODE{

ẋ∗ = x∗ + 2 in [0, α)
x(0) = 0

(2.56)

The solution is x∗(t) = 2(et− 1). We note that for such function we have x∗(4) = 2(e4− 1) >
3e4/2; hence it is not possible that α ≥ 4 : we suppose that λ∗(t) < 0 for t ∈ (α, 4]. Taking
into account the final condition on the trajectory, we have to solve the ODE{

ẋ∗ = x∗ in (α, 4]
x(4) = 3e4/2

(2.57)

The solution is x∗(t) = 3et/2. We do not know the point α, but certainly the trajectory is
continuous, i.e.

lim
t→α−

x∗(t) = lim
t→α+

x∗(t) ⇒ lim
t→α−

2(et − 1) = lim
t→α+

3et/2

that implies α = ln 4. Moreover, since the multiplier is continuous, we are in the position
to find the constant a in (2.54): more precisely λ∗(t) = 0 for t = ln 4, implies a = 12, i.e.
λ∗(t) = 12e−t − 3. Note that the previous assumptions λ∗ > 0 in [0, ln 4) and λ∗ < 0 in
(ln 4, 4] are verified. These calculations give that u∗ is admissible.

Finally, the dynamics and the running cost is linear (in x and u) and hence the sufficient
condition are satisfied. The optimal tern is

u∗(t) =

{
2 for t ∈ [0, ln 4),
0 for t ∈ [ln 4, 4]

(2.58)

x∗(t) =

{
2(et − 1) for t ∈ [0, ln 4),
3et/2 for t ∈ [ln 4, 4]

λ∗(t) = 12e−t − 3. We note that an easy computation gives H(t, x∗(t), u∗(t), λ∗0, λ
∗(t)) = 18

for all t ∈ [0, 4]. 4

Example 2.5.4. 
min

∫ e

1
(3ẋ+ tẋ2) dt

x(1) = 1
x(e) = 1

It is a calculus of variation problem. Since f = 3ẋ+ tẋ2 does not depend on x, the necessary
condition of Euler implies

3 + 2tẋ = c,
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where c is a constant. Hence ẋ(t) = a/t, ∀a ∈ R, implies the solution x(t) = a ln t+b, ∀a, b ∈ R.
Using the initial and the final conditions we obtain the extremal x∗(t) = 1. Since f is convex
in x and ẋ, the extremal is the minimum of the problem.

4

Example 2.5.5. min

∫ √2

0
(x2 − xẋ+ 2ẋ2) dt

x(0) = 1

It is a calculus of variation problem; the necessary condition of Euler (2.35) gives

d

dt
fẋ = fx ⇒ 4ẍ− ẋ = 2x− ẋ

⇒ 2ẍ− x = 0 ⇒ x∗(t) = aet/
√
2 + be−t/

√
2,

for every a, b ∈ R. Hence the initial condition x(0) = 1 gives b = 1 − a. Since there does not
exist a final condition on the trajectory, we have to satisfy the transversality condition, i.e.

fẋ(t1, x
∗(t1), ẋ∗(t1)) = 0 ⇒ 4ẋ∗(

√
2)− x∗(

√
2) = 0

⇒ 4

[
ae
√

2
−

1− a
e
√

2

]
−
(
ae+

1− a
e

)
= 0

Hence

x∗(t) =
(4 +

√
2)et/

√
2 + (4e2 − e2

√
2)e−t/

√
2

4 +
√

2 + 4e2 − e2
√

2
.

The function f(t, x, ẋ) = x2 − xẋ + 2ẋ2 is convex in the variable x and ẋ, since its hessian
matrix with respect (x, ẋ)

d2f =

(
2 −1

−1 4

)
,

is positive definite. Hence x∗ is minimum. 4

Example 2.5.6. min

∫ 2

1
(t2ẋ2 + 2x2) dt

x(2) = 17

It is a calculus of variation problem; the necessary condition of Euler (2.35) gives

d

dt
fẋ = fx ⇒ t2ẍ+ 2tẋ− 2x = 0.

The homogeneity suggests to set t = es and y(s) = x(es) : considering the derivative of this
last expression with respect to s we obtain

y′(s) = ẋ(es)es = tẋ(t) and y′′(s) = ẍ(es)e2s + ẋ(es)es = t2ẍ(t) + tẋ(t).

Hence the Euler equation now is
y′′ + y′ − 2y = 0.

This implies y(s) = aes + be−2s, with a, b constants. The relation t = es gives

x∗(t) = at+
b

t2
.

Note that ẋ∗(s) = a − 2b
t3
. The final condition x∗(2) = 17 and the transversality condition

fẋ(1, x∗(1), ẋ∗(1)) = 0 give, respectively,

17 = 2a+
b

4
and 2(a− 2b) = 0.

Hence x∗(t) = 8t + 4
t2

is the unique extremal function which satisfies the transversality

condition and the final condition. The function f(t, x, ẋ) = t2ẋ2 + 2x2 is convex in the

variable x and ẋ and x∗ is clearly the minimum. 4

The following example gives an abnormal control.
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Example 2.5.7. Let us consider 
max

∫ 1

0
udt

ẋ = (u− u2)2

x(0) = 0
x(1) = 0
0 ≤ u ≤ 2

We prove that u∗ = 1 is an abnormal extremal and optimal. Clearly H = λ0u+ λ(u− u2)2;
the PMP and the adjoint equation give

u∗(t) ∈ arg max
v∈[0,2]

[λ∗0v + λ∗(t)(v − v2)2], λ̇∗ = 0.

This implies that λ∗ = k, with k constant; hence u∗ is constant. If we define the function
φ(v) = λ∗0v + k(v − v2)2, the study of the sign of φ′ depends on λ∗0 and k and it is not easy
to obtain some information on the max.

However, we note that the initial and the final conditions on the trajectory and the fact
that ẋ = (u − u2)2 ≥ 0, implies that ẋ = 0 a.e.; hence if a control u is admissible, then we
have u(t) ∈ {0, 1} a.e. This implies that considering u∗ = 1, for every admissible control u,∫ 1

0
u∗(t) dt =

∫ 1

0
1 dt ≥

∫ 1

0
u(t) dt;

hence u∗ = 1 is maximum.
Now, since u∗ is optimal, then it satisfies the PMP: hence we have

1 = u∗(t) ∈ arg max
v∈[0,2]

φ(v).

Since we realize the previous max in an interior point of the interval [0, 2], we necessarily have

φ′(1) = 0: an easy calculation gives λ∗0 = 0. This proves that u∗ is abnormal. 4

2.5.1 The curve of minimal length

We have to solve the calculus of variation problem (1.1). Since the function
f(t, x, ẋ) =

√
1 + ẋ2 does not depend on x, the necessary condition of Euler

(2.35) gives

fẋ = a ⇒ ẋ√
1 + ẋ2

= a

⇒ ẋ = c ⇒ x∗(t) = ct+ d,

with a, b, c ∈ R constants. The conditions x(0) = 0 and x(1) = b imply x∗(t) =
bt. The function f is constant and hence convex in x and it is convex in ẋ since
∂2f
∂ẋ2 = (1 + ẋ2)−3/2 > 0. This proves that the line x∗ is the solution of the
problem.

2.5.2 A problem of business strategy I

We solve12 the model presented in the example 1.1.2, formulated with (1.3).
We consider the Hamiltonian H = (1− u)x+ λxu : the theorem of Pontryagin
implies that

H(t, x∗, u∗, λ∗) = max
v∈[0,1]

H(t, x∗, v, λ∗)

⇒ (1− u∗)x∗ + λ∗x∗u∗ = max
v∈[0,1]

[(1− v)x∗ + λ∗x∗v]

12In subsection 5.5.1 we solve the same problem with the Dynamic Programming approach.
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⇒ u∗x∗(λ∗ − 1) = max
v∈[0,1]

[vx∗(λ∗ − 1)] (2.59)

∂H

∂x
= −λ̇∗ ⇒ 1− u∗ + λ∗u∗ = −λ̇∗ (2.60)

∂H

∂λ
= ẋ∗ ⇒ ẋ∗ = x∗u∗ (2.61)

λ∗(T ) = 0 (2.62)

Since x∗ is continuous, x∗(0) = α > 0 and u∗ ≥ 0, from (2.61) we obtain

ẋ∗ = x∗u∗ ≥ 0, (2.63)

in [0, T ]. Hence x∗(t) ≥ α for all t ∈ [0, T ]. Relation (2.59) becomes

u∗(λ∗ − 1) = max
v∈[0,1]

v(λ∗ − 1).

Hence

u∗(t) =

 1 if λ∗(t)− 1 > 0,
0 if λ∗(t)− 1 < 0,
? if λ∗(t)− 1 = 0.

(2.64)

Since the multiplier is a continuous function that satisfies (2.62), there exists
τ ′ ∈ [0, T ) such that

λ∗(t) < 1, ∀t ∈ [τ ′, T ] (2.65)

Using (2.64) and (2.65), we have to solve the ODE{
λ̇∗ = −1 in [τ ′, T ]
λ∗(T ) = 0

that implies
λ∗(t) = T − t, ∀t ∈ [τ ′, T ]. (2.66)

Clearly, we have two cases: T ≤ 1 (case A) and T > 1 (case B).

l

t0
T

1

1

l
*

l

t0
T

1

T-1

l
*

??

The case T ≤ 1 and the case T > 1.

Case A: T ≤ 1.
In this situation, we obtain τ ′ = 0 and hence u∗ = 0 and x∗ = α in [0, T ].

u

t0
T 1

u
*

x

t0
T 1

a

*x

l

t0
T

1

1

l
*
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From an economic point of view, if the time horizon is short the optimal strategy
is to sell all our production without any investment. Note that the strategy u∗

that we have found is an extremal: in order to guarantee the sufficient conditions
for such extremal we refer the reader to the case B.
Case B: T ≥ 1.
In this situation, taking into account (2.64), we have τ ′ = T − 1. Hence

λ∗(T − 1) = 1. (2.67)

First of all, if there exists an interval I ⊂ [0, T − 1) such that λ∗(t) < 1, then
u∗ = 0 and the (2.60) is λ̇∗ = −1 : this is impossible since λ∗(T − 1) = 1.
Secondly, if there exists an interval I ⊂ [0, T − 1) such that λ∗(t) = 1, then
λ̇∗ = 0 and the (2.60) is 1 = 0 : this is impossible.
Let us suppose that there exists an interval I = [τ ′′, T − 1) ⊂ [0, T − 1) such
that λ∗(t) > 1 : using (2.64), we have to solve the ODE{

λ̇∗ + λ∗ = 0 in [τ ′′, T − 1]
λ∗(T − 1) = 1

that implies
λ∗(t) = eT−t−1, for t ∈ [0, T − 1].

We remark the choice τ ′′ = 0 is consistent with all the necessary conditions.
Hence (2.64) gives

u∗(t) =

{
1 for 0 ≤ t ≤ T − 1,
0 for T − 1 < t ≤ T (2.68)

The continuity of the function x∗, the initial condition x(0) = α and the dy-
namics imply {

ẋ∗ = x∗ in [0, T − 1]
x∗(0) = α

that implies x∗(t) = αet; hence{
ẋ∗ = 0 in [T − 1, T ]
x∗(T − 1) = αeT−1

that implies x∗(t) = αeT−1. Consequently

x∗(t) =

{
αet for 0 ≤ t ≤ T − 1,
αeT−1 for T − 1 < t ≤ T

Recalling that

λ∗(t) =

{
eT−t−1 for 0 ≤ t ≤ T − 1,
T − t for T − 1 < t ≤ T

we have

u

u
*

t
0

T

1

T-1

x

x

t
0

TT-1

*

a

l

t
0

T

1

T-1

l
*
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In an economic situation where the choice of business strategy can be carried
out in a medium or long term, the optimal strategy is to direct all output to
increase production and then sell everything to make profit in the last period.

We remark, that we have to prove some sufficient conditions for the tern
(x∗, u∗, λ∗) in order to guarantee that u∗ is really the optimal strategy. An
easy computation shows that the Hamiltonian is not concave. We study the
maximized Hamiltonian (2.28): taking into account that x(t) ≥ α > 0 we
obtain

H0(t, x, λ) = max
v∈[0,1]

[(1− v)x+ λxv] = x+ x max
v∈[0,1]

[(λ− 1)v]

In order to apply theorem 2.5, using the expression of λ∗ we obtain

H0(t, x, λ∗(t)) =

{
eT−t−1x if t ∈ [0, T − 1)
x if t ∈ [T − 1, T ]

Note that, for every fixed t the function x 7→ H0(t, x, λ∗(t)) is concave with
respect to x: the sufficient condition of Arrow holds. We note that an easy
computation gives H(t, x∗(t), u∗(t), λ∗(t)) = αeT−1 for all t ∈ [0, T ].

2.5.3 A two-sector model

This model has some similarities with the previous one and it is proposed in
[29].

Consider an economy consisting of two sectors where sector no. 1 produces
investment goods, sector no. 2 produces consumption goods. Let xi(t) the
production in sector no. i per unit of time, i = 1, 2, and let u(t) be the proportion
of investments allocated to sector no. 1. We assume that ẋ1 = αux1 and
ẋ2 = α(1−u)x1 where α is a positive constant. Hence, the increase in production
per unit of time in each sector is assumed to be proportional to investment
allocated to the sector. By definition, 0 ≤ u(t) ≤ 1, and if the planning period
starts at t = 0, x1(0) and x2(0) are historically given. In this situation a number
of optimal control problems could be investigated. Let us, in particular, consider
the problem of maximizing the total consumption in a given planning period
[0, T ]. Our precise problem is as follows:

max
u∈C

∫ T

0

x2 dt

ẋ1 = αux1
ẋ2 = α(1− u)x1
x1(0) = a1
x2(0) = a2
C = {u : [0, T ]→ [0, 1] ⊂ R, u admissible}

where α, a1, a2 and T are positive and fixed. We study the case T > 2
α .

Note that we are in the situation of the simplest problem of OC and we are
in the position to guarantee that λ∗0 = 1. Hence we consider the Hamiltonian
H = x2 + λ1αux1 + λ2α(1− u)x1; the theorem of Pontryagin implies that

u∗ ∈ arg max
v∈[0,1]

H(t, x∗, v, λ∗) = arg max
v∈[0,1]

[x∗2 + λ∗1αvx
∗
1 + λ∗2α(1− v)x∗1]
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⇒ u∗ ∈ arg max
v∈[0,1]

[(λ∗1 − λ∗2)αvx∗1] (2.69)

∂H

∂x1
= −λ̇∗1 ⇒ −λ∗1u∗α− λ∗2α(1− u∗) = λ̇∗1 (2.70)

∂H

∂x2
= −λ̇∗2 ⇒ −1 = λ̇∗2 (2.71)

λ∗1(T ) = 0 (2.72)

λ∗2(T ) = 0 (2.73)

Clearly (2.71) and (2.73) give us λ∗2(t) = T − t. Moreover (2.72) and (2.73) in
equation (2.70) give λ̇∗1(T ) = 0. We note that

λ∗1(T ) = λ∗2(T ) = 0, λ̇∗1(T ) = 0, λ̇∗2(T ) = −1

and the continuity of the multiplier (λ∗1, λ
∗
2) implies that there exists τ < T such

that
T − t = λ∗2(t) > λ∗1(t), ∀t ∈ (τ, T ). (2.74)

Since x∗1 is continuous, using the dynamics ẋ1 = αux1 x
∗
1(0) = a1 > 0 and

u∗ ≥ 0, we have ẋ1(t) ≥ 0 and hence x∗1(t) ≥ a1 > 0; from (2.69) we obtain,
since α > 0,

u∗(t) ∈ arg max
v∈[0,1]

(λ∗1(t)− T + t)v =

 1 if λ∗1(t) > T − t
? if λ∗1(t) = T − t
0 if λ∗1(t) < T − t

(2.75)

Hence (2.74) and (2.75) imply that, in (τ, T ], we have u∗(t) = 0. Now (2.70)
gives, taking into account (2.73),

λ̇∗1 = −λ∗2α ⇒ λ∗1(t) =
α

2
(t− T )2, ∀t ∈ (τ, T ].

An easy computation shows that the relation in (2.74) holds for τ := T − 2
α .

Now let us suppose that there exists τ ′ < τ such that

T − t = λ∗2(t) < λ∗1(t), ∀t ∈ (τ ′, τ). (2.76)

By (2.75) we obtain that u∗(t) = 1 for t ∈ (τ ′, τ). Equation (2.70) gives, taking
into account the continuity of λ∗2 in the point τ,

λ̇∗1 = −λ∗1α ⇒ λ∗1(t) =
2

α
e−α(t−T+2/α), ∀t ∈ (τ ′, τ ].

Since λ∗1(T − 2/α) = λ∗2(T − 2/α), since

lim
t→τ−

λ̇∗1(t) = −2 < −1 = λ̇∗2(τ),

and since λ∗2 and λ∗1 are two convex functions in t ≤ τ, we have that assumption
(2.76) holds with τ ′ = 0. Using the dynamics and the initial condition on the
trajectory, we obtain

u∗(t) =

{
1 for 0 ≤ t ≤ T − 2

α ,
0 for T − 2

α < t ≤ T
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x∗1(t) =

{
a1e

αt for 0 ≤ t ≤ T − 2
α ,

a1e
αT−2 for T − 2

α < t ≤ T

x∗2(t) =

{
a2 for 0 ≤ t ≤ T − 2

α ,
αa1e

αT−2(t− T + 2/α) + a2 for T − 2
α < t ≤ T

λ∗1(t) =


2

α
e−α(t−T+2/α) for 0 ≤ t ≤ T − 2

α ,
α

2
(t− T )2 for T − 2

α < t ≤ T

λ∗2(t) = T − t.

We note that, for every fixed t, the function (x1, x2, u) 7→ H(t, x1, x2, u, λ
∗
1(t), λ∗2(t))

is not concave and we are not in the position to apply the sufficient condition
by Mangasarian (see Theorem 2.4).
• In order to guarantee some sufficient conditions we use the Arrow’s sufficient
condition. Taking into account that x1(t) ≥ a1 > 0 for every trajectory, we
construct the maximized Hamiltonian H0 = H0(t, x1, x2, λ

∗
1(t), λ∗2(t)), for x1 >

0, as follows

H0 = max
v∈[0,1]

[x2 + λ∗1(t)αvx1 + λ∗2(t)α(1− v)x1]

= x2 + λ∗2(t)αx1 + αx1 max
v∈[0,1]

(λ∗1(t)− λ∗2(t))v

=

{
x2 + λ∗2(t)αx1 + x1

(
2e−α(t−T+2/α) + α(t− T )

)
for 0 ≤ t ≤ T − 2

α ,
x2 + λ∗2(t)αx1 for T − 2

α < t ≤ T

Note that, for every fixed t the function (x1, x2) 7→ H0(t, x1, x2, λ
∗
1(t), λ∗2(t)) is

concave: the sufficient condition of Arrow holds.
•• Instead of using a sufficient condition, we can prove the existence of a optimal
control (see section 3.4). More precisely, taking into account Theorem 3.8 and
studying its assumptions we have a compact control set [0, 1], a closed target
set T = {T} × R2; moreover, for the dynamics we have the condition

|ẋ| =
∣∣∣∣( αux1

α(1− u)x1

)∣∣∣∣ ≤ α√2|x1| ≤ α
√

2|x|

and, for every (t, x1, x2) with x1 ≥ 0 (but x1 < 0 is similar) we have that

F(t,x1,x2) = {(y1, y2, z) : y1 = αux1, y2 = α(1− u)x1, z ≤ x2, u ∈ [0, 1]}
= [0, αx1]× [0, αx1]× (−∞, x2],

is a convex set. Hence Theorem 3.8 guarantees that the optimal control exists.
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2.5.4 A problem of inventory and production I.

A firm has received an order for B > 0 units of product to be delivery by time
T (fixed). We are looking for a plane of production for filling the order at
the specified delivery data at minimum cost (see [18])13. Let x = x(t) be the
inventory accumulated by time t : since such inventory level, at any moment, is
the cumulated past production and taking into account that x(0) = 0, we have
that

x(t) =

∫ t

0

p(s) ds,

where p = p(t) is the production at time t; hence the rate of change of inventory
ẋ is the production and is reasonable to have ẋ = p.

The unit production cost c rises linearly with the production level, i.e. the
total cost of production is cp = αp2 = αẋ2; the unit cost of holding inventory
per unit time is β constant. Hence the total cost, at time t is αu2 + βx with α
and β positive constants, and u = ẋ. Our strategy problem is14

min
u

∫ T

0

(αu2 + βx) dt

ẋ = u
x(0) = 0
x(T ) = B > 0
u ≥ 0

(2.77)

Let us consider the Hamiltonian H(t, x, u, λ0, λ) = λ0(αu2 + βx) + λu : we are
not in the situation to guarantee that the extremal is normal. The necessary
conditions are

(λ0, λ) 6= (0, 0), λ0 ∈ {0, 1}, (2.78)

u∗(t) ∈ arg min
v≥0

(αλ0v
2 + βλ0x+ λv) = arg min

v≥0
(αλ0v

2 + λv) (2.79)

λ̇ = −βλ0 ⇒ λ = −βλ0t+ a, (2.80)

for some constant a.
First let us suppose that λ0 = 0 : regarding a in (2.80), we have the following

three possibilities:

◦ if a > 0, then λ(t) > 0 in [0, T ] and (2.79) implies u∗(t) = 0 in [0, T ]; in
this case the dynamics is ẋ∗ = 0 in [0, T ] and using the initial condition
on the trajectory we obtain x∗(t) = 0: this contradicts the requirement
x∗(T ) = B > 0, i.e. the final condition on the trajectory. Hence a > 0 is
impossible;

◦ if a = 0, then λ(t) = 0 in [0, T ] and this is impossible by (2.78);

◦ if a < 0, then λ(t) < 0 in [0, T ] and the min in (2.79) does not exist; hence
in order to obtain an optimal control this is not the case.

Hence we are in the position to guarantee that λ0 = 1.
Hence (2.79) gives these situations

13In subsection 5.5.2 we solve the same model with the Dynamic Programming.
14We will solve a version of this problem in subsection 5.5.2 with the Dynamic Programming.
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y

v

y= v + va l2

-l/(2a)

for l<0 y

v

y= va
2

for l=0
y

v

y= v + va l2

for l>0

-l a)/(2

This implies

u(t) =

{
0 if λ(t) ≥ 0

−λ(t)2α if λ(t) < 0

Taking into account (2.80), we have the
three different situations as in the pic-
ture here on the right, where τ = a

β .

First, a ≥ Tβ implies u = 0 in [0, T ]
and hence, using the initial condition,
x = 0 in [0, T ]; this is in contradiction
with x(T ) = B > 0.

Second, 0 < a < Tβ implies

l

t

l=-bt+a, for a<0

T

l=-b bt+a, for 0<a<T

l=-b bt+a, for a>T

t=a/b

u(t) =

{
0 if 0 ≤ t ≤ τ
−λ(t)2α = βt−a

2α = β(t−τ)
2α if τ < t ≤ T

Hence, using again the initial condition, x(t) = 0 in [0, τ ] and, using the conti-
nuity of x in t = τ,

x(t) =
β

4α
(t− τ)2 in (τ, T ];

the final condition x(T ) = B gives τ = T − 2
√

αB
β . Moreover the condition

0 < a < Tβ gives T > 2
√

αB
β .

Finally, the case a ≤ 0 implies u(t) = −λ(t)2α = βt−a
2α in [0, T ] and hence

x(t) =
β

4α
t2 − a

2α
t+ d in [0, T ],

for some constant d : the conditions x(0) = 0 and x(T ) = B give

x(t) =
β

4α
t2 − 4αB − βT 2

4αT
t

for T < 2
√

αB
β . Summing up, we have

• if T > 2
√

αB
β , then with τ = T − 2

√
αB
β

u∗(t) =

{
0 if 0 ≤ t < τ
β

2α
(t− τ) if τ ≤ t ≤ T and x∗(t) =

{
0 if 0 ≤ t < τ
β

4α
(t− τ)

2
if τ ≤ t ≤ T
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t
t

u

T

x

t

t T

B

• if T ≤ 2
√

αB
β , then

u∗(t) =
β

2α
t+

4αB − βT 2

4αT
and x∗(t) =

β

4α
t2 +

4αB − βT 2

4αT
t

t

u

T

x

t

T

B

In both the cases, we have a normal extremal and a convex Hamiltonian: hence
such extremals are optimal.

2.6 Singular and bang-bang controls

The Pontryagin Maximum Principle (2.2) gives us, when it is possible, the value
of the u∗ at the point τ ∈ [t0, t1] : more precisely, for every τ ∈ [t0, t1] we are
looking for a unique point w = u∗(τ) belonging to the control set U such that

H(τ,x∗(τ),w, λ∗0,λ
∗(τ)) ≥ H(τ,x∗(τ),v, λ∗0,λ

∗(τ)) ∀v ∈ U. (2.81)

In some circumstances, it is possible that using only the PMP can not be found
the value to assign at u∗ at the point τ ∈ [t0, t1] : examples of this situation
we have found in (2.47), (2.53) and (2.64). Now, let us consider the set T of
the points τ ∈ [t0, t1] such that PMP gives no information about the value of
the optimal control u∗ at the point τ, i.e. a point τ ∈ T if and only if there no
exists a unique w = w(τ) such that it satisfies (2.81).

We say that an optimal control is singular if T contains some interval, with
non empty interior, of [t0, t1].

In optimal control problems, it is sometimes the case that a control is re-
stricted to be between a lower and an upper bound (for example when the
control set U ⊂ R is compact). In general, we say that the optimal control u∗

is bang-bang if
u∗(t) ∈ ∂U, ∀t.

In this case, if u∗ switches from one a point in ∂U to another point in ∂U at
certain times τ̃ , the time τ̃ is called switching point. For example
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� in example 2.5.2, we know that the control u∗ in (2.49) is optimal: the
value of such control is, at all times, on the boundary ∂U = {0, 2} of the
control set U = [0, 2]; at time τ̃ = 2− log 3 such optimal control switches
from 2 to 0. Hence 2− log 3 is a switching point and u∗ is bang-bang;

� in example 2.5.3, the optimal control u∗ in (2.53) is bang-bang since its
value belongs, at all times, to ∂U = {0, 2} of the control set U = [0, 2];
the time log 4 is a switching point;

� in the case B of example 1.1.2, the optimal control u∗ in (2.68) is bang-
bang since its value belongs, at all times, to ∂U = {0, 1} of the control set
U = [0, 1]; the time T − 1 is a switching point.

2.6.1 The building of a mountain road: a singular control

We have to solve the problem (1.4) presented in example 1.1.3 (see [23] and
[18]). We note that there no exist initial or final conditions on the trajectory
and hence we have to satisfy two transversality conditions for the multiplier.
The Hamiltonian is H = λ0(x− y)2 + λu; then

λ∗0(x∗ − y)2 + λ∗u∗ = min
v∈[−α,α]

[
λ∗0(x∗ − y)2 + λ∗v

]
⇒ λ∗u∗ = min

v∈[−α,α]
λ∗v (2.82)

∂H

∂x
= −λ̇∗ ⇒ λ̇∗ = −2λ∗0(x∗ − y) (2.83)

⇒ λ∗(t) = b− 2λ∗0

∫ t

t0

(x∗(s)− y(s)) ds, b ∈ R (2.84)

∂H

∂λ
= ẋ∗ ⇒ ẋ∗ = u∗ (2.85)

λ∗(t0) = λ∗(t1) = 0 (2.86)

We remark that (2.84) follows from the continuity of y and x. First of all, let
us prove that we can set λ∗0 = 1; if λ∗0 = 0, the adjoint equation (2.83) and
the transversality condition (2.86) give that λ∗(t) = 0: this is impossible since
(λ∗0, λ

∗) 6= (0, 0). Now, the “minimum” principle (2.82) implies

u∗(t) =

−α for λ∗(t) > 0,
α for λ∗(t) < 0,
??? for λ∗(t) = 0.

(2.87)

Relations (2.84) and (2.86) give

λ∗(t) = −2

∫ t

t0

(x∗(s)− y(s)) ds, ∀t ∈ [t0, t1] (2.88)∫ t1

t0

(x∗(s)− y(s)) ds = 0. (2.89)

Let us suppose that there exists an interval [c, d] ⊂ [t0, t1] such that λ∗ = 0:
clearly by (2.88) we have, for t ∈ [c, d],

0 = λ∗(t)
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= −2

∫ c

t0

(x∗(s)− y(s)) ds− 2

∫ t

c

(x∗(s)− y(s)) ds

= λ∗(c)− 2

∫ t

c

(x∗(s)− y(s)) ds ∀t ∈ [c, d]

and hence, since y and x∗ are continuous,

d

dt

(∫ t

c

(x∗(s)− y(s)) ds

)
= x∗(t)− y(t) = 0.

Hence, if λ∗(t) = 0 in [c, d], then x∗(t) = y(t) for all t ∈ [c, d] and, by (2.85),
u∗(t) = ẏ(t). We remark that in the set [c, d], the minimum principle has not
been useful in order to determinate the value of u∗. If there exists such interval
[c, d] ⊂ [t0, t1] where λ∗ is null, then the control is singular.

At this point, using (2.87), we are able to conclude that the trajectory x∗

associated to the extremal control u∗ is built with intervals where it coincides
with the ground, i.e. x∗(t) = y(t), and intervals where the slope of the road
is maximum, i.e. ẋ∗(t) ∈ {α,−α}. Moreover such extremal satisfies (2.89).
Finally, we remark that the Hamiltonian is convex with respect to x and u, for
every fixed t : hence the extremal is really a minimum for the problem.

Let us give three examples.

Example A: suppose that |ẏ(t)| ≤ α, ∀t ∈ [t0, t1] :

x

x =y

t

*

t0 t1

l

l
*

tt0 t1

We obtain x∗ = y and the control is singular.

Example B: suppose that the slope ẏ of the ground is not contained, for all
t ∈ [t0, t1], in [−α, α] :

u

u
*

a

t

t0

t1

-a



40 CHAPTER 2. THE SIMPLEST PROBLEM OF OC

In the first picture on the left, the dotted line represents the ground y, the solid
represents the optimal road x∗ : we remark that, by (2.89), the area of the

region between the two mentioned lines is equal to zero if we take into account
the “sign” of such areas. The control is singular.

Example 2.6.1. Suppose that the equation of the ground is x(t) = et for t ∈ [−1, 1] and
the slope of such road must satisfy |ẋ(t)| ≤ 1.

We have to solve 
min
u

∫ 1

−1
(x− et)2 dt

ẋ = u
−1 ≤ u ≤ 1

We know, for the previous consideration and calculations, that for every t ∈ [−1, 1]

� one possibility is that x∗(t) = y(t) = et and λ(t) = 0, |ẋ∗(t)| = |u∗(t)| ≤ 1,

� the other possibility is that ẋ∗(t) = u∗(t) ∈ {−1,+1}.
We note that for t > 0 the second possibility can not happen because ẏ(t) > 1. Hence let us
consider the function

x∗(t) =

{
et for t ∈ [−1, α],
t+ eα − α for t ∈ (α, 1],

with α ∈ (−1, 0) such that (2.89) is satisfied:

x

t-1 1

y

x*

1

1

a

∫ 1

−1
(x∗(s)− y(s)) ds =

∫ 1

α
(s+ eα − α− es) ds

=
1

2
+ 2eα +

1

2
α2 − e− α− αeα = 0. (2.90)

For the continuous function h : [−1, 0]→ R, defined by

h(t) =
1

2
+ 2et +

1

2
t2 − e− t− tet,

we have

h(−1) =
−e2 + 2e+ 3

e
= −

(e− 3)(e+ 1)

e
> 0

h(0) =
5

2
− e < 0,

certainly there exists a point α ∈ (−1, 0) such that h(α) = 0 and hence (2.90) holds. Moreover,
since h′(t) = (et − 1)(1− t) < 0 in (0, 1), such point α is unique. Using (2.88), we are able to
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determinate the multiplier:

λ∗(t) =


0 if t ∈ [−1, α]

−2

∫ t

α
(s+ eα − α− es)ds =

=
1

2
(t2 − α2) + (eα − α)(t− α) + eα − et if t ∈ (α, 1]

Note that in the interval [−1, α] the PMP in (2.82) becomes

0 = min
v∈[−1,1]

0

and gives us no information. Hence u∗ is singular. 4

2.7 The multiplier as shadow price I: an exercise

Example 2.7.1. Consider, for every (τ, ξ) ∈ [0, 2]× [0,∞) fixed, the problem
min

∫ 2

τ

(u2 + x2) dt

ẋ = x+ u
x(τ) = ξ
u ≥ 0

a. For every fixed (τ, ξ), find the optimal tern (x∗, u∗, λ∗). Let us denote by
(x∗τ,ξ, u

∗
τ,ξ, λ

∗
τ,ξ) such tern.

b. Calculate

min
{u: ẋ=x+u, x(τ)=ξ, u≥0}

∫ 2

τ

(u2 + x2)dt =

∫ 2

τ

((u∗τ,ξ)
2 + (x∗τ,ξ)

2)dt

and denote with V (τ, ξ) such value.

c. For a given (τ, ξ), consider a point (t, x) ∈ [τ, 2] × [0,∞) on the optimal
trajectory x∗τ,ξ, i.e. x∗τ,ξ(t) = x.

x

t2t

x

x x* t= ( )t,x

x*
t,x

t

Consider the function V (τ, ξ) : [0, 2] × [0,∞) → R defined in b. and

compute
∂V

∂ξ
(t, x). What do you find ?
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Solution a. Let us consider the Hamiltonian H = u2+x2+λ(x+u); the theorem
of Pontryagin gives

H(t, x∗, u∗, λ∗) = min
v∈[0,∞)

H(t, x∗, v, λ∗)

⇒ u∗ ∈ arg min
v∈[0,∞)

(v2 + λ∗v) (2.91)

∂H

∂x
= −λ̇∗ ⇒ λ̇∗ = −λ∗ − 2x∗ (2.92)

λ∗(2) = 0 (2.93)

For every fixed t, the function v 7→ v2+λ∗v that we have to minimize represents
a parabola:

y

v
- /2l

*

y=v + vl2 *

y

v

y=v + vl2 *

y

v

y=v + vl2 *

- /2l
*

The case λ∗(t) < 0; the case λ∗(t) = 0; the case λ∗(t) > 0.

Since in (2.91) we have to minimize for v in [0,∞), we obtain

u∗(t) =

{
0 for λ∗(t) ≥ 0,
−λ∗(t)/2 for λ∗(t) < 0

(2.94)

Let us suppose that

λ∗(t) ≥ 0, t ∈ [τ, 2]. (2.95)

Then (2.94) implies that u∗ = 0 in [τ, 2] : from the dynamics we obtain

ẋ = x+ u ⇒ ẋ = x ⇒ x(t) = aet, ∀a ∈ R.

The initial condition on the trajectory gives x∗(t) = ξet−τ . The adjoint equation
(2.92) gives

λ̇∗ = −λ∗ − 2ξet−τ ⇒ λ∗(t) = be−t − ξet−τ .

By the condition (2.93) we obtain

λ∗(t) = ξ(e4−t−τ − et−τ ) (2.96)

Recalling that ξ ≥ 0, an easy computation shows that λ∗(t) ≥ 0, for every
t ≤ 2 : this is coherent with the assumption (2.95). Hence the tern

(u∗τ,ξ, x
∗
τ,ξ, λ

∗
τ,ξ) = (0, ξet−τ , ξ(e4−t−τ − et−τ )) (2.97)

satisfies the necessary condition of Pontryagin. In order to guarantee some
sufficient condition note that the Hamiltonian is clearly convex in (x, u): hence
u∗τ,ξ is optimal.
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Solution b. Clearly, by (2.97),

V (τ, ξ) = min
{u: ẋ=x+u, x(τ)=ξ, u≥0}

∫ 2

τ

(u2 + x2)dt

=

∫ 2

τ

((u∗τ,ξ)
2 + (x∗τ,ξ)

2)dt

=

∫ 2

τ

(02 + ξ2e2t−2τ )dt

=
ξ2

2
(e4−2τ − 1). (2.98)

Hence this is the optimal value for the problem, if we work with a trajectory
that starts at time τ from the point ξ.

Solution c. Since

V (τ ′, ξ′) =
(ξ′)2

2
(e4−2τ

′
− 1),

we have
∂V

∂ξ
(τ ′, ξ′) = ξ′(e4−2τ

′
− 1).

In particular, if we consider a point (t, x) ∈ [τ, 2] × [0,∞) on the optimal tra-
jectory x∗τ,ξ, i.e. using (2.97) the point (t, x) is such that

x = x∗τ,ξ(t) = ξet−τ ,

we obtain
∂V

∂ξ
(t, x) = ξet−τ (e4−2t − 1) = ξ(e4−t−τ − et−τ ).

Hence we have found that

∂V

∂ξ
(t, x∗τ,ξ(t)) = λ∗τ,ξ(t),

i.e.

Remark 2.11. The multiplier λ∗, at time t, expresses the sensitivity, the “shadow
price”, of the optimal value of the problem when we modify the initial data ξ,
along the optimal trajectory.

We will see in theorem 5.9 that this is a fundamental property that holds in the
general context and links the multiplier λ∗ of the variational approach to the
value function V of the dynamic programming. Two further comments on the
previous exercise:

1. The function V (τ, ξ) : [0, 2] × [0,∞) → R is called value function and is
the fundamental object of the dynamic programming. One of its property
is that V (2, ξ) = 0, ∀ξ.

2. Consider the points (τ, ξ) and (τ ′, ξ′) in [0, 2]× [0,∞) : we know that the
optimal trajectories are

x∗τ,ξ(t) = ξet−τ , x∗τ ′,ξ′(t) = ξ′et−τ
′
.
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Now consider (τ ′, ξ′) on the optimal trajectory x∗τ,ξ, i.e. the point (τ ′, ξ′)
is such that

ξ′ = x∗τ,ξ(τ
′) = ξeτ

′−τ .

The previous expressions give us that, with this particular choice of (τ ′, ξ′)

x∗τ ′,ξ′(t) = ξ′et−τ
′

= ξeτ
′−τet−τ

′
= ξet−τ = et−τ

′
= x∗τ,ξ(t).

