Causal Discovery from Interventions

Luca Bernardinello

Università degli studi di Milano–Bicocca Dottorato di ricerca in informatica CAUSAL NETWORKS

24 settembre 2021

(日)(周)(日)(日)(日)

Causal discovery from interventions

Problem

Discover (identify) the "true" causal graph of a given phenomenon on a given set of variables with observational data

Assumptions

- Causal Markov condition: every vertex *X* in the graph is independent of its non-descendants, given its parents
- Faithfulness: if X is independent from Y given C in the probability distribution, then X is d-separated from Y given C in the causal graph
- Acyclicity
- Causal sufficiency: no unmeasured causes of any pair of variables

Problem

Discover (identify) the "true" causal graph of a given phenomenon on a given set of variables with observational data

Result: a DAG (or a PDAG)

Technique: apply interventions on variables; an important difference from last lecture: interventions change the causal graph

Interventions

Interventions

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Essential graph

Immoralities: [A, B, D], [C, D, F], [D, E, G], [E, F, G]

How many different causal graphs on *n* variables?

$$f(n) = \sum_{i=1}^{n} (-1)^{i+1} \frac{n!}{(n-i)! i!} 2^{i(n-1)} f(n-i)$$

For n = 2, three different causal graphs

Two variable graphs

Three distinct causal graphs

Essential graphs

コト 4 昼 ト 4 臣 ト 4 臣 ト 三臣 - めんの

Equivalence classes

Detectable with no intervention

◆□→ ◆□→ ◆三→ ◆三→ 三三

What happens if we intervene on one variable?

What happens if we intervene on one variable?

Intervention variable: A

What happens if we intervene on one variable?

Intervention variable: B

▲口 ▶ ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲日 ▼

• No intervention = observational data \Rightarrow skeleton

- No intervention = observational data \Rightarrow skeleton
- Skeleton + one intervention \Rightarrow full causal graph

- No intervention = observational data \Rightarrow skeleton
- Skeleton + one intervention \Rightarrow full causal graph
- Two single node interventions \Rightarrow full causal graph

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● 三 ● ● ● ●

An example with three variables

An example with three variables

An example with three variables

Interventional essential graph

An example with three variables

Interventional essential graph

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Inferences:

• no arc from C to A

An example with three variables

Interventional essential graph

Inferences:

- \bullet no arc from C to A
- \bullet no arc from C to B

An example with three variables

Interventional essential graph

An example with three variables

Interventional essential graph

◆□→ ◆□→ ◆三→ ◆三→ 三三

Inferences:

• no arc from C to B, hence arc from B to C

An example with three variables

Interventional essential graph

Inferences:

- no arc from C to B, hence arc from B to C
- no arc from *B* to *A*

Putting all the information together, we derive the complete causal graph:

Single node interventions – general case

Theorem Let G be a causal graph on n > 2 variables. Then n - 1 single node interventions are sufficient to identify G.

Informal argument:

- The first intervention identifies the adjacencies between the other *n* − 1 nodes
- The *i*-th intervention directs the edges incident on X_i

1 if
$$X_i \perp X_j$$
, then $X_i \leftarrow X_j$
2 if $X_i \not\perp X_j$, then $X_i \rightarrow X_j$

• All edges incident on X_n have been already directed in the first n-1 interventions

Theorem Two graphs are Markov equivalent if and only if they have the same skeleton and the same immoralities (Verma and Pearl; Frydenburg).

◆□→ ◆□→ ◆三→ ◆三→ 三三

Theorem Two graphs are Markov equivalent if and only if they have the same skeleton and the same immoralities (Verma and Pearl; Frydenburg).

In a complete graph there is no immorality (why?), so Markov equivalence coincides with graph isomorphism. The PC algorithm will find the complete undirected graph as skeleton. **Theorem** Two graphs are Markov equivalent if and only if they have the same skeleton and the same immoralities (Verma and Pearl; Frydenburg).

In a complete graph there is no immorality (why?), so Markov equivalence coincides with graph isomorphism. The PC algorithm will find the complete undirected graph as skeleton.

Theorem Let \mathcal{G} be a causal graph on n > 2 variables. Then n - 1 single node interventions are necessary to identify \mathcal{G} in the worst case (complete graph).

No restriction on the number of nodes per intervention. Theorem Let G be a causal graph on n > 2 variables. Then

- [log₂(n)] + 1 multiple node interventions are sufficient to identify G.
- $\lfloor \log_2(n) \rfloor + 1$ multiple node interventions are necessary to identify \mathcal{G} in the worst case (complete graph).

Consider now a general, non-complete, graph with *n* variables. Assuming no restriction on the number of nodes per intervention, and starting with the Markov equivalence class of the graph, how many interventions are necessary? Consider now a general, non-complete, graph with *n* variables. Assuming no restriction on the number of nodes per intervention, and starting with the Markov equivalence class of the graph, how many interventions are necessary?

Theorem $\lceil \log_2(c) \rceil$ multi-node interventions are necessary, where *c* is the size of the largest clique of \mathcal{G} .

A *parametric intervention* (also called *soft i.*) does not change the structure of the causal graph, but modifies the conditional probabilities of a node, given its parents.

A *parametric intervention* (also called *soft i.*) does not change the structure of the causal graph, but modifies the conditional probabilities of a node, given its parents.

<ロト < 同ト < 回ト < 回ト = 三日

 $G = f_{\theta}(E, D, F) \implies G = f_{\theta'}(E, D, F)$

A *parametric intervention* (also called *soft i.*) does not change the structure of the causal graph, but modifies the conditional probabilities of a node, given its parents.

 $G = f_{\theta}(E, D, F) \implies G = f_{\theta'}(E, D, F)$

Structural (hard) interventions can be seen as a special case of parametric interventions.

For a graph with *n* nodes

- n-1 single-node parametric interventions are sufficient for identification
- n-1 single-node parametric interventions are necessary for identification in the worst case

Further topics

- Partial identification with "few" interventions; how much of the causal graph can be identified with a bound number of interventions?
- Multi-node interventions

One multi-node intervention

- Randomized algorithms: *O*(log log *n*) interventions are sufficient with high probability
- Bounds on the number of variables per intervention
- Bounds on the total number of interventions
- ...