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Introduction

Context: Causal Modeling in Epidemiology

The authors argue that:

- The practice of epidemiology requires asking causal questions, to understand:
- why patterns of disease and exposure do exist.

- how one can  intervene to change them.



Introduction

A  formal causal framework can help in:

- framing sharper scientific questions and making transparent the 
assumptions required to answer them. 

- distinguishing the process of causal inference from the process of 
statistical estimation.



Approach

To this aim,  the authors introduce a systematic approach to answer causal 
questions, that includes:

- Specification of :
- a causal model 
- the observed data
- the target causal quantity

- Assessment of identifiability
- Commitment to a statistical model and estimand
- Statistical estimation
- Interpretation



1. Specification of a Causal Model



Represent knowledge about the system to be studied using a causal model

In this paper, the authors focus on the structural causal model (SCM). 

Every SCM implies an associated Causal Graph. 
- Here,  directed acyclic graphs.

In which:
- W: baseline covariates, for instance age.
- A: exposure / treatment
- Y: outcome



Represent knowledge about the system to be studied using a causal model

To determine the value of a variable, we consider: 
- a  set of unmeasured background factors Uw, 

together with the variable’s parents.

Therefore, graphs encode knowledge about the possible 
causal relations among variables.

 Set of structural equations.



Represent knowledge about the system to be studied using a causal model

To determine the value of a variable, we consider: 
- a  set of unmeasured background factors Uw, 

together with the variable’s parents.

Therefore, graphs encode knowledge about the possible 
causal relations among variables.

Also, omission of a double-headed arrow between two 
variables assumes the variables do not share an 
unmeasured cause (background factors).

“Independence assumption”

 Set of structural equations.



Represent knowledge about the system to be studied using a causal model

The set of structural equations, together with any 
restrictions placed on the joint distribution of the 
error terms U, constitute a structural causal model.

 Set of structural equations.



Represent knowledge about the system to be studied using a causal model

The authors argue that: 

- the flexibility of a structural causal model allows us to avoid assumptions that are not 
supported.



2. Specification of the observed data and 
their link to the causal model



This involves specifying:

- what variables have been (or will be) measured.

- how these variables are generated by the system described by the causal model.

This provides a bridge between causal modeling and statistical estimation.

Specify how data are linked to the causal model



Selection and sampling can also be incorporated directly into the causal model.

- For example, a study may have measured (W, A,Y) on an independent random 
sample of n individuals from some target population.

- Or,  the study participants may have been sampled on the basis of exposure or 
outcome status.

Specify how data are linked to the causal model



Specify how data are linked to the causal model

This SCM can generate any possible distribution  
O = (W, A, Y). 

So, it places no restrictions on the joint 
distribution of the observed data, implying a 
nonparametric statistical model.



Specify how data are linked to the causal model

This SCM can generate any possible distribution  
O = (W, A, Y). 

So, it places no restrictions on the joint 
distribution of the observed data, implying a 
nonparametric statistical model.

This SCM, that assumes that R is independent 
from W, can generate only distributions 
O = (W, R, A, Y). 

This causal model implies a semiparametric 
statistical model.



3. Specification of the Target Causal 
Quantity



Translation of the scientific question into a formal causal quantity, defined as some 
parameter of the counterfactual distribution of data under some ideal intervention.

The following decisions are involved in this step:

1. Which variables to intervene on (single variable, multiple variables, …)

2. How to set the values of intervention variables: deterministically (on all 
population), dynamically (based on individual characteristics), stochastically

3. What summary of the counterfactual outcome distributions is of interest

4. What population is of interest: whole population, a subset of the population, a 
different population

Specify the target causal quantity



For example, a common counterfactual quantity of interest is the average treatment 
effect, defined as

Specify the target causal quantity

the difference in mean outcome that would have been observed had all 
members of a population received versus not received some treatment

With  Ya   denoting the counterfactual outcome under an intervention to set A = a, this 
quantity is expressed as



4. Assessment of Identifiability



Previous step: translation of the scientific question into a parameter of the 
unobserved counterfactual distribution of the data under some ideal intervention.