Hence the optimal trajectory associated to the initial data (τ ′ξ′) (with
(τ ′ξ′) that belongs to the optimal trajectory associated to the initial data
(τ, ξ)), coincides with the optimal trajectory associated to the initial data
(τ, ξ). We will see that this is a fundamental property that holds in general:
“the second part of an optimal trajectory is again otpimal” is the Principle
of Bellman of dynamic programming (see Theorem 5.1).



Chapter 3

General problems of OC

In this chapter we will see more general problem then (2.1). In the literature
there are many books devoted to this study (see for example [30], [20], [28], [5],
[29]): however, the fundamental tool is the Theorem of Pontryagin that gives a
necessary and useful condition of optimality.

3.1 Problems of Bolza, of Mayer and of Lagrange

Starting from the problem (2.1), let us consider t0 fixed and T be fixed or free,
with T > t0. The problem 

J(u) = ψ(T,x(T ))
ẋ = g(t,x,u)
x(t0) = α
max
u∈C

J(u),

(3.1)

with ψ : [t0,∞)× Rn → R, is called OC problem of Mayer. The problem
J(u) =

∫ T

t0

f(t,x,u) dt+ ψ(T,x(T ))

ẋ = g(t,x,u)
x(t0) = α
max
u∈C

J(u),

(3.2)

is called OC of Bolza. The problem
J(u) =

∫ T

t0

f(t,x,u) dt

ẋ = g(t,x,u)
x(t0) = α
max
u∈C

J(u),

(3.3)

is called OC of Lagrange. We have the following result

Remark 3.1. The problems (3.1), (3.2) e (3.3) are equivalent.

45
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Clearly the problems (3.1) and (3.3) are particular cases of (3.2).
First, let us show how (3.2) can become a problem of Lagrange: since∫ T

t0

f(t,x,u) dt+ψ(T,x(T )) =

∫ T

t0

(
f(t,x,u) +

dψ(t,x(t))

dt

)
dt−ψ(t0,x(t0))

problem (3.2) becomes
J̃(u) =

∫ T

t0

(
f(t,x,u) +

∂ψ

∂t
(t,x) +∇xψ(t,x) · g(t,x,u)

)
dt

ẋ = g(t,x,u)
x(t0) = α
max
u∈C

J̃(u)

that is clearly of Lagrange.
Secondly, let us proof how (3.3) can become a problem of Mayer: we intro-

duce the new variable xn+1 defined by ẋn+1(t) = f(t,x,u) with the condition
xn+1(t0) = 0. Since

xn+1(T ) = xn+1(t0) +

∫ T

t0

f(t,x,u) dt,

problem (3.3) becomes
J(u) = xn+1(T )
(ẋ, ẋn+1) = (g(t,x,u), f(t,x,u))
(x(t0), xn+1(t0)) = (α, 0)
max
u∈C

J̃(u)

that is of Mayer.
Finally, we show how the problem (3.1) becomes a problem of Lagrange: let

us introduce the variable xn+1 as ẋn+1(t) = 0 with the condition xn+1(T ) =

xn+1(t0) = ψ(T,x(T ))
T−t0 . Problem (3.1) becomes

J(u) =

∫ T

t0

xn+1 dt

(ẋ, ẋn+1) = (g(t,x,u), 0)
x(t0) = α

xn+1(t0) = ψ(T,x(T ))
T−t0

max
u∈C

J̃(u)

that is of Lagrange.

3.2 Problems with fixed or free final time

3.2.1 Fixed final time

Let us consider f : [t0, t1] × Rn+k → R, ψ : Rn → R and let α ∈ Rn be fixed.
Let x = (x1, x2, . . . , xn) and let n1, n2 and n3 be non negative, fixed integer
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such that n1 + n2 + n3 = n. Let us consider the problem

max
u∈C

∫ t1

t0

f(t,x,u) dt+ ψ(x(t1))

ẋ = g(t,x,u)
x(t0) = α
xi(t1) free 1 ≤ i ≤ n1
xj(t1) ≥ βj with βj fixed n1 + 1 ≤ j ≤ n1 + n2
xl(t1) = βl with βl fixed n1 + n2 + 1 ≤ l ≤ n1 + n2 + n3
C = {u : [t0, t1]→ U, u admissible}

(3.4)

where t0 and t1 are fixed, and U ⊂ Rk is closed. Since xi(t1) is fixed for
n − n3 < i ≤ n, then the pay off function ψ depends only on xi(t1) with
1 ≤ i ≤ n− n3.
We have the following necessary condition, a generalization theorem 2.1 of Pon-
tryagin:

Theorem 3.1. Let us consider the problem (3.4) with f ∈ C1([t0, t1]×Rn+k), g ∈
C1([t0, t1]× Rn+k) and ψ ∈ C1(Rn).
Let u∗ be optimal control and x∗ be the associated trajectory.
Then there exists a multiplier (λ∗0,λ

∗), with

� λ∗0 ≥ 0 constant,

� λ∗ : [t0, T
∗]→ Rn continuous,

such that

i) the nontriviality of the multiplier holds;

ii) the Pontryagin Maximum Principle (2.2) holds,

iii) the adjoint equation (2.3) holds,

ivt1) the transversality condition is given by

• for 1 ≤ i ≤ n1, we have λ∗i (t1) = λ∗0
∂ψ

∂xi
(x∗(t1)),

• for n1 + 1 ≤ j ≤ n1 +n2, we have λ∗j (t1) ≥ λ∗0
∂ψ

∂xj
(x∗(t1)), x∗j (t1) ≥

βj and

(
λ∗j (t1)− λ∗0

∂ψ

∂xj
(x∗(t1))

)(
x∗j (t1)− βj

)
= 0.

We will give an idea of the proof in Theorem 3.4.
Using Remark 3.1, it is clear that a problem with final time fixed and value

of the trajectory in such final time free, it is possible to guarantee the normality
of the control as in Theorem 2.1. More precisely

Remark 3.2. Let us consider the problem (3.4) with n2 = n3 = 0, i.e. x(t1)
free. Then in Theorem 3.1 it is possible to guarantee that u∗ is normal, i.e.
λ∗0 = 1.

A sufficient condition for the problem (3.4), with a proof similar to the one
in theorem 2.4, is the following:
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Theorem 3.2. Let us consider the maximum problem (3.4) with f, g and ψ
in C1. Let the control set U be convex. Let u∗ be a normal admissible control;
let x∗ and (1,λ∗) be the associated trajectory and multiplier respectively. We
suppose that all the necessary conditions of theorem 3.1 hold.
Moreover, we suppose that

v) the functions (x,u) 7→ H(t,x,u,λ∗(t)) and x 7→ ψ(x) are concave func-
tions in the variables x and u, for all t ∈ [t0, t1] fixed.

Then u∗ is optimal.

We mention that the sufficient condition of Arrow works in this more general
situation (see Theorem 3.4 in [29]).

Autonomous problems

It is clear that the arguments of subsection 2.1 are true. Hence

Remark 3.3. In the assumption of Theorem 3.1, if the problem is autonomous,
then we have that in [t0, t1] (2.14) is true, i.e.

H(x∗(t),u∗(t), λ∗0,λ
∗(t)) = constant

3.2.2 Free final time

Let us consider f : [t0,∞) × Rn+k → R, g : [t0,∞) × Rn+k → R and ψ :
[t0,∞)×Rn → R, and let α ∈ Rn be fixed. Let x = (x1, x2, . . . , xn) and n1, n2

and n3 be non negative, fixed integer such that n1 + n2 + n3 = n. We consider
the problem

max
u∈C

∫ T

t0

f(t,x,u) dt+ ψ(T,x(T ))

ẋ = g(t,x,u)
x(t0) = α
xi(T ) free 1 ≤ i ≤ n1
xj(T ) ≥ βj with βj fixed n1 + 1 ≤ j ≤ n1 + n2
xl(T ) = βl with βl fixed n1 + n2 + 1 ≤ l ≤ n1 + n2 + n3
C = {u : [t0,∞)→ U, u admissible}

(3.5)

where t0 is fixed and T is free with T > t0, and U ⊂ Rk is closed. We say that
u∗ is optimal with exit time T ∗ if∫ T∗

t0

f(t,x∗,u∗) dt+ ψ(T ∗,x∗(T ∗)) ≥
∫ T

t0

f(t,x,u) dt+ ψ(T,x(T ))

for every admissible control u and for every T ≥ t0. Hence and optimal control
has an (unique) associated exit time. We have the following result, again a
generalization of the theorem of Pontryagin 2.1 (see [23]):

Theorem 3.3. Let us consider the problem (3.5) with f ∈ C1([t0,∞)×Rn+k), g ∈
C1([t0,∞)× Rn+k) and ψ ∈ C1([t0,∞)× Rn).
Let u∗ be optimal control with exit time T ∗ and x∗ be the associated trajectory.

Then there exists a multiplier (λ∗0,λ
∗), with
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� λ∗0 ≥ 0 constant,

� λ∗ : [t0, t1]→ Rn continuous,

such that

i) the nontriviality of the multiplier holds;

ii) the Pontryagin Maximum Principle (2.2) holds,

iii) the adjoint equation (2.3) holds,

ivT∗) the transversality condition is given by

• for 1 ≤ i ≤ n1, we have λ∗i (T
∗) = λ∗0

∂ψ

∂xi
(T ∗,x∗(T ∗)),

• for n1 + 1 ≤ j ≤ n1 + n2, we have λ∗j (T
∗) ≥ λ∗0

∂ψ

∂xj
(T ∗,x∗(T ∗)),

x∗j (T
∗) ≥ βj ,

(
λ∗j (T

∗)− λ∗0
∂ψ

∂xj
(T ∗,x∗(T ∗))

)(
x∗j (T

∗)− βj
)

= 0;

moreover we have

H(T ∗,x∗(T ∗),u∗(T ∗), λ∗0,λ
∗(T ∗)) + λ∗0

∂ψ

∂t
(T ∗,x∗(T ∗)) = 0. (3.6)

We will give an idea of the proof in Theorem 3.4.
For variable time optimal problems it is hard to find sufficient conditions

of any practical value, due to an inherent lack of convexity properties in such
problems.

Remark 3.4. In the context of problem (3.5) with convex control set U , the
regularity and the concavity of the Hamiltonian and the normality of the extremal
are not sufficient conditions of optimality, i.e. a result similar to Theorem 3.2
does not hold in this new situation.

In [29] appear some sufficient conditions for a large type of problems: in this
note we prefer to provide some necessary conditions for the particular problems
that we present and some existence results of the optimal control (see section
3.4).

Autonomous problems

In the particular case of a autonomous problem with free final time the argu-
ments of subsection 2.1 are true. Hence, using condition (3.6), we have

Remark 3.5. In the assumption of Theorem 3.3, if the problem is autonomous,
then we have that

H(x∗(t),u∗(t), λ∗0,λ
∗(t)) = 0 t ∈ [t0, T

∗]; (3.7)

More details can be found in, for example, [29] (page 172) and [1] (page 189).
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3.2.3 The proof of the necessary condition

In this subsection our aim is to give an idea of the proof of the generalization
of Pontryagin theorem presented in theorems 3.1 and 3.3. More precisely we
prove, in the spirit of the previous theorem 2.3 and in the case n = k = 1, the
following:

Theorem 3.4. Let us consider the problem

J(u) =

∫ T

t0

f(t, x, u) dt+ ψ(T, x(T ))

ẋ = g(t, x, u)
x(t0) = α fixed
max
u∈C

J(u)

C =
{
u : [t0, T ]→ R, u ∈ C([t0, T ]), T > t0

}
(3.8)

with f and g in C1, and C open and non empty. Moreover, in the problem (3.8)
we require one of the following four situations:

I. T is fixed1 and x(T ) = β is fixed;

II. T is fixed1 and x(T ) = β is free;

III. T is free and x(T ) = β is fixed;

IV. T is free and x(T ) = β is free.

Let u∗ be the optimal control with exit time T ∗ and x∗ be the optimal trajectory.
Then there exists a multiplier (λ∗0, λ

∗), with

� λ∗0 constant,

� λ∗ : [t0, T
∗]→ R continuous,

such that (λ∗0, λ
∗) 6= (0, 0) and

i) the PMP0
∂H

∂u
(t, x∗(t), u∗(t), λ∗0, λ

∗(t)) = 0 holds,

ii) the adjoint equation (2.3) holds,

iiiT∗) the transversality condition, depending on the previous situations, is

I. no condition;

II. we have λ∗(T ∗) = λ∗0
∂ψ

∂x
(x∗(T ∗));

III. we have

H(T ∗,x∗(T ∗),u∗(T ∗), λ∗0,λ
∗(T ∗)) + λ∗0

∂ψ

∂t
(T ∗,x∗(T ∗)) = 0; (3.9)

IV. we have λ∗(T ∗) = λ∗0
∂ψ

∂x
(T ∗,x∗(T ∗)) and (3.9).

1Note that in this case ψ(t, x) = ψ(x).
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iv) λ∗0 ≥ 0.

Proof. First, let us proof the case IV. As in the proof of theorem 2.3, let

u∗ ∈ C be optimal control with exit time T ∗ and x∗ its trajectory. Let us fix
a continuous function h : [t0,∞) → R. For every constant ε ∈ R we define the
function uε = u∗ + εh. Moreover, we consider a generic C1 exit time function
T (ε) = Tε : R → [t0,∞) such that T0 = T ∗. Hence, for every ε-variation of the
tern (u∗, x∗, T ∗) we have a new tern (uε, xε, Tε) where xε : [0, Tε]→ R is the
trajectory associated to uε : [0, Tε]→ R. Clearly

T (0) = T ∗, xε(t0) = α fixed,

xε(Tε) = βε, x0(t) = x∗(t).

Now, recalling that h is fixed and considering a constant λ0 ≥ 0, we define the
function Jh : R→ R as

Jh(ε) = λ0

(∫ Tε

t0

f
(
t, xε(t), uε(t)

)
dt+ ψ(Tε, βε)

)
.

Let λ : [t0,∞)→ R be a generic continuous function: we obtain

Jh(ε) =

∫ T (ε)

t0

{
λ0f

(
t, xε, uε

)
+ λ
(
g
(
t, xε, uε

)
− ẋε

)}
dt+ λ0ψ(Tε, βε)

(by part) =

∫ Tε

t0

{
H
(
t, xε, uε, λ0, λ) + λ̇xε

}
dt−

(
λ(Tε)βε − λ(t0)α

)
+

+λ0ψ(Tε, βε)

Since u∗ is optimal and λ0 ≥ 0, we have dJh
dε (0) = 0. Hence2

dJh
dε

(0) =

∫ T∗

t0

{[
∂H

∂x
(t, x∗, u∗, λ0, λ) + λ̇

]
dxε
dε

(0) +
∂H

∂u
(t, x∗, u∗, λ0, λ)h

}
dt+

+

[
H
(
T ∗, x∗(T ∗), u∗(T ∗), λ0, λ(T ∗)) + λ0

∂ψ

∂t
(T ∗, x∗(T ∗))

]
dTε
dε

(0) +

−
[
λ(T ∗)− λ0

∂ψ

∂x
(T ∗, x∗(T ∗))

]
dβε
dε

(0)

= 0. (3.10)

Clearly Tε and xε(Tε) = βε are free and we have no information on dTε
dε (0) and

dβε
dε (0). Hence we require that λ0 and λ solve the system
λ̇(t) = −λ(t)

∂g

∂x
(t, x∗, u∗)− λ0

∂f

∂x
(t, x∗, u∗) in [t0, T

∗]

λ(T ∗) = λ0
∂ψ

∂x
(T ∗, x∗(T ∗))

λ0f(T ∗, x∗(T ∗), u∗(T ∗)) + λ(T ∗)g(T ∗, x∗(T ∗), u∗(T ∗)) + λ0
∂ψ

∂t
(T ∗, x∗(T ∗)) = 0

2We recall that

Proposition 3.1. Let α and β in C1([a, b]), with a < b, such that α(ε) ≤ β(ε), for every
ε ∈ [a, b]. Let A = {(t, ε) : ε ∈ [a, b], α(ε) ≤ t ≤ β(ε)} and consider the function g : A → R.
We suppose that g and ∂g

∂ε
are continuous in A. Then

d

dε

∫ β(ε)

α(ε)
g(t, ε) dt =

∫ β(ε)

α(ε)

∂g

∂ε
(t, ε) dt+ β′(ε)g(β(ε), ε)− α′(ε)g(α(ε), ε).
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Considering the last two conditions in the point T ∗ we obtain

λ0

(
f(T ∗, x∗(T ∗), u∗(T ∗)) +

∂ψ

∂x
(T ∗, x∗(T ∗))g(T ∗, x∗(T ∗), u∗(T ∗)) +

+
∂ψ

∂t
(T ∗, x∗(T ∗))

)
= 0 :

Clearly, if the big parenthesis is different from zero, then λ∗0 = 0; if the big
parenthesis is zero, then we set λ∗0 = 1. Note that in both cases there exists a
solution λ∗ of the previous ODE and the two transversality conditions.3 For
these choices of the function λ = λ∗ and of the constant λ0 = λ∗0, we have by
(3.10) ∫ T∗

t0

∂H

∂u
(t, x∗, u∗, λ∗0, λ

∗)hdt = 0, (3.11)

for every h ∈ C([t0,∞)). Lemma 2.2 gives the PMP0.
The proof of case I. is similar; here T (ε) = T ∗ and xε(T (ε)) = β are fixed

and hence
dT

dε
(0) = 0,

dβ

dε
(0) = 0.

No transversality conditions appear in this case.
The other two cases are similar.

3.2.4 The moonlanding problem

The formulation of the problem presented in (1.7) is the following:

max
u∈C

m(T )

ḣ = v
v̇ =

u

m
− g

ṁ = −ku
h(0) = h0 h(T ) = 0
v(0) = v0 v(T ) = 0
m(0) = M + F
h(t) ≥ 0
m(t) ≥M
C = {u : [0, T ]→ [0, α], admissible}

where h0, M, F, g, −v0, k and α are positive and fixed constants; the final
time T is free. The target set for the problem is T = [0,∞)× {(0, 0)} × [0,∞).
First of all we remark that a reasonable assumption is

α > g(M + F ) (3.12)

i.e. the possibility for the spacecraft to win the gravity acceleration of the moon.
The Hamiltonian is

H(h, v,m, u, λ0, λ1, λ2, λ3) = λ1v + λ2

( u
m
− g
)
− λ3ku

3We mention that our proof is incomplete: we omit to prove that (λ∗0, λ
∗) 6= (0, 0).
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with a pay off function

ψ(h, v,m) = m.

Theorem 3.1 implies

u(t) ∈ arg max
w∈[0,α]

(
λ1(t)v(t) + λ2(t)

(
w

m(t)
− g
)
− λ3(t)kw

)

⇒ u(t) =


α if λ2(t)

m(t) − λ3(t)k > 0

? if λ2(t)
m(t) − λ3(t)k = 0

0 if λ2(t)
m(t) − λ3(t)k < 0

(3.13)

λ̇1 = −∂H
∂h

⇒ λ̇1 = 0 ⇒ λ1(t) = a

λ̇2 = −∂H
∂v

⇒ λ̇2 = −λ1 ⇒ λ2(t) = −at+ b (3.14)

λ̇3 = −∂H
∂m

⇒ λ̇3 =
λ2u

m2
(3.15)

λ3(T ) = λ0
∂ψ

∂m
(x(T )) ⇒ λ3(T ) = λ0 (3.16)

where a and b are constants, and x = (h, v,m). Moreover, since the problem is
autonomous, (3.7) implies

λ1(t)v(t) + λ2(t)

(
u(t)

m(t)
− g
)
− λ3(t)ku(t) = 0, ∀t ∈ [0, T ] (3.17)

Let us suppose that a = b = 0: we easily obtain λ1 = λ2 = 0 and, by
(3.15)–(3.16), λ3 = λ0 in [0, T ]. The case λ0 = 0 contradicts the nontriviality
of the multiplier; then λ0 6= 0. The case λ0 6= 0 (i.e. λ0 = 1) gives λ3 = 1 and
hence, using (3.13),

u(t) = 0 in [0, T ] : (3.18)

clear this is unreasonable: however, from a mathematical point of view, the
dynamics gives v̇ = −g which contradicts v(0) = v0 < 0, v(T ) = 0.

Now, let us suppose that a and b are not both zero: we will prove that there

exists at most one point τ ∈ [0, T ] such that in (3.13) we have λ2(τ)
m(τ) −λ3(τ)k = 0.

In order to do that, we define the function φ : [0, T ]→ R by

φ(t) =
λ2(t)

m(t)
− λ3(t)k.

Using the dynamics, (3.14) and (3.15) we obtain

φ̇ =
λ̇2m− λ2ṁ

m2
− λ̇3k = − a

m
;

this proves that φ is monotone. We have to show that the case a = 0 = φ̇ and
φ = 0 in [0, T ] does not occur; clearly φ = 0 implies λ3 = b

km in all [0, T ]. This
relation and a = 0 in (3.17) imply bg = 0, i.e. b = 0: we know that a = b = 0
it’s impossible. Hence, really there exists at most one point τ ∈ [0, T ] such that
φ(τ) = 0.
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Now we have four possibilities for the extremal control u

I u(t) =

{
0 for t ∈ [0, τ ]
α for t ∈ (τ, T ]

II u(t) =

{
α for t ∈ [0, τ ]
0 for t ∈ (τ, T ]

III u(t) = 0 for t ∈ [0, T ] IV u(t) = α for t ∈ [0, T ]

Case IV is a.e. a particular case of case I with τ = 0. Case III is as in
(3.18). Case II is unreasonable: however, from a mathematical point of view,
the dynamics gives v̇(T ) = −g which implies, taking into account v(T ) = 0,
that there exists t′ such that v(t) > 0 for t ∈ (t′, T ). Now the relation

h(t) = h(T ) +

∫ t

T

v(s) ds,

taking into account h(T ) = 0, implies h(t) < 0 for t ∈ (t′, T ).
Hence we focus our attention on the Case I°. In [0, τ ] the dynamics and the

initial conditions give 
h(t) = − t

2g

2
+ v0t+ h0

v(t) = −tg + v0
m(t) = M + F

(3.19)

In the (v, h)-plane, the first two relations in the previous system give the so
called free fall curve γ

h = −v
2

2g
+
v20
2g

+ h0; (3.20)

its interpretation is that if the spacecraft starts at the (v0, h0)-point (recall that
v0 < 0, h0 > 0), the corresponding curve in (3.20) describes the free fall, i.e.
with u = 0: we notice that v decreases.

In the interval [τ, T ], putting u(t) = α in the dynamics we obtain

ṁ = −ku ⇒ m(t) = m(τ)− (t− τ)kα

mv̇ = u−mg ⇒ v̇(t) =
α

m(τ)− (t− τ)kα
− g

⇒ v(t) = −1

k
log

(
m(τ)− (t− τ)kα

m(τ)

)
− (t− τ)g + v(τ)

ḣ = v ⇒ h(t) =

∫ t

τ

v(s) ds+ h(τ) (3.21)

We remark that, by (3.12), we have

α

m(τ)− (t− τ)kα
− g ≥ α

M + F
− g > 0

and hence M + F − (t− τ)kα > 0. With some easy computations4, taking into
account that by (3.19) m(τ) = M + F and the continuity of the trajectory, we

4By (3.21) we have

h(t) =

∫ t

τ

[
−

1

k
log

(
m(τ)− (s− τ)kα

m(τ)

)
− (s− τ)g + v(τ)

]
ds+ h(τ)
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obtain for every t ∈ [τ, T ]

h(t) =
M + F − (t− τ)kα

k2α
log

(
M + F − (t− τ)kα

M + F

)
+

+
t− τ
k
− (t− τ)2g

2
+ (t− τ)v(τ) + h(τ)

v(t) = −1

k
log

(
M + F − (t− τ)kα

M + F

)
− (t− τ)g + v(τ)

m(t) = M + F − (t− τ)kα.

(3.22)

Since in the final point T we have h(T ) = v(T ) = 0, the previous equations for
h and v become

0 =
M + F − (T − τ)kα

k2α
log

(
M + F − (T − τ)kα

M + F

)
+

+
T − τ
k
− (T − τ)2g

2
+ (T − τ)v(τ) + h(τ)

0 = −1

k
log

(
M + F − (T − τ)kα

M + F

)
− (T − τ)g + v(τ)

(3.23)

The previous arguments say that τ is exactly the time necessary for a spacecraft
that has a initial state (v(τ), h(τ)) to arrive on the moon softly (i.e. with
distance and velocity zero) when we use the maximum thrust attainable by the
spacecraft’s engine (i.e. u(t) = α) in all the time t in [τ, T ] to oppose to the
gravity of the moon. In order to find and to draw these “good” initial states
(v(τ), h(τ)), let us set s = T − τ and let us define ṽ(s) := v(τ), h̃(s) := h(τ): we
obtain by (3.23)

ṽ(s) =
1

k
log

(
M + F − skα

M + F

)
+ gs

h̃(s) = −M + F

k2α
log

(
M + F − skα

M + F

)
− s

k
− s2g

2

(3.24)

Hence in (3.24) we have a curve s 7→ γ̃(s) = (ṽ(s), h̃(s)): from the construction
of this curve (usually called switching curve), its interpretation is that if the
spacecraft is at a (v, h)-point on the curve corresponding to the parameter s
and if it thrusts at maximum rate α, then it will arrive at v = 0, h = 0 in time
s. Finally, we remark that the spacecraft burns fuel at rate kα; since the total
amount of fuel is F we have the condition 0 ≤ s ≤ F

kα in our switching curve.

= −
1

k

(
−
m(τ)

kα

)∫ t

τ

[(
−

kα

m(τ)

)
log

(
m(τ)− (s− τ)kα

m(τ)

)]
ds+

−
1

2
(t− τ)2g + (t− τ)v(τ) + h(τ)

(by part) =
m(τ)

k2α


(m(τ)− (s− τ)kα

m(τ)

)
log

(
m(τ)− (s− τ)kα

m(τ)

)t
τ

−
∫ t

τ

(
−

kα

m(τ)

)
ds

+

−
1

2
(t− τ)2g + (t− τ)v(τ) + h(τ).
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The initial data (v0, h0) in the interior
of the reachable set R. The free fall
curve γ in (3.20) and the switching
curve in (3.24). Set the point P ∈ γ̃∩γ:
the switching point τ is such that P =
γ(τ); finally, if s is such that P = γ̃(s),
then the final time T is T = τ + s.
In order to draw the curve γ̃ note that
γ̃(0) = (ṽ(0), h̃(0)) = (0, 0) and that
(3.12) implies

ṽ′(s) = − α

M + F − skα − g < 0

and

h̃′(s) =
M + F

k(M + F − skα) −
1

k
− sg

= s

(
α

M + F − skα − g
)
> 0.

It is clear from the previous picture that for some initial data (v0, h0) there
is no solution for the problem; moreover for every initial data (v0, h0) in the
interior of the reachable set R, there exists a unique switching point τ ∈ [0, T ];
the second part of the trajectory lies on the switching curve and spends exactly
a time s to arrive in the origin. Hence T = τ + s.

Now let us prove that the above construction give an extremal. The control
is

u(t) =

{
0 for t ∈ [0, τ ]
α for t ∈ (τ, T ]

(3.25)

and the associated trajectory is given by (3.19) for t ∈ [0, τ ] and by (3.22) for
t ∈ (τ, T ]. Note that such trajectory is uniquely determined by the initial data;
moreover we found τ and T .
The multiplier is given by

λ1(t) = a, λ2(t) = −at+ b, λ3(t) =


c if t ∈ [0, τ ]

λ0 − α
∫ T

t

−as+ b

(m(s))2
ds if t ∈ (τ, T ]

Since m(s) > 0, the last integral exists and is finite in [τ, T ]. By the continuity
we have

c = λ0 − α
∫ T

τ

−as+ b

(m(s))2
ds (3.26)

We recall that τ is such that φ(τ): hence

−aτ + b

M + F
− ck = 0 (3.27)

Relation (3.17) implies5

0 = av0 − bg (for t = 0) (3.28)

0 = (−aT + b)

(
α

m(T )
− g
)
− λ0kα (for t = T ) (3.29)

5It is easy to see that, using (3.27), relation (3.17) for t = τ doesn’t give new information.
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Now

(3.28) ⇒ a =
bg

v0
(3.30)

(3.29) ⇒ λ0 =
b

kα

(
− g

v0
T + 1

)(
α

m(T )
− g
)

(3.31)

(3.27) ⇒ c =
b

k(M + F )

(
− g

v0
τ + 1

)
(3.32)

(3.26) ⇒ c = b

[
1

kα

(
− g

v0
T + 1

)(
α

m(T )
− g
)
− α

∫ T

τ

− g
v0
s+ 1

(m(s))2
ds

]
(3.33)

Clearly − g
v0
T + 1 is positive and (3.12) implies α

m(T ) − g > 0; hence if λ0 = 0,

then (3.31) implies b = 0; now (3.30) and (3.32) imply a = c = 0; finally we
obtain λ3 = 0. This is impossible by the non triviality of the multiplier.
Hence we put λ0 = 1 and it is easy to see that there exists unique (a, b, c) such
that relations (3.30)–(3.33) are true. We have only to mention that relations
(3.32) and (3.33) are not in contradiction.6 Hence we have that u in (3.25) is a
normal extremal control.7

Now, we can apply a generic result of the existence of an optimal control (see
Theorem 3.8) to guarantee that such u in (3.25) is really the optimal control.
We know, by the previous construction, that there exists at least an admissible
control u with exit time T ; hence it is reasonable to restrict the original target
set T = [0,∞)× {(0, 0)} × [0,∞) to the new set T = [0, T ]× {(0, 0)} × [0,∞).
Moreover, we have a compact control set [0, α] and for the dynamics we have
the condition ∥∥∥∥∥∥

 ḣ

v̇

ṁ

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 v

u/m− g
−ku

∥∥∥∥∥∥
≤

√
v2 +

α2

M2
+ g2 + k2α2

≤
√

α2

M2
+ g2 + k2α2 + |v|

≤ (1 + C)(1 + ‖x‖),
6We have

1

kα

(
−
g

v0
T + 1

)(
α

m(T )
− g
)
−

1

k(M + F )

(
−
g

v0
τ + 1

)
− α

∫ T

τ

− g
v0
s+ 1

(m(s))2
ds =

=
1

k

[(
−
g

v0
T + 1

)(
1

m(T )
−
g

α

)
−

1

M + F

(
−
g

v0
τ + 1

)
−
∫ T

τ

(
−
g

v0
s+ 1

)
−ṁ(s)

(m(s))2
ds

]
=

1

k

[
−
g

α

(
−
g

v0
T + 1

)
+

∫ T

τ
−
g

v0

1

m(s)
ds

]
= −

g

kv0α

[
−gT + v0 +

∫ T

τ

α

m(s)
ds

]
= −

g

kv0α

[
−gT + v0 +

∫ T

τ
(v̇ + g) ds

]
= 0

7We remark that our solution does not take into account the condition m(t) ≥M .
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where x = (h, v,m); finally, for every (t, h, v,m) we have that

F(t,h,v,m) =
{

(y1, y2, y3, z) : y1 = v, y2 =
u

m
− g, y3 = −ku, z ≤ 0, u ∈ [0, α]

}
is a convex set. Hence Theorem 3.8 guarantees that the optimal control exists.

3.3 The Bolza problem in Calculus of Variations.

Let us consider the problem

J(x) =

∫ T

t0

f(t,x(t), ẋ(t)) dt+ ψ(T,x(T ))

x(t0) = α
x(T ) = βT
max
x∈AB

J(x)

AB = {x : [t0,∞)→ Rn, x ∈ C1, x(t0) = α}

(3.34)

where t0 is fixed, and T > t0, βT ∈ Rn are free. We call this problem Bolza
problem of calculus of variation. Clearly (3.34) is a particular case of (3.5), but
let us provide the necessary condition for this particular situation: hence, let us
apply theorem 3.3 to our situation.
Since u = ẋ and taking into account that in the case of Calculus of Variation
it is possible to prove that λ∗0 = 1, we have H = f(t,x,u) + λu : hence, as in
(2.36) and (2.37), we have

(PMP0) ⇒ ∇uf + λ∗ = 0

(AE) ⇒ ∇xf = −λ̇
∗

(ivT∗) ⇒ λ∗ = ∇xψ ⇒ f + λ∗ẋ +
∂ψ

∂t
= 0 in t = T ∗.

More precisely we have, from theorems 3.1 and 3.3, the following result:

Theorem 3.5. Let us consider (3.34) with f ∈ C2([t0, t1] × R2n) and ψ ∈
C1([t0, t1] × Rn). Let x∗ be an optimal solution with exit time T ∗. Then x∗ is
extremal (i.e. satisfies EU). Moreover

i) if T is fixed and βT is free, then

∇ẋf(T ∗,x∗(T ∗), ẋ∗(T ∗)) +∇xψ(T ∗,x∗(T ∗)) = 0; (3.35)

ii) if T is free and βT is fixed, then

f(T ∗,x∗(T ∗), ẋ∗(T ∗))−ẋ∗·(T ∗)∇ẋf(T ∗,x∗(T ∗), ẋ∗(T ∗))+
∂ψ

∂t
(T ∗,x∗(T ∗)) = 0;

(3.36)

iii) if T and βT are free, then we have (3.35) and (3.36).

As we mention in remark 3.4, the problem to guarantees some sufficient
condition is delicate when T is free. In the next example, with fixed final time,
we prove directly that a extremal is really an optimal solution.
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Example 3.3.1. Let us considermin

∫ 1

0
(ẋ2 − x) dt+ x2(1)

x(0) = 0

The solution of EU is x(t) = − 1
4
t2 + at+ b, with a, b ∈ R. The initial condition implies b = 0.

Since T ∗ = 1 is fixed, form (3.35) we have

2ẋ(1) + 2x(1) = 0 ⇒ a = 3/8.

Hence the extremal is x∗ = −t2/4 + 3t/8. Now, let us show that is a minimum. Let h ∈
C1([0, 1]) be such that h(0) = 0 and let x = x∗ + h. Then∫ 1

0
(ẋ2 − x) dt+ x2(1) =

∫ 1

0
(ẋ∗

2
+ 2ḣẋ∗ + ḣ2 − x∗ − h) dt+ x∗2(1) + 2x∗(1)h(1) + h2(1)

≥
∫ 1

0
(ẋ∗

2 − x∗) dt+ x∗2(1) +

∫ 1

0
(2ḣẋ∗ − h) dt+ 2x∗(1)h(1).

Since h(0) = 0, ẍ∗(t) = −1/2, x∗(1) = 1/8 and ẋ∗(1) = −1/8, we have

∫ 1

0
(2ḣẋ∗ − h) dt+ 2x∗(1)h(1) =

(
2hẋ∗

]1
0

−
∫ 1

0
(2hẍ∗ + h) dt+

h(1)

4

= −
h(1)

4
−
∫ 1

0
(−h+ h) dt+

h(1)

4

= 0.

The previous inequality implies that x∗ is a minimum. 4

3.3.1 Labor adjustment model of Hamermesh.

Consider a firm that has decided to raise its labor input from L0 to a yet
undetermined level LT after encountering a wage reduction at the initial time
t0 = 0. The adjustment of labor input is assumed to entail a cost C that varies,
at every time, with L′(t), the rate of change of L. Thus the firm has to decide on
the best speed of adjustment toward LT as well as the magnitude of LT itself.
This is the essence of the labor adjustment problem discussed in a paper by
Hamermesh.

We assume that the profit of the firm be
expressed by a general function π(L), with
π′′(L) < 0. The labor input is taken to be
the unique determinant of profit because
we have subsumed all aspects of production
and demand in the profit function. The cost
of adjusting L is assumed to be

p

L

C(L′) = bL′
2

+ c,

with b and c positive constants. Thus the net profit at any time is π(L)−C(L′).
The problem of the firm is to maximize the total net profit over time during the
process of changing the labor input.
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Inasmuch as it must choose not only the
optimal LT , but also an optimal time
T ∗ for completing the adjustment, we
have both the terminal state and termi-
nal time free. Another feature to note
about the problem is that we should in-
clude not only the net profit from t = 0
to t = T ∗, but also the capitalized value
of the profit in the post T ∗ period, which
is affected by the choice of LT and T,
too.

L

tT

L

LT

0

Since the profit rate at time is π(LT ), its present value is π(LT )e−ρt, where
ρ > 0 is the given discount rate. So the capitalized value of that present value
is, ∫ ∞

T

π(L)e−ρt dt =

(
−π(LT )

ρ
e−ρt

]∞
T

=
π(LT )

ρ
e−ρT .

Hence the problem is
max
L

∫ T

0

(
π(L)− bL′2 − c

)
e−ρt dt+

π(LT )

ρ
e−ρT

L(0) = L0

L(T ) = LT

where T and LT are free, T > 0, LT > L0.

Let us set f(t, L, L′) =
(
π(L)− bL′2 − c

)
e−ρt; EU gives us

L′′ − ρL′ = −π
′(L)

2b
. (3.37)

Conditions (3.35) and (3.36) imply

L′(T )− 1

2bρ
π′(LT ) = 0 (3.38)

bL′(T )2 − c = 0 (3.39)

Using (3.38), recalling that LT > L0 and hence L′ > 0,

L′(T ) =

√
c

b
. (3.40)

Now, equation (3.39) is

π′(LT ) = 2ρ
√
bc. (3.41)

Now, in order to solve (3.37), let us specified the function π. We suppose
that

π(L) = 2mL− nL2, con 0 < n < m.

Clearly (3.37) implies

L′′ − ρL′ − n

b
L = −m

b
,

and the general solution is

L = αe

(
ρ+
√
ρ2+4n/b

)
t/2

+ βe

(
ρ−
√
ρ2+4n/b

)
t/2

+
m

n
,
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with α and β generic constants: the initial condition L(0) = L0, (3.40) and
(3.41) alow us to determinate α, β and T. Moreover, (3.41) gives

LT =
m

n
− ρ
√
bc

n
;

clearly LT < m/n. This tells us that
the level of employment LT to be
achieved at the end of the corpo-
rate reorganization is below the level
m/n, the level at which profit is max-
imized when we have zero cost (i.e.
with b = c = 0).

y= (L)p

2m/n

Lm/nL
T

y

y=
2

(b
c)

  L
+
...

