

Causal Inference in Genetic Trio Studies

S. Bates, M. Sesia, C. Sabatti and E. Candès

Stanford University

Team: Daniele Maria Papetti, Alessandro Tundo, Matteo Vaghi

Causal Networks PhD Course 2021

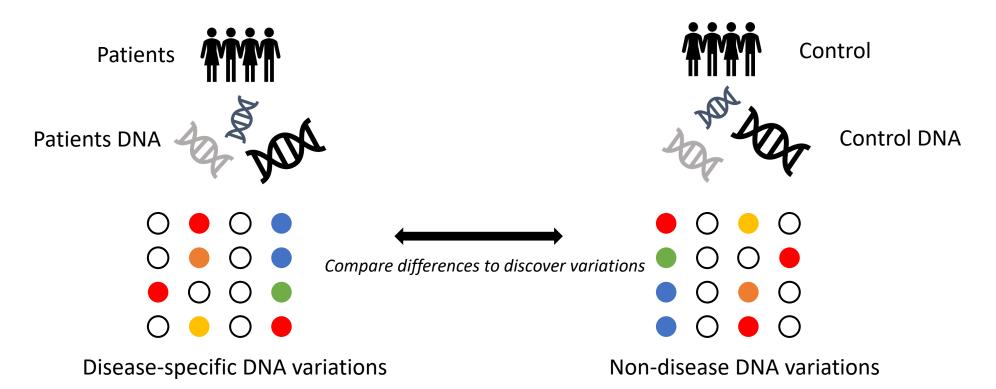
Outline

_		

- Background knowledge
- Main contribution
- Causality in trio design
- The Digital Twin Test (DTT): full-chromosome and local
- Case study: Autism Spectrum Disorder (ASD)
- Final remarks

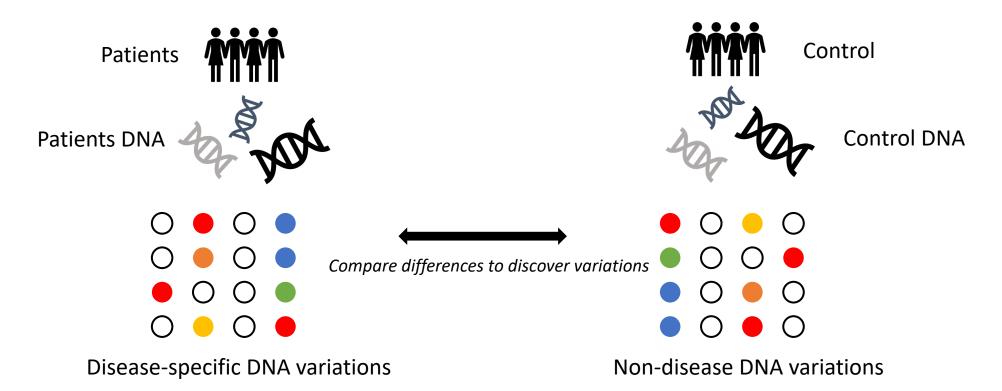
Genome-wide Association Studies (GWAS)

GWAS discover regions of the genome containing *variants* that causally affect a *phenotype*, that is, identifying meaningful relationships between *genotypes* and *outcomes* of interest



Genome-wide Association Studies (GWAS)

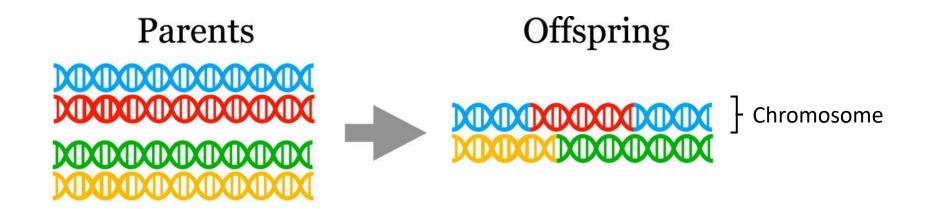
GWAS discover regions of the genome containing *variants* that causally affect a *phenotype*, that is, identifying meaningful relationships between *genotypes* and *outcomes* of interest



