JAXA's strategic L-class mission!

LiteBIRD

LiteBIRD: Lite (light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection

### Why Measure from Space?

- Superb environment !
  - ✓ No statistical/systematic uncertainty due to atmosphere
  - ✓ No limitation on the choice of observing bands (except CO lines); important for foreground separation
  - ✓ No ground pickup

Rule of thumb: 1,000 detectors in space ~100,000 detectors on ground

- Only way to access lowest multipoles w/  $\delta r \sim O(0.001)$ 
  - ✓ Both B-mode bumps need to be observed for the firm confirmation of Cosmic Inflation →We need measurements from space.
- Complementarity with ground-based CMB projects
  - ✓ Foreground information from space will help foreground cleaning for ground CMB data
  - $\checkmark$  High multipole information from ground will help "delense" space CMB data

LiteBIRD JAXA-led focused mission  $\sigma(r)<0.001$  $2 \le \ell \le 200$ 

10<sup>-b</sup>

10

### Powerful Duo

Ground US-led telescopes on ground 30 ≤ ℓ ≤ ~8000 e.g. Simons Observatory and CMB-S4







Multipole Moment, ell

100

1000

### LiteBIRD Overview

- JAXA's L-class mission selected in May 2019
- Expected launch in Japanese fiscal year 2027 with JAXA's H3 rocket.
- Observations for 3 years (baseline) around Sun-Earth Lagrangian point L2
- Millimeter-wave all sky surveys (34–448 GHz, 15 bands) at 70–20 arcmin.
- Mission:  $\delta r$  (total uncertainty) < 0.001 (for r=0) with CMB B-mode observation



### LiteBIRD Overview





- 1. Two sets of telescopes w/ TES arrays
- 2. Polarization modulator w/ rotating half-wave plate (HWP) for 1/f noise & systematics reduction
- 3. Cryogenic system for 0.1K base temperature







### **Fully reflective**

- Crossed Dragone telescope F/3.5
- Frequency coverage: 89 448 GHz
- Continuous rotating HWP mechanism
  - Reflective Embedded Metal-mesh HWP tilted at 45°
- Alternative design since end 2018

- Two telescopes F/2.2
  - MFT: 89 224 GHz
  - HFT: 166 448 GHz
- HDPE lenses
- Continuous rotating HWP mechanism
  - Transmissive Metal-mesh HWP
- Baseline since end 2018

- 1. Two sets of telescopes w/ TES arrays
- 2. Polarization modulator w/ rotating half-wave plate (HWP) for 1/f noise & systematics reduction
- 3. Cryogenic system for 0.1K base temperature
- 1. Two sets of telescopes w/ TES arrays



### Three features

1. Two sets of telescopes w/ TES arrays

210 mm

Silicon

lenslet

- 2. Polarization modulator w/ rotating half-wave plate (HWP) for 1/f noise & systematics reduction
- 3. Cryogenic system for 0.1K base temperature
- 1. Two sets of telescopes w/ TES arrays: Radiation Coupling



### Three features

- 1. Two sets of telescopes w/ TES arrays
- 2. Polarization modulator w/ rotating half-wave plate (HWP) for 1/f noise & systematics reduction
- 3. Cryogenic system for 0.1K base temperature
- 1. Two sets of telescopes w/ TES arrays: Radiation Coupling



Horn array realized in Silicon Platelet technology





### Three features

- 1. Two sets of telescopes w/ TES arrays
- 2. Polarization modulator w/ rotating half-wave plate (HWP) for 1/f noise & systematics reduction
- 3. Cryogenic system for 0.1K base temperature

### 1. Two sets of telescopes w/ TES arrays



### Three features

- 1. Two sets of telescopes w/ TES arrays
- 2. Polarization modulator w/ rotating half-wave plate (HWP) for 1/f noise & systematics reduction
- 3. Cryogenic system for 0.1K base temperature

1. Two sets of telescopes w/ TES arrays: Test on MHFT TES/OMT prototype







- 1. Two sets of telescopes w/ TES arrays
- 2. Polarization modulator w/ rotating half-wave plate (HWP) for 1/f noise & systematics reduction
- 3. Cryogenic system for 0.1K base temperature
- 1. Two sets of telescopes w/ TES arrays: Readout by FDM via SQUID



### Three features

- 1. Two sets of telescopes w/ TES arrays
- 2. Polarization modulator w/ rotating half-wave plate (HWP) for 1/f noise & systematics reduction
- 3. Cryogenic system for 0.1K base temperature
- 2. Polarization modulator with a rotating half-wave plate (HWP) for 1/f noise & systematics reduction



### LFT HWP prototype @4K



- 1. Two sets of telescopes w/ TES arrays
- 2. Polarization modulator w/ rotating half-wave plate (HWP) for 1/f noise & systematics reduction
- 3. Cryogenic system for 0.1K base temperature



### LiteBIRD-Europe Task-Sharing



## LiteBIRD Mission Summary

| Low Frequency Telescope (LFT)                                       | Mid and High Frequency Telescope (MFT & HFT)                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34 ~ 161 GHz                                                        | 89 ~ 448 GHz                                                                                                                                                                                                                                                                                                                                                |
| >20 deg ×10 deg                                                     | 28 deg                                                                                                                                                                                                                                                                                                                                                      |
| 400 mm                                                              | 200 mm & 300 mm                                                                                                                                                                                                                                                                                                                                             |
| 20 ~ 70 arcmin                                                      | 10 ~ 40 arcmin                                                                                                                                                                                                                                                                                                                                              |
| 88 rpm                                                              | ~90 - 180 rpm                                                                                                                                                                                                                                                                                                                                               |
| ~1250                                                               | ~3400                                                                                                                                                                                                                                                                                                                                                       |
| δr < 1 × 10^(-3)                                                    |                                                                                                                                                                                                                                                                                                                                                             |
| 3 years                                                             |                                                                                                                                                                                                                                                                                                                                                             |
| L2 Lissajous, precession angle 45 deg, spin angle 50 deg (0.05 rpm) |                                                                                                                                                                                                                                                                                                                                                             |
| <3 µK∙arcmin                                                        |                                                                                                                                                                                                                                                                                                                                                             |
| < 3 arcmin                                                          |                                                                                                                                                                                                                                                                                                                                                             |
| bath temperature 100 mK                                             |                                                                                                                                                                                                                                                                                                                                                             |
| NET <sup>P</sup> array = 1.7 μK√s@ 100 mK                           |                                                                                                                                                                                                                                                                                                                                                             |
| f_{knee} < 20 mHz                                                   |                                                                                                                                                                                                                                                                                                                                                             |
| 7 GByte/day                                                         |                                                                                                                                                                                                                                                                                                                                                             |
| 2.6 ton                                                             |                                                                                                                                                                                                                                                                                                                                                             |
| 2.0                                                                 |                                                                                                                                                                                                                                                                                                                                                             |
|                                                                     | Low Frequency Telescope (LFT)<br>$34 \sim 161 \text{ GHz}$<br>$> 20 \text{ deg} \times 10 \text{ deg}$<br>400  mm<br>$20 \sim 70 \text{ arcmin}$<br>88  rpm<br>$\sim 1250$<br>$\delta r < 1 \times$<br>3  y<br>L2 Lissajous, precession angle 4<br>$< 3 \mu \text{K}$<br>< 3 a<br>bath temper<br>NET <sup>P</sup> array = 1.7<br>$f_{\text{knee}}$<br>7  GB |



## LiteBIRD Mission Summary