.

r

1/
2

3.4 Existence and controllability results.

In this section, we first discuss some examples
Example 3.4.1. Let us consider the calculus of variation problem

J(x) =

∫ 1

0
tẋ2 dt

x(0) = 1
x(1) = 0
inf
x

J(x)

Clearly J(x) ≥ 0, for every x. Moreover let us consider the sequence {xn}n∈N, defined by
xn(t) = 1− t1/n. It is easy to see that

J(xn) =
1

n2

∫ 1

0
t2/n−1 dt =

1

2n

and hence {xn} is a minimizing sequence that guarantees min
x

J(x) = 0. Moreover xn → x = 0

and it is to see that J(x) = 0 gives ẋ = 0, in contradiction with the initial and the final

condition on x. Hence the problem has no optimal solution. 4

Example 3.4.2. (Bolza) Let us consider this problem due to Bolza:

J(u) =

∫ 1

0
(x2 + (1− u2)2) dt

ẋ = u
x(0) = 0
x(1) = 0
inf
u

J(u)

For every n ∈ N, we define the control un as

un(t) = 1, if
2i− 2

2n
< t <

2i− 1

2n
for some i = 1, . . . , n

un(t) = −1, if
2i− 1

2n
< t <

2i

2n
for some i = 1, . . . , n

We obtain

t

1

u

1

-1

u
3

1/6 1/3 2/3 5/61/2

t

1/6

x

1

x
3

1/6 1/3 2/3 5/61/2
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The control un and its trajectory xn in the case n = 3.

An easy calculation gives

J(un) = 2n

∫ 1/2n

0
x2n dt =

1

12n2
;

hence lim
n→∞

J(un) = 0 = inf
u

J(u), since J(u) ≥ 0. Again it is easy to see that the optimal

control does not exist. 4

Example 3.4.3. We consider 

J(u) =

∫ 1

0
x2 dt

ẋ = ux
x(0) = 1
x(1) = 10
0 ≤ u ≤ 1
max
u

J(u)

For every u, with 0 ≤ u ≤ 1, the dynamics gives ẋ ≤ x: the Gronwall’s inequality in theorem

3.6 implies x(t) ≤ et ≤ e < 10 for t ∈ [0, 1]. Hence the class of admissible control is empty. 4

Example 3.4.4. Let us consider a little variation of example 3.5.2:
minT
ẋ = x+ u
x(0) = 5
x(T ) = 0
|u| ≤ 1

where T is free. For every u, with −1 ≤ u ≤ 1, the dynamics gives ẋ ≥ x− 1: if we define the
function y(t) = 1− x(t), the Gronwall’s inequality8 implies, for t ∈ [0, 1],

y′(t) ≤ y(t) ⇒ y(t) ≤ y(0)et = −4et ⇒ x(t) ≥ 4et + 1.

Hence x(T ) = 0 is impossible and the class of admissible control is empty. 4

The previous examples show that we have to discuss two different questions:

A. the problem to guarantee that the set of admissible control Ct0,α is non
empty, the so called controllability problem;

8We recall that (see the appendix in [11])

Theorem 3.6 (Gronwall’s inequality). Let y and α be a differentiable function and a contin-
uous function respectively in [a, b] ⊂ R such that

y′(t) ≤ α(t)y(t), ∀t ∈ [a, b].

Then

y(t) ≤ y(a) exp

(∫ t

a
α(s) ds

)
, ∀t ∈ [a, b].

Proof. Let us define the function v : [a, b]→ R by

v(t) = exp

(∫ t

a
α(s) ds

)
.

Clearly we have v′ = αv, v(a) = 1 and v > 0. Hence we obtain that

d

dt

(
y(t)

v(t)

)
=
y′(t)v(t)− y(t)v′(t)

v2(t)
≤ 0

which implies
y(t)

v(t)
≤
y(a)

v(a)
= y(a), ∀t ∈ [a, b].
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B. the problem to guarantee that in Ct0,α there exists a control such that
realizes our sup (or inf);

First, let us discuss, essentially as in [14], the question B. (another interesting
book is [29], see chapter 2). Let us consider the minimum problem

min
u∈Ct0,α

∫ T

t0

f(t,x,u) dt+ ψ(T,x(T ))

ẋ = g(t,x,u)
x(t0) = α
(T,x(T )) ∈ T

Ct0,α =

{
u : [t0, T ]→ U ⊂ Rk, u measurable s.t.

∃! x : ẋ = g(t,x,u), x(t0) = α, (T,x(T )) ∈ T
}

(3.42)

with a closed control set U ⊂ Rk, and with target set T ⊂ (t0,∞)× Rn.
In all that follows, a fundamental role is played by the set F(t,x) defined, for
every (t,x) ∈ Rn+1, as

F(t,x) =
{

(y, z) ∈ Rn × R : y = g(t,x,u), z ≥ f(t,x,u), u ∈ U
}

(3.43)

The next results guarantee the existence of an optimal control in the set C′t0,α
of Lebesgue-integrable function of Ct0,α. We have this first existence result (see
Theorem 4.1, chapter III, in [14]):

Theorem 3.7 (control set U closed). Let us consider the minimum problem
(3.42) with f, g and ψ continuous functions. We assume that there exists at
least an admissible control, i.e. Ct0,α 6= ∅.
Moreover let us suppose that

a. the control set U is closed;

b. there exist two positive constants c1 and c2 such that, for every t ∈
[t0,∞), x, x′ ∈ Rn, u ∈ U, we have

‖g(t,x,u)‖ ≤ c1(1 + ‖x‖+ ‖u‖),
‖g(t,x′,u)− g(t,x,u)‖ ≤ c2‖x′ − x‖(1 + ‖u‖);

c. the target set T is compact;

d. the set F(t,x) is convex for every (t,x) ∈ [t0,∞)× Rn;

f. f is superlinear with respect the variable u, i.e. for every (t,x) fixed we
have

lim
u∈U, ‖u‖→∞

f(t,x,u)

‖u‖
=∞. (3.44)

Then there exists an optimal control u∗ ∈ C′t0,α for the minimum problem.9

9If we are interested on a maximum problem, since max f = −min(−f) in this theorem
we have to replace “≥”with “≤”in the definition (3.43) of the set F(t,x) and “∞”with “−∞”in
the limit (3.44): in such situation exists a optimal maximum control.
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A proof can be found in [14]. The theorem does not guarantee the existence
of a piecewise continuous optimal control, it only ensure the existence of a
Lebesgue-integrable optimal control. However, the risk involved in assuming
that the optimal control, whose existence is ensured by theorem 3.7, is piecewise
continuous are small indeed (see for example section 6 of chapter III in [14]
for continuity properties of optimal control). Now, let us spend few words to
comment the previous assumptions:

� if the control set U is compact, it is possible to relax some of the other
assumptions as we will see in Theorem 3.8;

� sure assumption b. holds for linear dynamics, i.e. with g(t,x,u) = Ax +
Bu where A and B are matrices with continuous elements;

� if the control set U is convex, the function u 7→ f(t,x,u) is convex and
the dynamics is linear in u, then assumption d. holds.

With the next example, we reserve a particular attention for the assumption d.

Example 3.4.2 [2nd part]. Consider the example 3.4.2: first we note that the dynamic is
linear, the control set U = R is closed, the target set T = {(1, 0)} is compact, the function
f is superlinear: hence all the assumptions (except d.) hold. For every (t, x) ∈ [0, 1]× R, we
consider the set F(t,x) ⊂ R2 defined as

F(t,x) =

{
(y, z) ∈ R2 : z ≥ x2 + (1− y2)2, y = u ∈ U = R

}

The set F(t,x) in yellow.

Clearly F(t,x) is not convex. 4

The role of the convexity of the set F(t,x) in assumption d. comes form the theory
of differential inclusion that allow us to construct a solution of the dynamic.

Our second result require the boundedness of the control set and weakens
the assumption on target set T :

Theorem 3.8 (control set U compact). Let us consider the minimum problem
(3.42) with f, g and ψ continuous functions. We assume that there exists at
least an admissible control, i.e. Ct0,α 6= ∅.
Moreover let us suppose that



3.4. EXISTENCE AND CONTROLLABILITY RESULTS. 65

a’. the control set U is compact;

b’. there exist a positive constant c3 such that, for every t ∈ [t0, T2], x ∈
Rn, u ∈ U, we have

‖g(t,x,u)‖ ≤ c3(1 + ‖x‖);

c’. the target set T is closed and T ⊂ [T1, T2]× Rn for some t0 ≤ T1 ≤ T2 <
∞.

d. the set F(t,x) is convex for every (t,x) ∈ [t0, T2]× Rn.

Then there exists an optimal control in u∗ ∈ C′t0,α for the minimum problem.10

A proof can be found in [29]. Note that assumptions d. in Theorem 3.7 and in
Theorem 3.8 are the same.

3.4.1 Linear time optimal problems

Now we pass to discuss the controllability problem in A.. Since this is a very
large ad hard problem and exhaustive discussion is not in the aim of this note,
we give only some idea in the particular case of linear optimal time problem,
i.e. 

minT
ẋ = Mx +Nu
x(0) = α
x(T ) = 0
u ∈ [−1, 1]k

(3.45)

where T is free, M and N are n×n and n×k matrices with constant coefficients.
Note that the classical example of Pontryagin since the dynamics in (1.5) is(

ẋ1
ẋ2

)
=

(
0 1

0 0

)(
x1
x2

)
+

(
0

1

)
u. (3.46)

We will solve (1.5) in subsection 3.5.1.
We recall (see subsection 1.2.1) that for every T ≥ t0, we define the reachable

set at time T as the set R(T, t0,α) ⊆ Rn of the points x such that there exists
an admissible control u and an associated trajectory x such that x(t0) = α and
x(T ) = x. Moreover we define

R(t0,α) =
⋃
T≥t0

R(T, t0,α)

as the reachable set from α.
Hence, our problem of controllability for the problem (3.45) is to guarantee that

0 ∈ R(0,α). (3.47)

We say that (3.45) is controllable if for every α ∈ Rn we have that (3.47) holds.
This problem is well exposed in [23] and in [12].

10If we are interested on a maximum problem, since max f = −min(−f) in this theorem
we have to replace “≥”with “≤”in the definition (3.43) of the set F(t,x): in such situation
exists a optimal maximum control.
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Starting from the linear ODE and the initial condition in (3.45), we have
that the solution is

x(t) = etM
(
α +

∫ t

0

e−sMNu(s) ds

)
,

where, as usual,

etM =

∞∑
k=0

tkMk

k!
.

Clearly

0 ∈ R(T, 0,α) ⇔ −α =

∫ t

0

e−sMNu(s) ds.

It is clear that the possibility to solve the previous problem is strictly connected
with the properties of the matrices M and N ; we define the controllability
matrix G(M,N) for (3.47) as the n× kn-matrix

G(M,N) =
[
N,MN,M2N, . . .Mn−1N

]
.

We have the following result (see for example, theorem 2.6 and 3.1 in [12]):

Theorem 3.9 (controllability for linear time optimal problem). Let us consider
the problem (3.47). Let us suppose rankG(M,N) = n and Re θ ≤ 0 for each
eigenvalue θ of the matrix M. Then

i. the ODE (3.47) is controllable,

ii. there exists an optimal control for the problem (3.47).

3.5 Time optimal problem

A particular case of a free final time problem in (3.5) is the following
min
u∈C

T

ẋ = g(t,x,u)
x(0) = α
x(T ) = β

(3.48)

where α and β are fixed points in Rn, and T is non negative and free. Hence
(3.48) is the problem to transfers in the shortest possible time α in β : such
problem is called time optimal problem: its solution has a optimal time T ∗.

Since T =
∫ T
0

1 dt, we define the Hamiltonian as

H(t,x,u, λ0,λ) = λ0 + λ · g(t,x,u) (3.49)

and we have the following result (see for example [30], page 614):

Theorem 3.10. Let us consider the problem (3.48) with g ∈ C1([t0, t1]×Rn+k).
Let u∗ be optimal control with exit time T ∗ and x∗ be the associated trajectory.

Then there exists a multiplier (λ∗0,λ
∗), with

� λ∗0 ≥ 0 constant,
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� λ∗ : [t0, t1]→ Rn continuous,

such that

i) the nontriviality of the multiplier holds;

ii) the Pontryagin Minimum Principle holds,

iii) the adjoint equation (2.3) holds,

ivT∗) the transversality condition is given by

H(T ∗,x∗(T ∗),u∗(T ∗), λ∗0,λ
∗(T ∗)) = 0, (3.50)

In the particular case of an autonomous time optimal problem, i.e. with
g = g(x,u) in (3.48), condition (3.50) holds in [0, T ∗]; more precisely by (3.7)
we have

H(x∗(t),u∗(t), λ∗0,λ
∗(t)) = 0 t ∈ [t0, T

∗]. (3.51)

Since a time optimal problem is a variable time optimal problem, it is hard
to give sufficient conditions of optimality (see remark 3.4). In the next exam-
ples we propose two different approach to guarantee that an extremal is really
an optimal solution: we will use a Gronwall inequality or we will apply some
existence result about the optimal control.

Example 3.5.1. Let us consider 
minT
ẋ = 2x+ 1

u

x(0) = 5
6

x(T ) = 2
3 ≤ u ≤ 5

where T is free. The Hamiltonian is H = λ0 + λ

(
2x+

1

u

)
. The necessary conditions give

PMP ⇒ u(t) ∈ arg min
3≤v≤5

λ

v
⇒ u(t) =

{
5 if λ > 0
? if λ = 0
3 if λ < 0

(3.52)

λ̇ = −
∂H

∂x
⇒ λ̇ = −2λ ⇒ λ(t) = Ae−2t

(3.50) ⇒ λ0 + λ(T )

(
2x(T ) +

1

u(T )

)
= λ0 + λ(T )

(
4 +

1

u(T )

)
= 0 (3.53)

for some constant A. Note that λ0 = 0, since u(T ) ≥ 3, implies in (3.53) that λ(T ) = 0 :
relation λ(t) = Ae−2t gives A = 0 and hence (λ0, λ) = (0, 0) that is impossible.
Hence we put λ0 = 1. Since u(T ) ≥ 3, (3.53) imply λ(T ) < 0, i.e. A < 0. Now, (3.52) implies
u∗(t) = 3 in [0, T ]: the dynamics now is ẋ = 2x + 1/3 and with the initial condition give
x∗(t) = e2t − 1/6. The final condition x∗(T ) = 2 implies that T ∗ = 1

2
ln 13

6
.

In order to guarantee that T ∗ is really the optimal time, we have two possibilities: the
first is to provide an existence result for this problem; the second is to use the Gronwall’s
inequality (see Example 3.5.2).
• Using existence result: we would like to use Theorem 3.8. First, we note that there

exists at least an admissible control, the control set [1, 3] is compact, the dynamics is linear.
We remark that we are in the position to restrict our attention to a “new” final condition of
the type (T, x(T )) ∈ T = [T ∗ − ε, T ∗ + ε] × {2}, for some fixed ε > 0: it is clear that such
modification of the target set is irrelevant and the “new” optimal solution coincides with the
“old” one. Now the new target set satisfies assumption c’.

Finally, let us check condition d.: recalling that T =
∫ T
0 1 dt, we consider the set F(t,x) ⊂ R2

defined as

F(t,x) =

{
(y, z) ∈ R2 : z ≥ 1, y = 2x+

1

u
, 3 ≤ u ≤ 5

}
=

[
2x+

1

5
, 2x+

1

3

]
× [1,∞).
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Clearly F(t,x) is convex, for every (t, x). Hence there exists an optimal control and this proves
that T ∗ is optimal.
•• Using a Gronwall’s inequality: For every u, the dynamics gives ẋ ≥ 2x + 1/3: if we

define the function y(t) = 2x(t) + 1/3, the Gronwall’s inequality in theorem 3.6 implies

y′(t) ≤ 2y(t) ⇒ y(t) ≤ y(0)e2t ⇒ x(t) ≤ e2t −
1

6
,

for every trajectory x; hence x(T ) = 2 for some T ≥ T ∗: this proves that T ∗ is optimal. 4

Example 3.5.2. Let us consider 
minT
ẋ = x+ u
x(0) = 5
x(T ) = 11
|u| ≤ 1

where T is free. The Hamiltonian is H = λ0 + λ(x+ u). The necessary conditions give

PMP ⇒ u(t) ∈ arg min
|v|≤1

[λ0 + λ(x+ v)] ⇒ u(t) ∈ arg min
|v|≤1

λv (3.54)

λ̇ = −
∂H

∂x
⇒ λ̇ = −λ ⇒ λ(t) = Ae−t

(3.50) ⇒ λ0 + λ(T )(x(T ) + u(T )) = λ0 + λ(T )(11 + u(T )) = 0 (3.55)

for some constant A. If λ0 = 0, since |u| ≤ 1 we have by (3.55) that λ(T ) = 0; the equation
λ(t) = Ae−t implies A = 0 and hence (λ0, λ) = (0, 0) : this is impossible.
Hence we put λ0 = 1. It is easy to see that |u| ≤ 1 and (3.55) imply λ(T ) < 0, i.e. A < 0.
Now, (3.54) implies u(t) = 1 in [0, T ] : the dynamics now is ẋ = x + 1 and with the initial
condition x(0) = 5 give

x(t) = 6et − 1.

The final condition x(T ) = 11 implies that T = ln 2. Now condition (3.55) gives

1 +Ae− ln 2(11 + 1) = 0 ⇒ A = −
1

6
.

In order to guarantee T ∗ = ln 2 is really the optimal time (with optimal control u∗ = 3 and
optimal trajectory x∗ = 6et− 1), we have two possibilities: the first is to provide an existence
result for this problem (linear time optimal problem); the second is to use the Gronwall’s
inequality.
• Using existence result: first, we note that there exists at least an admissible control, the

control set is [−1, 1] is compact, the dynamics is linear. The matrices M, N,G(M,N) are all
1× 1 and equal to 1. Theorem 3.9. guarantees that there exists a optimal control.
•• Using a Gromwall’s inequality (see Thereom 3.6): the dynamics and the control set

imply that for every admissible control u its associated trajectory x satisfies

ẋ = x+ u ≤ x+ 1.

Let us define y(t) = x(t) + 1; using the initial condition on the trajectory and the Gronwall’s
inequality

y′ ≤ y ⇒ y(t) ≤ y(0)et = 6et ⇒ x(t) ≤ 6et − 1 = x∗(t)

for every trajectory x: hence we have x(T ) = 11 for some T ≥ T ∗. This proves that T ∗ is

optimal. 4

3.5.1 The classical example of Pontryagin and its boat

We consider the problem (1.5) and we put ẋ = x1, x = x2 : we obtain

min
u
T

ẋ1 = u
ẋ2 = x1
x1(0) = v0, x2(0) = d0
x1(T ) = x2(T ) = 0
|u| ≤ 1

(3.56)
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where d0 and v0 are generic fixed constants, T is positive and free.
The Hamiltonian is H(t, x1, x2, u, λ0, λ1, λ2) = λ0+λ1u+λ2x1 and the necessary
conditions of Theorem 3.10 give

PMP ⇒ u ∈ arg min
v∈[−1,1]

λ1v (3.57)

λ̇1 = − ∂H
∂x1

= −λ2 (3.58)

λ̇2 = − ∂H
∂x2

= 0 (3.59)

(3.51) ⇒ λ0 + λ1(t)u(t) + λ2(t)x1(t) = 0. (3.60)

An easy computations by (3.58) and (3.59) give

λ2 = a, λ1 = −at+ b, (3.61)

where a and b are constants. From PMP in (3.57) we have

u(t) =

−1 if λ1(t) > 0,
1 if λ1(t) < 0,
? if λ1(t) = 0.

First, let us prove that a = b = 0 is impossible. In order to do that, by (3.61)
we obtain in (3.60)

λ0 + λ1(t)u(t) + λ2(t)x1(t) = λ0 = 0,∀t.

We obtain (λ0, λ1, λ2) = (0, 0, 0): this contradicts Theorem 3.10.
Hence a = b = 0 is impossible and λ1 is a straight line and there exists at most
a point τ ∈ [0, T ] such that λ1(τ) = 0 and u has a discontinuity (a jump). Note
that in all that follows, λ0 = 0 or λ0 = 1 is irrelevant.
Now we study two cases:
case A: Let us suppose λ1(t) < 0 in t ∈ (t′, t′′) ⊂ (0,∞). We have, for every
t ∈ (t′, t′′), u(t) = 1 and

ẋ1 = u =⇒ x1(t) = t+ c, with c ∈ R (3.62)

ẋ2 = x1 =⇒ x2(t) = t2/2 + ct+ d, with d ∈ R (3.63)

We obtain

x2 =
1

2
x21 + d− c2

2
. (3.64)

For the moment, it is not easy to find the constants
c and d : however, it is clear that (3.64) represents
some parabolas on the (x1, x2)-plane. Moreover,
the dynamics ẋ2 = x1 gives that if x1 > 0, then x2
increases and if x1 < 0 then x2 decreases: hence
there is a direction on such line when the time
passes.

x1

x2

case B: Let λ1(t) > 0 in (t′, t′′) ⊂ (0,∞) : hence u(t) = −1 and, as before,

ẋ1 = u =⇒ x1(t) = −t+ e, with e ∈ R (3.65)

ẋ2 = x1 =⇒ x2(t) = −t2/2 + et+ f, with f ∈ R (3.66)
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that imply

x2 = −1

2
x21 + f +

e2

2
. (3.67)

Again we have some parabolas and a precise di-
rection for such curves.

x1

x2

case A+B: Now let us put together these
two families of parabolas in (3.64) and
(3.66). In order to start at time t = 0 from
the point (x1(0), x2(0)) = (v0, d0) and to ar-
rive in the final and unknown time T to the
point (x1(T ), x2(T )) = (0, 0), we can fol-
low some part of such parabolas (with the
right direction). It is clear that there exists
infinite path: for example (see the figure)
starting from A we can move on the curve
as arrive in B, hence follows the dashed line
and arrive in the point C and

x

A

1

x2

O

B

C

D

finally to arrive in the origin along a new parabola.

We remark that every time we pass from
a curve to another curve, the optimal con-
trol has a discontinuity point, i.e. u∗ passes
from +1 to −1 or vice versa. Since we know
that the optimal control has at most one
discontinuity point, the “red line ADO” in
the figure is the unique candidate to realize
the min, i.e. the minimal time T ∗.

x

A

1

x2

O

D

In order to guarantee that u∗ is really the optimal control with exit time T ∗,
we suggest two possibilities:
• first we will provide an existence result for this particular type of time optimal
problem called “linear”(see subsection 3.4.1). As we mentioned, the dynamics
in (3.56) is exactly the system in (3.46). For such M and N matrices, we have

G(M,N) = [N,MN ] =

[(
0

1

)
,

(
0 1

0 0

)(
0

1

)]
=

(
0 1

1 0

)
and

det (M − θI) = θ2.

Since G(M,N) has rank 2, and 0 is the unique eigenvalue of the matrix M,
Theorem 3.9 guarantees the existence of the solution of (3.56), for every initial
data (v0, d0).
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•• Second, we can apply a generic result of the existence of an optimal control
(see Theorem 3.8). We know, by the previous construction, that there exists at
least an admissible control u∗ with exit time T ∗; hence it is reasonable to restrict
the original target set T = [0,∞)×{(0, 0)} to the new set T = [0, T ∗]×{(0, 0)}.
Moreover, we have a compact control set [−1, 1] and for the dynamics we have
the condition, with x = (x1, x2),

‖ẋ‖ =

∥∥∥∥( u

x1

)∥∥∥∥ ≤√1 + x21 ≤ (1 + |x1|) ≤ (1 + ‖x‖);

finally, for every (t, x1, x2) we have that

F(t,x1,x2) = {(y1, y2, z) : y1 = u, y2 = x1, z ≥ 1, u ∈ [−1, 1]}
= [−1, 1]× {x1} × [1,∞),

is a convex set. Hence Theorem 3.8 guarantees that the optimal control exists.

In the next example we solve a particular case of this general situation:
Example 3.5.3. Let us consider

min
u
T

ẋ1 = u
ẋ2 = x1
x1(0) = 2, x2(0) = 1
x1(T ) = x2(T ) = 0
|u| ≤ 1

Since A = (x1(0), x2(0)) = (α1, α2) = (2, 1), by (3.65) and (3.66) we obtain e = 2 e f = 1.
(3.64) gives the curve γ1 with equation

x2 = −x21/2 + 3.

The point D is the intersection of the curve γ2 with equation

x2 = x21/2,

and the curve γ1 : we obtain D = (−
√

3, 3/2). We note that starting from A at time t = 0,
we arrive in D at time τD : such τD is, by (3.65), τD = 2 +

√
3.

We restart from D = (x1(τD), x2(τD)) and arrive, on γ2, to O. By (3.62) we have x1(τD) =
τD + c = −

√
3 and hence c = −2(1 +

√
3). By (3.64) and the equation of γ2, we have

d = c2/2 = 4(2 +
√

3). We arrive in the origin at the time T that is, using (3.62) and hence
x1(T ) = T − 2(1 +

√
3) = 0, T = 2(1 +

√
3). Hence

T ∗ = 2(1 +
√

3).

The optimal control and the optimal trajectory are (in order to guarantee that we have really
the optimal control, see the discussions in the previous general case)

u∗(t) =

{
−1 for t ∈ [0, 2 +

√
3],

1 for t ∈ (2 +
√

3, 2(1 +
√

3)],

x∗1(t) =

{
−t+ 2 for t ∈ [0, 2 +

√
3],

t− 2(1 +
√

3) for t ∈ (2 +
√

3, 2(1 +
√

3)],

x∗2(t) =

{
−t2/2 + 2t+ 1 for t ∈ [0, 2 +

√
3],

t2/2− 2(1 +
√

3)t+ 4(2 +
√

3) for t ∈ (2 +
√

3, 2(1 +
√

3)],

t
0

u

t

u

D T

1

-1

x

t
0 tD T

2

-3

1

1/2

x

t
0

tD T

1

3/2

2

4
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3.5.2 The Dubin car

The simple car model has three degrees of freedom, the car can be imagined as
a rigid body that moves in a plane. The back wheels can only slide and that
is why parallel parking is challenging. If all wheels could be rotated together,
parking would be a trivial task. The position of a car can be identified, at every
time t, with the triple (x1, x2, θ) ∈ R2× [0, 2π), where (x1, x2) are the principal
directions and θ is the angle of the car with the x1 axis (in a counterclockwise
sense). We can modify the direction θ by acting on the steering wheel of the
car: clearly θ is a continuous function on the time and its “modification” θ̇ is
bounded (i.e. |θ̇| ≤ A with A positive and fixed) and it’s our control (i.e. u = θ̇).
Suppose that the car has an initial position (x1(0), x2(0), θ(0)) = (4, 0, π/2) and
we are interested to park the car in the position (0, 0), without constraints on
the final direction of the car, in the shortest time. Clear, the fact that we have
no condition on the final direction simplifies the problem.11

We simplify our model setting the constant A equal to 1. Moreover, since we
are considering a minimum time problem, it is reasonable to set the velocity
v = v(t) of the car be maximum and equal to 1. The following problem can be
retrieved: 

min
u
T

ẋ1 = cos θ
ẋ2 = sin θ
θ̇ = u
x1(0) = 4, x2(0) = 0, θ(0) = π/2
x1(T ) = 0, x2(T ) = 0
|u| ≤ 1

(3.68)

The Hamiltonian isH = λ0+λ1 cos θ+λ2 sin θ+λ3u and the necessary conditions
of Theorem 3.10 give (note that θ(T ) is free and hence we have a transversality
condition on λ3(T ) and note that the problem is autonomous)

u(t) ∈ arg min
v∈[−1,1]

[λ3(t)v] (3.69)

λ̇1 = − ∂H
∂x1

= 0 ⇒ λ1 = c1 (3.70)

λ̇2 = − ∂H
∂x2

= 0 ⇒ λ2 = c2 (3.71)

λ̇3 = −∂H
∂θ

= λ1 sin θ − λ2 cos θ (3.72)

λ3(T ) = 0 (3.73)

λ0 + λ1(t) cos θ(t) + λ2(t) sin θ(t) + λ3(t)u(t) = 0 ∀t (3.74)

11If we add an assumption on the final direction of the car, as is reasonable if you are
parking it, then we have the following Dubin car problem:

min
u
T

ẋ1 = cos θ
ẋ2 = sin θ
θ̇ = u
x1(0) = x1,0, x2(0) = x2,0, θ(0) = θ0
x1(T ) = 0, x2(T ) = 0, θ(T ) = θ1
|u| ≤ 1

The solution is much more complicated and is presented, for example, in [1].
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where ci are constants; changing these constants with c1 = α cosβ and c2 =
α sinβ, where α ≥ 0 and β are again constants, we obtain by (3.70)–(3.74) that

λ1 = α cosβ, λ2 = α sinβ (3.75)

λ̇3 = α sin(θ − β) (3.76)

λ0 + α cosβ cos θ(T ) + α sinβ sin θ(T ) = 0 (3.77)

It is easy to see that if α = 0 (i.e. λ1(t) = λ2(t) = 0), then by (3.77) we obtain
λ0 = 0; moreover (3.76) and (3.73) give λ3(t) = 0. This is impossible since
(λ0, λ) 6= (0, 0): hence α 6= 0. We note that if (λ0, λ1, λ2, λ3) is a multiplier that
satisfies all the conditions (3.69)–(3.74), the “new” multiplier (λ0

α ,
λ1

α ,
λ2

α ,
λ3

α )
satisfies the same conditions (3.69)–(3.74). In other words, it is possible to put,
without loss of generality, α = 1.

First, let us suppose that there exists an interval (a, b) where

λ3(t) > 0, t ∈ (a, b);

(3.69) implies u = −1 in such interval. The dynamics gives

θ(t) = −t+ a+ θ(a), ∀t ∈ (a, b)

and hence

x1(t) = x1(a)− sin(−t+ a+ θ(a)) + sin θ(a)

x2(t) = x2(a) + cos(−t+ a+ θ(a))− cos θ(a)

for every t ∈ (a, b). Note that t 7→ (x1(t), x2(t)) describes an arc of circumference
of radius 1, with center (x1(a) + sin θ(a), x2(a)− cos θ(a)), in a clockwise sense.

Similar calculations give that if there exists an interval (a, b) where

λ3(t) < 0, t ∈ (a, b)

then we obtain u(t) = +1 and

θ(t) = t− a+ θ(a),

x1(t) = x1(a) + sin(t− a+ θ(a))− sin θ(a) (3.78)

x2(t) = x2(a)− cos(t− a+ θ(a)) + cos θ(a) (3.79)

for every t ∈ (a, b). Again t 7→ (x1(t), x2(t)) describes an arc of circumference
of radius 1, with center (x1(a)− sin θ(a), x2(a)+cos θ(a)), in a counterclockwise
sense.

Finally, if we have a situation where

λ3(t) = 0, ∀t ∈ (a, b)

then, λ̇3(t) = 0 in (a, b): relation (3.76) implies

sin(θ(t)− β) = 0 t ∈ (a, b),

i.e. θ constant in (a, b). The dynamics gives

x1(t) = x1(a)+(t−a) cos(θ(a)), x2(t) = x2(a)+(t−a) sin(θ(a)) (3.80)

for every t ∈ (a, b).
Essentially, in order to construct our optimal strategy we have only three

possibilities:



74 CHAPTER 3. GENERAL PROBLEMS OF OC

* we turn on the right with θ̇ = −1, and the car describes an arc of circum-
ference of radius 1;

** we turn on the left with θ̇ = 1, and the car describes an arc of circumference
of radius 1;

*** we go straight, i.e. θ̇ = 0.

Now, looking the position of the car, it is reasonable to think that our
strategy is first to turn on the right and hence to go straight. Hence in [0, τ) we
set u(t) = 1 and, as in (3.78)–(3.79) and using the initial conditions, we obtain

θ(t) = t+
π

2

x1(t) = 3 + sin
(
t+

π

2

)
= 3 + cos t (3.81)

x2(t) = − cos
(
t+

π

2

)
= sin t

for every t ∈ [0, τ). In [τ, T ] we go straight and hence, as in (3.80) and using the
continuity of the trajectory for t = τ , we have by (3.81) and the dynamics

θ(t) = τ +
π

2

x1(t) = 3 + cos τ + (t− τ) cos
(
τ +

π

2

)
= 3 + cos τ − (t− τ) sin τ

x2(t) = sin τ + (t− τ) sin
(
τ +

π

2

)
= sin τ + (t− τ) cos τ

for every t ∈ [τ, T ]. Clearly the final condition on the position of the car gives

x1(T ) = 3 + cos τ − (T − τ) sin τ = 0, x2(T ) = sin τ + (T − τ) cos τ = 0.

Solving this system we obtain (using the picture below we deduce that sin τ =
+
√

8/3)

T ∗ = arccos

(
−1

3

)
+
√

8, τ = arccos

(
−1

3

)
.

Hence

u∗(t) =

{
1 t ∈ [0, τ ]
0 t ∈ (τ, T ∗]

θ∗(t) =

{
t+ π/2 t ∈ [0, τ ]
τ + π/2 t ∈ (τ, T ∗]

x∗1(t) =

{
3 + cos t t ∈ [0, τ ]
8/3− (t− τ)

√
8/3 t ∈ (τ, T ∗]

(3.82)

x∗2(t) =

{
sin t t ∈ [0, τ ]√

8/3− (t− τ)/3 t ∈ (τ, T ∗]
(3.83)
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2

x4

x

1
3

q(0)

The initial data for the car is (x1(0), x2(0), θ1(0)) = (4, 0, π/2); the final position is

(x1(T
∗), x2(T

∗)) = (0, 0) with θ1(T
∗) free.

Clear, the previous arguments gives a candidate to be the optimal solution of
the problem, but it is not a proof of its uniqueness. Indeed, it is possible to
construct infinite paths using arcs of circumferences of radius 1 (as in * and
**) and segments (as in ***) to connect the point (4,0) and the origin, with
continuous θ: such paths are all extremals. However, it is easy to see that
in this family of extremal paths, our trajectory (x∗1, x

∗
2) in (3.82)-(3.83) is the

shortest: since the modulo of the velocity of the car is constant, such trajectory
is the best choice in the family of the extremals to have a minimal time. We
remark that such control u∗ in singular.

Finally, let us show that there exists the optimal control for our problem.
We know, by the previous construction, that there exists at least an admissible
control u∗ with exit time T ∗; hence it is reasonable to restrict the original target
set T = [0,∞)× {(0, 0)} × [0, 2π] to the new set T = [0, T ∗]× {(0, 0)} × [0, 2π].
Moreover, we have a compact control set [−1, 1] and for the dynamics we have
the bounded condition

‖ẋ‖ =

∥∥∥∥∥∥
 cos θ

sin θ

u

∥∥∥∥∥∥ ≤
√

1 + u2 ≤ 2 ≤ 2(1 + ‖x‖);

finally, for every (t, x1, x2, θ) fixed we have that

F(t,x1,x2,θ) = {(cos θ, sin θ)} × [−1, 1]× [1,∞),

is a convex set. Hence Theorem 3.8 guarantees that the optimal control exists.

3.6 Infinite horizon problems

If in the problem (3.4) we consider, with due caution, t1 = ∞, then the first
question is the validity of Theorem of Pontryagin 3.1. It is clear that

� with ψ(x(∞)) and x(∞), we have to replace lim
t→∞

ψ(x(t)) and lim
t→∞

x(t);

� in general, without other assumptions on f, on the control u∗ and the
associated trajectory x∗ that are candidate to maximize (or minimize)
the problem, we are not able to guarantee that the integral∫ ∞

t0

f(t,x∗,u∗) dt

exists and is finite.
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In this context and considering the transversality condition iii) of Theorem of
Pontryagin, one might expect that

lim
t→∞

λ∗(t) = 0 (3.84)

would be a natural condition for a infinite horizon problem. The next example
shows that (3.84) is false:

Example 3.6.1 (The Halkin counterexample). Let us consider the problem

max J(u)

J(u) =

∫ ∞
0

(1− x)udt

ẋ = (1− x)u
x(0) = 0
0 ≤ u ≤ 1

Let u an admissible control12 with trajectory x; since x is continuous and x(0) = 1, there
exists a ε1 = ε1(u) > 0 such that 1− x(t) > 0 for every t ∈ [0, ε1); the dynamics gives

ẋ = (1− x)u ≤ (1− x) in [0, ε1).

Setting y = x− 1 and using a Gronwall’s inequality, we obtain y(t) ≤ y(0)e−t i.e.

x(t) ≤ 1− e−t in [0, ε1) :

since x is continuous and x(ε1) ≤ 1−e−ε1 , there exists a ε2 = ε2(u) > ε1 such that 1−x(t) > 0
for every t ∈ [ε1, ε2); in this case the dynamics gives

ẋ = (1− x)u ≤ (1− x) in [0, ε2);

and we obtain
x(t) ≤ 1− e−t in [0, ε2) :

It is clear that we are in the position to construct an increasing sequence {εk}∞1 such that
x(t) ≤ 1 − e−εk for t ∈ [0, εk], for every k: it is easy to see that such sequence diverges to
+∞. Hence for every admissible control u the associated trajectory x is such that x(t) < 1
on [0,∞).

For every admissible control u, using the dynamics and the initial condition, we have

J(u) = lim
T→∞

∫ T

0
(1− x)u dt = lim

T→∞

∫ T

0
ẋdt = lim

T→∞
(x(T )− x(0)) = lim

T→∞
x(T ) ≤ 1.

Clearly, we obtain that every control u such that J(u) = 1, then such u is optimal. In
particular, let us consider the constant control u0(t) = u0 ∈ (0, 1): we obtain, using the
dynamics and the continuity of u0,

J(u) = lim
T→∞

x(T ) = lim
T→∞

e−
∫ T
0 u0 ds

(∫ T

0
u0e

∫ s
0 u0 dv ds

)
= lim
T→∞

(
1− e−Tu0

)
= 1 :

due to the previous arguments, u0 is optimal.
The Hamiltonian is H = (1− x)(λ0 + λ)u and the PMP implies that

u0 ∈ arg max
v∈[0,1]

(1− x)(λ0 + λ)v ∀t ≥ 0.

