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Interaction Networks

• Interaction networks are "complex" systems (from the Latin cum
(together) - plexus (intertwined), "intertwined together").
• A complex system is composed of several parts connected to each other       

and "intertwined" with each other so that;
• the result is different from the sum of the parts.

• The behavior of a complex system cannot be deduced from the 
analysis, however accurate, of the elements that compose it: instead, 
it is necessary to observe the interactions between them.
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Emerging Behaviors

• Simple entities interacting with each other and with the surrounding 
environment can in fact give rise to non-trivial macroscopic behaviors 
called emerging behaviors.

• Emerging behavior is a collective phenomenon: that is, it occurs 
spontaneously and not thanks to a centralized organization.
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Network Topology

• The structure (topology) of the contact network is crucial in 
determining collective behavior.

• The study of the topological properties of networks allows us to 
understand:
• how these properties affect the emerging behaviors and dynamics of 

complex systems;
• how the network of interactions itself can in turn modify and readjust itself in 

an adaptive way.
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Consequences related to the topology 
(Example)

• The outcome of a spreading dynamic of a pathogen is heavily 
influenced by the interaction network of the population in which the 
infectious agent spreads.

• The specific characteristics of social networks, especially the high 
heterogeneity, strongly strengthen the incidence of infection, and 
radically change the epidemiological framework compared to that 
classically adopted in describing the spread of diseases.



Regular and 
Random Networks

Examples of Regular and ER 
Networks

2



Graph Theory and Algorithms (PhD Course) – Marco Viviani

Regular Networks and Random Networks

• Classical graph theory, prior to that on complex networks, mainly 
deals with two types of networks:
• Regular networks
• Random networks
• Halfway between graph theory and probability theory
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Regular Networks

• In regular networks each node is connected to a fixed number of 
nodes.

• They have regular patterns within the structure.
• They may or may not be 𝑘-regular graphs;
• Entropy is 0 or very close to zero.
• By entropy we mean the degree of randomness in a graph structure.
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Regular Networks … Cont’d

• Some of these networks are characterized by strong aggregation: 
nodes connected to a given node tend to be connected to each 
other.

• In other words, there is a high local density of connections, measured 
by the clustering coefficient.
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Clustering Coefficient

• The clustering (or aggregation) coefficient is the measure of the 
degree to which the nodes of a graph tend to be connected
to each other.

• Three possibilities to calculate the clustering coefficient:
• Local clustering coefficient.
• Average clustering coefficient.
• Global clustering coefficient.
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Local Clustering Coefficient

• Given 𝑁(𝑣) the set of neighbors of 𝑣, the local clustering coefficient 
𝑐𝑐(𝑣) of a vertex 𝑣 is given by the number of edges between the 
members of 𝑁(𝑣) divided by the number of potential edges between 
them.

• Directed graph:

𝑐𝑐 𝑣 =
||𝑁 𝑣 ||

𝑘(𝑘 − 1)
• Undirected graph:

𝑐𝑐 𝑣 =
2| 𝑁 𝑣 |

𝑘(𝑘 − 1)

𝑘 = |𝑁(𝑣)| = 𝑑(𝑣)

Maximum number of potential edges

between the vertices in 𝑁(𝑣) in a directed 

graph

In an undirected graph the maximum 

number of potential edges between the 

neighbors of 𝑣 is 
𝑘(𝑘−1)
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Local Clustering Coefficient (Examples)
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2 ∗ 0

3 ∗ 2
=
0

6
= 0 𝑐𝑐 𝑣1 =

2 ∗ 1

3 ∗ 2
=
1

3
𝑐𝑐 𝑣1 =

2

3
𝑐𝑐 𝑣1 =

6

6
= 1

Real edge

Potential edge
𝑐𝑐 𝑣 =

2| 𝑁 𝑣 |

𝑘(𝑘 − 1)
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Exercise

• Calculate the local clustering coefficient of node 𝑣 in the following 
graph:

𝑣

𝑐𝑐 𝑣 =
2| 𝑁 𝑣 |

𝑘(𝑘 − 1)
= ?