N.B.: all true statistical associations represent relevant biological activity, irrelevant but true associations can arise from the confounding effect of environmental conditions or other factors

Background Knowledge: Meiosis

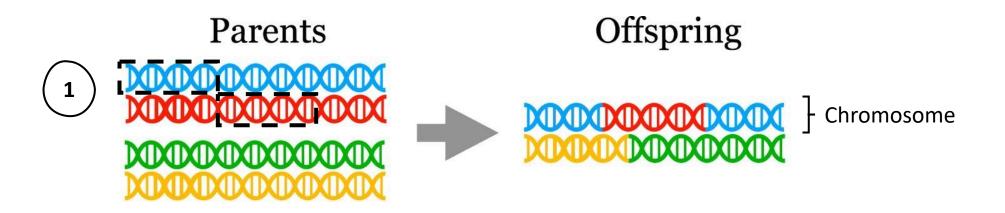
It is a special type of cell division in sexually-reproducing organisms



Background Knowledge: Meiosis

1

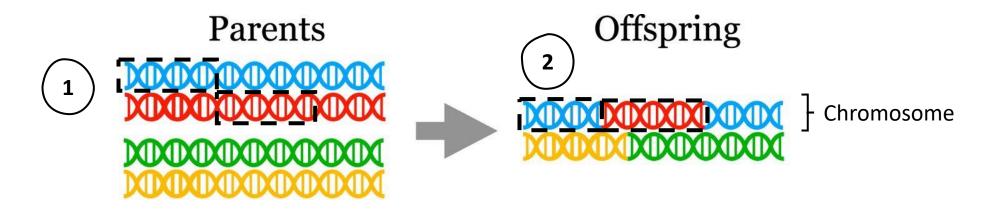
It is a special type of cell division in sexually-reproducing organisms



Prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over

Background Knowledge: Meiosis

It is a special type of cell division in sexually-reproducing organisms

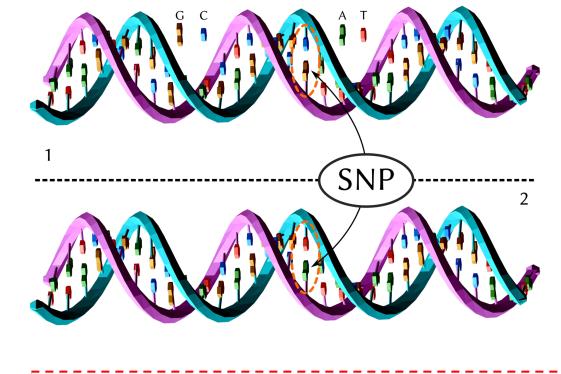


Prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over

Creates new combinations of code on each chromosome

Background Knowledge: Single-nucleotide Polymorphisms (SNPs)

SNPs are sites on the genome where 2 possible alleles occur in the population



Allele: one of the variants of a gene

N.B.: SNPs on the same chromosome are dependent

Haplotype: set of observed alleles for an entire strand

Establishing causality in the trio design

formalization of family studies immunity w.r.t. population structure

Establishing causality in the trio design

formalization of family studies immunity w.r.t. population structure

Idenfitifying distinct causal regions

localization of causal variants within windows in the full genome

Establishing causality in the trio design

formalization of family studies immunity w.r.t. population structure

Idenfitifying distinct causal regions

localization of causal variants within windows in the full genome

Testing multiple hypothesis

creation of independent p-values for distinct regions without conservative corrections

Establishing causality in the trio design

formalization of family studies immunity w.r.t. population structure

Idenfitifying distinct causal regions

localization of causal variants within windows in the full genome

Testing multiple hypothesis

creation of independent p-values for distinct regions without conservative corrections

Leveraging black-box models and subject matter knowledge

possibility of exploiting several multivariate models and domain information to increase power

Establishing causality in the trio design

formalization of family studies immunity w.r.t. population structure

Idenfitifying distinct causal regions

localization of causal variants within windows in the full genome

Testing multiple hypothesis

creation of independent p-values for distinct regions without conservative corrections