The previous condition gives λ(t) = −λ0 for every t ≥ 0. If λ0 = 0, then we obtain (λ0, λ) =

(0, 0) which is impossible; if λ0 = 1 (we recall that λ0 ∈ {0, 1}), then the previous condition

gives λ(t) = −1 for every t ≥ 0. Hence such multiplier λ is associated to the optimal control

u0 and lim
t→∞

λ(t) 6= 0. 4

12If we restrict our attention only on continuous and admissible control, we can argue as
follows: we integrate the dynamics ẋ+ xu = u and taking into account the initial condition,
we obtain

x(t) = e−
∫ t
0 u(s) ds

(∫ t

0
u(s)e

∫ s
0 u(v) dv ds

)
= 1− e−

∫ t
0 u(s) ds.
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Hence let us consider the problem:

max
u∈C

∫ ∞
t0

f(t,x,u) dt

ẋ = g(t,x,u)
x(t0) = α
lim
t→∞

xi(t) = βi, for 1 ≤ i ≤ n′

lim
t→∞

xi(t) ≥ βi, for n′ < i ≤ n′′

lim
t→∞

xi(t) free for n′′ < i ≤ n
C = {u : [t0,∞)→ U ⊆ Rk, u admissible}

(3.85)

where α and β = (β1, . . . , βn) are fixed in Rn.
The problem of the transversality for this problem is treated with many

details in [29] (see Theorem 3.13): here we give only a sufficient condition in
the spirit of the theorem of Mangasarian:

Theorem 3.11. Let us consider the infinite horizon maximum problem (3.85)
with f ∈ C1 and g ∈ C1. Let the control set U be convex. Let u∗ be a normal
extremal control, x∗ the associated trajectory and λ∗ = (λ∗1, . . . , λ

∗
n) the asso-

ciated multiplier, i.e. the tern (x∗,u∗,λ∗) satisfies the PMP and the adjoint
equation.
Suppose that

v) the function (x,u) 7→ H(t,x,u,λ∗(t)) is, for every t ∈ [t0,∞), concave,

vi) for all admissible trajectory x,

lim
t→∞

λ∗(t) · (x(t)− x∗(t)) ≥ 0. (3.86)

Then u∗ is optimal.

Proof. The first part of the proof coincides with the proof of Theorem 2.4
of Mangasarian: hence we obtain that, for every admissible control u with
associated trajectory x we have that (see (2.27))

H(t,x,u,λ∗) ≤ H(t,x∗,u∗,λ∗)− λ̇∗ · (x− x∗)

and hence, for every that t1 > t0∫ t1

t0

f(t,x,u) dt ≤
∫ t1

t0

f(t,x∗,u∗) dt+
(
λ∗ · (x∗ − x)

∣∣∣t1
t0

=

∫ t1

t0

f(t,x∗,u∗) dt+

+λ∗(t1) ·
(
x∗(t1)− x(t1)

)
− λ∗(t0) ·

(
x∗(t0)− x(t0)

)
.

Now, taking into account x∗(t0) = x(t0) = α, the limit for t1 → ∞ of the
members of the previous inequality gives∫ ∞

t0

f(t,x,u) dt ≤
∫ ∞
t0

f(t,x∗,u∗) dt+ lim
t1→∞

λ∗(t1) ·
(
x∗(t1)− x(t1)

)
. (3.87)
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Clearly the transversality condition (3.86) implies that u∗ is optimal.

The transversality condition in (3.86) is not so easy to guarantee, since it
requires to study every admissible trajectory. Suppose that in problem (3.85)
we have n′ = n′′ = n, i.e. we have a final condition on the trajectory of the type

lim
t→∞

x(t) = β, (3.88)

for some fixed β ∈ Rn. It is clear by the final part the previous proof (see (3.87)),
that

Remark 3.6. Suppose that in the problem (3.85) we have only a condition of
the type (3.88). Suppose that there exists a constant c such that

‖λ∗(t)‖ ≤ c, ∀t ≥ τ (3.89)

for some τ, then the transversality condition in (3.86) holds.

See chapter 14 in [8] for further conditions.
In the case of infinite horizon problem of Calculus of Variation, recalling

that ∇uf = ∇ẋf = −λ∗ (see (2.36)), the sufficient condition in (3.86) and in
(3.89) become as follows:

Remark 3.7. In the case of infinite horizon problem of Calculus of Variation,
the transversality condition in vi) becomes

lim
t→∞

∇ẋf(t,x∗(t), ẋ∗(t)) · (x(t)− x∗(t)) ≤ 0, (3.90)

for all admissible trajectory x. Moreover, if the calculs of variation problem has
a final condition on the trajectory of the type (3.88), i.e. limt→∞ x(t) = β with
β fixed, and there exists a constant c such that

‖∇ẋf(t,x∗(t), ẋ∗(t))‖ ≤ c, ∀t ≥ τ (3.91)

for some τ, then the transversality condition in (3.90) holds.

Finally, it is clear from the proof that

Remark 3.8. If in (3.85) we replace the max with a min, we have to reverse
the inequalities in the previous transversality conditions in (3.86) and (3.90).

Example 3.6.2. Let us consider the problem
min

∫ ∞
0

e2t(u2 + 3x2) dt

ẋ = u
x(0) = 2

It is a calculus of variation problem and in order to guarantee that
∫∞
0 e2t(u2 + 3x2) dt <∞,

it is clear that we have to require that lim
t→∞

x(t) = 0. Hence we have to solve the problem
min

∫ ∞
0

e2t(ẋ2 + 3x2) dt

x(0) = 2
lim
t→∞

x(t) = 0

The EU gives ẍ+ 2ẋ− 3x = 0 and its general solution is

x(t) = ae−3t + bet,
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for some constants a and b. The conditions on the trajectory give that the unique extremal is
the function x∗(t) = 2e−3t.

Now we note that ∂f
∂ẋ

= 2e2tẋ and hence∣∣∣∣∂f∂ẋ (t, x∗(t), ẋ∗(t))

∣∣∣∣ = |2e2tẋ∗(t)| = | − 12e−t| ≤ 12, ∀t ≥ 0 : (3.92)

the concavity of the function f = e2t(ẋ2 + 3x2), with respect to the variable x and ẋ, and the
transversality condition (3.91), i.e. (3.92), give that x∗ is optimal.

3.6.1 The model of Ramsey

We show the problem of resource allocation in a infinite time (see [24]): we want
to determine the combination optimal of consumption and savings from current
production. Considering a generic economic system that produces a given level
of national product (NP), we must find the fraction of NP that is consumed and
what is saved: the first generates utility in the current period, while the second
fraction of NP, if invested, will produce a utility in the future.
Suppose then that the control variables are the work L = L(t) and the capital
K = K(t). Suppose also that there is only a goods with production function

Q = Q(K(t), L(t)). (3.93)

So the production is independent, directly, by time and hence we are assuming
that there is not progress in the technology. Suppose also that there is no
depreciation of the capital and that the population remains stationary. The
production is distributed, at every moment, for consumption C and investments:
then

Q = C +K ′. (3.94)

The utility function U = U(C) (social utility index) has not increasing marginal
utility η = U ′ : then U ′′ ≤ 0. Moreover we suppose that U has an upper bound
which we call U .

U

C

U

U

C

U

U

C

U

We note that if U(C)→ U . then η → 0.

We introduce also the disutility function D = D(L) arising from work L, with
marginal disutility decreasing: then D′′ ≥ 0. The net utility is given by U(C)−
D(L). The problem of detecting a dynamic consumption that maximizes the
utility of current and future generations can formalize as

max
(L,C)

∫ ∞
0

(U(C)−D(L)) dt. (3.95)

In general the integral in (3.95) does not exist. This is due in part to the
fact that there isn’t discount factor, not forgetfulness, but because it is deemed
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“ethically indefensible”, for today’s generations who plan, pay the utilities of
future generations. Moreover it is reasonable to expect that over the course of
time the net utility is positive and grows. Hence, we can assume that there
exists a positive B such that

lim
t→∞

(U(C)−D(L)) = B;

such B is a kind of “ideal situation” (Ramsey called the “Bliss”, happiness).
Hence we have to minimize the gap between the net utility and the “happiness
”:

min
(L,C)

∫ ∞
0

[
B − U(C) +D(L)

]
dt

Taking into account (3.93) and (3.94), we have
min
(L,K)

∫ ∞
0

[
B − U

(
Q(K(t), L(t))−K ′(t)

)
+D(L(t))

]
dt

K(0) = K0

lim
t→∞

(U(C)−D(L)) = B

(3.96)

where K0 is fixed initial capital, while in general it is considered inappropriate
fix an initial condition at work. If we denote by

F = F (L,K,L′,K ′) = B − U
(
Q(K(t), L(t))−K ′(t)

)
+D(L(t)),

we write the equation of Euler with respect the variables L and K :
d

dt
FL′ = FL

d

dt
FK′ = FK

⇒

{
0 = −ηQL +D′

dη

dt
= −ηQK

Since

D′ = ηQL,

the marginal disutility of labor must be equal to the product between the
marginal utility of consumption and the marginal product of labor. Moreover
we have that

dη
dt

η
= −QK

provides a “good rule” to consumption: the rate of growth of marginal utility
of consumption should be equal, at every moment, to the marginal product of
capital changing the sign. Also we note that F does not explicitly depend on t
and, from (2.38), we have

F −K ′FK′ = c ⇒ B − U(C) +D(L)−K ′η = c, (3.97)

for every t ≥ 0, where c is a constant. Since the net utility tends to B, it is
clear that U(C) goes to U and hence η → 0. From (3.97) we have

0 = lim
t→∞

[B − U(C) +D(L)−K ′η − c] = −c.
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The relations c = 0 and (3.97) give us the optimal path of the investment K∗′,
i.e.

K∗′(t) =
B − U(C(t)) +D(L(t))

η(t)
.

This result is known as “the optimal rule of Ramsey”.

Now, if we would like to guarantee that the extremal path (L∗,K∗) is optimal,
we study the convexity of the function F :

d2F (L,K,L′,K ′) =


FLL FLK FLL′ FLK′

FKL FKK FKL′ FKK′

FL′L FL′K FL′L′ FL′K′

FK′L FK′K FK′L′ FK′K′



=


−U ′′Q2

L − U ′QLL +D′′ −U ′′QLQK − U ′QKL 0 U ′′QL
−U ′′QLQK − U ′QKL −U ′′Q2

K − U ′QKK 0 U ′′QK
0 0 0 0

U ′′QL U ′′QK 0 −U ′′


If we consider the quadratic form

h ·
(

d2F (L,K,L′,K ′)
)
· hT ,

with h = (hL, hK , ḣL, ḣK), we have

h ·
(

d2F (L,K,L′,K ′)
)
· hT =

= h2LD
′′(L)− (hL, hK) ·

(
QLL QLK
QLK QKK

)
· (hL, hK)TU ′(C) +

−(hL, hK , ḣK) ·

 Q2
L QLQK −QL

QLQK Q2
K −QK

−QL −QK 1

 · (hL, hK , ḣK)TU ′′(C).

An easy computation shows that the 3× 3 matrix of the previous expression is
positive semidefinite. Moreover, since D′′(L) ≥ 0 and U ′′(C) ≤ 0, if we assume
that U ′(C) ≥ 0 and Q is concave in the variable (L,K), then the extremal path
(L∗,K∗) is really a minimum for the problem (3.96).

An example of a concave pro-
duction function Q is given by
the Cobb-Douglas Q(L,K) =
aL1−bKb, with a > 0 and 0 < b <
1. On the right, we put the func-
tion of Cobb-Douglas Q(L,K) =
2L4/5K1/5. 0

0
0

K

5

10

10 15

20

5

30

L
10

15
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3.7 Current Hamiltonian

In many problems of economic interest, future values of income and expenses
are discounted: if r > 0 is the discount rate, we have the problem

J(u) =

∫ t1

t0

e−rtf(t,x,u) dt

ẋ = g(t,x,u)
x(t0) = α
max
u∈C

J(u)

(3.98)

where t1 is fixed and finite; in this situation, setting λ0 = 1 in order to apply a
sufficient condition, we have the Hamiltonian H(t,x,u,λ) = e−rtf(t,x,u) +λ ·
g(t,x,u) and the necessary conditions of Pontryagin are

u∗ ∈ arg max
v∈U

(
f(t,x∗,v)e−rt + λ∗ · g(t,x∗,v)

)
(3.99)

∇xH = e−rt∇xf(t,x∗,u∗) + λ∗ · ∇xg(t,x∗,u∗) = −λ̇
∗

(3.100)

λ∗(t1) = 0. (3.101)

For simplicity and only for few lines, let us consider the case with n = k = 1
(i.e. x = x1 = x, u = u1 = u) and with the control set U = R; moreover we
suppose that ∂g

∂u 6= 0 : then (3.99) implies

λ∗ert = −
∂f
∂u (t, x∗, u∗)
∂g
∂u (t, x∗, u∗)

.

Hence, from remark 2.11, λ∗(t) gives the marginal value of the state variable at
time t discounted (“brought back”) at time t0. It is often convenient to consider
the situation in terms of current values, i.e. of values at time t.
Hence, for the generic problem (3.98), let us define the current Hamiltonian Hc

as
Hc(t,x,u,λc) = f(t,x,u) + λc · g(t,x,u),

where λc is the current multiplier. Clearly we obtain

Hc = ertH (3.102)

λ∗c = ertλ∗. (3.103)

If we consider the derivative with the respect the time in (3.103), we have

λ̇
∗
c = rertλ∗ + ertλ̇

∗

(by (3.100) and (3.103) ) = rλ∗c −∇xf(t,x∗,u∗)− ertλ∗ · ∇xg(t,x∗,u∗)

(by (3.103)) = rλ∗c −∇xf(t,x∗,u∗)− λ∗c · ∇xg(t,x∗,u∗)

= rλ∗c −∇xH
c(t,x∗,u∗,λ∗c).

(3.99) and (3.102) imply

u∗(t) ∈ arg max
v∈U

e−rtHc(t,x∗(t),v,λ∗c(t)) = arg max
v∈U

Hc(t,x∗(t),v,λ∗c(t)).

Easily (3.101) becomes λ∗c(t1) = 0. In conclusion
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Remark 3.9. A necessary condition for the problem (3.98) is

u∗ ∈ arg max
v∈U

Hc(t,x∗,v,λ∗c) (3.104)

λ̇
∗
c = rλ∗c −∇xH

c(t,x∗,u∗,λ∗c) (3.105)

λ∗c(t1) = 0. (3.106)

We will give an interpretation of the current multiplier in remark 5.8. Clearly
(3.102) implies the following;

Remark 3.10 (U = Rk). If in the problem (3.98) we have a control set U = Rk,
then in the necessary conditions of remark 3.9 we have to replace (3.104) with

∇uH
c(t,x∗,u∗,λ∗c) = 0 (3.107)

Recalling that the transversality condition for the infinite horizon problem
is delicate, we have the following:

Remark 3.11 (Infinite horizon problem). If in the problem (3.98) we have
t1 =∞, then in the necessary conditions of remark 3.9 we have to delete (3.106).

Example 3.7.1. Let us consider13
min

∫ ∞
0

e−rt(ax2 + bu2) dt

ẋ = u
x(0) = x0 > 0
lim
t→∞

x(t) = 0

(3.108)

where a and b are fixed and positive. The current Hamiltonian is Hc = ax2 + bu2 + λcu.
Remark 3.10 gives

∂Hc

∂u
= 0 ⇒ 2bu∗ + λ∗c = 0 ⇒ (by (3.111)) λ∗c = −2bẋ∗ (3.109)

λ̇∗c = rλ∗c −
∂Hc

∂x
⇒ λ̇∗c − rλ∗c + 2ax∗ = 0 (3.110)

∂Hc

∂λc
= ẋ∗ ⇒ ẋ∗ = u∗ (3.111)

(3.109) and (3.110) imply

bẍ∗ − brẋ∗ − ax∗ = 0 ⇒ x∗(t) = c1e

(
br+
√
b2r2+4ab

)
t/(2b)

+ c2e

(
br−
√
b2r2+4ab

)
t/(2b)

,

with c1 and c2 constants. The initial condition implies

x∗(t) = c1e

(
br+
√
b2r2+4ab

)
t/(2b)

+ (x0 − c1)e

(
br−
√
b2r2+4ab

)
t/(2b)

.

Now consider the derivative of the previous expression with respect the time to obtain u∗ :

u∗(t) = c1
br +

√
b2r2 + 4ab

2b
e

(
br+
√
b2r2+4ab

)
t/(2b)

+

+(x0 − c1)
br −

√
b2r2 + 4ab

2b
e

(
br−
√
b2r2+4ab

)
t/(2b)

.

It is an easy calculation to see that∫ ∞
0

e−rt(a(x∗)2 + b(u∗)2) dt =

∫ ∞
0

(
Ae

(√
b2r2+4ab

)
t/b

+Be

(
−
√
b2r2+4ab

)
t/b

+ C

)
dt,

13In the example 5.7.1 we solve the same problem with dynamic programming.
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for A, B and C constants, converges if and only if c1 = 0. We obtain, using (3.103),

λ∗c(t) = x0
(√

b2r2 + 4ab− br
)
e

(
br−
√
b2r2+4ab

)
t/(2b)

, (3.112)

λ∗(t) = x0
(√

b2r2 + 4ab− br
)
e
−
(
br+
√
b2r2+4ab

)
t/(2b)

, (3.113)

x∗(t) = x0e

(
br−
√
b2r2+4ab

)
t/(2b)

,

u∗(t) = x0
br −

√
b2r2 + 4ab

2b
e

(
br−
√
b2r2+4ab

)
t/(2b)

.

The Hamiltonian is convex and the multiplier λ∗ is bounded; from Theorem 3.11 and remark
3.6 u∗ is the minimum. In the picture at the end of the next example 3.7.2, there is the
optimal tern in a particular case.

Example 3.7.2. Let us consider a modification of the previous example 3.7.1, in the case
r = 2, a = 3, b = 1, x0 = 2 : 

min

∫ ∞
0

e−2t(3x2 + u2) dt

ẋ = u
x(0) = 2
|u| ≤ 1
lim
t→∞

x(t) = 0

(3.114)

This new problem has some similarities with the previous one: we only give an idea of the
solution and leave to the reader the details. The current Hamiltonian is Hc = 3x2 +u2 +λcu.
Remark 3.9 gives

u∗ ∈ arg min
v∈[−1,1]

Hc(t, x∗, u∗, λ∗c) ⇒ u∗ ∈ arg min
v∈[−1,1]

(v2 + λ∗cv)

⇒ u∗ =

−1 if −λ∗c/2 < −1
−λ∗c/2 if −1 ≤ −λ∗c/2 ≤ 1
1 if 1 < −λ∗c/2

(3.115)

λ̇∗c = rλ∗c −
∂Hc

∂x
⇒ λ̇∗c − 2λ∗c + 6x∗ = 0 (3.116)

∂Hc

∂λc
= ẋ∗ ⇒ ẋ∗ = u∗ (3.117)

Let us suppose that for every t ∈ [0,∞) we have −1 ≤ −λ∗c/2 ≤ 1: we obtain (as in example
3.7.1)

u∗(t) = −2e−t, x∗(t) = 2e−t, λ∗c(t) = 4e−t, ∀t ∈ [0,∞) :

this contradicts the assumption λ∗c ≤ 2.
Hence let us suppose that, for some fixed τ > 0, we have −λ∗c/2 < −1 for every t ∈ [0, τ).

Relations (3.115), (3.116) and (3.117) give

u∗(t) = −1, x∗ = 2− t, λ∗c(t) = Ae2t − 3t+
9

2
, ∀t ∈ [0, τ). (3.118)

Now let us suppose that for every t ∈ [τ,∞) we have −1 ≤ −λ∗c/2 ≤ 1 : we obtain (as in
example 3.7.1, taking into account that is an infinite horizon problem)

u∗(t) = −c2e−t, x∗(t) = c2e
−t, λ∗c(t) = 2c2e

−t, ∀t ∈ [τ,∞). (3.119)

The continuity of the multiplier and of the trajectory in t = τ imply, by (3.118) and (3.119),
that

x∗(τ) = 2− τ = c2e
−τ ,

λ∗c(τ) = Ae2τ − 3τ +
9

2
= 2c2e

−τ = 2.

It is an easy calculation to see that

u∗(t) =

{
−1 if 0 ≤ t < 1
−e1−t if t ≥ 1

x∗(t) =

{
2− t if 0 ≤ t < 1
e1−t if t ≥ 1

λ∗c(t) =

{
1
2
e2t−2 − 3t+ 9

2
if 0 ≤ t < 1

2e1−t if t ≥ 1

Since the Hamiltonian is convex and the multiplier λ∗ = λ∗ce
−2t is bounded, then u∗ is the

minimum.
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u

1

t
0

-1

u =-2e*

-2

-t

u =-e* 1-t

u =-1*

x

t
0

1

2

x =e* 1-t

x =2e*
-t

x =1*

1

x

t
0

2

4

l =4e*
-t

c

l =2e*
1-t

c

l =e   /2-3t+9/2* 2-2t

c

1

In red: the optimal tern of the problem (3.108), in the case r = 2, a = 3, b = 1, x0 = 2.
In blue: the optimal tern of the problem (3.114).

3.7.1 A model of optimal consumption with log–utility I

We solve14 the model presented in the example 1.1.5, formulated with (1.6),
recalling that here δ > r. Secondly we study a particular case where there is not
an excess return, i.e. if where δ is a given discount rate and r > 0 is a given rate
to return, then we have δ = r. In both these cases, we consider a logarithmic
utility function U(c) = log c.

The case δ > r : we have to study (1.6). The current Hamiltonian is Hc =
ln c+ λc(rx− c) and the necessary condition (3.105) and (3.107) give

λ̇c = (δ − r)λc (3.120)

c(t) ∈ arg max
v≥0

(ln v + λc(rx− v)). (3.121)

Clearly (3.120) gives λc = Ae(δ−r)t for some constant A and the max in (3.121)
depends on the such A : more precisely

c(t) =

{ 6 ∃ if λc(t) ≤ 0
1

λc(t)
if λc(t) > 0

Let us suppose15 that A > 0. Hence (3.121) gives c(t) = 1
Ae

(r−δ)t. From the

dynamics we obtain ẋ = rx− 1
Ae

(r−δ)t and hence

x(t) = e

∫ t

0

r ds

x0 − 1

A

∫ t

0

e(r−δ)se
−
∫ s

0

r dv
ds


=

(
x0 −

1

Aδ

)
ert +

1

Aδ
e(r−δ)t.

14In subsection 5.7.4 we solve the same problem with the variational approach.
15We note that this assumption, taking into account that the multiplier is a shadow price

(see section 5.6), is reasonable since if the initial capital x0 increases, then the value of the
max (the total discounted utility) increases.
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The condition lim
t→∞

x(t) = 0 implies A = 1
x0δ

: note that this result is consistent

with the assumption on the sign of A. Hence we obtain

c(t) = x0δe
(r−δ)t and x(t) = x0e

(r−δ)t.

Since the Hamiltonian is convex and the multiplier λ∗(t) = λ∗c(t)e
−δt = 1

x0δ
e−rt

is bounded, we have the optimal path of consumption.
The case δ = r : we suppose that the consumption c is bounded with the
spending limit cmax ≥ rx0 and let us remove the assumption lim

t→∞
x(t) = ∞ :

then the problem is 
max

∫ ∞
0

e−rt ln cdt

ẋ = rx− c
x(0) = x0 > 0
x ≥ 0
0 ≤ c ≤ cmax

Clearly the current Hamiltonian is Hc = ln c + λc(rx − c) and the sufficient
condition (3.105) and (3.107) give

λ̇c = rλc − rλc = 0

c(t) ∈ arg max
v∈[0,cmax]

(ln v + λc(rx− v)). (3.122)

We obtain that λc(t) = λc(0) for every t ≥ 0. We note that

∂Hc

∂c
=

1

c
− λc(0)

and hence, taking into account (3.122), we obtain: if λc(0) ≤ 0, then Hc in-
creases in [0, cmax] and c(t) = cmax; if 0 < 1

λc(0)
≤ cmax, then c(t) = 1

λc(0)
; if

1
λc(0)

> cmax, then c(t) = cmax. In all the cases we obtain that c(t) = k is a

constant: hence the dynamics gives

x(t) = e

∫ t

0

r ds

x0 − ∫ t

0

ke
−
∫ s

0

r dv
ds

 = x0e
rt − k e

rt − 1

r
. (3.123)

We note that k > rx0 implies that lim
t→∞

x(t) = −∞ : this contradicts the

requirement on the capital x > 0. Hence we consider such constant control
c(t) = k with k ≤ rx0 : we have

max
{c(t)=k: k≤rx0}

∫ ∞
0

e−rt ln cdt =

(
max
k≤rx0

ln k

)∫ ∞
0

e−rt dt;

hence c∗(t) = rx0 ≤ cmax is the optimal choice in the constant consumptions.
Such control c∗ gives a path of the capital constant x∗(t) = x0 and a current
multiplier λ∗c(t) = 1

rx0
.

In order to guarantee that c∗ is the max, we note that the Hamiltonian
is concave in the variable (x, c) since the dynamics is linear in the variables
x and c, the running cost is concave in c. To conclude we have to show that
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the transversality condition (3.86) in Theorem 3.11 holds: for every admissible
trajectory x we have x(t) > 0 and hence

−x0 < x(t)− x0 = x(t)− x∗(t).

Taking into account that the multiplier λ∗(t) = λ∗c(t)e
−rt = λ∗c(0)e−rt is posi-

tive, we obtain

lim
t→∞

λ∗(t)(x(t)− x∗(t)) ≥ lim
t→∞

−λ∗(t)x0 = −1

r
lim
t→∞

e−rt = 0.

Hence c∗ is really the optimal path of consumption.
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Chapter 4

Constrained problems of
OC

The constrained optimal control problems are treated exhaustively in [30] (chap-
ter 8, section C); one can also consult [5] and [20].

4.1 The general case

Let f, g : [t0, t1]×Rn+k → R be the running cost and the dynamics respectively;
let h = (h1, . . . , hm) : [t0, t1] × Rn+k → Rm be the function for the m equal-
ity/inequality constraints and b = (b1, . . . , br) : [t0, t1]×Rn+k → Rr be the func-
tion for the r integral equality/inequality constraints; let ψ = (ψ0, ψ1, . . . , ψr) :
Rn → Rr+1 be the pay off function and α ∈ Rn the initial point of the trajectory.
Let 0 ≤ m′ ≤ m, 0 ≤ r′ ≤ r. We consider the problem

J(u) =

∫ t1

t0

f(t,x,u) dt+ ψ0(x(t1))

ẋ = g(t,x,u)
x(t0) = α
hj(t,x(t),u(t)) ≥ 0 for 1 ≤ j ≤ m′
hj(t,x(t),u(t)) = 0 for m′ + 1 ≤ j ≤ m

Bj(u) =

∫ t1

t0

bj(t,x,u) dt+ ψj(x(t1)) ≥ 0 for 1 ≤ j ≤ r′

Bj(u) =

∫ t1

t0

bj(t,x,u) dt+ ψj(x(t1)) = 0 for r′ + 1 ≤ j ≤ r

max
u∈C

J(u)

C = {u : [t0, t1]→ Rk, u admissible for α in t0}

(4.1)

where t1 is fixed. We note that we consider a control set U equal to Rk since
all the possible constraints on the value of u can be write in form of the in-
equality constraints hj(t,x,u) ≥ 0 : hence all the restrictions on the control
is incorporated in these type of constraints. We remark that we require that
the every functions hj depends on the control (see section 4.2 for the case
hj(t,x,u) = h(t,x)).

89
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As in the static optimization problem with constraints, there are qualifying
conditions for the equality/inequality constraints that must be true. Here we
are not interested in the arguments of the well–known Arrow-Hurwicz-Uzawa
condition (see for example [30]); we only recall a sufficient condition so that
the constraints are qualified. The problem to qualify the equality/inequality
integral constraints is very different: we will treat this problem in the particular
situation of Calculus of Variation in the next section.

Proposition 4.1. Any one of the following conditions provides the equality/inequality
constraint qualification in (u∗,x∗), where u∗ is a control and x∗ is the associated
trajectory:

a) the functions hj(t,x,u) are convex in the variable u, for all x ∈ Rn, t ∈
[t0, t1] fixed and j = 1, . . . ,m;

b) the functions hj(t,x,u) are linear in the variable u, for all x ∈ Rn, t ∈
[t0, t1] fixed and j = 1, . . . ,m;

c) the functions hj(t,x,u) are concave in the variable u, for all x ∈ Rn, t ∈
[t0, t1] fixed and j = 1, . . . ,m; moreover, there exists u′ ∈ U such that
h(t,x∗(t),u′) > 0 for every t ∈ [t0, t1];

d) (rank condition) for every t ∈ [t0, t1] fixed, the rank of the m × (k + m)
matrix

∂h1(t,x,u)

∂u1
. . .

∂h1(t,x,u)

∂uk
h1(t,x,u) . . . 0

∂h2(t,x,u)

∂u1
. . .

∂h2(t,x,u)

∂uk
0 . . . 0

. . . . . . . . . 0 . . . 0
∂hm(t,x,u)

∂u1
. . .

∂hm(t,x,u)

∂uk
0 . . . hm(t,x,u)


(x∗,u∗)

is equal to the number m of the constraints. This condition is equivalent
to require that, for every t ∈ [t0, t1] fixed, the rank of the matrix

(
∂hE
∂u

)
=



∂hi1(t,x,u)

∂u1

∂hi1(t,x,u)

∂u2
. . .

∂hi1(t,x,u)

∂uk
∂hi2(t,x,u)

∂u1

∂hi2(t,x,u)

∂u2
. . .

∂hi2(t,x,u)

∂uk
. . . . . . . . . . . .

∂hie(t,x,u)

∂u1

∂hie(t,x,u)

∂u2
. . .

∂hie(t,x,u)

∂uk


(x∗,u∗)

is equal to the number of effective constraints, where in
(
∂hE
∂u

)
we consider

the indices ij ∈ E such that the constraint hij is effective1.

We define the Hamiltonian function H : [t0, t1]× Rn × Rk × R× Rn × Rr → R
as

H(t,x,u, λ0,λ,ν) = λ0f(t,x,u) + λ · g(t,x,u) + ν · b(t,x,u)

1We recall that a constraint hj(t,x,u) ≥ 0 is effective if hj(t,x,u) = 0; hence

E = {j : 1 ≤ j ≤ m, hj(t,x,u) = 0}.
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and the Lagrangian function L : [t0, t1]×Rn ×Rk ×R×Rn ×Rr ×Rm → R as

L(t,x,u, λ0,λ,ν,µ) = H(t,x,u, λ0,λ,ν) + µ · h(t,x,u).

We note that the dimensions of the “new multiplier” ν and µ coincide with the
number of the equality/inequality integral constraints r and with the number
of the equality/inequality constraints m respectively.

We have the following necessary condition (for the proof see theorem 8.C.4
in [30]):

Theorem 4.1 (di Hestenes). Let us consider the problem (4.1) with f ∈ C1([t0, t1]×
Rn+k), g ∈ C1([t0, t1]× Rn+k), h ∈ C1([t0, t1]× Rn+k), b ∈ C1([t0, t1]× Rn+k)
and ψ ∈ C1(Rn).
Let u∗ be optimal control and x∗ be the associated trajectory. Let us suppose
that the rank condition for the m equality/inequality constraints holds.
Then, there exists a multiplier (λ∗0,λ

∗,ν∗,µ∗), with

� λ0 constant,

� λ∗ = (λ∗1, . . . , λ
∗
n) : [t0, t1]→ Rn continuous,

� ν∗ = (ν∗1 , . . . , ν
∗
r ) constant,

� µ∗ = (µ∗1, . . . , µ
∗
m) : [t0, t1]→ Rm piecewise continuous (but continuous in

the discontinuity points of u∗),

such that:

i) (λ∗0,λ
∗,ν∗,µ∗) 6= (0,0,0,0) and

ν∗jBj(u
∗) = 0 for j = 1, . . . , r,

ν∗j ≥ 0 for j = 1, . . . , r′,

µ∗j (t)hj(t,x
∗(t),u∗(t)) = 0 for j = 1, . . . , m, t ∈ [t0, t1],

µ∗j (t) ≥ 0 for j = 1, . . . , m′, t ∈ [t0, t1];

ii) (PMP): for all τ ∈ [t0, t1] we have

H(τ,x∗(τ),u∗(τ), λ∗0,λ
∗(τ),ν∗) = max

v∈Uτ,x∗(τ)
H(τ,x∗(τ),v, λ∗0,λ

∗(τ),ν∗)

where for (t,x) ∈ [t0, t1]× Rn we define

Ut,x =
{

v ∈ Rk : hj(t,x,v) ≥ 0 for 1 ≤ j ≤ m′,

hi(t,x,v) = 0 for m′ + 1 ≤ i ≤ m
}

;

iii) (adjoint equation): in [t0, t1] we have

λ̇∗ = −∇xL(t,x∗,u∗, λ∗0,λ
∗,ν∗,µ∗);

iv) (transversality condition)

λ∗(t1) = ∇xΨ(x∗(t1)),

where Ψ = λ∗0ψ0 +

r∑
j=1

ν∗jψj ;



92 CHAPTER 4. CONSTRAINED PROBLEMS OF OC

v) in [t0, t1] we have

∇uL(t,x∗,u∗, λ∗0,λ
∗,ν∗,µ∗) = 0.

A sufficient condition with a proof very similar to the theorem 2.4 of Man-
gasarian is the following (for the proof see theorem 8.C.5 in [30])

Theorem 4.2. Let us consider the maximum problem (4.1) with f ∈ C1([t0, t1]×
Rn+k), g ∈ C1([t0, t1]× Rn+k), h ∈ C1([t0, t1]× Rn+k), b ∈ C1([t0, t1]× Rn+k)
and ψ ∈ C1(Rn).
Let u∗ be admissible control in α with associated trajectory x∗ and associated
multiplier (λ∗0,λ

∗,µ∗,ν∗) that satisfies i)−−v) in theorem 4.1.
Moreover, let us suppose that

vi) f, g, h, b and ψ are concave functions in the variables x and u, for all
t ∈ [t0, t1] fixed,

vii) λ∗0 = 1 and for all i, 1 ≤ i ≤ n, t ∈ [t0, t1] we have λ∗i (t) ≥ 0.

Then u∗ is optimal.

We say that the problem (4.1) is autonomous if all the functions involved in
the statement does not depend on t. In this situation we obtain

Remark 4.1. Consider the problem (4.1) and let us suppose that it is au-
tonomous. Let u∗ be optimal control and let x∗ and (λ∗0,λ

∗,ν∗,µ∗) be asso-
ciated trajectory and multiplier respectively. Then the Hamiltonian is constant
along the optimal path (x∗,u∗, λ∗0,λ

∗), i.e.

t 7→ H(t,x∗(t),u∗(t), λ∗0,λ
∗(t)),

is constant in [t0, t1].

Example 4.1.1. Consider2 
max

∫ 1

0
(v − x) dt

ẋ = u
x(0) = 1

8
u ∈ [0, 1]
v2 ≤ x

The Hamiltonian H and the Lagrangian L are

H = v − x+ λu, L = v − x+ λu+ µ1u+ µ2(1− u) + µ3(x− v2).

We have to satisfy the following necessary conditions:

(u(t), v(t)) ∈ arg max
(u,v)∈Ut,x(t)

(v − x+ λu) (4.2)

where Ut,x = {(u, v) ∈ [0, 1]× R : v2 ≤ x}

λ̇ = −
∂L

∂x
⇒ λ̇ = 1− µ3 (4.3)

λ(1) = 0 (4.4)

∂L

∂u
= 0 ⇒ λ+ µ1 − µ2 = 0 (4.5)

∂L

∂v
= 0 ⇒ 1− 2vµ3 = 0 (4.6)

µ1 ≥ 0 (= 0 if u > 0)

µ2 ≥ 0 (= 0 if u < 1)

µ3 ≥ 0 (= 0 if v2 < x)

2This example is proposed in [29].
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Clearly (4.2) implies

(u(t), v(t)) =

 (1,
√
x) if λ > 0

(?,
√
x) if λ = 0

(0,
√
x) if λ < 0

If λ > 0, (u(t), v(t)) = (1,
√
x) implies by the dynamics x = t + A for some constant A.

(4.6) gives µ3 = 1
2
√
t+A

and hence, by (4.3),

λ̇ = 1−
1

2
√
t+A

⇒ λ = t−
√
t+A+B,

for some constant B. µ1 = 0 implies by (4.5) µ2 = t−
√
t+A+B.

If λ < 0, (u(t), v(t)) = (0,
√
x) implies by the dynamics x = C for some constant C. (4.6)

gives µ3 = 1

2
√
C

and hence, by (4.3),

λ̇ = 1−
1

2
√
C

⇒ λ =

(
t−

1

2
√
C

)
t+D,

for some constant D. µ2 = 0 implies by (4.5) µ1 = −
(
t− 1

2
√
C

)
t−D.

Let us suppose that for some τ > 0, we have λ > 0 in [0, τ) : the initial condition x(0) = 1
8

implies A = 1
8
. If τ > 1, (4.5) gives B = 3

2
√
2
− 1 and hence λ(t) = t −

√
t+ 1

8
+ 3

2
√
2
− 1 :

note that we obtain λ(0) = 1√
2
− 1 < 0. Hence τ < 1.

Let us suppose that λ < 0 in (τ, 1] : (4.5) gives D = 1
2
√
2
− 1. Now the continuity of µ1 in τ

(note that τ is a discontinuity point for u and hence µ is continuous) implies

µ1(τ−) = 0 = −
(

1−
1

2
√
C

)
τ −

1

2
√
C

+ 1 = µ1(τ+) ⇒ C =
1

4
.

The continuity of x and λ in τ give C = 1
4
. and B = − 3

8
: in particular we obtain λ = 0 in

[ 1
8
, 1] that contradicts the assumption λ < 0.

Hence let us suppose that λ = 0 in [ 1
8
, 1]; (4.3) gives µ3 = 1 and hence, by (4.6) v = 1

2
. The

(PMP) gives v =
√
x and hence x = 1

4
; the dynamics gives u = 0 and finally, by (4.5) and the

continuity of the multiplier in 1
8

, µ1 = µ2 = 0. Hence we obtain the following situation:

x u v λ µ1 µ2 µ3

in [0, 1
8

) t+ 1
8

1
√
t+ 1

8
t−
√
t+ 1

8
+ 3

8
0 t−

√
t+ 1

8
+ 3

8
1

2
√
t+ 1

8

in [ 1
8
, 1] 1

4
0 1

2
0 0 0 1

Let us verify that the rank condition holds:
∂h1

∂u

∂h1

∂v
h1 0 0

∂h2

∂u

∂h2

∂v
0 h2 0

∂h3

∂u

∂h3

∂v
0 0 h3

 =

 1 0 u 0 0

−1 0 0 1− u 0

0 −2v 0 0 x− v2

 ;

it is to see the for every t ∈ [0, 1] the rank condition holds in the tern (x, u, v) previous obtained.