𝑐𝑐 𝑣 =
2 ∗ 3

7 ∗ 6
=

6

42
=
1

7
= 0,14
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Average Clustering Coefficient

• The average clustering coefficient 𝑐c(𝐺) of a graph 𝐺 is given by       
the average of the clustering coefficients for each single node               
of the graph.

• Formally:

𝑐𝑐 𝐺 =
1

|𝑉|
෍

𝑖=1

𝑛

𝑐𝑐(𝑣𝑖)
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Average Clustering Coefficient (Examples)

• 𝑐𝑐 𝐺1 =
1

4
1 + 1 + 1 + 1 = 1

• 𝑐𝑐 𝐺2 =
1

4
1 +

2

3
+

2

3
+ 1 =

5

6
= 0,8ത3

• 𝑐𝑐 𝑣1 =
2∗1

2∗1
= 1

• 𝑐𝑐 𝑣2 =
2∗2

3∗2
= 2/3

• 𝑐𝑐 𝑣3 =
2∗2

3∗2
= 2/3

• 𝑐𝑐 𝑣4 =
2∗1

2∗1
= 1

𝑣2

𝑣3

𝑣1 𝑣4

𝑣2

𝑣3

𝑣1 𝑣4

𝐺1

𝐺2

𝑐𝑐 𝐺 =
1

|𝑉|
෍

𝑖=1

𝑛

𝑐𝑐(𝑣𝑖)
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Global Clustering Coefficient

• The concept of global clustering coefficient (a.k.a. transitivity) is 
based on triples (triads) of vertices.
• Open triplet: three nodes connected by two edges.
• Closed triplet: three nodes connected by three edges.

• Each triple is centered around a vertex.

• A triangle consists of three closed triples centered on the same three 
nodes that compose them.
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Triangle (Example)

Vertex

Triplets centered

around the 

vertex

𝑣1 ⟨𝑣1, 𝑣2, 𝑣5⟩

𝑣2

𝑣1, 𝑣2, 𝑣3
𝑣1, 𝑣2, 𝑣5
⟨𝑣2, 𝑣3, 𝑣5⟩

𝑣3 ⟨𝑣2, 𝑣3, 𝑣4⟩

𝑣4 —

𝑣5 𝑣1, 𝑣2, 𝑣5

𝑣1

𝑣2

𝑣5

𝑣3

𝑣4
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Global Clustering Coefficient / Definition

• The global clustering coefficient 𝑐𝑐△ 𝐺 of a graph 𝐺 is calculated as 
the number of closed triples (or 3 times the number of triangles) 
divided by the total number of triples (open and closed ones)

• Formally:

𝑐𝑐△ 𝐺 =
3 ∗ 𝑛△(𝐺)

𝑛∧(𝐺)
=
σ𝑖=1
𝑛 (𝑐𝑐 𝑣𝑖 ∗ 𝜔𝑖)

σ𝑖=1
𝑛 𝜔𝑖

Number of triangles in the graph

Total number of triples (open and 

closed) in the graph

Number of triples in which 

the node 𝑣𝑖 is central 

(«weight» of the node 𝑣𝑖)
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Global Clustering Coefficient (Example – 1)
Vertex

Triplets centered

around the vertex

Weight

(𝜔_𝑖)

𝑣1 ⟨𝑣1, 𝑣2, 𝑣5⟩ 1

𝑣2

𝑣1, 𝑣2, 𝑣3
𝑣1, 𝑣2, 𝑣5
⟨𝑣2, 𝑣3, 𝑣5⟩

3

𝑣3 𝑣2, 𝑣3, 𝑣4 1

𝑣4

𝑣3, 𝑣4, 𝑣5
𝑣3, 𝑣4, 𝑣6
⟨𝑣4, 𝑣5, 𝑣6⟩

3

𝑣5

𝑣1, 𝑣2, 𝑣5
𝑣1, 𝑣4, 𝑣5
⟨𝑣2, 𝑣4, 𝑣5⟩

3

𝑣6 — 0

𝑣1

𝑣2

𝑣5 𝑣4

𝑣3

𝑣6

𝐺

𝑐𝑐△ 𝐺 =
3 ∗ 𝑛△(𝐺)