Leveraging black-box models and subject matter knowledge

possibility of exploiting several multivariate models and domain information to increase power

Digital Twin Test: a method for finding causal regions that are immune to confounding variables

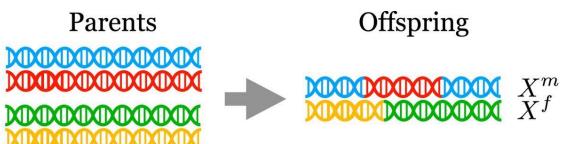
Notation

 M^{a}

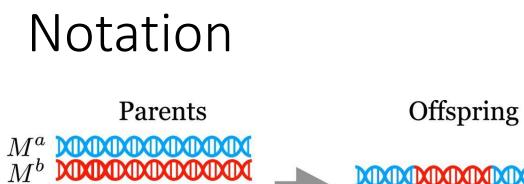
 M^{b}

 F^{a}

 F^{b}



Subjects: $(X_1^m, ..., X_p^m) \in \{0,1\}^{n \times p}, (X_1^f, ..., X_p^f) \in \{0,1\}^{n \times p};$ Mothers: $(M_1^a, ..., M_p^a) \in \{0,1\}^{n \times p}, (M_1^b, ..., M_p^b) \in \{0,1\}^{n \times p};$ Fathers: $(F_1^a, ..., F_p^a) \in \{0,1\}^{n \times p}, (F_1^b, ..., F_p^b) \in \{0,1\}^{n \times p}.$



 F^{a}

 F^{b}

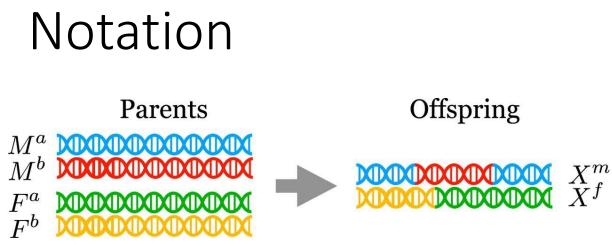
Subjects: $(X_1^m, ..., X_p^m) \in \{0, 1\}^{n \times p}, (X_1^f, ..., X_p^f) \in \{0, 1\}^{n \times p};$ Mothers: $(M_1^a, ..., M_p^a) \in \{0, 1\}^{n \times p}, (M_1^b, ..., M_p^b) \in \{0, 1\}^{n \times p};$ $X^m_{\mathfrak{c}}$ Fathers: $(F_1^a, ..., F_p^a) \in \{0,1\}^{n \times p}, (F_1^b, ..., F_p^b) \in \{0,1\}^{n \times p}.$

Offspring *genotypes* matrix: $X = X^m + X^f$

 X^{f}

 X_j : *j*-th column of X representing the *j*-th genome site $X^{(i)}$: *i*-th row of X representing the subject *i*

7

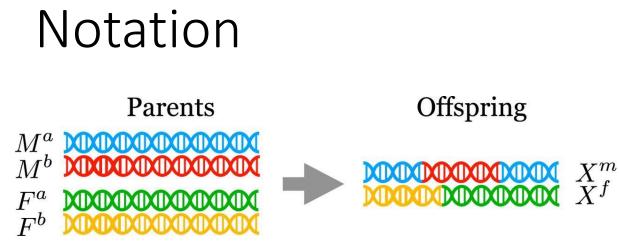


Subjects: $(X_1^m, ..., X_p^m) \in \{0,1\}^{n \times p}, (X_1^f, ..., X_p^f) \in \{0,1\}^{n \times p};$ Mothers: $(M_1^a, ..., M_p^a) \in \{0,1\}^{n \times p}, (M_1^b, ..., M_p^b) \in \{0,1\}^{n \times p};$ Fathers: $(F_1^a, ..., F_p^a) \in \{0,1\}^{n \times p}, (F_1^b, ..., F_p^b) \in \{0,1\}^{n \times p}.$

Offspring *genotypes* matrix: $X = X^m + X^f$

 X_j : *j*-th column of *X* representing the *j*-th genome site $X^{(i)}$: *i*-th row of *X* representing the subject *i*