Finally it is easy to verify that the sufficient conditions of Theorem 4.2 are satisfied. Note

that the problem is autonomous and the have H = v − x+ λu = 1
4

in [0, 1]. 4

4.2 Pure state constraints

An important and particular situation is the case of the equality/inequality
constraints where the functions hj in (4.1) do not depend on the control, i.e.
constraints of the type

hj(t,x(t),u(t)) = hj(t,x(t)) ≥ 0 (or = 0).
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A simplest example of this situation is x(t) ≥ 0. We remark that with this

type of constraints, the condition of qualification fails since
∂hj
∂ui

= 0. Hence
let us give the fundamental ideas of this constrained problem, called pure state
constraints: a very exhaustive exposition is in [29].

We consider the problem

J(u) =

∫ t1

t0

f(t,x,u) dt+ ψ0(x(t1))

ẋ = g(t,x,u)
x(t0) = α
hj(t,x(t)) ≥ 0 for 1 ≤ j ≤ m
max
u∈C

J(u)

C = {u : [t0, t1]→ U, u admissible for α in t0}

(4.7)

where t1 ∈ R and U ⊂ Rk are fixed. We introduce the Hamiltonian and the
Lagrangian functions as usual.

In previously discussed constrained problems, the solution is predicated upon
the continuity of x and λ variables, so that only the control variable u is allowed
to jump: here, with pure state constraints, the multiplier λ can also experience
jumps at the junction points where the constraint h(t,x(t)) ≥ 0 turns from
inactive to active, or vice versa. The condition v) in the next theorem checks the
jump of λ in such discontinuity points τl with respect the effective constraints
hj . The following result can be proved (see Theorem 1 in section 2 of chapter
3) [29])

Theorem 4.3. Let us consider the problem (4.7) with f ∈ C1([t0, t1]×Rn+k), g ∈
C1([t0, t1]× Rn+k), h ∈ C1([t0, t1]× Rn), and ψ0 ∈ C1(Rn).
Let u∗ be an admissible control and x∗ be the associated trajectory.
We assume that there exist a multiplier (λ∗0,λ

∗,µ∗), with

� λ∗0 = 1,

� λ∗ = (λ∗1, . . . , λ
∗
n) : [t0, t1] → Rn is piecewise continuous and piecewise

continuously differentiable with jump discontinuities at τ1, . . . , τN , with
t0 < τ1 < . . . < τN ≤ t1,

� µ∗ = (µ∗1, . . . , µ
∗
m) : [t0, t1]→ Rm piecewise continuous,

and

� numbers βls, with 1 ≤ l ≤ N, 1 ≤ s ≤ m,

such that the following conditions are satisfied:

i) (PMP): for all τ ∈ [t0, t1] we have

u∗(τ) ∈ arg max
v∈U

H(τ,x∗(τ),v,λ∗(τ))

ii) (adjoint equation): in [t0, t1] we have

λ̇∗ = −∇xL(t,x∗,u∗,λ∗,µ∗);
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iii) (transversality condition)

λ∗(t1) = ∇xψ0(x∗(t1));

iv) µ∗jhj(t,x
∗) = 0 and µ∗j ≥ 0, for j = 1, . . . , m;

v) the numbers βlj are non negative and such that

λ∗i (τ
−
l )− λ∗i (τ+l ) =

m∑
j=1

βlj
∂hj(τl,x

∗(τl))

∂xi
for 1 ≤ l ≤ N, 1 ≤ i ≤ n;

moreover

v1) βlj = 0 if hj(τl,x
∗(τl)) > 0;

v2) βlj = 0 if hj(τl,x
∗(τl)) = 0 and ∇xhj(t,x

∗(t)) · g(t,x∗(t),u∗(t)) is
discontinuous at τl ∈ (t0, t1);

vi) for every τ ∈ [t0, t1], the function

H0(τ,x,λ∗(τ)) = max
v∈U

H(τ,x,v,λ∗(τ))

is concave in x;

vii) h and ψ0 are concave in x.

Then u∗ is optimal.

We think that the following example and the model in subsection 4.2.1 make
clear the assumption of the previous theorem.

Example 4.2.1. Consider3 

max

∫ 3

0
(4− t)u dt

ẋ = u
x(0) = 0
x(3) = 3
t+ 1− x ≥ 0
u ∈ [0, 2]

The Hamiltonian H and the Lagrangian L are

H = (4− t)u+ λu, L = (4− t)u+ λu+ µ(t+ 1− x).

We have to satisfy the following necessary conditions:

u(t) ∈ arg max
v∈[0,2]

(4− t+ λ)v (4.8)

λ̇ = −
∂L

∂x
⇒ λ̇ = µ (4.9)

µ ≥ 0 (= 0 if t+ 1− x > 0)

The shape of the running cost function f(t, x, u) = (4− t)u suggests to put u = 2 in the
first part of the interval [0, 3]. Since x(0) = 0, there exists τ1 > 0 such that the constraint
h(t, x) = t + 1 − x is inactive in [0, τ1] : in such interval we have µ = 0 and hence (by (4.9))
λ = A for some constant A. We suppose that in [0, τ1]

t < 4 +A : (4.10)

3This example is proposed in [29] and it is solved in [9] with a different approach.
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This implies that in our interval, by (4.9), u(t) = 2 and, by the dynamics and the initial
condition x(t) = 2t. With this trajectory we have that

h(t, x(t)) = t+ 1− x(t) = 1− t > 0 ⇔ t < 1;

we obtain τ1 = 1.

In order to maximize, it is a good strategy to increase again f(t, x, u) = (4− t)u with the
trajectory lying in the constraint on the interval [1, τ2], for some τ2 > 1. In order to do that,
let us study condition v) of Theorem 4.3 in the point τ1 = 1 :

λ(τ−1 )− λ(τ+1 ) = β1
∂h(τ1, x(τ1))

∂x
= −β1,

∇xh(t, x(t)) · g(t, x(t), u(t)) = −u(t);

since for t < 1 we know that u(t) = 2 and in order to have h(t, x(t)) = 0 for t ∈ [1, τ2) we
have to require u(t) = 1, the control u has a discontinuity point in t = 1 : condition v2 implies
that β1 = 0 and λ continuous in τ1. Hence, in order to satisfy (PMP), for t ∈ [1, τ2) we put
λ(t) = t− 4; the continuity of such multiplier in t = 1 implies A = −3. Note that the previous
assumption (4.10) holds. Moreover, by (4.9), we have µ = 1 in (1, τ2).

Since u ≥ 0 and hence the trajectory is a non de-
creasing function, in order to obtain the final condi-
tion x(3) = 3, we can consider τ2 = 2 and u = 0 in
the final interval (2, 3]. Clearly, with this choice, we
have a discontinuity for the control u in the point
τ2 = 2 and the same calculations of before give us
that λ is continuous in t = 2. For t ∈ (2, 3], the
constraint is inactive, µ = 0 and again λ = B is a
constant: the continuity of the multiplier in 2 im-
plies B = −2.

x

t1 2 3

1

2

3

t+1-x=0 x*

Hence we obtain the following situation:

x u λ µ

in [0, 1) 2t 2 −3 0

in [1, 2] t+ 1 1 t− 4 1

in (2, 3] 3 0 −2 0

Since the function H0 of condition vi) in Theorem 4.3 and the constraint h are linear in

x, then the previous strategy is optimal. 4

4.2.1 Commodity trading

Let us denote by x1(t) and x2(t) respectively the money on hand and the amount
of wheat owned at time t. Let x1(0) = m0 > 0 and x2(t) = w0 > 0. At every
time we have the possibility to buy or to sell some wheat: we denote by α(t)
our strategy, where α > 0 means buying wheat, and α < 0 means selling. We
suppose that the price of the wheat is a known function q(t) for all the period
[0, T ], with T fixed (clearly q > 0). Let s > 0 be the constant cost of storing
a unit of amount of wheat for a unit of time. We assume also that the rate of
selling and buying is bounded; more precisely |α| ≤M, for a given fixed positive
constant M .
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Our aim is to maximize our holdings at the final time T, namely the sum of
the cash on hand and the value of the wheat. Hence we have:

max (x1(T ) + q(T )x2(T ))
ẋ1 = −sx2 − qα
ẋ2 = α
x1(0) = m0, x2(0) = w0

x1 ≥ 0, x2 ≥ 0
|α| ≤M

Clearly the Hamiltonian H, the Lagrangian L and the pay-off ψ are

H = −λ1(sx2 + qα) + λ2α,

L = −λ1(sx2 + qα) + λ2α+ µ1x1 + µ2x2,

ψ = x1 + qx2.

We have to satisfy the following necessary conditions:

α(t) ∈ arg max
a∈[−M,M ]

[−λ1(t)(sx2(t) + q(t)a) + λ2(t)a]

⇒ α(t) ∈ arg max
a∈[−M,M ]

a(λ2(t)− λ1(t)q(t)) (4.11)

λ̇1 = − ∂L

∂x1
⇒ λ̇1 = −µ1 (4.12)

λ̇2 = − ∂L

∂x2
⇒ λ̇2 = sλ1 − µ2 (4.13)

λ1(T ) =
∂ψ

∂x1
⇒ λ1(T ) = 1 (4.14)

λ2(T ) =
∂ψ

∂x2
⇒ λ2(T ) = q(T ) (4.15)

µ1 ≥ 0 (= 0 if x1 > 0)

µ2 ≥ 0 (= 0 if x2 > 0)

Now, to solve the model, let us consider a particular situation: we put

T = 2, s = 3, q(t) = t2 + 1, M = 4, m0 = 2 and w0 = 2.

The shape of the function q suggests a strategy. In the first part of our time,
the cost of storing the wheat is major then its value: hence it seams like a good
idea to sell the wheal. In the final part of our time the price of the wheal, and
hence the value of the wheat owned, increases: hence it is better to buy wheat.
Let us follow this intuition in order to solve the problem.

We start with the final part of [0, 2]. It is reasonable to suppose that x1(2)
and x2(2) are positive; hence the two constraints h1 = x1 ≥ 0 and h2 = x2 ≥ 0
are sure inactive in t = 2. This guarantees that λ = (λ1, λ2) is continuous
in such point t = 2. Hence let us suppose that in (τ, 2], for some τ < 2, the
multiplier λ is continuous and the constraints are inactive, i.e. µ1 = µ2 = 0.
Clearly (4.12)–(4.15) imply

λ1(t) = 1 and λ2(t) = 3t− 1, ∀t ∈ (τ, 2];
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consequently (4.11) implies, for t ∈ (τ, 2]

α(t) ∈ arg max
a∈[4,−4]

a(−t2 + 3t− 2).

Since −t2 + 3t − 2 > 0 in (1, 2), we have α = 4 in (τ, 2], for some τ ∈ (1, 2)
(we recall that we have to check that the constraints are inactive in the interval
(τ, 2] ).

Let us study the first part of [0, 2]. We note that x1(0) and x2(0) are
positive: hence the two constraints are inactive in t = 2 and λ = (λ1, λ2) is
continuous in t = 0. Let us suppose that there exists τ ′ > 0 such that for every
t ∈ [0, τ ′) we have

λ2(t)− λ1(t)(t2 + 1) < 0, x1(t) > 0 and x2(t) > 0. (4.16)

Then (4.11) implies α(t) = −4, for t ∈ [0, τ ′). Using the dynamics and the initial
conditions on x1 and x2, we obtain

x1(t) =
4

3
t3 + 6t2 − 2t+ 2 and x2(t) = 2− 4t.

It is easy to see that x1 is positive in [0, 2] and x2 is positive only in [0, 1/2). It
gives us that

� in [0, 1/2], µ1 = 0, λ1 continuous and (by (4.12)) λ1(t) = A,

� in [0, 1/2), µ2 = 0, λ2 continuous and (by (4.13)) λ2(t) = 3At+B,

� the point τ ′ = τ1 = 1/2 can be a jump for the function λ2,

where A and B are constants. Let us study condition v) of the Theorem 4.3 in
the point τ1 = 1/2 :

λ1(τ−1 )− λ1(τ+1 ) = β1
1

∂h1(τ1,x(τ1))

∂x1
+ β1

2

∂h2(τ1,x(τ1))

∂x1
= β1

1 ,

λ2(τ−1 )− λ2(τ+1 ) = β1
1

∂h1(τ1,x(τ1))

∂x2
+ β1

2

∂h2(τ1,x(τ1))

∂x2
= β1

2 ;

Since h1 is inactive in τ1, we have β1
2 = 0 that confirms the continuity of λ1 in

τ1. Since

∇xh2(t,x(t)) · g(t,x(t), α(t)) = (0, 1) · (−3x2(t)− q(t)α(t), α(t)) = α(t)

has a discontinuity point in τ1 (for t < τ1 we know that α(t) = −4 and in order
to have x2(t) ≥ 0 for t > τ1 we have to require α(t) ≥ 0), condition v2 implies
that β1

2 = 0 : hence λ2 is continuous in τ1. The assumption (4.16) becomes

λ2(t)− λ1(t)(t2 + 1) = −At2 + 3At+B −A < 0 for t ∈ [0, 1/2);

moreover, in order to construct the discontinuity for α in t = 1/2 and to guar-
antee the PMP (4.11) in t = 1/2, it is necessary to have

λ2(t)− λ1(t)(t2 + 1) = −At2 + 3At+B −A = 0 for t = 1/2.

These last two conditions give

A = −4B and A > 0.
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Now we pass to study the middle part of [0, 2], i.e. the set [1/2, τ ]. The
idea is to connect the trajectory x2 along the constraint h2 = 0 : in order to do
this we put

u(t) = 0, for t ∈ [1/2, τ ]. (4.17)

This clearly gives, in [1/2, τ ],

x2(t) = 0 ⇒ ẋ1(t) = 0 ⇒ x1(t) = 11/3,

since x1(1/2−) = 11/3. In [1/2, τ ], since x1(t) > 0 we have µ1 = 0. By (4.12)
and the continuity of λ1 in t = 1/2, we have λ1(t) = A in [1/2, τ ]. From (4.17)
and (4.11) we have

0 ∈ arg max
a∈[−4,4]

a(λ2(t)−Aq(t)), for t ∈ [1/2, τ ].

This implies λ2(t) = Aq(t) in [1/2, τ ]. Since λ2 is continuous in t = 1/2 and
λ2(1/2−) = 5A/4, we have

λ2(t) = At2 +A.

The previous study of the point τ1 = 1/2 suggests that the multipliers is contin-
uous where the control is discontinuous. Now to connect this second part [0, τ ]
with the final part [τ, 1], we have to put

A = λ1(τ−) = λ1(τ+) = 1 At2 +A = λ2(τ−) = λ2(τ+) = 3t− 1 :

we obtain A = 1 and τ = 1. The dynamic and the continuity of x1 and x2 in
the point τ = 1 imply

x2(t) = 4t− 4, and x1(t) =
4

3
t3 − 6t2 + 16t− 23

3
, for t ∈ [1, 2].

Note that x1(t) > 0 in this final interval that guarantees µ1 = 0. Finally (4.12)
implies µ2 = 2t+ 1 in [1/2, τ ]. Hence we obtain the following situation:

x1 x2 α λ1 λ2 µ1 µ2

in [0, 1/2) 4
3 t

3 + 6t2 − 2t+ 2 2− 4t −4 1 3t− 1
4 0 0

in [1/2, 1] 11
3 0 0 1 t2 + 1 0 2t+ 1

in (1, 2] 4
3 t

3 − 6t2 + 16t− 23
3 4t− 4 4 1 3t− 1 0 0

Let us calculate the function H0 of condition vi) in Theorem 4.3:

H0(t, x1, x2, λ
∗
1, λ
∗
2) = max

a∈[−M,M ]
[−λ1(sx2 + qa) + λ2a]

= −3x2 + max
a∈[−4,4]

 (−t2 + 3t− 5/4)a if t ∈ [0, 1/2)
0 if t ∈ [1/2, 1]
(−t2 + 3t− 2)a if t ∈ (1, 2]

=

−3x2 − 4(−t2 + 3t− 5/4) if t ∈ [0, 1/2)
−3x2 if t ∈ [1/2, 1]
−3x2 + 4(−t2 + 3t− 2) if t ∈ (1, 2]

.
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Clearly, for every fixed t, the function H0 is concave in (x1, x2). Since the
constraints h1 and h2 and the pay–off function ψ are linear in x, then the
previous strategy is optimal.

4.3 Isoperimetric problems in CoV

In this section we are interested to specialized the results of the previous section
to the calculus of variation problems with only equality integral constraints for
trajectory in R (i.e. with n = 1), with fixed initial and final points. This type
of problems is in the big family of the isoperimetric problems of calculus of
variation. More precisely, let f : [t0, t1]× R2 → R, r ≥ 1, and b = (b1, . . . , br) :
[t0, t1]× R2 → R. Let us consider the problem

J(x) =

∫ t1

t0

f(t, x(t), ẋ(t)) dt

x(t0) = α
x(t1) = β

Bj(x) =

∫ t1

t0

bj(t, x(t), ẋ(t)) dt− b̃j = 0 with j = 1, . . . , r

Ottx∈Aiso J(x)

(4.18)

where α, β and b̃j are fixed constants and Aiso clearly is defined as

Aiso = {x ∈ C1([t0, t1]); x(t0) = α, x(t1) = β,Bj(x) = 0 for 1 ≤ j ≤ r}.

Since in problem 4.18 u = ẋ, we have H = λ0f(t, x, u) + λu + ν · b : as usual,
we obtain

(PMP) ⇒ λ∗0
∂f

∂u
+ λ∗ + ν∗ · ∂b

∂u
= 0

(adjoint equation) ⇒ λ∗0
∂f

∂x
+ ν∗ · ∂b

∂x
= −λ̇∗.

Considering a derivative with respect to the time in the first relation, and re-
placing λ∗ we obtain the EU for a new functions: more precisely we have that
an immediate consequence of theorem 4.1 is the following

Theorem 4.4. Let us consider (4.18) with f and b in C2. Let x∗ ∈ C1 be a
minimum (or a maximum).

Then, there exists a constant multiplier (λ∗0,ν
∗) 6= 0 such that, in [t0, t1], we

have4
d

dt
L0ẋ(t, x∗, ẋ∗, λ∗0,ν

∗) = L0x(t, x∗, ẋ∗, λ∗0,ν
∗),

where L0 is the generalized Lagrangian function L0 : [t0, t1]×R2×R×Rr → R
defined as

L0(t, x, ẋ, λ0,ν) = λ0f(t, x, ẋ) + ν · b(t, x, ẋ).

We remark that, in the “language of optimal control”, the function L0 is an
Hamiltonian; however, in the classical “language of calculus of variation” it is
called Lagrangian: we prefer this second approach.

4We denote by L0x and by bjx the derivative with respect to x of the functions L0 and bk
respectively.
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4.3.1 Necessary conditions with regular constraints

As we will see, the study of isoperimetric problems in CoV has some similarities
with the static optimization problem with equality constraints. Let us start
with the following definition

Definition 4.1. We consider the problem (4.18) with f and b in C2 and let
x∗ ∈ C1. We say that the constraints are regular in x∗ if the r functions

d

dt
bjẋ(t, x∗, ẋ∗)− bjx(t, x∗, ẋ∗), j = 1, . . . , r

are linearly independent.

Moreover, we note that the definition of regularity of the constraints is related
to the choice of the function x∗. The following example clarify the situation

Example 4.3.1. Consider
∫ 1

0
b1(t, x, ẋ) dt =

∫ 1

0
xẋ2 dt = b̃1∫ 1

0
b2(t, x, ẋ) dt =

∫ 1

0
−txdt = b̃2

Clearly

d

dt
b1ẋ(t, x, ẋ)− b1x(t, x, ẋ) = ẋ2 + 2xẍ,

d

dt
b2ẋ(t, x, ẋ)− b2x(t, x, ẋ) = t.

It is easy to see that if we consider the function x∗1 = 0, the constraints are not regular since,
for a1 and a2 constants, we have, for every t ∈ [0, 1],

a1

(
d

dt
b1ẋ(t, x∗1, ẋ

∗
1)− b1x(t, x∗1, ẋ

∗
1)

)
+ a2

(
d

dt
b2ẋ(t, x∗1, ẋ

∗
1)− b2x(t, x∗1, ẋ

∗
1)

)
= 0

⇔ a2t = 0.

Choosing a1 ∈ R and a2 = 0, the last relation is satisfied. Hence the functions d
dt
b1ẋ(t, x∗1, ẋ

∗
1)−

b1x(t, x∗, ẋ∗1) and d
dt
b2ẋ(t, x∗1, ẋ

∗
1)− b2x(t, x∗, ẋ∗1) are not linearly independent.

A similar computation shows that for the function x∗2 defined by x∗2(t) = t, the constraints

are regular. 4

We remark that in the case of only one constraint (i.e. r = 1), such constraint
is regular in x∗ if

d

dt
bẋ(t, x∗, ẋ∗) 6= bx(t, x∗, ẋ∗).

In other words

Remark 4.2. In a isoperimetric problem of calculus of variation with a unique
constraint, such constraint is regular in x∗ if x∗ does not satisfy the Euler equa-
tion for the function b.

We define the Lagrangian function L : [t0, t1]× R2 × Rr → R by

L(t, x, ẋ,ν) = f(t, x, ẋ) + ν · b(t, x, ẋ). (4.19)

We have the following necessary condition
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Theorem 4.5. Let us consider (4.18) with f and b in C2. Let x∗ ∈ C1 be a
minimum (or a maximum). Moreover, let us suppose that the constraints are
regular in x∗.

Then, there exists a constant multiplier ν∗ such that, in t ∈ [t0, t1], we have

d

dt
Lẋ(t, x∗, ẋ∗,ν∗) = Lx(t, x∗, ẋ∗,ν∗). (4.20)

A function x∗ that satisfies (4.20) (i.e. the EU for the Lagrangian) is called
extremal for the Lagrangian.

It is possible to prove theorem 4.5 as an application of the Dini’s Theorem,
as in the static optimization problem with equality constraints: this approach
does not follow the idea of “variation” of the CoV; a different proof, using a
variational approach, is in [7].

Example 4.3.2. We consider 

Ott

∫ 1

0
ẋ2 dt

x(0) = 0
x(1) = 0∫ 1

0
xdt =

1

12∫ 1

0
txdt =

1

20

First of all, let us study the regularity of the constraints: since b1(t, x, ẋ) = x and b2(t, x, ẋ) =
tx, we have

d

dt
b1ẋ(t, x∗, ẋ∗)− b1x(t, x∗, ẋ∗) = −1,

d

dt
b2ẋ(t, x∗, ẋ∗)− b2x(t, x∗, ẋ∗) = −t.

For every x∗, the functions d
dt
b1ẋ(t, x∗, ẋ∗)−b1x(t, x∗, ẋ∗) and d

dt
b2ẋ(t, x∗, ẋ∗)−b2x(t, x∗, ẋ∗)

are linearly independent since

α1(−1) + α2(−t) = 0, ∀t ∈ [0, 1] ⇔ α1 = α2 = 0.

Hence the constraints are regular for every x∗.
The Lagrangian is L = ẋ2 + ν1x + ν2tx; the EU for L is 2ẍ = ν1 + ν2t and the general

solution is

x∗(t) = at+ b+
ν1

4
t2 +

ν2

12
t3,

with a, b ∈ R. The initial condition and the final condition on the trajectory, and the two
constraints give

x(0) = 0 ⇒ b = 0

x(1) = 0 ⇒ a+ b+
ν1

4
+
ν2

12
= 0∫ 1

0
xdt =

1

12
⇒

∫ 1

0
(at+ b+ ν1t

2/4 + ν2t
3/12) dt =

= a/2 + b+ ν1/12 + ν2/48 = 1/12∫ 1

0
txdt =

1

20
⇒

∫ 1

0
(at2 + bt+ ν1t

3/4 + ν2t
4/12) dt =

= a/3 + b/2 + ν1/16 + ν2/60 = 1/20.

Hence a = b = 0, ν1 = 4 and ν2 = −12. The unique extremal for the Lagrangian is the
function x∗ = t2 − t3.

Let us show that x∗ is really the minimum of the problem. We want to prove that for
every function x = x∗+h, that satisfies the initial and the final conditions and the two integral
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constraints, we have J(x∗) ≤ J(x), where J(x) =
∫ 1
0 ẋ

2 dt. Let x = x∗ + h : hence

x(0) = x∗(0) + h(0) ⇒ h(0) = 0 (4.21)

x(1) = x∗(1) + h(1) ⇒ h(1) = 0 (4.22)∫ 1

0
xdt =

∫ 1

0
(h+ x∗) dt =

1

12
⇒

∫ 1

0
hdt = 0 (4.23)∫ 1

0
txdt =

∫ 1

0
t(x∗ + h) dt =

1

20
⇒

∫ 1

0
thdt = 0. (4.24)

The four previous conditions give

J(x) =

∫ 1

0
(ẋ∗ + ḣ)2 dt

=

∫ 1

0
(ẋ∗

2
+ 2ẋ∗ḣ+ ḣ2) dt

=

∫ 1

0
(ẋ∗

2
+ 2(2t− 3t2)ḣ+ ḣ2) dt

(by part) =

∫ 1

0
(ẋ∗

2
+ ḣ2) dt+ 2

(
(2t− 3t2)h(t)

]1
0

− 2

∫ 1

0
(2− 6t)h dt

(by (4.21) e la (4.22)) =

∫ 1

0
(ẋ∗

2
+ ḣ2) dt− 4

∫ 1

0
h dt+ 12

∫ 1

0
thdt

(by (4.23) e la (4.24)) =

∫ 1

0
(ẋ∗

2
+ ḣ2) dt

≥
∫ 1

0
ẋ∗

2
dt

= J(x∗).

Hence x∗ is a minimum. 4

In this note we are not interested to study the sufficient conditions for the
problem (4.18) (see for example [7]).

4.3.2 The multiplier ν as shadow price

We consider the problem (4.18); let x∗ be a minimum in C2 and let us suppose
that the r integral constraints are regular in x∗. Theorem 4.5 guarantees that
there exists a constant multiplier ν∗ = (ν∗1 , . . . , ν

∗
r ) such that EU holds for the

Lagrangian L = f +ν∗ · b in x∗. Let us show an interpretation of the role of this
multiplier ν∗. If we define

J(x) =

∫ t1

t0

f(t, x, ẋ) dt,

clearly J(x∗) is the minimum value for the problem (4.18). Since x∗ satisfy the
constraints we have

r∑
j=1

ν∗j

(∫ t1

t0

bj(t, x
∗, ẋ∗) dt− b̃j

)
= 0.

Hence

J(x∗) =

∫ t1

t0

f(t, x∗, ẋ∗) dt+

r∑
j=1

ν∗j

∫ t1

t0

bj(t, x
∗, ẋ∗) dt−

r∑
j=1

ν∗j b̃j

=

∫ t1

t0

L(t, x∗, ẋ∗,ν∗) dt−
r∑
j=1

ν∗j b̃j (4.25)
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Our aim is to study the “variation” of the minimum value J(x∗) of the problem
when we consider a “variation”of the value b̃k of the k–th constraints; taking
into account (4.25), such “variation” is

∂J(x∗)

∂b̃k
=

∫ t1

t0

(
Lx(t, x∗, ẋ∗,ν∗)

∂x∗

∂b̃k
+ Lẋ(t, x∗, ẋ∗,ν∗)

∂ẋ∗

∂b̃k

)
dt− ν∗k

(by part) =

∫ t1

t0

(
Lx(t, x∗, ẋ∗,ν∗)− d

dt
Lẋ(t, x∗, ẋ∗,ν∗)

)
∂x∗

∂b̃k
dt+

+

(
Lẋ(t, x∗, ẋ∗,ν∗)

∂x∗

∂b̃k

]t1
t0

− ν∗k . (4.26)

Since we have x(t0) = x∗(t0) = α, clearly ∂x∗

∂b̃k
(t0) = 0; a similar argument

implies ∂x∗

∂b̃k
(t1) = 0. By (4.26) and since x∗ is extremal for the Lagrangian, we

have

∂J(x∗)

∂b̃k
=

∫ t1

t0

(
Lx(t, x∗, ẋ∗,ν∗)− d

dt
Lẋ(t, x∗, ẋ∗,ν∗)

)
∂x∗

∂b̃k
dt− ν∗k

= −ν∗k .

Finally
∂J(x∗)

∂b̃k
= −ν∗k ,

and ν∗k measures the sensitivity of the optimal value of the problem with respect
to a variation of the k-th integral constraints; this is the notion of shadow price.

4.3.3 The foundation of Cartagena

Let us consider the problem (1.2)

max

∫ 1

0

x dt

x(0) = 0
x(1) = 0∫ 1

0

√
1 + ẋ2 dt = A > 1

and, for symmetry, let us check solution with x(t) ≥ 0. For the function b(t, x, ẋ) =√
1 + ẋ2 of the integral constraint we have

bx −
d

dt
bẋ = 0 ⇒ ẋ√

1 + ẋ2
= d ⇒ x(t) = ±t

√
d2

1− d2
+ e,

with d, e ∈ R and d 6= ±1. Since the unique function that satisfies the previous
relation and the conditions x(0) = x(1) = 0 is the null function, the constraint
is regular since A > 1.
The Lagrangian is L = x+ν

√
1 + ẋ2 : since Lx = 1, its Euler equation dLẋ

dt = Lx
is Lẋ + c = t, i.e.

νẋ√
1 + ẋ2

= t− c.
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Solving for ẋ we obtain

ẋ(t) =
t− c√

ν2 − (t− c)2

and hence

x(t) = −
√
ν2 − (t− c)2 + k ⇒ (x(t)− k)2 + (t− c)2 = ν2.

This solution is a circle and the constants k, c and ν are found using the two
endpoint conditions and the integral constraint. We are not interested to discuss
the sufficient conditions.

4.3.4 The Hotelling model of socially optimal extraction

One of the assumptions implicit in the classical theory of production is that all
inputs are inexhaustible: in reality this is often not true. The model of Hotelling
(see [17], [18]) arises to the problem of considering a dynamic of consumption
of a good whose production is linked to a finite resource. The notion of “the
social value” of an exhaustible resource is used for judging the desirability of
any extraction pattern of the resource. If we denote by Q(t), with Q(t) ≥ 0, the
quantity of extraction of the resource, since it is exhaustible we have∫ ∞

0

Qdt = S0,

with S0 > 0 fixed. The cost to extract a quantity Q of such resource is C =
C(Q).
The gross social value G of a
marginal unit of output of ex-
traction of the resource is mea-
sured by the price P which so-
ciety is willing to pay for such
particular unit of output. If
the price of the resource P is
negatively related to the quan-
tity demanded, then the gross
social value G(Q0) of an out-
put Q0 is measured by the yel-
low area under the curve, i.e.

P

0 QQ

P=P(Q)

G(Q  )
0

G(Q0) =

∫ Q0

0

P (Q) dQ.

Hence to find the net social value, we subtract from the gross social value the
total cost of extraction C(Q0). Hence, the net social value is given by

N(Q) =

∫ Q

0

P (x) dx− C(Q).

We suppose that P is continuous. The problem is to find an optimal path of
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extraction Q(t), the solution of
max
Q

∫ ∞
0

N(Q)e−rt dt

Q(0) = Q0 < S0 Q0 ≥ 0∫ ∞
0

Qdt = S0

(4.27)

Clearly r > 0 is a rate of discount.
First of all, let us note that the constraint is regular for every function:

indeed, b = b(t, Q,Q′) = Q implies

d

dt
bQ′ 6= bQ ⇔ 0 6= 1.

We set the Lagrangian L(t, Q,Q′, ν) = N(Q)e−rt+νQ. The continuity of P and
the fundamental theorem of integral calculus give

d

dt
LQ′ = LQ ⇒ P (Q)− C ′(Q) = −νert. (4.28)

Hence (
P (Q)− C ′(Q)

)
e−rt = c,

with c constant. Along the optimal extraction path, the present difference
P (Q)− C ′(Q) has a uniform value for at every time: this relation is called the
“social optimal condition”.

Consider the particular case of n firms of small size compared to the
market and therefore are not able to influence the price. Let P (t) = P0 be the
price of the resource, let Qi be the rate of extraction of the i-th firm and let Si
be the quantity of resource available for the i-th firm. The problem of the i-th
firm is to maximize 

max

∫ ∞
0

Ni(Qi)e
−rt dt

Qi(0) = Q0
i < Si Q0

i ≥ 0∫ ∞
0

Qi dt = Si

where

Ni(Qi) =

∫ Qi

0

P0 dx− Ci(Qi) = QiP0 − Ci(Qi).

EU for the Lagrangian gives

P0 − C ′i(Qi) = −νert.

This optimality condition is obtained under conditions of pure competition, is
perfectly consistent with the social optimal condition (4.28).

However, if we consider the case of a monopoly system in which the
company has the power to influence the market price, we define R = R(Q) the
input of the monopolist for the quantity Q of resource. The problem of the
monopolist is to maximize (4.27), where

N(Q) = R(Q)− C(Q).
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EU for the Lagrangian gives

R′(Q)− C ′(Q) = −νert;

this is very different from the extraction rule of the social optimal condition:
here, the difference between the marginal inputs and the marginal costs grows
at a rate r.
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Chapter 5

OC with dynamic
programming

5.1 The value function: necessary conditions

Let f : [t0, t1]×Rn+k → R, g : [t0, t1]×Rn+k → R and ψ : Rn → R continuous
functions and α ∈ Rn be fixed. We consider the optimal control

J(u) =

∫ t1

t0

f(t,x,u) dt+ ψ(x(t1))

ẋ = g(t,x,u)
x(t0) = α
max

u∈Ct0,α
J(u)

(5.1)

where t0 and t1 are fixed. We recall (see subsection 1.2.1) that Ct0,α denotes
the class of admissible control for α at time t0, i.e. the set of all such controls
u : [t0, t1]→ U that have a unique associated trajectory defined on [t0, t1] with
x(t0) = α.
We define the value function V : [t0, t1]× Rn → [−∞,∞] for the problem (5.1)
as1

V (τ, ξ) =

 sup
u∈Cτ,ξ

(∫ t1

τ

f(t,x,u) dt+ ψ(x(t1))

)
if Cτ,ξ 6= ∅;

−∞ if Cτ,ξ = ∅.
(5.2)

Clearly, in (5.2), x is the trajectory associated to the control u ∈ Cτ,ξ. The idea
of Bellman [6] and of dynamic programming is to study the properties of such
value function. Let us consider (τ, ξ) ∈ [t0, t1]× Rn and the problem

J(u) =

∫ t1

τ

f(t,x,u) dt+ ψ(x(t1))

ẋ = g(t,x,u)
x(τ) = ξ
max
u∈Cτ,ξ

J(u)

(5.3)

1If in the problem (5.1) we replace the max with a min, in definition (5.2) clearly we have
to replace sup and −∞ with inf and +∞ respectively. In subsection 5.5.2 and in example
5.5.5 we will see a min-problem with a value function that admits the value ∞.

109
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Remark 5.1. If there exists the optimal control u∗τ,ξ for (5.3), then

V (τ, ξ) =

∫ t1

τ

f(t,x∗τ,ξ,u
∗
τ,ξ) dt+ ψ(x∗τ,ξ(t1)),

where x∗τ,ξ denotes the trajectory associated to u∗τ,ξ.

Example 5.1.1. Let us consider the problem
min

∫ 2

0
(u2 + x2) dt

ẋ = x+ u
x(0) = 1
u ≥ 0

(5.4)

In the example 2.7.1, we have found that, for every (τ, ξ) ∈ [0, 2]× (0,∞) fixed, the problem
min

∫ 2

τ
(u2 + x2) dt

ẋ = x+ u
x(τ) = ξ
u ≥ 0

has the optimal tern, see (2.97),

(u∗τ,ξ, x
∗
τ,ξ, λ

∗
τ,ξ) = (0, ξet−τ , ξ(e4−t−τ − et−τ )).

Moreover, the value function V : [0, 2]× [0,∞)→ R for the problem (5.4) is, as in (2.98),

V (τ, ξ) =

∫ 2

0
((u∗τ,ξ)

2 + (x∗τ,ξ)
2) dt =

ξ2

2
(e4−2τ − 1).

4

5.1.1 The final condition on V : an first necessary condi-
tion

Consider the problem (5.1) and its value function V. In the particular case of
τ = t1, from the definition (5.2) we have

V (t1, ξ) = sup
u∈Ct1,ξ

(∫ t1

t1

f(t,x,u) dt+ ψ(x(t1))

)
= ψ(ξ).

Hence we have

Remark 5.2.
V (t1,x) = ψ(x), for every x ∈ Rn. (5.5)

The condition (5.5) is called the final condition on the value function: clearly,
it is a necessary condition for a function V : [t0, t1]× Rn → [−∞,∞] to be the
value function for the problem (5.1).

If in the problem (5.1) we add a final condition on the trajectory, i.e. x(t1) =
β with β ∈ Rn fixed, then the final condition on the value function is

V (t1,β) = ψ(β).

We will see in section 5.4 the condition for the value function when the trajectory
has a more general condition at the final time.
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5.1.2 Bellman’s Principle of optimality

Theorem 5.1 (Bellman’s Principle of optimality). The second part of an opti-
mal trajectory is optimal.

More precisely: let us consider the problem (5.1) and let u∗t0,α and x∗t0,α be
the optimal control and the optimal trajectory respectively. Let us consider the
problem (5.3) with (τ, ξ) such that x∗t0,α(τ) = ξ. Let u∗τ,ξ be the optimal control
for (5.3). Then

u∗t0,α = u∗τ,ξ, in [τ, t1]

and, consequently, x∗t0,α = x∗τ,ξ in [τ, t1].

