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Causal discovery from interventions

Problem
Discover (identify) the “true” causal graph of a given phenomenon
on a given set of variables with observational data

Assumptions
Causal Markov condition: every vertex X in the graph is
independent of its non-descendants, given its parents
Faithfulness: if X is independent from Y given C in the
probability distribution, then X is d-separated from Y given
C in the causal graph
Acyclicity
Causal sufficiency: no unmeasured causes of any pair of
variables



Causal discovery from interventions

Problem
Discover (identify) the “true” causal graph of a given phenomenon
on a given set of variables with observational data

Result: a DAG (or a PDAG)

Technique: apply interventions on variables; an important
difference from last lecture: interventions change the causal graph



Interventions



Interventions



Essential graph

Immoralities: [A,B,D], [C ,D,F ], [D,E ,G ], [E ,F ,G ]



A simple case: two variables

How many different causal graphs on n variables?

f (n) =
n∑

i=1

(−1)i+1
n!

(n − i)!i !
2
i(n−1)f (n − i)

For n = 2, three different causal graphs



Two variable graphs

Three distinct causal graphs

Essential graphs



Equivalence classes

Detectable with no intervention



Two variables – single node intervention

What happens if we intervene on one variable?

Intervention variable: A
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Two variables – single node intervention

What happens if we intervene on one variable?

Intervention variable: B



Two variables – single node intervention



Two variables – single node intervention

No intervention = observational data ⇒ skeleton

Skeleton + one intervention ⇒ full causal graph
Two single node interventions ⇒ full causal graph
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An example with three variables
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Three variables

An example with three variables

Inferences:

no arc from C to B , hence arc from B to C

no arc from B to A



Three variables

Putting all the information together, we derive the complete
causal graph:



Single node interventions – general case

Theorem Let G be a causal graph on n > 2 variables. Then
n − 1 single node interventions are sufficient to identify G.

Informal argument:

The first intervention identifies the adjacencies between the
other n − 1 nodes
The i-th intervention directs the edges incident on Xi

1 if Xi ⊥ Xj , then Xi ← Xj

2 if Xi 6⊥ Xj , then Xi → Xj

All edges incident on Xn have been already directed in the
first n − 1 interventions



Complete graphs

Theorem Two graphs are Markov equivalent if and only if they
have the same skeleton and the same immoralities (Verma and
Pearl; Frydenburg).

In a complete graph there is no immorality (why?), so Markov
equivalence coincides with graph isomorphism. The PC algorithm
will find the complete undirected graph as skeleton.

Theorem Let G be a causal graph on n > 2 variables. Then
n − 1 single node interventions are necessary to identify G in the
worst case (complete graph).
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Multiple node interventions

No restriction on the number of nodes per intervention. Theorem
Let G be a causal graph on n > 2 variables. Then

blog2(n)c+ 1 multiple node interventions are sufficient to
identify G.
blog2(n)c+ 1 multiple node interventions are necessary to
identify G in the worst case (complete graph).



Multiple node interventions

Consider now a general, non-complete, graph with n variables.
Assuming no restriction on the number of nodes per intervention,
and starting with the Markov equivalence class of the graph, how
many interventions are necessary?

Theorem dlog2(c)e multi-node interventions are necessary,
where c is the size of the largest clique of G.
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Parametric interventions

A parametric intervention (also called soft i.) does not change the
structure of the causal graph, but modifies the conditional
probabilities of a node, given its parents.

G = fθ(E ,D,F ) =⇒ G = fθ′(E ,D,F )

Structural (hard) interventions can be seen as a special case of
parametric interventions.
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Parametric interventions

For a graph with n nodes

n − 1 single-node parametric interventions are sufficient for
identification
n − 1 single-node parametric interventions are necessary for
identification in the worst case



Further topics

Partial identification with “few” interventions; how much of
the causal graph can be identified with a bound number of
interventions?
Multi-node interventions

Randomized algorithms: O(log log n) interventions are
sufficient with high probability
Bounds on the number of variables per intervention
Bounds on the total number of interventions
. . .