Ancestral *haplotypes*: $A = (M^a, M^b, F^a, F^b)$



Subjects: $(X_1^m, ..., X_p^m) \in \{0,1\}^{n \times p}, (X_1^f, ..., X_p^f) \in \{0,1\}^{n \times p};$ Mothers: $(M_1^a, ..., M_p^a) \in \{0,1\}^{n \times p}, (M_1^b, ..., M_p^b) \in \{0,1\}^{n \times p};$ Fathers: $(F_1^a, ..., F_p^a) \in \{0,1\}^{n \times p}, (F_1^b, ..., F_p^b) \in \{0,1\}^{n \times p}.$

Offspring *genotypes* matrix: $X = X^m + X^f$

 X_j : *j*-th column of *X* representing the *j*-th genome site $X^{(i)}$: *i*-th row of *X* representing the subject *i*

Ancestral *haplotypes*: $A = (M^a, M^b, F^a, F^b)$

SNP X_i^m : single-nucleotide polymorphism inherited either from M_i^a or M_i^b with equal probability

Main ideas

1

gene inheritance process can be seen as a high-dimensional randomized experiment

Main ideas

) gene inheritance process can be seen as a *high-dimensional randomized experiment*

conditioning on the parental *haplotypes* removes external possible *confounders* from the meiosis process

Main ideas

gene inheritance process can be seen as a *high-dimensional randomized experiment*

conditioning on the parental haplotypes removes external possible confounders from the meiosis process

 $H_0: X_j \perp Y \mid A$ **Null hypothesis** that a *SNP* X_j is independent of the response *Y* after conditioning on the parental haplotypes *A*

Main ideas

gene inheritance process can be seen as a *high-dimensional randomized experiment*

conditioning on the parental *haplotypes* removes external possible *confounders* from the meiosis process

 $H_0: X_j \perp Y \mid A$ **Null hypothesis** that a *SNP* X_j is independent of the response *Y* after conditioning on the parental haplotypes *A*

External confounder $X \mid (A, Z = z) \stackrel{\text{def}}{=} X \mid (A, Z = z') \text{ for any } z \text{ and } z'$

Main ideas

gene inheritance process can be seen as a *high-dimensional randomized experiment*

conditioning on the parental *haplotypes* removes external possible *confounders* from the meiosis process

 $H_0: X_j \perp Y \mid A$ **Null hypothesis** that a *SNP* X_j is independent of the response *Y* after conditioning on the parental haplotypes *A*

External confounder $X \mid (A, Z = z) \stackrel{\text{def}}{=} X \mid (A, Z = z') \text{ for any } z \text{ and } z'$ \downarrow $Z \perp X_j \mid A$ The confounder Z is independent of the SNP j given A

Main ideas

gene inheritance process can be seen as a *high-dimensional randomized experiment*

conditioning on the parental *haplotypes* removes external possible *confounders* from the meiosis process

 $H_0: X_j \perp Y \mid A$ **Null hypothesis** that a *SNP* X_j is independent of the response *Y* after conditioning on the parental haplotypes *A*

External confounder $X \mid (A, Z = z) \stackrel{\text{def}}{=} X \mid (A, Z = z') \text{ for any } z \text{ and } z'$ $\downarrow \downarrow$ $Z \amalg X_j \mid A$ The confounder Z is independent of the SNP j given A $\downarrow \downarrow$ $Y \not \perp X_j \mid A \implies Y \not \perp X_j \mid (A, Z)$ If X and Y are associated after conditioning on A, the association is not due to confounder Z

Let Z be an external confounder, then any valid test of the null hyphothetis H_0 is also a valid test of the stronger null hypothesis that accounts for the confounder Z:

 $H'_0: Y \perp X_j \mid (A, Z)$

Let Z be an external confounder, then any valid test of the null hyphothetis H_0 is also a valid test of the stronger null hypothesis that accounts for the confounder Z:

$H'_0:Y \perp X_j \mid (A,Z)$

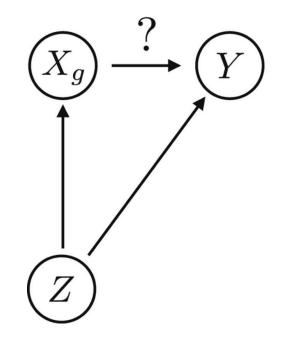
Note 1: if we reject H_0 , the dependence between X_i and Y cannot be due to an external confounder Z

Let Z be an external confounder, then any valid test of the null hyphothetis H_0 is also a valid test of the stronger null hypothesis that accounts for the confounder Z:

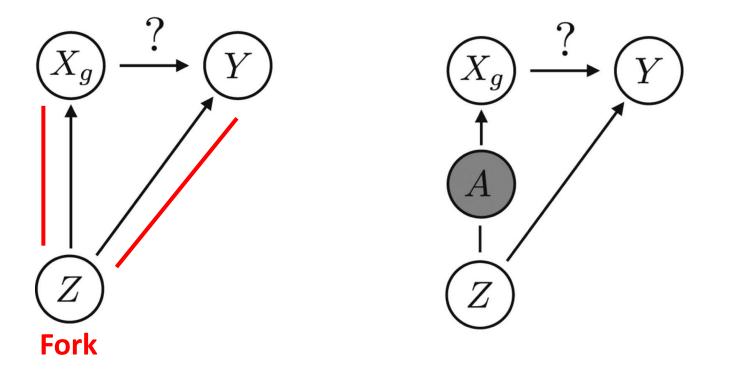
$H'_0: Y \perp X_j \mid (A, Z)$

Note 1: if we reject H_0 , the dependence between X_i and Y cannot be due to an external confounder Z

Note 2: if we reject H_0 , it does not yet imply that X_j is the causal *SNP*, but it implies that there is an association on the chromosome that is not the result of external confounding



Z is an external confounder that can create an association between X_g and Y even if there is no causal effect (due to the fork structure)



Structural Equation Model M: $(A, Z) = f_{AZ}(N_{AZ}),$ $X = f_X(A, N_X),$ $Y = f_Y(X, Z, N_Y)$ f_{AZ}, f_X, f_Y are fixed functions N_{AZ}, N_X, N_Y are the exogenous variables

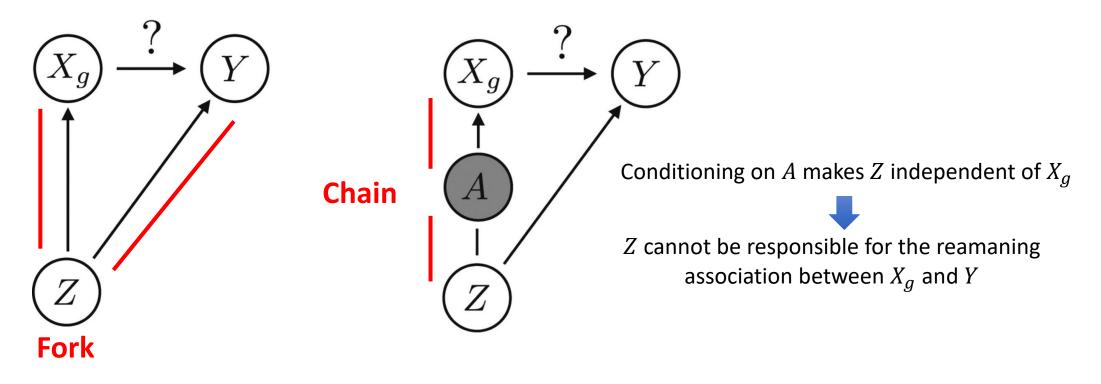
10



Structural Equation Model M: $(A, Z) = f_{AZ}(N_{AZ}), \qquad X = f_X(A, N_X), \qquad Y = f_Y(X, Z, N_Y)$

 f_{AZ} , f_X , f_Y are fixed functions

 N_{AZ} , N_X , N_Y are the exogenous variables



Structural Equation Model M: $(A, Z) = f_{AZ}(N_{AZ})$,

 f_{AZ} , f_X , f_Y are fixed functions

 $X = f_X(A, N_X), \qquad Y = f_Y(X, Z, N_Y)$

 N_{AZ} , N_X , N_Y are the exogenous variables

Discussion of Possible Confounders

(virtually) all *confounders* in genetic studies do not affect the transmission of the genetic information

thus *external confounders* which are <u>correctly accounted</u> for in the trio design