Proof. Let u∗ be the optimal control for the problem (5.1) and τ ∈ [t0, t1] :
we prove that the optimal control ũ ∈ Cτ,x∗(τ), defined as the restriction of
u∗ on the interval [τ, t1], is optimal for the problem (5.3) with ξ = x∗(τ). By
contradiction, let us suppose that there exists u] ∈ Cτ,x∗(τ), u] 6= ũ, optimal
for the problem (5.3) with initial data ξ = x∗(τ) and such that∫ t1

τ

f(t, x̃, ũ) dt+ ψ(x̃(t1)) <

∫ t1

τ

f(t,x],u]) dt+ ψ(x](t1)), (5.6)

where x̃ and x] are the trajectories associated to ũ and u] respectively. We
consider the control u defined by

u(t) =

{
u∗(t) for t0 ≤ t < τ,
u](t) for τ ≤ t ≤ t1

(5.7)

and x be the corresponding trajectory.

t

t0

u

t

u*

t1

u

u*

t

t0

x

t

x

t1

a

x*

x*( )t

Clearly u ∈ Ct0,α; hence

V (t0,α) =

∫ t1

t0

f(t,x∗,u∗) dt+ ψ(x∗(t1))

=

∫ τ

t0

f(t,x∗,u∗) dt+

∫ t1

τ

f(t,x∗,u∗) dt+ ψ(x∗(t1))

=

∫ τ

t0

f(t,x∗,u∗) dt+

∫ t1

τ

f(t, x̃, ũ) dt+ ψ(x̃(t1))

(by 5.6) <

∫ τ

t0

f(t,x∗,u∗) dt+

∫ t1

τ

f(t,x],u]) dt+ ψ(x](t1))

(by 5.7) =

∫ t1

t0

f(t,x,u) dt+ ψ(x(t1))
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that is absurd for the definition of value function. Hence such u] does not exist.

5.2 The Bellman-Hamilton-Jacobi equation

5.2.1 Necessary condition of optimality

The Bellman’s Principle of optimality plays a fundamental role in the proof of
this crucial property of the value function.

Theorem 5.2. Let us consider the problem (5.1) with f, g and ψ continuous
and let us suppose that for every (τ, ξ) ∈ [t0, t1] × Rn there exists the optimal
control u∗τ,ξ for the problem (5.3). Let V be the value function for the problem
(5.1) and let V be differentiable. Then, for every (t,x) ∈ [t0, t1]× Rn, we have

∂V

∂t
(t,x) + max

v∈U

(
f(t,x,v) +∇xV (t,x) · g(t,x,v)

)
= 0. (5.8)

The equation (5.8) is called Bellman-Hamilton-Jacobi equation (shortly BHJ
equation). Clearly (5.8) is a necessary condition for a generic function V to
be the value function for the problem (5.1). The main difficulty of dynamic
programming is that such equation in general is a Partial Differential Equation
(shortly PDE). One of the fundamental property of dynamic programming is
that it is possible to generalize such approach to a stochastic context.

Proof. Let (τ, ξ) ∈ [t0, t1]×Rn be fixed. For the assumptions, there exists the
optimal control u∗τ,ξ for the problem (5.3); we drop to the notation “τ, ξ” and
we set u∗ = u∗τ,ξ. We divide the proof in two steps.

First step: we will prove (5.14). For the Remark 5.1 and for every h > 0 we
have

V (τ, ξ) =

∫ t1

τ

f(t,x∗,u∗) dt+ ψ(x∗(t1))

=

∫ τ+h

τ

f(t,x∗,u∗) dt+

∫ t1

τ+h

f(t,x∗,u∗) dt+ ψ(x∗(t1)) (5.9)

where x∗ is the trajectory associated to u∗ with initial point (τ, ξ).

For the Bellman’s Principle of optimality (theorem 5.1), the problem (5.3) with
initial point (τ + h,x∗(τ + h)) has as optimal control the function u∗ restricted
to the interval [τ + h, t1]; hence

V (τ + h,x∗(τ + h)) =

∫ t1

τ+h

f(t,x∗,u∗) dt+ ψ(x∗(t1)). (5.10)

Equation (5.9), for (5.10), now is

V (τ, ξ) =

∫ τ+h

τ

f(t,x∗,u∗) dt+ V (τ + h,x∗(τ + h)). (5.11)
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Now, let us prove that

max
u∈Cτ,ξ

(∫ τ+h

τ

f(t,x,u) dt+ V (τ + h,x(τ + h))

)
=

=

∫ τ+h

τ

f(t,x∗,u∗) dt+ V (τ + h,x∗(τ + h)) : (5.12)

by contradiction let us suppose that there exists a control ũ ∈ Cτ,ξ (with asso-
ciated trajectory x̃) such that∫ τ+h

τ

f(t, x̃, ũ) dt+ V (τ + h, x̃(τ + h)) >

>

∫ τ+h

τ

f(t,x∗,u∗) dt+ V (τ + h,x∗(τ + h)), (5.13)

taking into account that there exists an optimal control u∗τ+h,x̃(τ+h) for the

problem (5.3) with initial point (τ + h, x̃(τ + h)), then the function u], defined
by

u](t) =

{
ũ(t) for τ ≤ t < τ + h,
u∗τ+h,x̃(τ+h)(t) for τ + h ≤ t ≤ t1 ,

is in Cτ,ξ with associated trajectory x]. Hence (5.11) and (5.13) give∫ t1

τ

f(t,x],u]) dt+ ψ(x](t1)) =

=

∫ τ+h

τ

f(t, x̃, ũ) dt+

∫ t1

τ+h

f(t,x∗τ+h,x̃(τ+h),u
∗
τ+h,x̃(τ+h)) dt+ ψ(x∗τ+h,x̃(τ+h)(t1))

>

∫ τ+h

τ

f(t,x∗,u∗) dt+ V (τ + h,x∗(τ + h))

= V (τ, ξ)

that contradicts the definition of value function. Hence (5.12) holds and, by
(5.11), we obtain

V (τ, ξ) = max
u∈Cτ,ξ

(∫ τ+h

τ

f(t,x,u) dt+ V (τ + h,x(τ + h))

)
. (5.14)

Second step: we will conclude the proof. Since V is differentiable, for h
sufficiently small,

V (τ + h,x(τ + h)) = V (τ,x(τ)) +
∂V

∂t
(τ,x(τ))

(
τ + h− τ

)
+

+∇xV (τ,x(τ)) ·
(
x(τ + h)− x(τ)

)
+ o(h)

= V (τ, ξ) +
∂V

∂t
(τ, ξ)h+∇xV (τ, ξ) ·

(
x(τ + h)− ξ

)
+ o(h),

since x(τ) = ξ. Then (5.14) and the previous relation give

max
u∈Cτ,ξ

(∫ τ+h

τ

f(t,x,u) dt+
∂V

∂t
(τ, ξ)h+∇xV (τ, ξ) ·

(
x(τ + h)− ξ

)
+ o(h)

)
= 0.
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If we divide the two members of the previous relation for h > 0 and we consider
the limit for h→ 0+, we obtain

lim
h→0+

{
max
u∈Cτ,ξ

( 1

h

∫ τ+h

τ

f(t,x,u) dt+
∂V

∂t
(τ, ξ) +

+∇xV (τ, ξ) · x(τ + h)− ξ

h
+ o(1)

)}
= 0. (5.15)

Now, we note that for a given fixed u ∈ Cτ,ξ we have that in (5.14)∫ τ+h

τ

f(t,x,u) dt+ V (τ + h,x(τ + h)) (5.16)

depends only on the value of u in the set [τ, τ + h]: in fact, given (τ, ξ) and u,
we construct x in [τ, τ + h] using the dynamics and hence the value of function
V in (τ + h,x(τ + h)). Hence, for h→ 0+, we have that (5.16) depends only on
the set of the values that u can assume in the point τ, i.e. in the control set U.

Now let us suppose that u is continuous in a neighborhood I of the point τ .
Hence the function t 7→ f(t,x(t),u(t)) is continuous in [τ, τ + h], for h small:
hence, for the mean value theorem2, we have

inf
t∈[τ,τ+h]

f(t,x(t),u(t)) ≤ 1

h

∫ τ+h

τ

f(t,x,u) dt ≤ sup
t∈[τ,τ+h]

f(t,x(t),u(t))

Hence, for the continuity in [τ, τ + h],

lim
h→0+

1

h

∫ τ+h

τ

f(t,x,u) dt = lim
t→τ+

f(t,x(t),u(t)) = f(τ,x(τ),u(τ)). (5.17)

Now, since t 7→ g(t,x(t),u(t)) is continuous in I, we have x ∈ C1(I) and hence

lim
h→0+

x(τ + h)− ξ

h
= ẋ(τ). (5.18)

If u is not continuous in a neighborhood of τ , i.e. u is only measurable and
admissible, we have only tedious calculations, using the previous ideas, but no
really problems: hence we omit this part of the proof.

Equation (5.15), using (5.17) and (5.18), gives

max
v∈U

(
f(τ,x(τ),v) +

∂V

∂t
(τ, ξ) +∇xV (τ, ξ) · ẋ(τ)

)
= 0. (5.19)

Using the dynamics, the initial condition x(τ) = ξ and remarking that ∂V
∂x (τ, ξ)

does not depend on v, we obtain easily (5.8).

2We recall that if φ : [a, b]→ R is integrable in [a, b], then

inf
t∈[a,b]

φ(t) ≤
1

b− a

∫ b

a
φ(s) ds ≤ sup

t∈[a,b]
φ(t);

moreover, if φ is continuous in [a, b], then there exists c ∈ [a, b] such that∫ b

a
φ(s) ds = φ(c)(b− a).
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Let us consider the problem (5.1); we define the Hamiltonian of Dynamic
Programming HDP : [t0, t1]× R2n → (−∞,+∞] defined by

HDP (t,x,p) = max
v∈U

(
f(t,x,v) + p · g(t,x,v)

)
(5.20)

It is clear that, in the assumption of Theorem 5.2, the value function solves the
system{

∂V

∂t
(t,x) +HDP (t,x,∇xV (t,x)) = 0 for (t,x) ∈ [t0, t1]× Rn

V (t1,x) = ψ(x) for x ∈ Rn
(5.21)

We mention that the conclusion of the first step in the proof of Theorem
5.2 holds with very different assumptions: since we will use these different as-
sumptions and this conclusion in the following (see Theorem 5.6), let us give
the precise statement:

Remark 5.3. Let us consider the problem (5.1) in the autonomous case (see
(5.37)) with the assumptions 1. and 2. in the beginning of section 5.3. Then

V (τ, ξ) = max
u∈Cτ,ξ

(∫ τ+h

τ

f(x,u) dt+ V (τ + h,x(τ + h))

)
.

For a proof of this result see Theorem 1 in subsection 10.3.2 in [11].
It is clear that the previous result in Theorem 5.2 leads naturally to the

question “when the value function V (τ, ξ) is differentiable”. We will give an
idea with Theorem 5.4.

5.2.2 Sufficient condition of optimality

At this point the question is to suggest sufficient conditions such that a function
W : [t0, t1]×Rn → R, that satisfies the Bellman-Hamilton-Jacobi equation (5.8)
and the final condition (5.5), is really the value function for the problem (5.1).
Moreover, we hope that the value function gives us some information about the
optimal control. This is the content of the next result.

Theorem 5.3. Let us consider the problem (5.1) with f, g and ψ continuous.
Let W : [t0, t1]×Rn → R be a C1 function that satisfies the BHJ system (5.21),
i.e. {

∂W

∂t
(t,x) +HDP (t,x,∇xW (t,x)) = 0 ∀(t,x) ∈ [t0, t1]× Rn

W (t1,x) = ψ(x) ∀x ∈ Rn
(5.22)

Let w : [t0, t1]× Rn → U be a measurable function such that in [t0, t1]× Rn we
have

w(t,x) ∈ arg max
v∈U

(
f(t,x,v) +∇xW (t,x) · g(t,x,v)

)
(5.23)

Moreover, let us suppose that there exists the solution x∗ of the ODE{
ẋ(t) = g

(
t,x, w(t,x)

)
in [t0, t1]

x(t0) = α.
(5.24)
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Then x∗ is the optimal trajectory and u∗, defined by

u∗(t) = w(t,x∗(t)) (5.25)

is the optimal control for the problem (5.1). Finally if, for every (τ, ξ) ∈ [t0, t1)×
Rn there exists the solution of the ODE{

ẋ(t) = g
(
t,x, w(t,x)

)
in [τ, t1]

x(τ) = ξ

then W is the value function for the problem (5.1).

Proof. Let x∗ be the solution of (5.24) and let u∗ be defined as in (5.25); we
prove that u∗ is optimal. By (5.22), (5.23), (5.24) and (5.25) we have, for every
fixed t,

∂W

∂t
(t,x∗(t)) = −max

v∈U

(
f(t,x∗(t),v) +∇xW (t,x∗(t)) · g(t,x∗(t),v)

)
= −f(t,x∗(t), w(t,x∗(t)))−∇xW (t,x∗(t)) · g(t,x∗(t), w(t,x∗(t)))

= −f(t,x∗(t),u∗(t))−∇xW (t,x∗(t)) · g(t,x∗(t),u∗(t))

= −f(t,x∗(t),u∗(t))−∇xW (t,x∗(t)) · ẋ∗(t) (5.26)

Since W ∈ C1, the fundamental theorem of integral calculus implies

W (t1,x
∗(t1))−W (t0,x

∗(t0)) =

∫ t1

t0

dW (t,x∗(t))

dt
dt

=

∫ t1

t0

∂W

∂t
(t,x∗(t)) +∇xW (t,x∗(t)) · ẋ∗(t) dt

(by (5.26)) = −
∫ t1

t0

f(t,x∗(t),u∗(t)) dt. (5.27)

The arguments in the previous lines require some details. The function t 7→
W (t,x∗(t)) is absolutely continuous since is the composition of the function W
in C1 and the absolutely continuous function x∗ (see Remark 1.1): the abso-
lutely continuity of t 7→ W (t,x∗(t)) guarantees the first inequality. The second
inequality is a simply application of the chain rule to compute the derivative
of the composition of two function; let us mention that such rule holds in our
assumptions, despite the function x∗ is only absolutely continuity.

Now, let u be an admissible control, with u 6= u∗, and let x be the associated
trajectory. The definition of the function w, (5.22) and the dynamics give, for
every fixed t,

∂W

∂t
(t,x(t)) = −max

v∈U

(
f(t,x(t),v) +∇xW (t,x(t)) · g(t,x(t),v)

)
≤ −f(t,x(t),u(t))−∇xW (t,x(t)) · g(t,x(t),u(t))

= −f(t,x(t),u(t))−∇xW (t,x(t)) · ẋ(t) (5.28)

Again we have

W (t1,x(t1))−W (t0,x(t0)) =

∫ t1

t0

dW (t,x(t))

dt
dt



5.2. THE BELLMAN-HAMILTON-JACOBI EQUATION 117

=

∫ t1

t0

∂W

∂t
(t,x(t)) +∇xW (t,x(t)) · ẋ(t) dt

(by (5.28)) ≤ −
∫ t1

t0

f(t,x(t),u(t)) dt. (5.29)

We remark that x∗(t0) = x(t0) = α; if we subtract the two expressions in (5.27)
and in (5.29), then we obtain

W (t1,x
∗(t1))−W (t1,x(t1)) ≥ −

∫ t1

t0

f(t,x∗(t),u∗(t)) dt+

∫ t1

t0

f(t,x(t),u(t)) dt.

Using the final condition in (5.22), the previous inequality becomes∫ t1

t0

f(t,x∗(t),u∗(t)) dt+ ψ(x∗(t1)) ≥
∫ t1

t0

f(t,x(t),u(t)) dt+ ψ(x(t1)),

for every u ∈ Ct0,α and x associated trajectory: hence u∗ is optimal for the
problem (5.1).

Now we consider the value function V defined by (5.2). By (5.27), since u∗

is optimal for the problem (5.1) and using (5.22) and the final condition on the
trajectory

V (t0,α) =

∫ t1

t0

f(t,x∗(t),u∗(t)) dt+ ψ(x∗(t1))

=

∫ t1

t0

f(t,x∗(t),u∗(t)) dt+W (t1,x
∗(t1)) = W (t0,α).

Hence the function W in the point (t0,α) coincides with the value of the value
function V in (t0,α). Now, if we replace the initial data x(t0) = α in (5.24)
with the new initial data x(τ) = ξ, then the same proof gives V (τ, ξ) = W (τ, ξ).
Hence W is really the value function.

Along the path (t,x∗(t)), the optimal control u∗ realizes the max in the
BHJ: more precisely

Remark 5.4. If V ∈ C1 is the value function which solves the BHJ system
(5.21) and if u∗ is the optimal control (with trajectory x∗) for the problem
(5.1), we have

∂V

∂t
(t,x∗(t)) + f(t,x∗(t),u∗(t)) +∇xV (t,x∗(t)) · g(t,x∗(t),u∗(t)) = 0

for a.e. t ∈ [t0, t1]; this implies that, for such t,

u∗(t) ∈ arg max
v∈U

(
f(t,x∗(t),v) +∇xV (t,x∗(t)) · g(t,x∗(t),v)

)
.

Proof. The function t 7→ V (t,x∗(t)) is absolutely continuous (see Remark 1.1);
hence admits derivative a.e. and the chain rule gives

dV (t,x∗(t))

dt
=
∂V

∂t
(t,x∗(t)) +∇xV (t,x∗(t)) · g(t,x∗(t),u∗(t)), (5.30)
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for a.e. t. On the other hand, the absolutely continuity of V (t,x∗(t)) implies

V (t,x∗(t)) = V (t0,x
∗(t0)) +

∫ t

t0

dV (s,x∗(s))

ds
ds,

for every t. Since u∗ is optimal for the problem (5.1) and using the Bellman’s
Principle of optimality, we have by the previous line∫ t1

t

f(s,x∗,u∗) ds+ψ(x(t1)) =

∫ t1

t0

f(s,x∗,u∗) ds+ψ(x(t1))+

∫ t

t0

dV (s,x∗(s))

ds
ds,

for every t ∈ [t0, t1]. It is easy to see that this relation implies

dV (t,x∗(t))

dt
= −f(t,x∗(t),u∗(t)), a.e. t ∈ [t0, t1]. (5.31)

By (5.30) and (5.31), and since V solves the BHJ system, we obtain

0 =
∂V

∂t
(t,x∗(t)) + f(t,x∗(t),u∗(t)) +∇xV (t,x∗(t)) · g(t,x∗(t),u∗(t))

=
∂V

∂t
(t,x∗(t)) + max

v∈U

(
f(t,x∗(t),v) +∇xV (t,x∗(t)) · g(t,x∗(t),v)

)
,

for a.e. t.

5.2.3 Affine Quadratic problems

We now consider a very important class of optimal control problems; let
max
u∈C

1

2

∫ t1

t0

(x′Q(t)x + 2x′S(t) + u′R(t)u) dt+
1

2
x(t1)′Px(t1)

ẋ = A(t)x +B(t)u + C(t)
x(t0) = α
C = {u : [t0, t1]→ Rk, admissible}

(5.32)

where v′ is the transpose of the matrix v; in (5.32) we denotes the trajectory
x and the control u such that x = (x1, x2, . . . , xn)′ and u = (u1, u2, . . . , uk)′

respectively. We assume that Q = Q(t), R = R(t), S = S(t), A = A(t),
B = B(t) and C = C(t) are matrices of appropiate dimensions with continuous
entries on [t0, t1]; moreover P is a constant matrix.
These type of problems are called Affine Quadratic problems; if in particular
C = 0, the problem is called Linear Quadratic problem (LQ problem). In this
type of maximization problem it is reasonable to add the following assumption:

A. the matrices Q(t), for every t, and P are nonpositive defined (i.e. Q(t) ≤ 0,
P ≤ 0);

B. the matrix R(t), for every t, is negative defined (i.e. R(t) < 0);

it is clear that if we consider a min problem, we have to change the previous
inequalities.



5.2. THE BELLMAN-HAMILTON-JACOBI EQUATION 119

For sake of simplicity, let us consider the case n = k = 1; we looking for a
function

V (t, x) =
1

2
Zx2 +Wx+ Y

with Z = Z(t), W = W (t) and Y = Y (t) in C1, such that V is the value
function for the problem (5.32): the necessary conditions (5.5) and (5.8) give
for such choice of V that, for all (t, x) ∈ [t0, t1]× R

1

2
Żx2 + Ẇx+ Ẏ + max

v∈R

[1

2
Qx2 + Sx+

+
1

2
Rv2 + (Zx+W ) (Ax+Bv + C)

]
= 0,

1

2
Z(t1)x2 +W (t1)x+ Y (t1) =

1

2
Px2,

In order to realize a maximum, it clear that the assumption B. R(t) < 0 plays
a fundamental role. Hence we realize the max for

v(t, x) = − (Z(t)x+W (t))B(t)

R(t)
,

an easy computation gives

Ż − B2

R
Z2 + 2AZ +Q = 0, Z(t1) = P (5.33)

Ẇ +

(
A− B2

R
Z

)
W + S + CZ = 0, W (t1) = 0 (5.34)

Ẏ − B2

2R
W 2 + CW = 0, Y (t1) = 0 (5.35)

If there exists a unique solution Z of the Riccati ODE (5.33) in [t0, t1] with
its initial condition, then we put such solution in (5.34) and we obtain a linear
ODE in the variable W with its initial condition; again, putting such solution
W in (5.35) we obtain an easy ODE in the variable Y with its initial condition.
These arguments give the following:

Remark 5.5. Let us suppose that there exists a unique solution for the system
Ż − ZBR−1B′Z + ZA+A′Z +Q = 0, Z(t1) = P

Ẇ +
(
A−BR−1B′Z

)′
W + S + ZC = 0, W (t1) = 0

Ẏ − 1
2W

′BR−1B′W +W ′C = 0, Y (t1) = 0

(5.36)

in the variable (Z,W, Y ) such that

v(t,x) = −R−1B′(Zx +W )

realizes the max in

max
v∈Rk

(
1

2
v′Rv + (Zx +W )′Bv

)
for all (t,x) ∈ [t0, t1]× Rn, then

V (t,x) =
1

2
x′Zx +Wx + Y

is the value function for the problem (5.32).
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A more precise result, that we are not interested to prove (see Proposition
5.3 in [4]), is

Proposition 5.1. Let us assume A. and B. Then there exists a unique solution
of the system (5.36).

Let us consider now the particular situation of a linear homogeneous quadratic
problem, i.e. C = 0 and S = 0; it is clear that (5.34) implies the solution
W = W (t) = 0; consequently, in (5.35) we obtain the solution Y = Y (t) = 0.
Clearly we obtain the following (see [16]):

Remark 5.6. Let us consider the problem (5.32) in the linear and homogeneous
case, with the assumption A. and B. Then

V (t,x) =
1

2
x′Zx

is the value function for the problem.

5.3 Regularity of V and viscosity solution

The results of the previous section require some regularity of the value function.
More precisely in order to give a sense to a BHJ equation, we need the differ-
entiability of the value function V . In this section we focus our attention of the
problem (5.1) in the autonomous case, i.e.

max
u∈C

∫ t1

t0

f(x,u) dt+ ψ(x(t1))

ẋ = g(x,u)
x(t0) = α
C = {u : [t0, t1]→ U ⊂ Rk, admissible}

(5.37)

where t0 and t1 are fixed. In all that follows in this section, let us assume that
for the problem (5.37) we have that

1. f : Rn × U → R, g : Rn × U → Rn and ψ : Rn → R are bounded and
uniformly continuous with

|f(x,u)| ≤ C, |f(x,u)− f(x′,u)| ≤ C‖x− x′‖,
‖g(x,u)‖ ≤ C, ‖g(x,u)− g(x′,u)‖ ≤ C‖x− x′‖,
|ψ(x)| ≤ C, |ψ(x)− ψ(x′)| ≤ C‖x− x′‖,

for some constant C and for every x,x′ ∈ Rn, u ∈ U ;

2. the control set U is compact.

We only mention that many results of this section hold in weaker assumptions
w.r.t. 1. and 2..

The next result fixes an important idea about the regularity of the value
function V .
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Theorem 5.4. Consider the autonomous problem (5.37) with the assumptions
1. and 2.. Then the value function V is bounded, uniformly continuous and
Lipschitz, i.e. there exists a constant C̃ such that

|V (τ, ξ)| ≤ C̃, |V (τ, ξ)− V (τ ′, ξ′)| ≤ C̃
(
|τ − τ ′|+ ‖ξ − ξ′‖

)
for every τ, τ ′ ∈ [t0, t1] and ξ, ξ′ ∈ Rn.

An immediate but fundamental consequence of the previous theorem and of
the Rademacher’s theorem3 is the following

Corollary 5.1. In the assumption of Theorem 5.4, the value function V is
differentiable except on a set of Lebesgue measure zero.

Proof of Theorem 5.44 In all the proof we denote by C a generic constant, that
in general can be different in every situation.

First, it is easy to see that the Lipschitz assumption on g guarantees (see
Theorem 1.3) that for every initial data (τ, ξ) and for every control u : [τ, t1]→
U we have that {

ẋ = g(x,u) in [τ, t1]
x(τ) = ξ

admits a unique solution x in [τ, t1], i.e. u is admissible. In fact let us show that
assumptions i., ii. and iii. in Theorem 1.3 are satisfied: for every u measurable
it is clear that (t,x) 7→ g(x,u(t)) is measurable since g is continuous; secondly,
the Lipschitz assumption on g in 1. gives

‖g(x,u(t))− g(x′,u(t))‖ ≤ C‖x− x′‖;

finally,
‖g(x,u(t))‖ ≤ C ≤ C + ‖x‖

for every t ∈ [t0, t1], x ∈ Rn and u measurable function. This implies that
Cτ,ξ 6= ∅ and hence V (τ, ξ) 6= −∞.

Second, the boundedness assumption on f and ψ guarantee that

|V (τ, ξ)| =

∣∣∣∣∣ sup
u∈Cτ,ξ

∫ t1

τ

f(x,u) dt+ ψ(x(t1))

∣∣∣∣∣
≤ sup

u∈Cτ,ξ

(∫ t1

τ

|f(x,u)|dt+ |ψ(x(t1))|
)

≤ |t1 − τ |C + C < C.

Now let us fix ξ̃ and ξ in Rn, and τ ∈ [t0, t1]. For every ε > 0 there exists a
control u ∈ Cτ,ξ (with trajectory x) such that

V (τ, ξ)− ε ≤
∫ t1

τ

f(x,u) dt+ ψ(x(t1)).

3Let us recall this fundamental result (see Theorem 2 in section 3.1 in [13]):

Theorem 5.5 (Rademacher). Let U ⊂ Rn be open and let φ : U → Rm be Lipschitz contin-
uous. Then φ is differentiable almost everywhere in U.

4This proof is as in [11]; for a proof in the non autonomous case, see for example [14].
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It is clear that for this control we have u ∈ Cτ,ξ̃ (with trajectory x̃): by the
definition of value function,

V (τ, ξ)− V (τ, ξ̃) ≤
∫ t1

τ

(f(x,u)− f(x̃,u)) dt+ ψ(x(t1))− ψ(x̃(t1)) + ε

≤
∫ t1

τ

|f(x,u)− f(x̃,u)|dt+ |ψ(x(t1))− ψ(x̃(t1))|+ ε. (5.38)

The Lipschitz assumption on g implies that, for a.e. t ∈ [τ, t1],

d

dt
(‖x(t)− x̃(t)‖) =

(
x(t)− x̃(t), ẋ(t)− ˙̃x(t)

)
‖x(t)− x̃(t)‖

≤
∥∥∥ẋ(t)− ˙̃x(t)

∥∥∥
= ‖g(x(t),u(t))− g(x̃(t),u(t))‖
≤ C ‖x(t)− x̃(t)‖

The Gronwall’s inequality (see Theorem 3.6) implies, for every t ∈ [τ, t1],

‖x(t)− x̃(t)‖ ≤ ‖x(τ)− x̃(τ)‖ exp

(∫ t

τ

C ds

)
≤ C

∥∥∥ξ − ξ̃
∥∥∥ . (5.39)

Hence, using (5.39) and the Lipschitz assumptions, we obtain by (5.38)

V (τ, ξ)− V (τ, ξ̃) ≤ C

∫ t1

τ

‖x(t)− x̃(t)‖ dt+ C ‖x(t1)− x̃(t1)‖+ ε

≤ C(t1 − t0)
∥∥∥ξ − ξ̃

∥∥∥+ C
∥∥∥ξ − ξ̃

∥∥∥+ ε

= C
∥∥∥ξ − ξ̃

∥∥∥+ ε.

The same argument with the role of ξ and ξ̃ reversed implies V (τ, ξ̃)−V (τ, ξ) ≤
C
∥∥∥ξ − ξ̃

∥∥∥+ ε and hence

|V (τ, ξ)− V (τ, ξ̃)| ≤ C
∥∥∥ξ − ξ̃

∥∥∥ . (5.40)

Now let us fix ξ in Rn, and t0 ≤ τ < τ̂ ≤ t1. For every ε > 0 there exists a
control u ∈ Cτ,ξ (with trajectory x) such that

V (τ, ξ)− ε ≤
∫ t1

τ

f(x,u) dt+ ψ(x(t1)).

Consider the function û : [τ̂ , t1]→ U defined by

û(s) = u(s+ τ − τ̂), ∀s ∈ [τ̂ , t1].

It is clear that û ∈ Cτ̂ ,ξ with trajectory x̂ such that, since g does not depend on
t, x̂(s) = x(s+ τ − τ̂) for s ∈ [τ̂ , t1]: hence, by the definition of value function,

V (τ, ξ)− V (τ̂ , ξ) ≤
∫ t1

τ

f(x,u) dt+ ψ(x(t1)) +

−
∫ t1

τ̂

f(x̂, û) dt− ψ(x̂(t1)) + ε

=

∫ t1

t1+τ−τ̂
f(x,u) dt+ ψ(x(t1))− ψ(x̂(t1)) + ε



5.3. REGULARITY OF V AND VISCOSITY SOLUTION 123

Since f is bounded and ψ is Lipschitz we obtain

V (τ, ξ)− V (τ̂ , ξ) ≤ |τ − τ̂ |C + C‖x(t1)− x̂(t1)‖+ ε; (5.41)

since g is bounded we have, taking into account x̂(t1) = x(t1 + τ − τ̂),

‖x(t1)− x(t1 + τ − τ̂)‖ =

∥∥∥∥∥ξ +

∫ t1

τ

g(x,u) ds− ξ −
∫ t1+τ−τ̂

τ

g(x,u) ds

∥∥∥∥∥
=

∥∥∥∥∫ t1

t1+τ−τ̂
g(x,u) ds

∥∥∥∥
≤ C|τ − τ̂ |. (5.42)

Clearly (5.41) and (5.42) give

V (τ, ξ)− V (τ̂ , ξ) ≤ C|τ − τ̂ |+ ε. (5.43)

Now, with the same ξ, t0 ≤ τ < τ̂ ≤ t1 and ε, let us consider a new control
û ∈ Cτ̂ ,ξ (with trajectory x̂) such that

V (τ̂ , ξ)− ε ≤
∫ t1

τ̂

f(x̂, û) dt+ ψ(x̂(t1)).

Consider the function u : [τ, t1]→ U defined by

u(s) =

{
û(s+ τ̂ − τ) for s ∈ [τ, t1 − τ̂ + τ ]
û(t1) for s ∈ (t1 − τ̂ + τ, t1]

It is clear that u ∈ Cτ,ξ (with trajectory x) and that x(s) = x̂(s + τ̂ − τ) for
s ∈ [τ, t1 − τ̂ + τ ] : hence, by the definition of value function,

V (τ̂ , ξ)− V (τ, ξ) ≤
∫ t1

τ̂

f(x̂, û) dt+ ψ(x̂(t1)) +

−
∫ t1

τ

f(x,u) dt− ψ(x(t1)) + ε

≤ −
∫ t1

t1−τ̂+τ
f(x,u) dt+ ψ(x(t1 − τ̂ + τ))− ψ(x(t1)) + ε

Again, since f is bounded and ψ is Lipschitz we obtain

V (τ̂ , ξ)− V (τ, ξ) ≤ |τ − τ̂ |C + C‖x(t1 − τ̂ + τ)− x(t1)‖+ ε; (5.44)

since g is bounded we have

‖x(t1 − τ̂ + τ)− x(t1)‖ =

∥∥∥∥∥ξ +

∫ t1−τ̂+τ

τ

g(x,u) ds− ξ −
∫ t1

τ

g(x,u) ds

∥∥∥∥∥
=

∥∥∥∥∫ t1

t1+τ−τ̂
g(x,u) ds

∥∥∥∥
≤ C|τ − τ̂ |. (5.45)

Clearly (5.44) and (5.45) give

V (τ̂ , ξ)− V (τ, ξ) ≤ C|τ − τ̂ |+ ε. (5.46)
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The inequalities (5.43) and (5.46) guarantee that

|V (τ̂ , ξ)− V (τ, ξ)| ≤ C|τ − τ̂ |. (5.47)

Since (5.40) and (5.47) hold for every ξ, ξ̃, t0 ≤ τ < τ̂ ≤ t1, we obtain

|V (τ̂ , ξ̃)−V (τ, ξ)| ≤ |V (τ̂ , ξ̃)−V (τ̂ , ξ)|+|V (τ̂ , ξ)−V (τ, ξ)| ≤ C
(
|τ − τ̂ |+ ‖ξ̃ − ξ‖

)
.

and the proof is finished.

5.3.1 Viscosity solution

Now if we consider the problem (5.1) with the assumption of Theorem 5.4, such
theorem and Corollary 5.1 guarantee that the value function V : [t0, t1]×Rn → R
is bounded and for a.e. (t,x) ∈ [t0, t1]× Rn exists(

∂V

∂t
(t,x), ∇xV (t,x)

)
. (5.48)

At this point we have a problem: if there exists a point (t,x) ∈ [t0, t1] × Rn
such that V is not differentiable, i.e. the vector in (5.48) does not exist, how
should we interpret the BHJ equation in (t,x), i.e. the relation ∂V

∂t (t,x) +
HDP (t,x,∇xV (t,x)) = 0?

A more general and important result of regularity for the value function
passes through the definition of viscosity solution (see Chapter 10 in [11] and
[3] for more details):

Definition 5.1. Let us consider a bounded and uniformly continuous function
V : [t0, t1]× Rn → R with V (t1,x) = ψ(x), for all x ∈ Rn.
We say that V is a viscosity subsolution of BHJ system (5.21) if whenever
v is a test function in C∞((t0, t1)× Rn) such that V − v has a local minimum
in the point (t,x) ∈ (t0, t1)× Rn, then we have that

∂v

∂t
(t,x) +HDP (t,x,∇xv(t,x)) ≤ 0. (5.49)

We say that V is a viscosity supersolution of BHJ system (5.21) if whenever
v is a test function in C∞((t0, t1)× Rn) such that V − v has a local maximum
in the point (t,x) ∈ (t0, t1)× Rn, then we have that

∂v

∂t
(t,x) +HDP (t,x,∇xv(t,x)) ≥ 0. (5.50)

A function that is both a viscosity subsolution and a viscosity supersolution is
called viscosity solution.

The theory of viscosity solution is very important and wide, but it is not the
focus of this note. We are interested to give only an idea. We only remark that
the previous definition allow us to give an interpretation of the BHJ equation in
the point (t,x) where V is not regular enough; on the other hand, in the points
(t,x) where V is regular then nothing change with respect to the classical notion
of solution of BHJ equation:
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Remark 5.7. Let V : [t0, t1]×Rn → R be a bounded and uniformly continuous
function such that is C1 in a neighborhood of a point (t,x) ∈ (t0, t1)×Rn. Then
the two requirements (5.49)–(5.50) in Definition 5.1 are equivalent to

∂V

∂t
(t,x) +HDP (t,x,∇xV (t,x)) = 0. (5.51)

Proof. Let us start by proving (5.49)–(5.50) imply (5.51): let us consider v ∈
C∞((t0, t1) × Rn) such that V − v has a local minimum in the point (t,x) ∈
(t0, t1)×Rn; then inequality (5.49) holds. However, since the function V − v is
regular and (t,x) is a minimum point for such function, then(

∂V

∂t
(t,x), ∇xV (t,x)

)
=

(
∂v

∂t
(t,x), ∇xv(t,x)

)
. (5.52)

Inequality (5.49) becomes

∂V

∂t
(t,x) +HDP (t,x,∇xV (t,x)) ≤ 0.

Now, if V − v has a local maximum in the point (t,x), similar argument proves
the reverse inequality and hence (5.51).

Now suppose that (5.51) holds and let us consider v ∈ C∞((t0, t1) × Rn)
such that V − v has a local minimum in the point (t,x) ∈ (t0, t1)×Rn. Clearly
(5.52) holds and hence (5.49). Similar argument proves that if we have a local
maximum for V − v then (5.50) is true.

Now we have the following fundamental result:

Theorem 5.6. Consider the autonomous problem (5.37) with the assumptions
1. and 2.. Then the value function V is the unique viscosity solution of the
BHJ system (5.21).

Proof. We prove only that V is a viscosity solution (see Theorem 3 in section
10.3 of [11]); the proof of the uniqueness is very hard and we omit it (see for
example Theorem 1 in section 10.2 of [11]).

Theorem 5.4 and Remark 5.2 give that V is bounded, uniformly continuous
and satisfies the final condition. Now let v ∈ C∞((t0, t1) × Rn) such that the
function V − v has a local minimum in the point (τ0, ξ0) ∈ (t0, t1) × Rn: we
have to prove that

∂v

∂t
(τ0, ξ0) + max

u∈U
(f(ξ0,u) +∇xv(τ0, ξ0) · g(ξ0,u)) ≤ 0. (5.53)

Suppose that (5.53) is not true; then there exists θ > 0 and a point ũ in U such
that

∂v

∂t
(τ0, ξ0) + f(ξ0, ũ) +∇xv(τ0, ξ0) · g(ξ0, ũ) > θ.

The continuity of the functions involved in the previous line implies that there
exists δ > 0 such that

∂v

∂t
(τ, ξ) + f(ξ, ũ) +∇xv(τ, ξ) · g(ξ, ũ) ≥ θ (5.54)
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for every (τ, ξ) ∈ Iδ := {(τ, ξ) ∈ (t0, t1) × Rn : |τ − τ0| ≤ δ, ‖ξ − ξ0‖ ≤ δ}.
Since V − v has a local minimum in (τ0, ξ0), we can consider δ such that

V (τ0, ξ0)− v(τ0, ξ0) ≤ V (τ, ξ)− v(τ, ξ), ∀(τ, ξ) ∈ Iδ. (5.55)

Let us consider the constant control equal
to ũ, denoting it by ũ, and let us consider
h > 0, with δ > h, such that the solution x̃
of the problem{

ẋ = g(x, ũ) in [τ0, τ0 + h]
x(τ0) = ξ0

is such that ‖x̃(t) − ξ0‖ ≤ δ for every t ∈ [τ0, τ0 + h]: note that such h there
exists since, using the boundedness assumption on g,

‖x̃(t)− ξ0‖ =

∥∥∥∥∫ t

τ0

g(x̃(s), ũ(s)) ds

∥∥∥∥ ≤ hC, ∀t ∈ [τ0, τ0 + h].