𝑛∧(𝐺)
=
3 ∗ 1

11
=

3

11
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Global clustering coefficient (Example – 2)

Vertex
Weight 

(𝜔_𝑖)
𝑐𝑐(𝑣𝑖)

𝑣1 1 2 ∗ 1/2 ∗ 1 = 1

𝑣2 3 2 ∗ 1/3 ∗ 2 = 1/3

𝑣3 1 2 ∗ 0/2 ∗ 1 = 0

𝑣4 3 2 ∗ 0/3 ∗ 2 = 0

𝑣5 3 2 ∗ 1/3 ∗ 2 = 1/3

𝑣6 0 0

𝑐𝑐△ 𝐺 =
σ𝑖=1
𝑛 (𝑐𝑐 𝑣𝑖 ∗ 𝜔𝑖)

σ𝑖=1
𝑛 𝜔𝑖

=
1 ∗ 1 +

1
3 ∗ 3 + 0 ∗ 1 + 0 ∗ 3 +

1
3 ∗ 3 + 0

11
=

3

11
𝑐𝑐 𝑣 =

2| 𝑁 𝑣 |

𝑘(𝑘 − 1)

𝑣1

𝑣2

𝑣5 𝑣4

𝑣3

𝑣6

𝐺
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Examples of Regular Networks 
Linear Network (1)

24

• A linear network is a linear sequence 𝐿 of connected vertices:

• 𝐿 = 𝑣1, 𝑒12, 𝑣2, 𝑒23, 𝑣3, … , 𝑣𝑘−1, 𝑒 𝑘−1 𝑘𝑣𝑘

• Order: 𝐿 = 𝑘 Size: |𝐿| = 𝑘 − 1

• Degree: 1 ≤ 𝑑(𝐿) ≤ 2 Diameter: 𝑑𝑖𝑎𝑚 𝐿 = 𝑘 − 1

• Clustering coefficient: 𝑐𝑐 𝐿 = 0

𝑣1 𝑣2 𝑣3 𝑣𝑘
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Examples of Regular Networks 
Linear Network (2)

• Degree of connectivity: not biconnected

• Adjacency matrix: diagonals

0 1 0 0 … 0 0

1 0 1 0 … 0 0

0 1 0 1 … 0 0

0 0 1 0 … 0 0

… … … … … … …

0 0 0 0 … 0 1

0 0 0 0 … 1 0
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Examples of Regular Networks 
Ring Network (1)

• A ring network 𝐴 is a network topology in which each node is 
connected to exactly two other nodes, forming a single continuous 
path, a ring

𝑣1

𝑣2

𝑣3

𝑣𝑘

𝐴 = 𝑣1, 𝑒12, 𝑣2, 𝑒23, 𝑣3, … , 𝑣𝑘, 𝑒𝑘1, 𝑣1
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Examples of Regular Networks 
Ring Network (2)

• Order: 𝐴 = 𝑘

• Size: |𝐴| = 𝑘

• Degree: 𝑑 𝐴 = 2

• Diameter: 𝑑𝑖𝑎𝑚 𝐴 = 𝑘/2

• Clustering coefficient: 𝑐𝑐 𝐴 = 0

• Degree of connectivity: biconnected

• Adjacency matrix: diagonals + angles

0 1 0 0 … 0 1

1 0 1 0 … 0 0

0 1 0 1 … 0 0

0 0 1 0 … 0 0

… … … … … … …

0 0 0 0 … 0 1

1 0 0 0 … 1 0
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Examples of Regular Networks 
Star Network (1)

• A star network is a tree 𝑆 with a single vertex of maximum degree

𝑣1

𝑣2

𝑣3
𝑣𝑘

𝑣4

𝑆 = 𝑣1, 𝑒12, 𝑣2, 𝑣1, 𝑒13, 𝑣3, … , 𝑣1, 𝑒1𝑘, 𝑣𝑘
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Examples of Regular Networks 
Star Network (2)

