

g.tomaino3@campus.unimib.it https://campus-unimib.webex.com/meet/g.tomaino3

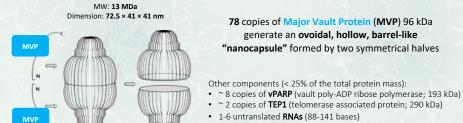
Development and characterization of vault-based nanocarriers in Pichia pastoris

Giulia Tomaino^{*1}, Marco Vanoni^{1,2}, Paolo Tortora^{1,} Gianni Frascotti¹

1 Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy 2 SYSBIO - Centre of Systems Biology, Italy

WOR

WOR


Z peptide

Nucleic acid

Introduction - VAULT NANOPARTICLES

Vault is the largest RIBONUCLEOPROTEIN PARTICLE known,

- Found in nearly all higher eukaryotic cells (10⁴ to 10⁵ particles per cell in human cell)¹
 - Involved in a broad range of cellular functions: nuclear-cytoplasmic transport, innate immunity, MDR²

Mrazek, J., et al., 2014

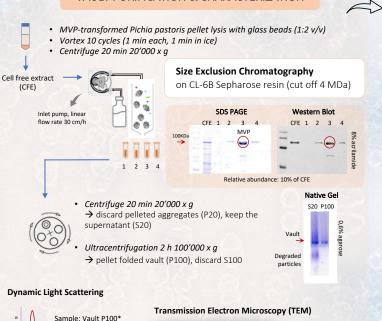
Main features

-

- Dynamic structure
- Large internal cavity (5 × 10⁴ nm³)
- Non-immunogenic, non-toxic
- It can be chemically and genetically modified

VAULT PRODUCTION

Expression of MVP sequence in insect cells (baculovirus-insect expression system) Previously \rightarrow Low scalability and slow production rates


Recombinant vault as an ideal

tool for the targeted delivery of

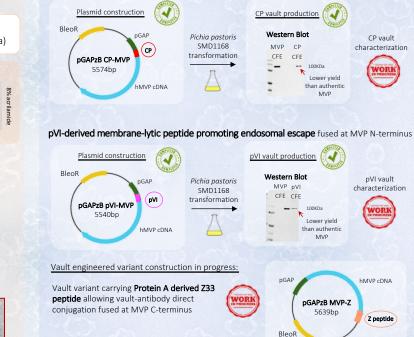
therapeutic molecules

Human recombinant vaults has been constitutively expressed in the methylotrophic In this project yeast Pichia pastoris, previously reported to enable vault expression at lower cost and in higher yields³

Recombinant vaults from Pichia

pastoris show the same morphology

and size of authentic vault


Size (d.nm) Nanoparticle Tracking Analysis

Sample: Vault P100*

Size (nm)

* mean of three technical replicates

VAULT PURIFICATION & CHARACTERIZATION

12 aa Cys-rich stabilizing domain (CP) fused at MVP N-terminus

VAULT ENGINEERED VARIANTS

Work in progress & Future perspectives

- Vault variants characterization Vault-mediated targeting of active molecules to specific cancer cell lines e.g. nucleic acid Cotutelle with Université de Paris
- Vault receptor identification

References: ¹ Kedersha, N. L., & Rome, L. H. 1986, The Journal of cell biology, 103(3), 699–709. ²Frascotti, G. et al.; 2021. Cancers, 13(4), 707. ³Wang, M., et al., 2018, Biotechnology and bioengineering, 115(12), 2941–2950.