Hence by (5.55), we have

V (τ0 + h, x̃(τ0 + h))− V (τ0, x̃(τ0)) ≥
≥ v(τ0 + h, x̃(τ0 + h))− v(τ0, x̃(τ0))

=

∫ τ0+h

τ0

d

ds
v(s, x̃(s)) ds

=

∫ τ0+h

τ0

∂v

∂t
(s, x̃(s)) +∇xv(s, x̃(s)) · g(x̃(s), ũ(s)) ds (5.56)

Now Remark 5.3 implies that

V (τ0, ξ0) ≥
∫ τ0+h

τ0

f(x̃(s), ũ(s)) ds+ V (τ0 + h, x̃(τ0 + h)).

The previous inequality and (5.56), taking into account (5.54), give

0 ≥
∫ τ0+h

τ0

(
∂v

∂t
(s, x̃(s)) + f(x̃(s), ũ(s)) +∇xv(s, x̃(s)) · g(x̃(s), ũ(s))

)
ds

≥
∫ τ0+h

τ0

θ ds = θh;

this is impossible. Hence V is really a viscosity subsolution.
Now let v ∈ C∞((t0, t1) × Rn) such that the function V − v has a local

maximum in the point (τ0, ξ0) ∈ (t0, t1)× Rn: we have to prove that

∂v

∂t
(τ0, ξ0) + max

u∈U
(f(ξ0,u) +∇xv(τ0, ξ0) · g(ξ0,u)) ≥ 0. (5.57)

Suppose that (5.57) is not true; then there exists θ > 0 such that

∂v

∂t
(τ0, ξ0) + f(ξ0,u) +∇xv(τ0, ξ0) · g(ξ0,u) < −θ
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for every u ∈ U . The continuity of the functions involved in the previous line
implies that there exists δ > 0 such that

∂v

∂t
(τ, ξ) + f(ξ,u) +∇xv(τ, ξ) · g(ξ,u) ≤ −θ (5.58)

for every u ∈ U and (τ, ξ) ∈ Iδ, with Iδ as before. Since V − v has a local
maximum in (τ0, ξ0), we can consider δ such that

V (τ0, ξ0)− v(τ0, ξ0) ≥ V (τ, ξ)− v(τ, ξ), ∀(τ, ξ) ∈ Iδ. (5.59)

Let us consider h > 0, with δ > h, such that for every control u the solution x
of the problem {

ẋ = g(x,u) in [τ0, τ0 + h]
x(τ0) = ξ0

is such that ‖x(t)− ξ0‖ ≤ δ for every t ∈ [τ0, τ0 +h]: such h exists again for the
boundedness assumption on g. Hence, for every control u, by (5.59), we have

V (τ0 + h,x(τ0 + h))− V (τ0,x(τ0)) ≤
≤ v(τ0 + h,x(τ0 + h))− v(τ0,x(τ0))

=

∫ τ0+h

τ0

d

ds
v(s,x(s)) ds

=

∫ τ0+h

τ0

(
∂v

∂t
(s,x(s)) +∇xv(s,x(s)) · g(x(s),u(s))

)
ds (5.60)

Now Remark 5.3 implies that there exists a control û with trajectory a control
x̂ such that

V (τ0, ξ0) ≤
∫ τ0+h

τ0

f(x̂(s), û(s)) ds+ V (τ0 + h, x̂(τ0 + h)) +
θh

2
.

The previous inequality and (5.60), taking into account (5.58), give

0 ≤
∫ τ0+h

τ0

(
∂v

∂t
(s, x̂(s)) + f(x̂(s), û(s)) +∇xv(s, x̂(s)) · g(x̂(s), û(s))

)
ds+

θh

2

≤
∫ τ0+h

τ0

−θ ds+
θh

2
= −θh

2
;

this is impossible. Hence V is really a viscosity supersolution.

Let us give an example in order to show what can happen:

Example 5.3.1. Let us consider
max

∫ 0

−1
−

(|u|+ 2)2

4
dt+ |x(0)|

ẋ = u
|u| ≤ 2
x(−1) = 1

Note that the assumptions of Theorem 5.6 hold, except for the boundedness assumption on
the pay off function; since the problem is autonomous, HDP does not depend on t explicitly.
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We are looking for a function V : [−1, 0] × R → R that satisfies the BHJ equation (5.8) and
the final condition (5.5):

∂V

∂t
(t, x) +HDP

(
x,
∂V

∂x
(t, x)

)
= 0 ∀(t, x) ∈ [−1, 0]× R

V (0, x) = |x| ∀x ∈ R
(5.61)

where
HDP (x, p) = HDP (p) = max

u∈[−2,2]
hp(u)

and

hp(u) = −
(|u|+ 2)2

4
+ up.

For every fixed p, the function hp has a maximum point: let us call such point w̃(p). We note
that w̃(−p) = −w̃(p) and hence that HDP (p) = HDP (−p). Now it is clear that we can restrict
our attention, for a fixed p ≥ 0, to the max{u∈[0,2]} hp(u). It is easy to see that, for u ≥ 0,
h′p(u) ≥ 0 if and only if u ≤ 2p− 2. Hence we obtain

w̃(p) =

 0 if |p| ≤ 1
2|p| − 2 if 1 < |p| ≤ 2
2 if 2 < |p|

HDP (p) =

−1 if |p| ≤ 1
p2 − 2|p| if 1 < |p| ≤ 2
2|p| − 4 if 2 < |p|

Let us prove that
V (t, x) = t+ |x| (5.62)

is a viscosity solution of (5.61). In order to do that, we have to use Definition 5.1.
First, our V is continuous and satisfies the final condition, i.e. V (0, x) = |x|: it is bounded
only on compact sets.
If we consider a point (t, x) ∈ (−1, 0)×R with x 6= 0, our V is C1 in such point and (we recall
Remark 5.7 for the “regular” points of V ) we obtain

∂V

∂t
(t, x) +HDP

(
∂V

∂x
(t, x)

)
= 1 +HDP (±1) = 0.

Now, if we consider (t, x) ∈ (−1, 0)× R with x = 0, formally we obtain

∂V

∂t
(t, x) +HDP

(
∂V

∂x
(t, x)

)
= 1 +HDP

(
∂(|x|)
∂x

(0)

)
.

Let us use the definition of viscosity solution in details. If a function v is in C∞ such that
(t, x) 7→ V (t, x)− v(t, x) = t+ |x| − v(t, x) has a local minimum in (t, 0), this implies that5

t− v(t, 0) ≤ t+ |x| − v(t, x), ∀(t, x) ∈ B((t, 0), ε), (5.63)

for some ε > 0. In particular setting x = 0 in (5.63) we necessarily have for v that

t− v(t, 0) ≤ t− v(t, 0), ∀t ∈ B(t, ε) :

taking into account that ∂v
∂t

(t, 0) exists, then the previous relation implies

∂v

∂t
(t, 0) = lim

t→t

v(t, 0)− v(t, 0)

t− t
≤ lim
t→t+

t− t
t− t

= 1. (5.64)

Now setting t = t in (5.63) we require

v(t, x) ≤ v(t, 0) + |x|, ∀x ∈ B(0, ε);

taking into account that ∂v
∂x

(t, 0) exists, then the
previous relation implies (see the picture)∣∣∣∣ ∂v∂x (t, 0)

∣∣∣∣ ≤ 1. (5.65)

5We denote by B(y, r) a ball of center y ∈ Rk and radius r > 0.
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Hence (5.64) and (5.65) give that

∂v

∂t
(t, 0) +HDP

(
∂v

∂x
v(t, 0)

)
≤ 1− 1 = 0

and condition (5.49) of Definition 5.1 is satisfied: hence V is a viscosity subsolution of (5.61).
Now if a function v is in C∞ such that (t, x) 7→ V (t, x)− v(t, x) = t+ |x| − v(t, x) has a local
maximum in (t, 0), this implies that

t− v(t, 0) ≥ t+ |x| − v(t, x), ∀(t, x) ∈ B((t, 0), ε), (5.66)

for some ε > 0. Setting t = t in (5.66) we require for v that

v(t, x) ≥ v(t, 0) + |x|, ∀x ∈ B(0, ε);

taking into account that ∂v
∂x

(t, 0) exists, then the previous relation implies (see again the
picture) that such function v does not exist. Hence condition (5.50) of Definition 5.1 is
satisfied, i.e. hence V is a viscosity supersolution of (5.61).
This concludes the proof that V in (5.62) is a viscosity solution for (5.61).

At this point Theorem 5.6 guarantees that V in (5.62) is the value function. Now let us
solve our initial problem. Clearly, for x 6= 0, we have

w(t, x) = w̃

(
∂V

∂x
(t, x)

)
= w̃(±1) = 0.

Hence {
ẋ = w(t, x) = 0 t ∈ [−1, 0]
x(−1) = 1

gives x∗(t) = 1: note that x∗(t) > 0. Hence the optimal control is u∗(t) = w(t, x∗(t)) = 0.

4

5.4 More general problems of OC

Let us consider the problem

J(u) =

∫ T

t0

f(t,x,u) dt+ ψ(T,x(T ))

ẋ = g(t,x,u)
x(t0) = α
(T,x(T )) ∈ T
max

u∈Ct0,α
J(u),

(5.67)

with a closed control set U ⊂ Rk, with the target set T ⊂ (t0,∞)×Rn and the
class of admissible control defined by, for (τ, ξ),

Cτ,ξ =
{

u : [τ, T ]→ U ⊂ Rk, u measurable, ∃! x

with ẋ = g(t,x,u) a.e., x(τ) = ξ, (T,x(T )) ∈ T
}
.

Let us consider the reachable set for the target set T defined by

R(T ) = {(τ, ξ) ∈ [t0,∞)× Rn : Cτ,ξ 6= ∅},

i.e. as the set of the points (τ, ξ) from which it is possible to reach the terminal
target set T with some trajectory. It is clear that

T ⊂ R(T ).
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We define the value function V : [t0,∞) × Rn → [−∞,∞], essentially, as in
(5.2): it is clear that such value function in the set

(
[t0,∞) × Rn

)
\ R(T ) is

equal to −∞.

We have the following generalization of the necessary condition of Theorem
5.2 (see [14]):

Theorem 5.7. Let us consider the problem (5.67) with f, g and ψ be contin-
uous. Let the target set T be closed. Let us suppose that the value function V
is differentiable in int(R(T ) \ T ) and that for every (τ, ξ) ∈ int(R(T ) \ T ) there
exists the optimal control for the problem (5.67) with initial data x(τ) = ξ. Then
we have that{

∂V

∂t
(t,x) +HDP (t,x,∇xV (t,x)) = 0 ∀(t,x) ∈ int(R(T ) \ T )

V (t,x) = ψ(t,x) ∀(t,x) ∈ T
(5.68)

where HDP (t,x,p) is defined as in (5.20).

A sufficient conditions for the problem (5.67) holds and it is a modification
of Theorem 5.3: note that for this problem the final time is not fixed.

Theorem 5.8. Let us consider the problem (5.67) with T closed. Let V :
[t0,∞)×Rn → [−∞,∞] be a function in C1(int(R(T ) \ T )) and such that is a
solution of the system (5.68).

Let (τ, ξ) be in int(R(T ) \ T ) and let u∗ : [τ, T ∗]→ U be a control in Cτ,ξ with
corresponding trajectory x∗ such that (t,x∗(t)) ∈ int(R(T ) \ T ), for t ∈ [τ, T ∗),
and such that6

∂V

∂t
(t,x∗(t)) + f(t,x∗(t),u∗(t)) +∇xV (t,x∗(t)) · g(t,x∗(t),u∗(t)) = 0, (5.69)

for every t ∈ [τ, T ∗]. Then u∗ is the optimal control for the problem (5.67) with
initial data x(τ) = ξ and exit time T ∗.

A result with weaker assumptions with respect to the previous theorem and the
proof can be found, for example, in Theorem 7.1 in [14] (page 97).

In subsection 5.5.2 we will see an example of a min-problem where the target
S is a single point, i.e. x(t1) = β where t1 is the final and fixed time, and β ∈ Rn
is fixed: for such example, we will prove that V achieves the value∞ and hence
the regularity of V is very delicate !!!

5.4.1 On minimum problems

Let us consider a problem (5.67) where we replace the maximum with a min-
imum problem. It is clear that in the previous arguments, we have only to
replace

max → min .

6Let us emphasize two remarks: first, (5.69) implies that u∗(t) realizes the max in the BHJ
equation in (5.68) in the points (t,x∗(t)), i.e. using the usual notation u∗(t) = w(t,x∗(t));
second, the line t 7→ (t,x∗(t)) lies in R(T ).
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5.5 Examples and applications

Example 5.5.1. Let us consider7 the problem8
max

∫ 1

0
(x− u2) dt

ẋ = u
x(0) = 2

We are looking for a function V : [0, 1]×R→ R that satisfies the BHJ equation (5.8) and the
final condition (5.5):

∂V

∂t
+ max
v∈R

(
x− v2 + v

∂V

∂x

)
= 0

⇒
∂V

∂t
+ x+ max

v∈R

(
−v2 + v

∂V

∂x

)
= 0 (5.70)

V (1, x) = 0, ∀x ∈ R (5.71)

We obtain the max in (5.70) when v = ∂V
∂x
/2 : hence the function w(t, x) defined in (5.23) is,

in this situation,

w(t, x) =
1

2

∂V

∂x
(t, x). (5.72)

In (5.70) we obtain

∂V

∂t
(t, x) + x+

1

4

(
∂V

∂x
(t, x)

)2

= 0.

Using the suggestion and with easy calculations we obtain that the solution is

V (t, x) = −
1

12
t3 +

d

4
t2 −

d2

4
t+ dx− xt+ g.

The condition (5.71) implies that

V (t, x) = −
1

12
t3 +

1

4
t2 −

1

4
t+ x− xt+

1

12
. (5.73)

The optimal control is defined by (5.25): using (5.72) and (5.73) we obtain

u∗(t) = w(t, x∗(t)) =
1

2

∂V

∂x
(t, x∗(t)) =

1− t
2

.

The dynamics and the condition x(0) = 2 give x∗(t) = (2t− t2)/4 + 2. 4

Example 5.5.2. Let us consider9 the problem10 (5.4)
min

∫ 2

0
(u2 + x2) dt

ẋ = x+ u
x(0) = x0
u ≥ 0

7In the example 2.5.1 we solve the same example with a variational approach.
8Suggestion: In order to solve x+ A( ∂F

∂x
)2 + ∂F

∂t
= 0 with A constant, we suggest to find

the solution in the family of functions

F = {F (t, x) = at3 + bt2 + ct+ dx+ fxt+ g, with a, b, c, d, f, g constants}.

9In the example 2.7.1 and in the example 5.1.1 we solve the problem and construct the
value function using a variational approach.

10First suggestion: In order to solve x ∂F
∂x

+Ax2+ ∂F
∂t

= 0 and x ∂F
∂x

+Ax2+B( ∂F
∂x

)2+ ∂F
∂t

= 0
with A, B constants, we suggest to find the solution in the family of functions

F = {F (t, x) = x2G(t), with G function}.

Second suggestion: the case x0 < 0 is difficult . . .
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We are looking for a function V : [0, 2]×R→ R that satisfies the BHJ equation (5.8) and the
final condition (5.5):

∂V

∂t
+ min
v∈[0,∞)

(
v2 + x2 +

∂V

∂x
(x+ v)

)
= 0⇒

⇒
∂V

∂t
+ x2 + x

∂V

∂x
+ min
v∈[0,∞)

(
v2 +

∂V

∂x
v
)

= 0 (5.74)

V (2, x) = 0, ∀x ∈ R (5.75)

The point v that realizes the min in (5.74) is given by the function w(t, x) defined in (5.23):

w(t, x) =

{
− 1

2
∂V
∂x

(t, x) if ∂V
∂x

(t, x) < 0

0 if ∂V
∂x

(t, x) ≥ 0
(5.76)

We note that (5.75) implies
∂V

∂x
(2, x) = 0, ∀x ∈ R

Let us assume that there exists a point τ ∈ [0, 2) and an interval I ⊂ R such that

∂V

∂x
(t, x) ≥ 0, ∀(t, x) ∈ (τ, 2]× I (5.77)

Condition (5.76) implies that in (τ, 2]× I we have w(t, x) = 0 and the BHJ equation (5.74) is

∂V

∂t
(t, x) + x2 + x

∂V

∂x
(t, x) = 0.

Using the suggestion to looking for a function V (x, t) = x2G(t) we obtain

G′(t) + 1 + 2G(t) = 0 ⇒ G(t) = ae−2t − 1/2, ∀a ∈ R
⇒ V (t, x) = x2(ae−2t − 1/2), ∀a ∈ R

The condition (5.75) implies that

V (t, x) =
x2

2
(e4−2t − 1). (5.78)

Since by (5.78) we have

∂V

∂x
(t, x) = x(1− e4−2t) ≥ 0 if (t, x) ∈ [0, 2]× [0,∞),

all these last arguments hold if we put I = [0,∞) in the assumption (5.77). Hence the function
V defined in (5.78) satisfies the BHJ equation in [0, 2]× [0,∞) and the final condition. Solving{

ẋ = g(t, x, w(t, x)) = 0 in [0, 2]
x(0) = x0

we obtain the optimal trajectory x∗(t) = x0et. Let us notice that for every initial data x0 > 0
the trajectory lies in in [0, 2]× [0,∞). Hence, using (5.76), we obtain

u∗(t) = w(t, x∗(t)) = 0;

such u∗ in the optimal trajectory.
At this point, we have to construct the function V in [0, 2) × (−∞, 0). Hence, let us assume
that there exists a point τ ′ ∈ [0, 2) such that

∂V

∂x
(t, x) < 0, ∀(t, x) ∈ (τ ′, 2)× (−∞, 0) (5.79)

Condition (5.76) implies that in (τ ′, 2)× (−∞, 0) we have w(t, x) = − ∂V
∂x

(t, x)/2 and the BHJ
equation (5.74) is

∂V

∂t
(t, x) + x2 −

1

4

(
∂V

∂x
(t, x)

)2

+ x
∂V

∂x
(t, x) = 0.

Using the suggestion to looking for a function V (t, x) = x2G(t) we obtain

G′(t) = −1− 2G(t) +G2(t).
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To solve this Riccati differential equation11, we consider the new variable G = −
z′

z
obtaining

z′′ + 2z′ − z = 0

and hence
z(t) = c1e

(
√
2−1)t + c2e

−(
√

2+1)t, with c1, c2 constants (5.80)

The condition (5.75), i.e. V (2, x) = −x2
z′(2)

z(2)
= 0 for all x < 0, implies z′(2) = 0, hence

c1 =

√
2 + 1
√

2− 1
e−4
√
2c2.

Noticing that the choice of the constant c2 is irrelevant to construct G, putting c2 =
√

2− 1,
by (5.80) we obtain the function

z̃(t) = (
√

2 + 1)e(
√
2−1)t−4

√
2 + (

√
2− 1)e−(

√
2+1)t (5.81)

and hence

V (t, x) = −x2
z̃′(t)

z̃(t)
= −x2

e
√
2t − e

√
2(4−t)

(
√

2 + 1)e
√
2t + (

√
2− 1)e

√
2(4−t)

. (5.82)

It is easy to verify that

∂V

∂x
(t, x) = −2x

e
√
2t − e

√
2(4−t)

(
√

2 + 1)e
√
2t + (

√
2− 1)e

√
2(4−t)

< 0 if (t, x) ∈ [0, 2)× (−∞, 0)

that is coherent with assumption (5.79); hence these last arguments hold. Using (5.76) and
(5.82) we obtain

w(t, x) = −
1

2

∂V

∂x
(t, x) = x

z̃′(t)

z̃(t)
= x

e
√
2t − e

√
2(4−t)

(
√

2 + 1)e
√
2t + (

√
2− 1)e

√
2(4−t)

(5.83)

In order to find x∗, we have to solve the ODE (5.24) ẋ(t) = x(t) + w(t, x(t)) = x(t)

(
1 +

z̃′(t)

z̃(t)

)
in [0, 2]

x(0) = x0.

From the previous system we have∫
1

x
dx =

∫ (
1 +

z̃′(t)

z̃(t)

)
dt+ k ⇒ x(t) = k̃z̃(t)et

with k and k̃ constants. Using the condition x(0) = x0 we obtain that the unique solution of
the ODE is

x∗(t) = x0
z̃(t)

z̃(0)
et = x0

(
√

2 + 1)e
√
2t + (

√
2− 1)e

√
2(4−t)

(
√

2 + 1) + (
√

2− 1)e4
√
2

;

we notice that such trajectory (for every x0 < 0) lies in [0, 2]×(−∞, 0). Hence x∗ is the optimal
trajectory and the optimal control is defined by (5.25), i.e. using the previous expression of
x∗ and (5.83)

u∗(t) = w(t, x∗(t)) = x0
z̃′(t)

z̃(0)
et = x0

e
√

2t − e
√
2(4−t)

(
√

2 + 1) + (
√

2− 1)e4
√
2
.

11Let us consider the Riccati differential equation in y = y(t)

y′ = P +Qy +Ry2

where P = P (t), Q = Q(t) and R = R(t) are functions, we introduce a new variable z = z(t)
putting

y = −
z′

Rz
and solve the new ODE. In the particular case where P, Q and R are constants, we obtain
the new ODE

z′′ −Qz′ + PRz = 0.
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As conclusion, we have that the value function of the problem is

V (t, x) =


x2

2
(e4−2t − 1) for t ∈ [0, 2]× (0,∞)

0 for x = 0

−x2
e
√
2t − e

√
2(4−t)

(
√

2 + 1)e
√
2t + (

√
2− 1)e

√
2(4−t)

for t ∈ [0, 2]× (−∞, 0)

The optimal control and the optimal trajectory of initial problem are

u∗(t) =


0 for x0 ≥ 0

x0
e
√
2t − e

√
2(4−t)

(
√

2 + 1) + (
√

2− 1)e4
√
2

for x0 < 0

x∗(t) =


x0et for x0 ≥ 0

x0
(
√

2 + 1)e
√
2t + (

√
2− 1)e

√
2(4−t)

(
√

2 + 1) + (
√

2− 1)e4
√
2

for x0 < 0

4

The next example gives an idea of what happens in a situation where the optimal
control is discontinuous.

Example 5.5.3. Let us consider12 the problem 13
max

∫ 2

0
(2x− 4u) dt

ẋ = x+ u
x(0) = 5
0 ≤ u ≤ 2

We are looking for a function V : [0, 2]× R→ R such that

∂V

∂t
+ max
v∈[0,2]

(
2x− 4v +

∂V

∂x
(x+ v)

)
= 0

⇒
∂V

∂t
+ 2x+ x

∂V

∂x
+ max
v∈[0,2]

v

(
∂V

∂x
− 4

)
= 0 (5.84)

V (2, x) = 0, ∀x ∈ R (5.85)

Clearly the max in (5.84) depends on the sign of
(
∂V
∂x
− 4
)

. Let us suppose that V is differ-

entiable: condition (5.85) guarantees that

∂V

∂x
(2, x) = 0, ∀x ∈ R;

hence let us suppose that there exists τ ∈ [0, 2) such that

∂V

∂x
(t, x) < 4, ∀(t, x) ∈ (τ, 2]× R (5.86)

The function w(t, x) defined in (5.23) here is

w(t, x) = 0 (5.87)

and (5.84) becomes
∂V

∂t
(t, x) + 2x+ x

∂V

∂x
(t, x) = 0.

12In the example 2.5.2 we solve the same problem with the variational approach.
13Suggestion: In order to solve Ax + x ∂F

∂x
+ ∂F

∂t
= 0 with A constant, we suggest to find

the solution in the family of functions

F = {F (t, x) = ax+ bxe−t + c, with a, b, c constants}.

To solve Ax + x ∂F
∂x

+ B ∂F
∂x

+ ∂F
∂t

+ C = 0 with A, B,C constants, we suggest to find the
solution in the family of functions

F = {F (t, x) = ax+ bt+ ce−t + dxe−t + f, with a, b, c, d, f constants}.
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Using the suggestion, an easy computation gives

V (t, x) = −2x+ bxe−t + c, ∀(t, x) ∈ (τ, 2]× R. (5.88)

In particular, for t = 2, the function V must satisfy the condition (5.85):

V (2, x) = −2x+ bxe−2 + c = 0, ∀x,

this implies c = 0 and b = 2e2. Hence, by (5.88) we obtain

V (t, x) = −2x+ 2xe2−t, ∀(t, x) ∈ (τ, 2]× R.

Now we are in the position to calculate ∂V
∂x

and to determinate the point τ such that the
condition (5.86) holds:

∂V

∂x
(t, x) = −2 + 2e2−t < 4 ∀(t, x) ∈ (τ, 2]× R

implies τ = 2− log 3. The function V is

V (t, x) = 2x(e2−t − 1), for t ∈ (2− log 3, 2]. (5.89)

The control candidates to be optimal is defined by (5.25): using (5.87) we have

u∗(t) = w(t, x∗(t)) = 0, for t ∈ (2− log 3, 2].

Now let us suppose that there exists τ ′ ∈ [0, 2− log 3) such that

∂V

∂x
(t, x) > 4, for t ∈ [τ ′, 2− log 3). (5.90)

If we consider the function w(t, x) defined in (5.23), we have

w(t, x) = 2, for t ∈ [τ ′, 2− log 3) (5.91)

and the BHJ equation in 5.84) is

∂V

∂t
(t, x) + 2x+ x

∂V

∂x
(t, x) + 2

∂V

∂x
(t, x)− 8 = 0.

Using the suggestion we obtain

V (t, x) = −2x+ 12t+ 2de−t + dxe−t + f. (5.92)

The function V is continuous: hence, by (5.89) and (5.92), we have

lim
t→(2−log 3)+

V (t, x) = lim
t→(2−log 3)−

V (t, x) =⇒

=⇒ 4x = −2x+ 12(2− log 3) + 6de−2 + 3dxe−2 + f

for every x ∈ R. Hence d = 2e2 and f = 12(log 3− 3). We obtain by (5.92) that

V (t, x) = −2x+ 12t+ 4e2−t + 2xe2−t + 12(log 3− 3), for t ∈ (τ ′, 2− log 3].

Let us check that such result is coherent with the assumption (5.90):

∂V

∂x
(t, x) = −2 + 2e2−t > 4 ⇐⇒ t < 2− log 3.

This implies that τ ′ = 0. Hence we obtain

V (t, x) =

{
2x(e2−t − 1) + 12t+ 4e2−t + 12(log 3− 3) for t ∈ [0, 2− log 3]
2x(e2−t − 1) for t ∈ (2− log 3, 2]

and it is easy to verify that V ∈ C1. The control candidate to be optimal is given by (5.25)
that, using (5.91), is

u∗(t) = w(t, x∗(t)) = 2, for t ∈ [0, 2− log 3).

We obtain (2.49), i.e.

u∗(t) =

{
2 if 0 ≤ t < 2− log 3,
0 if 2− log 3 ≤ t ≤ 2.

Finally, we have to show that we are able to obtain the trajectory associated to this control:

this computation is similar to the situation of example 2.5.2. Since all the sufficient conditions

of theorem 5.3 are satisfied, then u∗ is optimal. 4
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Example 5.5.4. Let us consider the problem14

max

(
−

1

2
x1(1)2 + x2(1)

)
ẋ1 = x1 +

√
2u

ẋ2 = −u2
x1(0) = 1
x2(0) = 0

We are looking for a function V : [0, 1]× R2 → R such that

∂V

∂t
+ x1

∂V

∂x1
max
v∈R

(√
2v
∂V

∂x1
− v2

∂V

∂x2

)
= 0, ∀(t, x1, x2) ∈ [0, 1]× R2 (5.93)

V (1, x1, x2) = −
1

2
x21 + x2, ∀(x1, x2) ∈ R2 (5.94)

Clearly, denoting with w(t, x1, x2) the arg max in (5.93), we obtain

w(t, x1, x2) =


6 ∃ if ∂V

∂x2
(t, x1, x2) ≤ 0

∂V
∂x1

(t,x1,x2)
√
2 ∂V
∂x2

(t,x1,x2)
if ∂V
∂x2

(t, x1, x2) > 0.
(5.95)

Let us suppose that for some (t, x1, x2) we have ∂V
∂x2

(t, x1, x2) > 0, then we have by the BHJ

equation (5.93)

∂V

∂t
+ x1

∂V

∂x1
+

(
∂V
∂x1

)2
2 ∂V
∂x2

= 0;

using the suggestion in order to solve such PDE and hence setting V (t, x1, x2) = a(t)x21 + x2,
we obtain

a′ = −2a− 2a2.

We solve this Ricatti equation by change of variable a = z′

2z
which gives the new differential

equation z′′ + 2z′ = 0, i.e. z(t) = c1e−2t + c2 for some constants ci: hence

V (t, x1, x2) = −
c1e−2t

c1e−2t + c2
x21 + x2.

The final condition (5.94) implies c1 = c2e2 and hence

V (t, x1, x2) = −
1

1 + e2(t−1)
x21 + x2. (5.96)

It is immediate to see that the assumption ∂V
∂x2

(t, x1, x2) > 0 holds. Now, using (5.96) in

(5.95), we have

w(t, x1, x2) = −
√

2x1

1 + e2(t−1)
;

solving the system
ẋ1 = x1 +

√
2w(t, x1, x2)

ẋ2 = −w(t, x1, x2)2

x1(0) = 1
x2(0) = 0

⇒


x∗1(t) =

e2−t + et

e2 + 1

x∗2(t) =

∫ t

0

2(e2−s + es)2

(e2 + 1)2(1 + e2(s−1))2
ds

we obtain the optimal trajectory (x∗1, x
∗
2): the optimal control is

u∗(t) = w(t, x∗1(t), x∗2(t)) = −
√

2(e2−t + et)

(e2 + 1)(1 + e2(t−1))
.

4

14In order to solve the BHJ equation we suggest to consider the family of functions F =
{V (t, x1, x2) = ax21 + x2, with a = a(t) }.
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5.5.1 A problem of business strategy II

Let us recall15 the problem 1.1.2, formulated with (1.3):
max
u∈C

∫ T

0

(1− u)x dt

ẋ = ux
x(0) = α,
C = {u : [0, T ]→ [0, 1] ⊂ R, u ∈ KC}

with α and T positive and fixed constants. Clearly, we are looking for a function
V : [0, T ]× R → R that satisfies the necessary condition of Bellman-Hamilton-
Jacobi (5.8) and the final condition (5.5).
Since x(t) denotes the quantity of good product (at time t,) it is reasonable in
V (τ, ξ) to assume that ξ (i.e. the production at time τ) is not negative. Hence,
we are looking for V : [0, T ]× (0,∞)→ R with

∂V

∂t
+ max
v∈[0,1]

(
(1− v)x+

∂V

∂x
xv

)
= 0 ∀(t, x) ∈ [0, T ]× R (5.97)

V (T, x) = 0 ∀x > 0 (5.98)

As in subsection 2.5.2, we are able to check that x(0) = α > 0 and ẋ = ux ≥ 0
imply that x(t) ≥ α, for every t ∈ [0, T ]. Hence we have x > 0 and the BHJ
equation in (5.97) becomes

∂V

∂t
+ x+ x max

v∈[0,1]

[
v

(
∂V

∂x
− 1

)]
= 0, ∀(t, x) ∈ [0, T ]× R+. (5.99)

Hence, if ∂V
∂x − 1 > 0, then we obtain the max in (5.99) for v = 1; on the other

hand, if ∂V
∂x − 1 < 0, then the max in (5.99) is realized for v = 0.

Now we note that equation (5.98) gives ∂V
∂x (T, x) = 0, for all x > 0. Hence it is

reasonable to suppose that there exists a point τ ∈ [0, T ) such that

∂V

∂x
(t, x) < 1, for all t ∈ [τ, T ]. (5.100)

With this assumption, equation (5.99) in the set [τ, T ] gives

∂V

∂t
+ x = 0 ⇒ V (t, x) = −xt+ g(x),

where g : R→ R is a differentiable function. Using (5.98), we are able to show
that

V (x, T ) = −xT + g(x) = 0 ⇒ g(x) = xT.

Hence
V (t, x) = x(T − t), ∀(t, x) ∈ [τ, T ]× (0,∞)

and ∂V
∂x = T − t, for all t ∈ [τ, T ]. Since the previous arguments hold in the

assumption (5.100),i.e. T − t < 1, for the time τ we have

τ = max{T − 1, 0}.
15In subsection 2.5.2 we solve the same problem with the variational approach.
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Now we have to consider two different situations: T ≤ 1 and T > 1.
Case A: T ≤ 1.
In this situation we have V : [0, T ]× (0,∞)→ R definited by V (t, x) = x(T − t),
that satisfies BHJ and the final condition. The function w that realizes the max
in (5.97) is identically zero and theorem 5.3 guarantees that the optimal control
is u∗ = 0. Moreover we obtain the optimal trajectory by

ẋ∗ = u∗x∗ ⇒ ẋ∗ = 0 ⇒ x∗ = α.

In a situation where the corporate strategy is to consider on short period of
time, the best choice is to sell the entire production.
Case B: T > 1.
Since in this situation we have τ = T − 1, the function V : [0, T ]× (0,∞)→ R
in [T − 1, T ]× R is defined by

V (t, x) = x(T − t)

and satisfies BHJ and the final condition. We have to construct V in [0, T −
1]× (0,∞).
For the continuity of V (we recall that we suppose V differentiable) we have

V (T − 1, x) = x, for all x > 0. (5.101)

Let us suppose16 that there exists τ ′ < T − 1 such that ∂V
∂x (t, x) > 1 in

[τ ′, T − 1]× (0,∞). Hence

(5.97) ⇒ ∂V

∂t
+ x

∂V

∂x
= 0.

A solution of this PDE is given by17 V (t, x) = axe−t with a ∈ R. By condition
(5.101) we have V (t, x) = xe−t+T−1 in [τ ′, T − 1]× R.
We remark that ∂V

∂x = e−t+T−1 > 1 if and only if t < T − 1 : hence we are able
to chose τ ′ = 0. Hence the function V : [0, T ]× (0,∞)→ R defined as

V (t, x) =

{
xe−t+T−1 for (t, x) ∈ [0, T − 1)× (0,∞),
x(T − t) for (t, x) ∈ [T − 1, T ]× (0,∞).

16For the reader who wants to see what happens with the other assumptions:
• Let us suppose that there exists τ ′ < T − 1 such that ∂V

∂x
(t, x) < 1 in [τ ′, T − 1]× (0,∞).

Hence

(5.97) ⇒
∂V

∂t
+ x = 0 ⇒ V (t, x) = −xt+ h(x),

where h : R → R is a generic differentiable function. Relation (5.101) guarantees that for all
x ∈ R

V (x, T ) = −xT + h(x) = x ⇒ h(x) = xT.

Hence we obtain that V (t, x) = x(T − t) for (t, x) ∈ [τ ′, T − 1] × (0,∞) : clearly we have
∂V
∂x

= T − t and condition ∂V
∂x

(t, x) < 1 is false. Hence τ ′ does not exist.

• Now, let us suppose that there exists τ ′ < T−1 such that ∂V
∂x

(t, x) = 1 in [τ ′, T−1]×(0,∞).
Hence

∂V

∂x
= 1 and (5.97) ⇒

∂V

∂t
+ x = 0 ⇒ V (t, x) = −xt+ k1(x) (5.102)

∂V

∂x
= 1 ⇒ V (t, x) = x+ k1(t) (5.103)

where k1, k2 : R → R are differentiable functions. Clearly (5.102) and (5.103) are in contra-
diction: hence τ ′ does not exist.

17A not expert reader in PDE will be convinced by checking that the function V = axe−t

satisfies the equation ∂V
∂t

+ x ∂V
∂x

= 0.
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satisfies BHJ equation and the final condition. We note that V is differentiable.

Using theorem 5.3, the optimal control is defined via the function w in (5.25)
that realizes the max in (5.23) (i.e. in (5.97)): in our situation we obtain, taking
into account w(t, x∗(t)) = u∗(t),

w(t, x) =

{
1 if 0 ≤ t < T − 1,
? if t = T − 1,
0 if T − 1 < t ≤ T.

⇒ u∗(t) =

{
1 if 0 ≤ t < T − 1,
? if t = T − 1,
0 if T − 1 < t ≤ T.

We construct the optimal trajectory by the dynamics and the initial condition
as in subsection 2.5.2:

x∗(t) =

{
αet for 0 ≤ t ≤ T − 1,
αeT−1 for T − 1 < t ≤ T

In a situation where the business strategy is of medium or long time, the best
choice is to invest the entire production to increase it up to time T −1 and then
sell everything to make profit.

5.5.2 A problem of inventory and production II.

Let us consider the problem presented in subsection 2.5.418 with a different
initial condition on the inventory accumulated at the initial time, i.e.

min
u

∫ T

0

(αu2 + βx) dt

ẋ = u
x(0) = A
x(T ) = B
u ≥ 0

where T > 0, 0 ≤ A < B are all fixed constants.19

We are looking for a value function V : [0, T ] × R → [−∞,∞]. The target
set T is the set {(T,B)}; let us investigate on the reachable set R(T ). First let
us consider 0 ≤ τ < T : we note that V admits the value∞ in some points (τ, ξ)
of its domain since an initial data the trajectory x(τ) = ξ > B and the dynamic
ẋ = u ≥ 0 give that x(T ) = B is impossible: hence Cτ,ξ = ∅. Second we note
that (T, ξ) 6= (T,B) implies CT,ξ = ∅. Hence the effective domain20 of V is the
set
(
[0, T )× (−∞, B]

)
∪ {(T,B)} and such set coincides with the reachable set

R(T ). Finally note the final condition for the value function on the target set
is

V (T,B) = 0.