• Order: 𝑆 = 𝑘

• Size: |𝑆| = 𝑘 − 1

• Degree: 𝑑 𝑆 = 1 or 𝑑 𝑆 = 𝑘 − 1

• Diameter: 𝑑𝑖𝑎𝑚 𝑆 = 2

• Clustering coefficient: 𝑐𝑐 𝑆 = 0

• Degree of connectivity: point of articulation
on internal vertex

• Adjacency matrix: first row and column

0 1 1 1 … 1 1

1 0 0 0 … 0 0

1 0 0 0 … 0 0

1 0 0 … 0 0

… … … … … … …

1 0 0 0 … 0 0

1 0 0 0 … 0 0
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Examples of regular networks
Manhattan Grid and Full Mesh
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Example of Networks with Grid Topology
Optical Fiber
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Example of Networks with Mesh Topology
IP Routing
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Random Networks (or Graphs)
ER Graphs (1)

• Initially studied by Erdős and Rényi in 1959.
• Pairs of nodes are randomly connected by a given number of connections.
• Two nodes are connected by a certain probability 𝑝.

• All nodes have approximately the same number of neighbors, which 
differs slightly from the average value.

Erdős, P.; Rényi, A. (1959). "On Random Graphs. I".
Publicationes Mathematicae. 6: 290–297

http://www.renyi.hu/~p_erdos/1959-11.pdf
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Random Networks (or Graphs)
ER Graphs (2)



Complex
Networks

3
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Complex Network Theory

• Regular networks do not resemble interaction networks at all.

• Random networks capture some aspect of it.

• Complex networks of interactions have substantially different 
characteristics from both classes of graphs.

• The attempt to formulate models capable of reproducing the 
properties of real interaction networks has produced the evolution of 
the classical graph theory into the modern theory of complex 
networks.
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Complex Network Theory … Cont’d

• These networks show non-intuitive characteristics and can be made 
up of millions of units communicating with each other.

• Mathematical methods based on graph theory are therefore used to 
extract information from complex networks in a synthetic and 
objective way.
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Instantiations of Complex Networks
Connections on the Personal Network

• (Online) social networks are complex networks.

• The personal network of contacts* is usually composed of a "first 
order" area (relationships that the individual has directly), a "second 
order" area (contacts made through an intermediary), and so on…

*Mitchell, J.C. (ed.) 1969 Social Networks in Urban Situations. Analyses of Personal Relationships 
in Central African Towns, Manchester, UK, Manchester University Press 
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Networks of First, Second, ..., Order

• The first-order network is generally called the ego-centric network 
(or ego-network).

• Networks that move away from the first order are called socio-
centric networks.

• Both types of networks can be studied using Social Network 
Analysis techniques to grasp a large number of clues about social 
networks.
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«Ego-centric» VS «Socio-centric»

Ego-centric network

Socio-centric network
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«Ego-centric» VS «Socio-centric» … Cont’d

• Ego-centric analysis:
• It focuses on the network surrounding a specific node.

• Socio-centric analysis:
• It concerns the study of "complete" networks.

• Data relating to "ego-centric" networks can be identified in a "socio-
centric" network by selecting a node and examining its neighbors 
and the connections between them.
• The most important property of social data is that they are often based on 

cultural values ​​and symbols, and are generated on the basis of motivations, 
meanings and typification.
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Characteristics of Complex Networks

• Several phenomena are related to the theory of complex networks:

1. Small-world ("six degrees of separation")

2. Clustering

3. Strength of weak ties

4. Scale invariance (scale-free)
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1. The «Small-world» Theory
La teoria del mondo piccolo (o dei piccoli mondi)

• The concept of small-world coined by Milgram* is linked to studies 
on the personal network.

• In order to define the concept of "small-world", Miligram carried out 
an experiment that remained famous and subsequently repeated in 
various social networks.