Discussion of Possible Confounders

Examples of external confounders

Environmental conditions after conception

Population structure, ethnicity, location

Cryptic relatedness

Family effects, altruistic genes

Assortative mating

Discussion of Possible Confounders

Examples of external confounders

Environmental conditions after conception

Population structure, ethnicity, location

Cryptic relatedness

Family effects, altruistic genes

Assortative mating

Examples of not external confounders

Germline mutations



The Randomness in Inheritance

The process by which subject's two haplotypes arise from the parental haplotypes is modelled as a **hidden Markov model (HMM**)

The Randomness in Inheritance

The process by which subject's two haplotypes arise from the parental haplotypes is modelled as a **hidden Markov model (HMM**)

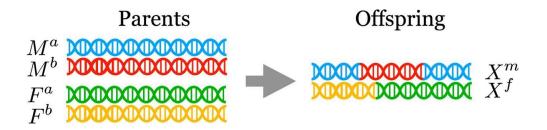


Model for a single observation on one chromosome (e.g.: X^m)

 $X_j^m = \begin{cases} a \text{ if site } j \text{ is copied from } M^a \\ b \text{ if site } j \text{ is copied from } M^b \end{cases}$

The Randomness in Inheritance

The process by which subject's two haplotypes arise from the parental haplotypes is modelled as a **hidden Markov model (HMM**)



Model for a single observation on one chromosome (e.g.: X^m)

$$X_j^m = \begin{cases} a \text{ if site } j \text{ is copied from } M^a \\ b \text{ if site } j \text{ is copied from } M^b \end{cases} \qquad P(X_1^m = a) = \frac{1}{2} \\ P(X_j^m = x_{j-1}^m | X_{1:(j-1)}^m = x_{1:(j-1)}^m) = \frac{1}{2} (1 + e^{-2d_j}) \end{cases}$$

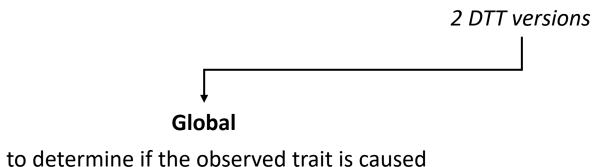
 d_j is the genetic distance between SNPs j - 1 and j

HMM describes the distribution of X^m given M^a and M^b (F^a , F^b)