Now we study the points in the effective domain of V. First for the point
(τ,B) with τ ∈ [0, T ) : we have that the unique admissible control is the zero

18In the mentioned subsection 5.5.2 we solve the same model with the variational approach.
19Suggestion: to solve the PDE Cx+D( ∂V

∂x
)2 +E ∂V

∂t
= 0 with C, D and E constants, we

suggest to consider the family of functions F (t, x) = a(t− T )3 + b(x+B)(t− T ) + c
(x−B)2

t−T ,

with a, b, c non zero constants.
20Let f : Ω → [−∞,∞] be a function with Ω ⊂ Rn; the effective domain is the set

Ω′ = {x ∈ Ω : f(x) is finite }.
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function and its trajectory in constant: hence for such points the point (τ,B)
we have

V (τ,B) = min
u∈Cτ,B

∫ T

τ

(αu2 + βx) dt =

∫ T

τ

βB dt = βB(T − τ.)

We study the points of the effective domain with ξ < B. The Bellman-
Hamilton-Jacobi equation is

∂V

∂t
+ βx+ min

v≥0

(
αv2 +

∂V

∂x
v

)
= 0 (5.104)

The min in (5.104) depends on the value −∂V∂x (t, x)/(2α): more precisely

y

v

y= v +V va
2

x

-V /2ax

y

v

y= v +V va
2

x

-V /2ax

y

v

y= v +V va
2

x

-V /2ax

The cases ∂V
∂x

(t, x) < 0, ∂V
∂x

(t, x) = 0 and ∂V
∂x

(t, x) > 0.

Hence the function w(t, x) defined by (5.23) is

w(t, x) =

{
0 if ∂V

∂x (t, x) ≥ 0

− 1
2α

∂V
∂x (t, x) if ∂V

∂x (t, x) < 0
(5.105)

First let us suppose that there exists a open set in the set [0, T )× (−∞, B]
such that

∂V

∂x
(t, x) ≥ 0. (5.106)

Note that x(τ) < B and x(T ) = B imply that u = 0 in [τ, T ] is impossible:
hence the previous assumption (5.106) cannot be true for every t. In the set
where (5.106) is satisfied, (5.104) gives

∂V

∂t
+ βx = 0;

hence
V (t, x) = −βxt+ F (x), (5.107)

for some function F. However since for the optimal control we have u∗(t) =
w(t, x∗(t)) = 0, in the set where (5.106) is guarantee, we have that the optimal
trajectory x∗(t) is constant.

Now let us assume that exists a open set in the set [0, T ) × (−∞, B] such
that

∂V

∂x
(t, x) < 0; (5.108)

In this set (5.104) gives

∂V

∂t
+ βx− 1

4α

(
∂V

∂x

)2

= 0;
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the suggestion and some easy calculations gives that

V (t, x) =
β2

48α
(t− T )3 − β

2
(x+B)(t− T )− α (x−B)2

t− T
(5.109)

satisfies BHJ. Clearly we have to guarantee that (5.108) holds, i.e.

∂V

∂x
(t, x) = −β

2
(t− T )− 2α

(x−B)

t− T
< 0

This implies

x < − β

4α
(t− T )2 +B.

Since we are looking for a continuous value function, in the point where it is
finite, equations (5.107) and (5.109) along the line x = − β

4α (t − T )2 + B, i.e.

t = T − 2
√

α(B−x)
β , gives

−βx

(
T − 2

√
α(B − x)

β

)
+ F (x) =

= −β
2

6α

√
α3(B − x)3

β3
+ β(x+B)

√
α(B − x)

β
+ α

(x−B)2

2
√

α(B−x)
β

and hence, with a simple calculation, F (x) = βTx+ 4
3

√
αβ(B − x)3. By (5.107)

we have

V (t, x) = βx(T − t) +
4

3

√
αβ(B − x)3. (5.110)

Since for this function we require that assumption (5.106) holds, we note that

∂V

∂x
= β(T − t)− 2

√
αβ(B − x) ≥ 0 ⇔ x ≥ − β

4α
(t− T )2 +B.

We obtain that

V (t, x) =



∞ if 0 ≤ t < T and x > B
∞ if t = T and x 6= B
0 if t = T and x = B
βx(T − t) + 4

3

√
αβ(B − x)3 if 0 ≤ t < T, x < B

and x ≥ − β
4α (t− T )2 +B

β2

48α (t− T )3 − β
2 (x+B)(t− T )− α (x−B)2

t−T if 0 ≤ t < T, x < B

and x < − β
4α (t− T )2 +B

Now let us construct the trajectory solving the ODE{
ẋ = w(t, x) for t ∈ [0, 2]
x(0) = A

In order to do that we have that (5.105) becomes

w(t, x) =

{
0 if 0 ≤ t < T, x < B and x ≥ − β

4α (t− T )2 +B
β
4α (t− T ) + x−B

t−T if 0 ≤ t < T, x < B and x < − β
4α (t− T )2 +B
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Let us define T̃ = max

(
T − 2

√
α(B−A)

β , 0

)
. We have

{
ẋ = w(t, x) = 0 for t ∈ [0, T̃ )
x(0) = A

Hence x(t) = A for every t ∈ [0, T̃ ]. Now we have to solve the linear ODE ẋ = w(t, x) =
x−B
t− T

+
β

4α
(t− T ) for t ∈ [T̃ , T ]

x(T̃ ) = A

The general solution is

x(t) = e
∫

1
t−T dt

[∫ (
β

4α
(t− T )− B

t− T

)
e
∫

1
T−t dt dt+ k

]
= (T − t)

(∫
− β

4α
+

B

(T − t)2
dt+ k

)
=

β

4α
t2 − t

(
βT

4α
+ k

)
+B + Tk, (5.111)

where k is a constant (note that x(T ) = B). It is clear that this solution exists

in all [T̃ , T ] and hence x is really the optimal path.

• Now let us consider the case T̃ > 0, i.e. T > 2
√

α(B−A)
β : the condition

x(T̃ ) = A in (5.111) gives, with a tedious calculation,

k =
βT

4α
−
√
β(B −A)

α
.

Hence for τ = T − 2
√

α(B−A)
β we obtain

u∗(t) =

{
0 if 0 ≤ t < τ
β

2α
(t− τ) if τ ≤ t ≤ T and x∗(t) =

{
0 if 0 ≤ t < τ
β

4α
(t− τ)

2
+A if τ ≤ t ≤ T

t
t

u

T

x

t

t T

B

A

• Now let us consider the case T̃ = 0, i.e. T ≤ 2
√

α(B−A)
β : the condition

x(0) = A in (5.111) gives

k = −B −A
T

.

Then

u∗(t) =
β

2α
t+

4α(B −A)− βT 2

4αT
and x∗(t) =

β

4α
t2+

4α(B −A)− βT 2

4αT
t+A
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t

u

T

x

t

T

B

A

Example 5.5.5. Consider the previous model in the particular case T = B = 2, α = 1, and
β = 4. More precisely we consider21


min
u

∫ 2

0
(u2 + 4x) dt

ẋ = u
x(0) = A
x(2) = 2
u ≥ 0

where A < 2.

In this case we obtain that

V (t, x) =



∞ if 0 ≤ t < 2 and x > 2
∞ if t = 2 and x 6= 2
0 if t = 2 and x = 2

4x(2− t) +
8

3

√
(2− x)3 if 0 ≤ t < 2, x < 2

and x ≥ 2− (t− 2)2

1

3
(t− 2)3 − 2(x+ 2)(t− 2)−

(x− 2)2

t− 2
if 0 ≤ t < 2, x < 2

and x < 2− (t− 2)2

Here τ = 2−
√

2−A and the optimal trajectory is

x∗(t) =

{
A for t ∈ [0, τ ]
(t− τ)2 +A for t ∈ (τ, 2]

The optimal control is given by

u∗(t) =

{
0 for t ∈ [0, τ ]
2(t− τ) for t ∈ (τ, 2]

In the figure, the domain of the value function V, i.e. the set [0, 2]× R :

21Suggestion: to solve the PDE Cx+D( ∂V
∂x

)2 +E ∂V
∂t

= 0 with C, D and E constants, we

suggest to consider the family of functions F (t, x) = a(t − 2)3 + b(x + 2)(t − 2) + c
(x−2)2

t−2
,

with a, b, c non zero constants.
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• in the yellow subset of dom(V ), i.e. the
set

[0, 2]× (2,∞) ∪ ({2} × (−∞, 2))

the value function is equal to ∞ since
there are no controls whose trajectory
starts from to a point of this set and ar-
rive in the point (2, 2);

• the red line is an optimal trajectory; on
this red points, i.e. the set [0, 2] × {2},
the value function is equal to zero;

• in the points (t, x) of the blue line, i.e.
such that x = 2 − (t − 2)2, we have
∂V
∂x

(t, x) = 0. This blue line divides the
set [0, 2]× (−∞, 2), in two regions:

◦ in the upper, we have ∂V
∂x

(t, x) >
0,

◦ in the lower, we have ∂V
∂x

(t, x) < 0;

x

t

2

2

-2

x=2-(t-2)
2

2

1

1

• every green line is an optimal trajectory: recalling that the second part of an optimal
trajectory is again an optimal trajectory, starting from generic point a (τ, ξ) on a green
line, we arrive in the point (2, 2) with the optimal path lying on the same green line;

• the blue line divides every trajectory in two parts:

◦ the first part is a segment, i.e. the control is equal to zero,

◦ the second part is a parabola with vertex on the blue line;

• the violet curve is the optimal trajectory with x(0) = 1.

4

5.6 The multiplier as shadow price II: the proof

Let us consider the problem
J(u) =

∫ t1

t0

f(t,x,u) dt

ẋ = g(t,x,u)
x(t0) = α
max

u∈Ct0,α
J(u),

(5.112)

with t1 fixed. At this point we know that (with some assumptions)

� by the PMP (2.2) in the Pontryagin theorem 2.1

H(t,x∗(t),u∗(t), λ∗0,λ
∗(t)) = max

v∈U
H(t,x∗(t),v, λ∗0,λ

∗(t)), (2.2)

for all t ∈ [t0, t1], obtained via a variational approach;

� the BHJ equation (5.8) of theorem 5.1

∂V

∂t
(t,x) + max

v∈U

(
f(t,x,v) +∇xV (t,x) · g(t,x,v)

)
= 0, (5.8)

for all (t,x) ∈ [t0, t1] × Rn, obtained via the approach of the dynamic
programming.



5.6. THE MULTIPLIER AS SHADOW PRICE II: THE PROOF 145

Since in the problem (5.112) the final point of trajectory is free and the final
time is fixed, the optimal control in normal and the Hamiltonian is H = f+λ·g;
moreover u∗ is defined as the function that, for every t, associates the value of
v such that realizes the max in (2.2). Taking into account (5.23), the function
that, for every (t,x), associates the value v that realizes the max in (5.8) is given
by the function w(t,x); such function allow us to define the optimal control, as
in (5.25),

u∗(t) = w(t,x∗(t)). (5.113)

A comparison between (2.2) and (5.8) suggests the following result, that we have
announced in remark 2.11: the multiplier λ∗, at every time and along its optimal
trajectory, provides the sensitivity of the problem (5.112) at the variation of the
initial data ξ :

Theorem 5.9. Let x∗t0,α be the optimal trajectory, λ∗t0,α be the optimal multi-
plier for the problem (5.112) with initial data x(t0) = α; for the same problem,
let V be the value function, differentiable and which solves the BHJ system
(5.21). Then

∇xV (t,x∗t0,α(t)) = λ∗t0,α(t), (5.114)

for every t ∈ [t0, t1].

The equation (5.114) implies that for a given (τ, ξ) ∈ [t0, t1]×Rn on the optimal
trajectory x∗t0,α, i.e. x∗t0,α(τ) = ξ

x

t1
t

a

x= (t)x*
t ,a

x*

t0 t

0

t ,a0

we obtain
∇xV (τ, ξ) = λ∗t0,α(τ).

Hence, as in remark 2.11, the multiplier λ∗, at time τ, expresses the sensitivity,
the “shadow price”, of the optimal value of the problem when we modify the
initial data ξ, along the optimal trajectory.

Proof. (with the additional assumption that V ∈ C2). Let V be the value

function for (5.112) and let u∗ and x∗ = x∗t0,α be the optimal control and
trajectory respectivelly. We will prove that if we define the function λ : [t0, t1]→
Rn as

λ(t) = ∇xV (t,x∗(t)), (5.115)

then such function coincides with the multiplier λ∗, i.e. as the unique function
that solves the ODE in (2.23) in the proof of theorem of Pontryagin 2.1. The
final condition (5.5) gives that the value of V (t1,x) does not vary if one modifies
x: hence, by the definition (5.115) of λ, we have

λ(t1) = ∇xV (t1,x
∗(t1)) = 0 :
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the tranversality condition is proved.
Remark 5.4 gives, for every fixed t,

∂V

∂t
(t,x∗(t)) = −f(t,x∗(t),u∗(t))−∇xV (t,x∗(t)) · g(t,x∗(t),u∗(t))

= −f(t,x∗(t),u∗(t))−
n∑
k=1

( ∂V
∂xk

(t,x∗(t)) gk(t,x∗(t),u∗(t))
)
.

Considering a derivative with respect to xj we have

∂2V

∂t∂xj
(t,x∗(t)) = − ∂f

∂xj
(t,x∗(t),u∗(t)) +

−
n∑
k=1

( ∂2V

∂xk∂xj
(t,x∗(t)) gk(t,x∗(t),u∗(t)) +

+
∂V

∂xk
(t,x∗(t))

∂gk
∂xj

(t,x∗(t),u∗(t))
)
. (5.116)

Since V is in C2, the theorem of Schwartz and a derivative with respect to the
time of (5.115) give

λ̇j(t) =
∂2V

∂t∂xj
(t,x∗(t)) +

n∑
i=1

∂2V

∂xj∂xi
(t,x∗(t)) ẋ∗i (t)

(by (5.116)) = − ∂f

∂xj
(t,x∗(t),u∗(t)) +

−
n∑
k=1

(
∂2V

∂xk∂xj
(t,x∗(t)) gk(t,x∗(t),u∗(t)) +

+
∂V

∂xk
(t,x∗(t))

∂gk
∂xj

(t,x∗(t),u∗(t))

)
+

+

n∑
i=1

∂2V

∂xj∂xi
(t,x∗(t)) ẋ∗i (t)

(by dynamics) = − ∂f

∂xj
(t,x∗(t),u∗(t)) +

−
n∑
k=1

∂V

∂xk
(t,x∗(t))

∂gk
∂xj

(t,x∗(t),u∗(t))

(by (5.114)) = − ∂f

∂xj
(t,x∗(t),u∗(t)) +

−
n∑
k=1

λk(t)
∂gk
∂xj

(t,x∗(t),u∗(t)). (5.117)

Hence the function λ solves the ODE{
λ̇(t) = −λ(t) · ∇xg(t,x∗(t),u∗(t))−∇xf(t,x∗(t),u∗(t))
λ(t1) = 0

that is exactly the ODE (2.23) in the theorem of Pontryagin. The uniqueness
of the solution of such ODE implies λ = λ∗. The relation (5.117) is the adjoint
equation.
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5.7 Infinite horizon problems

Let us consider the problem, for r > 0,
J(u) =

∫ ∞
0

e−rtf(x,u) dt

ẋ = g(x,u)
x(0) = α
max

u∈C0,α
J(u)

(5.118)

If we consider the value function V : [0,∞) × Rn → [−∞,∞] of this problem,
the BHJ equation is

∂V

∂t
(t,x) + max

v∈U

(
e−rtf(x,v) +∇xV (t,x) · g(x,v)

)
= 0, ∀(t,x) ∈ [0,∞)× Rn

(5.119)
where U ⊂ Rk is, as usual, the control set. We remark that

V (τ, ξ) = max
u∈Cτ,ξ

∫ ∞
τ

e−rtf(x,u) dt

= e−rτ max
u∈Cτ,ξ

∫ ∞
τ

e−r(t−τ)f(x,u) dt

(with s = t− τ) = e−rτ max
ũ∈C0,ξ

∫ ∞
0

e−rsf(x̃, ũ) ds.

Two comments on the last equality. Since g does not depend explicitly by t,
the function ũ : [0,∞) → U is such that ũ ∈ C0,ξ if and only if the function
u : [τ,∞) → U , with ũ(t) = u(τ + t), is such that u ∈ Cτ,ξ. Essentially, the
classes of functions Cτ,ξ and C0,ξ contain the same objects. Moreover, for the
respectively trajectory x̃ and x we have x̃(t) = x(τ + t).

The last integral depends on the initial value x, but it does not depend on the
initial time τ. Hence we define the current value function22 V c : Rn → [−∞,∞]
as

V c(ξ) = max
u∈C0,ξ

∫ ∞
0

e−rtf(x,u) dt;

hence

V c(x) = ertV (t,x). (5.120)

From (5.119) we have

−rV c(x) + max
v∈U

(f(x,v) +∇V c(x) · g(x,v)) = 0, ∀x ∈ Rn. (5.121)

Such new BHJ is called Bellman–Hamilton–Jacobi equation for the current value
function. The BHJ equation for the current value function is very useful since
it is not a PDE, but an ODE.

The final condition on the value function for the problem is

lim
t→∞

V (t,x) = 0;

22We remark that V c depends only on x and hence ∇xV c(x) = ∇V c(x).
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clearly, using (5.120), we obtain that the final condition is automatically guar-
anteed for the function V c.

If we define wc : Rn → Rk as the value v such that realizes the max in the
previous equation, i.e.

wc(x) ∈ arg max
v∈U

(f(x,v) +∇V c(x) · g(x,v)) , (5.122)

it is easy to see that

w(t,x) = wc(x), ∀t ∈ [t0, t1], x ∈ Rn

where w is defined in (5.23). Hence, in order to guarantee some sufficient con-
dition of optimality and to find the optimal control, we have to guarantee the
existence of x∗ solution of the ODE (5.24), i.e.{

ẋ(t) = g
(
t,x, wc(x)

)
in [t0, t1]

x(t0) = α.
(5.123)

Then x∗ is the optimal trajectory and u∗, defined by (5.25), i.e.

u∗(t) = w(t,x∗(t)), (5.124)

is the optimal control.

Example 5.7.1. Let us consider23
min

∫ ∞
0

e−rt(ax2 + bu2) dt

ẋ = u
x(0) = x0 > 0
a, b fixed and positive

The current value function V c = V c(x) must satisfy (5.121), i.e.

−rV c + min
v∈R

(
ax2 + bv2 + (V c)′v

)
= 0

=⇒ −rV c + ax2 + min
v∈R

(
bv2 + (V c)′v

)
= 0. (5.125)

The function v 7→ bv2 + (V c)′v is, for every fixed x, a parabola; since b is positive

wc(x) = −(V c)′/(2b). (5.126)

Hence (5.125) becomes
4brV c − 4abx2 + [(V c)′]2 = 0. (5.127)

We looking for the solution in the homogenous polynomials on x of degree two, i.e. as the
functions V c(x) = Ax2, with A ∈ R : replacing this expression in the (5.127) we have

4brAx2 − 4abx2 + 4A2x2 = 0 =⇒ A2 + brA− ab = 0 =⇒ A± =
−br ±

√
b2r2 + 4ab

2
.

From the problem it is clear that the current value function V c and the value function V =
V ce−rt are non negative: hence we consider only A+, i.e.

V c(x) =
−br +

√
b2r2 + 4ab

2
x2. (5.128)

and, from (5.126) we have

wc(x) =
br −

√
b2r2 + 4ab

2b
x.

23In the example 3.7.1 we solve the same example with the variational approach.
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In order to find the optimal trajectory, the ODE (5.123) is{
ẋ(t) =

br−
√
b2r2+4ab
2b

x(t)
x(0) = x0.

and its unique solution is

x∗(t) = x0e

(
br−
√
b2r2+4ab

)
t/(2b)

. (5.129)

The (5.124) gives us the optimal control

u∗(t) = wc(x∗(t)) =
br −

√
b2r2 + 4ab

2b
x0e

(
br−
√
b2r2+4ab

)
t/(2b)

.

4

Consider the problem (5.118). Using theorem 5.9 it is very easy to see
that the interpretation of the current multiplier is similar: recalling (3.103) and
(5.120), i.e.

λ∗c = ertλ∗ and V (t,x) = e−rtV c(x),

then (5.114) gives, dropping the apex t0,α,

Remark 5.8.

∇V c(x∗(t)) = λ∗c(t),

for every t ∈ [t0, t1]. The current multiplier is the sensitivity of the current value
function if we chance the initial state, along the optimal trajectory.

Example 5.7.2. Let us consider 24


min

∫ ∞
0

e−rt(ax2 + bu2) dt

ẋ = u
x(0) = x0 > 0
a, b fixed and positive

We want to verify the relation in Remark 5.8.

The solution of example 3.7.1 and example 5.7.1 give (see (3.112), (3.113), (5.128) and
(5.129))

x∗(t) = x0e

(
br−
√
b2r2+4ab

)
t/(2b)

,

λ∗c(t) = x0
(√

b2r2 + 4ab− br
)
e

(
br−
√
b2r2+4ab

)
t/(2b)

,

V c(x) =
−br +

√
b2r2 + 4ab

2
x2.

Clearly these equations give

∇V c(x∗(t)) =
dV c

dx
(x∗(t)) = 2x∗(t)

−br +
√
b2r2 + 4ab

2
= λ∗c(t).

4

24In the example 3.7.1 and in example 5.7.1 we solve the example with the variational and
the Dynamic Programming approach respectively.
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5.7.1 Particular infinite horizion problems

We note that many of the arguments in the first part of this section hold when
we consider the case r = 0. In particular

Remark 5.9. Let us consider the problem
max

u∈C0,α

∫ ∞
0

f(x,u) dt

ẋ = g(x,u)
x(0) = α

Then we value function does not depend directly by t, i.e. V (t,x) = V (x).
Moreover the BHJ equation is

max
v∈U

(f(x,v) +∇V (x) · g(x,v)) = 0.

In the spirit of Proposition 5.5, taking into account the previous remark, we
have that

Remark 5.10. Let us consider the autonomous Affine Quadratic infinite hori-
zon problem 

max
u∈C0,α

1

2

∫ ∞
0

(x′Qx + 2x′S + u′Ru) dt

ẋ = Ax +Bu + C
x(0) = α

where the matrices Q, S, R,A,B and C are constants. Moreover we assume
Q ≤ 0 and R < 0. Then the value function is of the type

V (t,x) = V (x) =
1

2
x′Zx +Wx + Y

where Z, W and Y are constant matrices.

5.7.2 A model of consumption with HARA–utility

We solve the model presented in the example 1.1.5, formulated with (1.6) with
a utility function

U(c) =
1

γ
cγ ,

where γ is fixed in (0, 1): this is a commonly used utility function, of so called
HARA type25. Our problem26 is

max

∫ ∞
0

1

γ
cγe−δt dt

ẋ = rx− c
x(0) = x0 > 0
x ≥ 0
c ≥ 0

(5.130)

25In economics Hyperbolic Absolute Risk Aversion (HARA) refers to a type of risk aversion
that is particularly convenient to model mathematically and to obtain empirical prediction.

26Note that here we remove from the model the assumption limt→∞ x(t) = 0.
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We will show that two situations occur depending on the fixed constants r, γ
and δ: the case 0 < rγ < δ and the case 0 < δ ≤ rγ.

A generalization of this model is the fundamental Merton model that we will
introduce in subsection 5.7.3.

The case δ > rγ : the current value function V c = V c(x) must satisfy (5.121),
i.e.

−δV c + max
v≥0

(
1

γ
vγ + (V c)′(rx− v)

)
= 0

=⇒ −δV c + (V c)′rx+ max
v≥0

(
1

γ
vγ − (V c)′v

)
= 0. (5.131)

Now, since for definition

V c(ξ) = max
c

∫ ∞
0

1

γ
cγe−δt dt with x(0) = ξ,

if the initial wealth ξ increases, then it is reasonable that the utility increases,
i.e. we can suppose that (V c)′ > 0. Hence, recalling the definition (5.122),

wc(x) = [(V c)′]
1

γ−1 = arg max
v≥0

(
1

γ
vγ − (V c)′v

)
(5.132)

and the BHJ equation for V c (5.131) becomes

−δV c + (V c)′rx+
1− γ
γ

[(V c)′]
γ
γ−1 = 0, ∀x ≥ 0.

In order to solve the previous ODE, let us consider a function of the type

V c(x) = Axγ , x ≥ 0,

where A is a positive constant (coherent with the assumption (V c)′ > 0) : we
obtain

−δAxγ +Aγrxγ +
1− γ
γ

[γAxγ−1]
γ
γ−1 = 0, ∀x ≥ 0.

An easy calculation, together with the assumption δ > rγ, gives

A =
1

γ

(
1− γ
δ − γr

)1−γ

> 0.

Now (5.132) implies that the function w in Theorem 5.3 is given by (recalling
the wc(x) = w(t, x))

wc(x) = [(V c)′]
1

γ−1 =
δ − γr
1− γ

x.

In our contest, the ODE (5.123) becomes ẋ =
r − δ
1− γ

x

x(0) = x0
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Its solution is x∗(t) = x0e
r−δ
1−γ t : let us note that the condition x∗(t) ≥ 0 is

satisfied. Hence Theorem 5.3 guarantees that x∗,

c∗(t) = wc(x∗(t)) = x0
δ − γr
1− γ

e
r−δ
1−γ t and V (t, x) =

1

γ

(
1− γ
δ − γr

)1−γ

e−βtxγ ,

for every x ≥ 0, t ≥ 0, are the optimal trajectory, the optimal consumption
plain and the value function for the investor’s problem respectively. Finally we
note that for such optimal solution we have

c∗(t)

x∗(t)
=
δ − γr
1− γ

, ∀t ≥ 0,

i.e. in the optimal plain the ratio between consumption and wealth is constant.

The case δ ≤ rγ : Let us show that in this second case we have that the value
function is equal to∞ and hence an optimal path of consumption does not exist.

Let us consider a fixed constant A > 0 and the path of consumption cA(t) =
Aert, for t ≥ 0 : let us show that this control is not admissible. The dynamics
and the initial condition on the wealth give{

ẋ = rx−Aert
x(0) = x0

and its solution is xA(t) = ert(x0 − At) : note that the condition x(t) ≥ 0 is
satisfied for t ≤ x0/A : hence cA is not and admissible control. Now we consider
a modification of the previous path of consumption (that we denote again with
cA):

cA(t) =

{
Aert for 0 ≤ t ≤ x0

A ,
0 for t > x0

A

(5.133)

The dynamics and the initial condition give now

xA(t) =

{
ert(x0 −At) for 0 ≤ t ≤ x0

A ,
0 for t > x0

A

Hence, for every initial wealth x0 > 0 and for every A > 0, the control cA given
by (5.133) is admissible and

V c(x0) = V (0, x0) = sup
c

∫ ∞
0

1

γ
cγe−δt dt

≥ lim
A→0+

∫ ∞
0

1

γ
cγAe
−δt dt

= lim
A→0+

∫ x0/A

0

Aγ

γ
e(γr−δ)t dt

≥ lim
A→0+

∫ x0/A

0

Aγ

γ
dt =∞,

where, using the assumption, we use the fact that e(γr−δ)t ≥ 1 for every t ≥ 0.
Hence V c(x0) = ∞, for every x0 > 0, implies V (t, x) = ∞, for every (t, x) ∈
[0,∞)× (0,∞).
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5.7.3 Stochastic consumption: the idea of Merton’s model

A generalization of the problem (5.130) is the fundamental Merton’s model (see
[22]), where an investor divides the wealth between consumption, a riskless asset
with rate r and a risk asset with uncertain rate return: it is a stochastic model
in the context of stochastic optimal control. The aim of this subsection is only
to give and idea of the problem (see [19], [14], [12] for details).

In this model, the stock portfolio consists of two assets:

� the price p1 = p1(t) for the “risk free” asset changes according to ṗ1 = rp1,
i.e.

dp1 = rp1 dt, (5.134)

where r is a positive constant;

� the price p2 = p2(t) for the “risk ” asset changes according to

dp2 = sp2 dt+ σp2 dBt, (5.135)

where Bt is a Brownian motion, s and σ are positive constants: s formal-
izes the expected profit for the risk investment and σ is its variance.

It is reasonable, for the investor’s point of view, to require

0 < r < s.

According to (5.134) and (5.135), the total wealth x = x(t), evolves as

dx = [r(1− w)x+ swx− c] dt+ wxσ dBt, (5.136)

where c = c(t) is, as in (5.130), the consumption and w = w(t) is the fraction
(i.e. 0 ≤ w ≤ 1) of the remaining wealth invested in the risk asset. We note that
if we put w(t) = 0 in (5.136), then we obtain the dynamic in problem (5.130).

Again, we have a HARA utility function for the consumption to maximize,
in the sense of the expected value since w, x and c are all random variables:
hence we obtain

max
(c,w)

E
(∫ ∞

0

cγ

γ
e−δt dt

)
dx = [r(1− w)x+ swx− c] dt+ wxσ dBt
x(0) = x0 > 0
c ≥ 0
0 ≤ w ≤ 1

(5.137)

with γ constant in (0, 1).

5.7.4 A model of consumption with log–utility II

We solve27 the model presented in the example 1.1.5, formulated with (1.6), in
the case δ > r and with a logarithmic utility function U(c) = log c. The current
value function V c = V c(x) must satisfy (5.121), i.e.

−δV c + max
v≥0

(ln v + (V c)′(rx− v)) = 0

=⇒ −δV c + (V c)′rx+ max
v≥0

(ln v − (V c)′v) = 0. (5.138)

27In subsection 3.7.1 we solve the same problem with the variational approach.
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Now, since for definition

V c(ξ) =

∫ ∞
0

e−δt ln cdt with x(0) = ξ,

if the initial capital ξ increases, then it is reasonable that the utility increases,
i.e. we can suppose that (V c)′ > 0. Hence

wc(x) =
1

(V c)′
= arg max

v≥0
(ln v − (V c)′v) (5.139)

and the BHJ equation for V c (5.138) becomes

−δV c + (V c)′rx− ln[(V c)′]− 1 = 0, ∀x ≥ 0. (5.140)

In order to solve the previous ODE, let us consider a derivative with respect to
x of it; we obtain

−δ(V c)′ + (V c)′′rx+ (V c)′r − (V c)′′

(V c)′
= 0, ∀x ≥ 0.

Now suppose that (V c)′ is a homogeneous polynomial of degree k in the variable
x, i.e. (V c)′ = Axk with A constant. Then we obtain

−δAxk + krAxk + rAxk − k 1

x
= 0, ∀x ≥ 0;

for k = −1, the previous equation is homogeneous and we obtain A = 1
δ that

implies V c(x) = ln(δx)
δ + B, for some constant B. If we replace this expression

for V c in (5.140) we obtain

−δ
(

ln(δx)

δ
+B

)
+
r

δ
+ ln(δx)− 1 = 0, ∀x ≥ 0,

that implies B = r−δ
δ2 , i.e.

V c(x) =
1

δ

(
ln(δx) +

r − δ
δ

)
, ∀x ≥ 0.

We don’t know if it’s the general solution for the BHJ equation (5.138), but
sure it is a solution. Now (5.139) implies that

wc(x) = δx.

In our contest, the ODE (5.123) becomes{
ẋ = (r − δ)x
x(0) = x0

Its solution is x(t) = x0e
(r−δ)t : let us note that the condition x(t) ≥ 0 and

limt→∞ x(t) = 0 are satisfied. Hence Theorem 5.3 guarantees that

c(t) = δx0e
(r−δ)t and V (t, x) =

e−δt

δ

(
ln(δx) +

r − δ
δ

)
, ∀x ≥ 0, t ≥ 0,

are the optimal consumption plain and the value function for the investor’s
problem.
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5.8 Problems with discounting and salvage value

Let us consider the problem (see [31]), for a fixed final time T > 0,
J(u) =

∫ T

0

e−rtf(t,x,u) dt+ e−rTψ(x(T ))

ẋ = g(t,x,u)
x(0) = α
max
u∈U

J(u)

(5.141)

where r > 0 is a given discount rate and ψ is the pay-off function (or salvage

value). We define the function f̂ by

f̂(t,x,u) = e−rtf(t,x,u) + e−rT∇ψ(x) · g(t,x,u). (5.142)

It is easy to see that for the new functional Ĵ we have

Ĵ(u) =

∫ T

0

f̂(t,x,u) dt

=

∫ T

0

e−rtf(t,x,u) dt+ e−rT
∫ T

0

∇ψ(x(t)) · g(t,x,u) dt

=

∫ T

0

e−rtf(t,x,u) dt+ e−rT
∫ T

0

dψ(x(t))

dt
dt

= J(u)− e−rTψ(α);

hence the new objective function Ĵ differs from the original objective functional
J only by a constant. So the optimization problem remains unchanged when
substituting f̂ with f (i.e. the optimal controls of the two problems are the

same). The BHJ-equation of the problem “̂”(with value function V̂ ) is

−∂V̂
∂t

(t,x) = max
v∈U

(
f̂(t,x,v) +∇xV̂ (t,x) · g(t,x,v)

)
= e−rt max

v∈U

(
f(t,x,v) + ert(∇xV̂ (t,x) + e−rT∇ψ(x)) · g(t,x,v)

)
,

and the final condition is V̂ (T,x) = 0. Let us define

V c(t,x) = ert
(
V̂ (t,x) + e−rTψ(x)

)
; (5.143)

we obtain

−rV c(t,x) +
∂V c

∂t
(t,x) + max

v∈U
(f(t,x,v) +∇xV

c(t,x) · g(t,x,v)) = 0, (5.144)

V c(T,x) = ψ(x). (5.145)

It is clear that

arg max
v∈U

(
f̂(t,x,v) +∇xV̂ (t,x) · g(t,x,v)

)
=

= arg max
v∈U

(
f(t,x,v) +∇xV

c(t,x) · g(t,x,v)
)
.
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It is easy to see that, given an optimal control u∗ for the initial problem (5.141),
we have by (5.142) and (5.143)

V c(t,x∗(t)) = ert
(
V̂ (t,x∗(t)) + e−rTψ(x∗(t))

)
= ert

(∫ T

t

f̂(s,x∗,u∗) ds+ e−rTψ(x∗(t))

)

=

∫ T

t

e−r(s−t)f(s,x∗,u∗) ds+

+e−r(T−t)

(∫ T

t

∇ψ(x∗) · g(s,x∗,u∗) ds+ ψ(x∗(t))

)

=

∫ T

t

e−r(s−t)f(s,x∗,u∗) ds+ e−r(T−t)ψ(x∗(T )).

Hence V c(t,x∗(t)) is the optimal discounted (at time t) value or, in analogy
with (5.120), the current value function for (5.141). The equation (5.144) is
called Bellman–Hamilton–Jacobi equation with discounting and salvage value.

5.8.1 A problem of selecting investment

Consider the firm’s problem of selecting investment in the fixed period [0, T ].
The profit rate, exclusive of capital costs, that can be earned with a stock
of productive capital k is proportional to k2. The capital stock decays at a
constant proportionate rate28 α, so k̇ = ı−αk, where ı is gross investment, that
is, gross additions of capital. The cost of gross additions of capital at rate ı
is proportional to ı2. At the end of the investment period, the firm receives an
additional profit on an asset (for example, a coupon) of a value proportional to
the square of the final capital. We seek to maximize the present value of the
net profit stream over the period [0, T ] :

max

∫ T

0

e−rt(ρk2 − σı2) dt+ πe−rT k(T )2

k̇ = ı− αk
k(0) = k0 > 0
ı ∈ I

where α, σ, π and r are fixed positive constants such that σα2 > ρ and I ⊂
R is convex, compact and large enough (so as to allow for an unconstrained
minimization).

Conditions (5.144) and (5.145) give, for the optimal discounted value func-
tion V c = V c(t, k),

−rV c +
∂V c

∂t
+ max

v∈I

(
ρk2 − σv2 + (v − αk)

∂V c

∂k

)
= 0,

V c(T, k) = πk2.

28If a stock k decays at a constant proportionate rate β > 0 and if it is not replenished,
then k̇(t)/k(t) = −β. Since the solution of this ODE is k(t) = k(0)e−βt, we sometimes say
that the stock k decays exponentially at rate β.
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Let us assume that V c(t, k) = q(t)k2; we obtain

−(2α+ r)qk2 + q′k2 + ρk2 + max
v∈I

(
−σv2 + 2kqv

)
= 0,

q(T ) = π.

The assumption on I implies that

ı = arg max
v∈I

(
−σv2 + 2kqv

)
=
kq

σ
(5.146)

and the BHJ now is, after a division by k2,

q′ = −ρ+ (2α+ r)q − q2

σ
(5.147)

In order to solve this Riccati equation in q (see the footnote in example 5.5.2)
with the condition q(T ) = π, let us introduce the new variable z = z(t) with

q = σ
z′

z
, z(T ) = σ, z′(T ) = π.

This implies q′ = σ z
′′z−(z′)2
z2 and, by (5.147),

z′′ − 2
(
α+

r

2

)
z′ +

ρ

σ
z = 0.

Let us set, by assumption, θ =
√

(α+ r/2)2 − ρ/σ > 0 : hence

z(t) = e(α+
r
2+θ)(t−T )

(
c1 + c2e

−2θ(t−T )
)
.

This implies

z′(t) = e(α+
r
2+θ)(t−T )

(
c1

(
α+

r

2
+ θ
)

+ c2

(
α+

r

2
− θ
)
e−2θ(t−T )

)
and conditions z(T ) = σ, z′(T ) = π allow us to determinate the two constants
c1 and c2 :

c1 =
π −

(
α+ r

2 − θ
)
σ

2θ
, c2 =

(
α+ r

2 + θ
)
σ − π

2θ
.

Condition (5.146) gives, for every t ∈ [0, T ], that the candidate to be the optimal

investment (i.e. control) is ı = kq/σ and using q = σz′/z we obtain ı = k
z′

z
. If

we substitute this expression of ı in the dynamics we obtain

k′ = k
z′

z
− αk ⇒

∫
1

k
dk =

∫ (
z′

z
− α

)
dt+ c

⇒ k = zfe−αt

with c and f constants. The initial condition on the capital gives

k(t) =
k0
z(0)

z(t)e−αt

and hence the optimal path of investment is given by

ı∗(t) =
k0
z(0)

e−αtz′(t) =
k0
z(0)

e(
r
2+θ)t

(
c1

(
α+

r

2
+ θ
)

+ c2

(
α+

r

2
− θ
)
e−2θt

)
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