*S. Milgram. The small world problem. Psychology Today, 1:61–67, 1967
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The Milgram Experiment (Definition)

• Milgram randomly chose a sample of Americans (in the cities of 
Omaha, Nebraska and Wichita, Kansas) and asked them to deliver a 
message to a stranger (a stockbroker who worked in Boston and 
resided in Sharon, Massachusetts) of whom they only knew the name 
and a few other details but not the address.

• The messages had to be sent using only one's own network of 
acquaintances, based on considerations on which could be the 
highest probability of reaching the recipient.
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The Milgram Experiment (Results)

• Results: The packets took on average only between 5 and 7 steps to 
reach the recipient.
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The Milgram Experiment (Considerations)

• The results of the experiment show how short paths (cammini brevi) 
exist between individuals in large social networks.

• More importantly, the experiment shows how these short paths can 
be found by ordinary people.
• People rarely have more than local knowledge of their network;
• One can get acquainted with friends and friends of friends;
• It will be difficult to have knowledge of the entire path of individuals between 

themselves and an arbitrary "target" user.
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An Experiment on the «Information Network»

• In addition to social networks, other examples of a small-world are 
the World Wide Web and the communication network formed by 
the exchange of e-mails.

• Experiment: in 2003 more than 60,000 emails were sent by 166 
participants in the experiment, trying to reach 18 "target" users from 
13 different countries by forwarding the received email only to 
acquaintances.

https://www.newscientist.com/article/dn4037-email-
experiment-confirms-six-degrees-of-separation/

https://www.newscientist.com/article/dn4037-email-experiment-confirms-six-degrees-of-separation/
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Results

• Out of 24,163 chains, only 384 were completed.

• The distribution of completed chains versus the number of steps 
required.
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Results … Cont’d

• Reasons for choosing the next recipient:
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The Number of Erdős

• Paul Erdős, one of the fathers of the theory of random networks, 
wrote scientific articles in various areas of mathematics, in 
collaboration with other famous mathematicians.

• It is possible to calculate a number that identifies the distance 
between Erdős from other mathematicians, the so-called Erdős
number.
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How to Compute the Number of Erdős

• The direct co-authors of Erdős have number 1.

• Co-authors of a co-author of Erdős have number 2.

• And so on…

• How far are you from Erdős?? →
https://mathscinet.ams.org/mathscinet/collaborationDistance.html

https://mathscinet.ams.org/mathscinet/collaborationDistance.html
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Example
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The «Oracle of Bacon»

• In a January 1994 interview, actor 
Kevin Bacon claimed to have 
worked with all the actors in 
Hollywood or, at least, with 
someone who had acted in them 
together.

• It allows to calculate the degrees 
of separation between Kevin 
Bacon (or another actor/actress) 
and any other actor or actress.

• Based on «The Internet Movie 
Database».

https://www.imdb.com/
https://oracleofbacon.org/


Graph Theory and Algorithms (PhD Course) – Marco Viviani

Example

58
Lino Banfi

Anne Hathaway
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Conclusions on the «Small-world» Theory

• Today we know that this property is not peculiar to social networks: 
practically all real networks of interactions in complex systems have 
the characteristic of small-world.

• This property makes networks very efficient in terms of information 
propagation speed (and more)
• Infectious diseases, for example, spread over a small-world network much 

more easily than over a regular network.
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Motivations Illustrated Graphically
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2. Clustering

• There is a tendency in social networks to create clusters:
• In social networks there are often communities of individuals all or almost all 

in relation to each other.

• This property already known as transitivity in sociology (Wassermann 
and Faust, 1994)* is called clustering and has been quantified by the 
so-called clustering coefficient (Watts and Strogatz, 1998)**, which 
essentially measures how many of the friends of a given individual are 
also in turn friends with each other.

*Wasserman, Stanley, and Katherine Faust. Social network analysis: Methods and 
applications. Vol. 8. Cambridge university press, 1994

**Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of ‘small-
world’networks." Nature 393.6684 (1998): 440
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Clustering and Small-world

• Random networks resemble interaction networks w.r.t. the small-
world property.