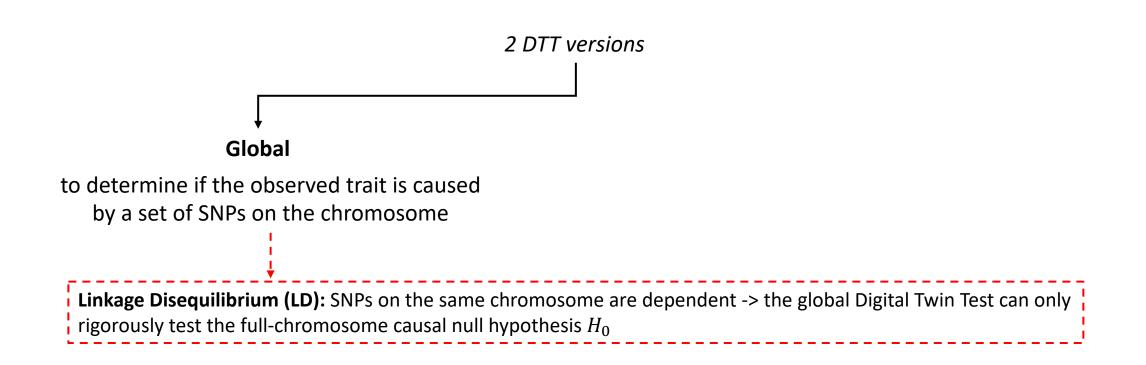
Goals

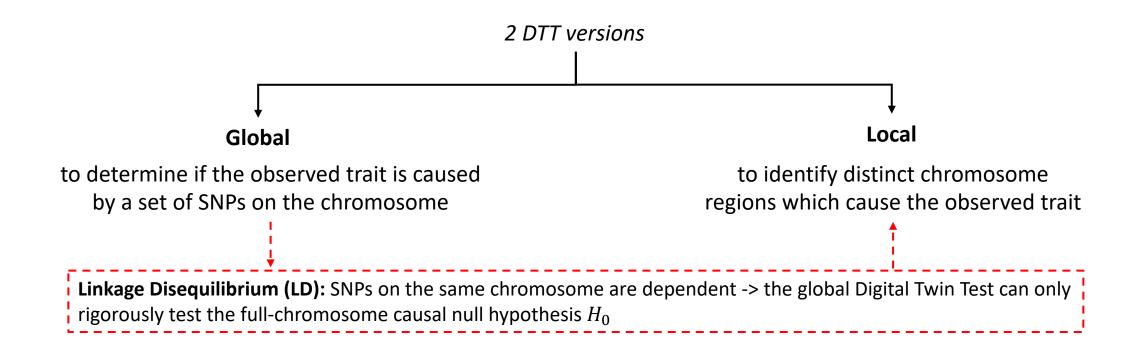
5 to determine whether a observed trait has any genetic basis, that is, to test the $H_0: X_j \perp Y \mid A$

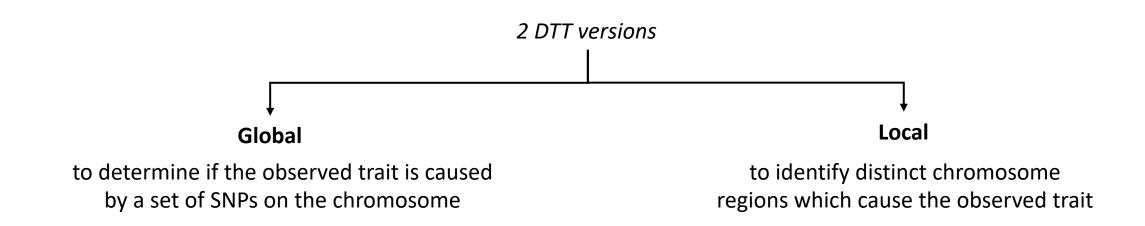
to find regions of the genome that contain causal variants



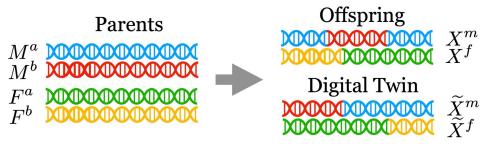
to determine if the observed trait is caused by a set of SNPs on the chromosome



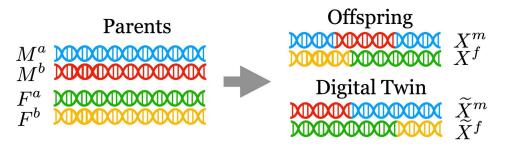




N.B.: the DTT is a natural randomization test in a trio design because it replicates the random mechanism generating the data!



 $H_0: X_C \amalg Y \mid A$



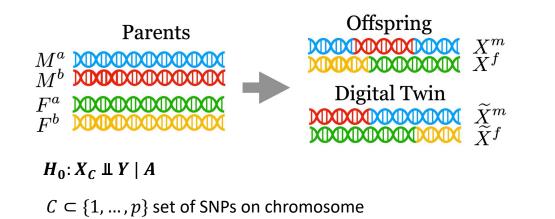
Compute $t^* = T((X_{-C}, X_C), Y)$

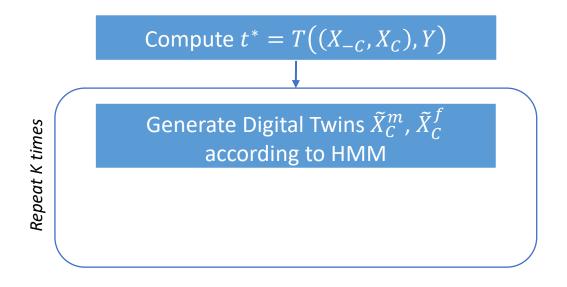
 $H_0 {:} X_C \mathbin{\amalg} Y \mid A$