This step: understand whether the target quantity can be expressed as a parameter 
of the distribution of the observed data alone (an estimand), given the causal model 
and its link to the observed data.  I.e., identifiability

Assessment of identifiability



Example: choice of an adjustment set when estimating 
the average treatment effect (ATE).

If the pre-intervention covariates W block all unblocked 
backdoor paths from A to Y (backdoor criterion), then 
the counterfactual quantity

can be identified with the estimand

which can be computed from the data alone.

Assessment of identifiability

Causal model

Counterfactual distribution under 
ideal intervention



5. Commitment to a Statistical Model 
and Estimand



Specify the estimand and the statistical model. If knowledge is sufficient to identify 
the causal effect of interest: commit to the estimand.

In many cases, available knowledge and data are insufficient to claim identifiability. 
Possible steps:

- Understand if further research and data collection can help
- Make further assumptions in order to obtain identifiability, if  “current best” 

answers are needed

State the statistical estimation problem



In the latter case, the authors distinguish between two kinds of assumptions:

- Knowledge-based assumptions, which represent real knowledge
- Convenience-based assumptions, which do not represent real knowledge, but 

which, if true, would result in identifiability.

An estimation problem for “current best answers” consists in:

1. A statistical model implied by knowledge-based assumptions
2. An estimand that is equivalent to the target causal quantity under a minimum of 

convenience-based assumptions
3. A clear differentiation between convenience-based assumptions and real 

knowledge.

State the statistical estimation problem



The causal effect of A on Y 
can not be identified

State the statistical estimation problem

Model based on convenience assumptionsModel based on real knowledge

The causal effect of A on Y
can be identified



6. Statistical Estimation 



Statistical Estimation

Want to estimate the causal effect of A on Y
Knowledge is captured by a SCM
The analyst would like to use ATE

Under some convenience-based assumptions, we have identifiability, 
and the (1) holds

(2) can be used as an estimand to evaluate ATE
We need an estimator to obtain an estimation for ATE!



There is nothing causal about the resulting estimation problem, 

Estimation itself is a purely statistical problem
- The analyst is free to choose among several estimators
- e.g. regression of Y (outcome) on A (exposure), followed by averaging with 

respect to the empirical distribution of W (covariates)

Any estimator itself requires, as “ingredients,” estimators of specific components of 
the observed data distribution

- The true structural formula that generate the distribution is unknown

Estimators have important differences in their statistical properties, which can result 
in meaningful differences in performance

Statistical Estimation



7. Interpretation



Interpretation

Estimate is given for (2) 

How can we interpret (2)? 

As a purely statistical quantity…

As a causal quantity (i.e., ATE) under certain 
convenience-based assumptions that are explicit in the SCM 
(identifiability)

Interpretation can be further expanded by considering 
stronger assumptions by the investigator, that concerns 
conceivable and well-defined intervention in the real world



The decision of how far to move along this hierarchy can be made by the analyst based on the 
specific application at hand. 

The assumptions required are explicit and, when expressed using a causal graph, readily 
understandable by subject matter experts.

The debate continues as to whether causal questions and assumptions should be restricted to
quantities that can be tested and thereby refuted via theoretical experiment.

Interpretation



Conclusions



Epidemiologists continue to debate whether and how to integrate formal causal thinking 
into applied research.

Like any tool, the benefits of a causal inference framework depend on how it is used. 
Good epidemiologic practice requires to:

- Learn about how data are generated
- Be clear about the question to be addressed
- Design an analysis that answers this question using the available data
- Avoid or minimize assumptions not supported by knowledge
- Be transparent and skeptical when interpreting results

A formal causal framework, when used appropriately, provides an invaluable tool for 
integrating the following principles into applied epidemiology.

Conclusions