• However, they differ in another important respect:
• The clustering coefficient of a typical interaction network is usually much 

larger than that of the corresponding random network (i.e., a network with 
the same number of nodes and ties, but where each tie connects a pair of 
nodes chosen at random).
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Concrete Examples

𝑘 = degree 𝐿 = path lenght 𝐶 = clustering coefficient
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3. The Strength of Weak Ties

• The strength of weak ties (Mark Granovetter, 1977*: the strength of a 
tie is given by the (probably linear) combination of the amount of 
time, emotional intensity, intimacy (mutual confidence) and the 
exchange of services that characterizes the tie.

*Granovetter, Mark S. "The strength of weak ties.“
Social networks. 1977. 347-367
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3. The Strength of Weak Ties … Cont’d

• Granovetter defines people's "strong ties" as those that unite them to 
primary networks (family, institutions, organizations), since they 
constitute rather compact networks of belonging.

• He calls "weak ties" those that characterize the informal networks of 
people, which, in terms of social integration and increase in social 
capital, are often more important than strong ties, functioning as 
bridges between different segments of the social network.
• These types of ties are crucial, for example, when looking for a new job.
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Measuring the Strength of Ties

• The sociological concept of “tie strength” can be measured through 
Social Network Analysis techniques in different ways:
• By identifying “shortcut bridges” (ponti scorciatoia).
• The neighborhood overlap assessment.
• Evaluation of user activities.
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Shortcut Bridges

• Bridges are very rare in real 
social networks

• Alternatively, you can "loosen" 
the definition, and check if the 
distance between two nodes 
increases when the arc is 
removed, which in this case is 
a "shortcut"

• The greater the distance, the 
"weaker" the type of bond
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Shortcut Bridges (Example)

• 𝑑 2,5 = 4
if 𝑒 = (2,5) is removed

• 𝑑 5,6 = 2
if 𝑒 = (5,6) is removed

𝑒 = (5,6) is stronger than 𝑒 = (2,5)
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Neighborhood Overlap

• The strength of a tie can also be 
measured by how overlapping 
the neighbors of two nodes 𝑣𝑖
and 𝑣𝑗 are

• This overlap 𝑂(𝑣𝑖 , 𝑣𝑗) can be 
defined as:

𝑂 𝑣𝑖 , 𝑣𝑗 =
|𝑁 𝑣𝑖 ∩ 𝑁 𝑣𝑗 |

𝑁 𝑣𝑖 ∪ 𝑁 𝑣𝑗 − 2
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Neighborhood Overlap (Example)

• 𝑂 𝑣𝑖 , 𝑣𝑗 =
|𝑁 𝑣𝑖 ∩𝑁 𝑣𝑗 |

𝑁 𝑣𝑖 ∪𝑁 𝑣𝑗 −2

• 𝑂 2,5 =

• 𝑂 5,6 =
|{2,4,6,10} ∩ {4,5,7}|

1,3,5,8 ∪ 4,5,7 − 2
=

=
|{4}|

1,3,4,5,7,8 − 2
=
1

4

|{1,3,5,8} ∩ {2,4,6,10}|

1,3,5,8 ∪ 2,4,6,10 − 2
=
0

6
= 0
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4. Scale Invariance

• Scale invariance in a network (scale-free network) occurs when in a 
graph the relationship between the number of nodes and the 
number of their connections is of a negative exponential type, and 
therefore invariant under changes in scale.*

*Barabási, Albert-László, Réka Albert, and Hawoong Jeong. "Mean-field theory for scale-free random 
networks." Physica A: Statistical Mechanics and its Applications 272.1-2 (1999): 173-187
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Scale-free Network (Example)
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Scale-free Network (Hub)

• Assumption: When a node needs to establish a new connection, it 
prefers to do so with a node that already has many connections.
• This leads to exponential growth as the number of connections in the 

network increases.

• Nodes of this type are called hubs.

• This mechanism is very resistant compared to other growth 
mechanisms of the network and often leads to the preservation of 
the property of the invariance of scale.
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Scale Invariance and «Small-world»

• The presence of hubs is the basis of the small-world effect.

• In this sense, the hubs have the function of connecting areas of the 
graph that would otherwise be separate.


