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Motivations

• Cutting a graph into “smaller pieces” is one of the fundamental 
algorithmic operations.

• With the advent of even larger instances in applications such as 
scientific simulation, social networks, or road networks, graph 
partitioning and graph clustering therefore becomes highly 
important, multifaceted, and challenging.

• Partitioning or clustering large graphs is often an important 
subproblem for complexity reduction or parallelization.
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Motivations … Cont’d

• A commonly used method to partition or cluster large graphs is the 
multilevel approach or variations thereof.

• Here, the graph is recursively contracted to create smaller graphs 
which somewhat should reflect the same basic structure as the input 
graph.

• This usually achieved by modifying edge and node weights of the 
coarser graphs.
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Cuts

• In graph theory, a cut is a partition of the vertices of a graph into two 
disjoint subsets. 

• Any cut determines a cut-set, the set of edges that have one 
endpoint in each subset of the partition. 

• These edges are said to cross the cut. 
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Flow Networks and 𝑠– 𝑡 Cuts

• In graph theory, a flow network (also known as a transportation network) 
is a directed graph where each edge has a capacity, and each edge 
receives a flow. 

• The amount of flow on an edge cannot exceed the capacity of the edge. 

• A flow must satisfy the restriction that the amount of flow into a node 
equals the amount of flow out of it, unless it is a source, which has only 
outgoing flow, or sink, which has only incoming flow. 

• A network can be used to model traffic in a computer network, circulation 
with demands, fluids in pipes, currents in an electrical circuit, or anything 
similar in which something travels through a network of nodes.
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Flow Networks and 𝑠– 𝑡 Cuts … Cont’d

• An 𝒔 − 𝒕 cut is defined as tuple (𝑆, 𝑉 \ 𝑆) with 𝑠 ∈ 𝑆 ⊂ 𝑉 and 𝑡 ∈ 𝑉 \ S. 

• The weight of an 𝑠 − 𝑡 cut is defined as σ 𝑢,𝑣 ∈𝐸∩𝑆×𝑉 \ S 𝜔(𝑢, 𝑣), i.e., the 
weight of the edges starting in 𝑆 and ending in 𝑉 \ 𝑆. 

• A minimum 𝒔 − 𝒕 cut has the smallest weight among all 𝑠 − 𝑡 cuts. 



Graph Partitioning

2



Graph Theory and Algorithms (PhD Course) – Marco Viviani

Graph Partitioning
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Graph Partitioning … Cont’d
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Graph Partitioning … Cont’d
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Graph Partitioning … Cont’d
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Objective Functions
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Graph Clustering
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Graph Clustering (Example)
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Coverage
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Modularity
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Partitioning VS Clustering
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Spectral Graph Partitioning

• A partition is derived from approximate eigenvectors of the 
adjacency matrix.

• Deepen/revise the concepts of eigenvectors and eigenvalues →
Possible assignment → Next slides.
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Multilevel Graph Partitioning

• A multilevel graph partitioning algorithm works by applying one or 
more stages. 

• Each stage reduces the size of the graph by collapsing vertices and 
edges (coarsening), partitions the smaller graph, then maps back 
and refines this partition of the original graph.

• One widely used example of such an approach is METIS, a graph 
partitioner, and hMETIS, the corresponding partitioner for 
hypergraphs.

Karypis, G., & Kumar, V. (1997). METIS: A software package for partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of sparse matrices.

Karypis, G., Aggarwal, R., Kumar, V., & Shekhar, S. (1999). Multilevel hypergraph partitioning: Applications in 
VLSI domain. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7(1), 69-79.
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Multilevel Graph Partitioning … Cont’d

• The multilevel approach to graph partitioning consists of three main 
phases.

1. Coarsening phase

2. Initial partitioning phase

3. Uncoarsening phase
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Multilevel Graph Partitioning (Example)
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Graph Coarsening

• In the coarsening (contraction) phase, a hierarchy of graphs is 
created. 

• Contraction should quickly reduce the size of the input and each 
computed level should reflect the global structure of the input 
network.
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Graph Coarsening (Example)
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Graph Uncoarsening

• In the uncoarsening
(or local improvement) 
phase, the matchings 
are iteratively 
uncontracted.

• After uncontracting a 
matching, a local 
improvement 
algorithm moves nodes 
between blocks in 
order to improve the 
cut size or balance.
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Greedy Agglomeration

• Roughly speaking, the algorithm starts with a singleton clustering
and iteratively merges/joins clusters.

• To describe the network’s community structure, a dendrogram is 
used. 

• The hierarchical decomposition of the network is presented at all 
levels.
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Greedy Agglomeration … Cont’d

• At each iteration of this method, pairs of communities are joined, and 
the modularity (naïve solution) is subsequently calculated. 

• More precisely, in each iteration the pair of communities yielding the 
highest gain in modularity is merged.
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Greedy Agglomeration (Example)
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Spectral Clustering

• It clusters graph vertices using the eigen decomposition of the graph 
Laplacian matrix.

• Deepen/revise the concepts of eigenvectors and eigenvalues →
Possible assignment → Next slides.
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Louvain Method

• Simple heuristic method which is based on modularity optimization 
and works fast.

• The basic techniques involved are the local movement and multi-
level clustering. 

• At the beginning, each node is a singleton cluster, then the nodes are 
traversed in random order and move to the neighboring cluster 
yielding the highest modularity increase.
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Louvain Method … Cont’d

• The algorithm runs in two phases.
• In the first phase, the algorithm is firstly initialized, 

so that each node is assigned to a different cluster 
(community). 

• Then, we iteratively proceed with following steps, 
targeting to find local maxima:
i. pick a node 𝑢 at random
ii. remove 𝑢 from cluster, compute removal gain 

Δ𝑄
iii. for each cluster, compute add gain Δ𝑄′
iv. if highest total gain is positive (i.e., Δ𝑄′ − Δ𝑄 > 0), 

then move node
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Possible Assignments

• Deepen a specific graph partitioning/clustering algorithm based on 
the spectral partitioning/clustering paradigm.

• Deepen a specific graph partitioning algorithm based on the 
multilevel partitioning paradigm (e.g., METIS).

• Deepen a specific graph partitioning algorithm based on the 
concepts of flows (e.g., FluidC).