 $C \subset \{1, ..., p\}$ set of SNPs on chromosome

 X_C denotes $(X_j)_{j \in C}$

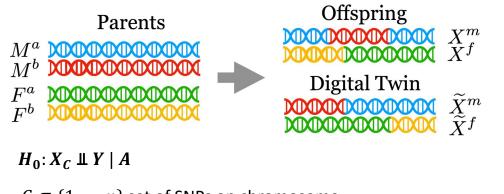
 X_{-C} denotes $(X_j)_{j \notin C}$

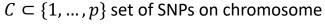




 X_C denotes $(X_j)_{j \in C}$

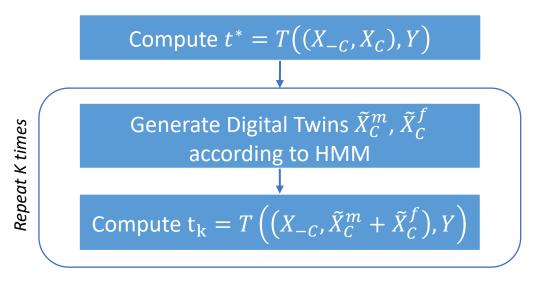
 X_{-C} denotes $(X_j)_{j \notin C}$



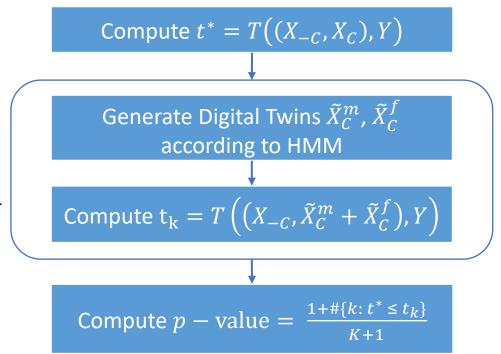


 X_C denotes $(X_j)_{j \in C}$

 X_{-C} denotes $(X_j)_{j \notin C}$







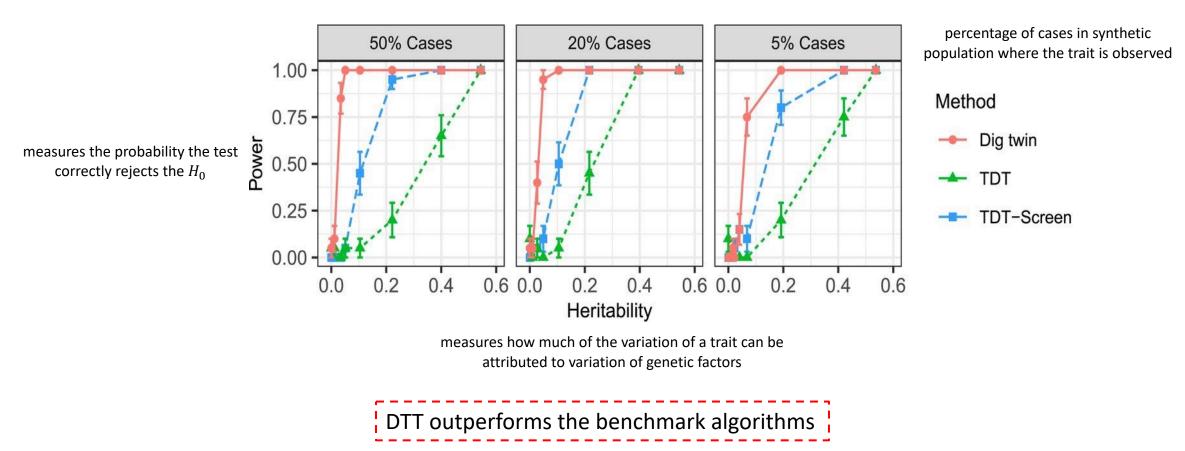
The algorithm returns a *p*-value, and the corresponding level α hypothesis test rejects when this *p*-value is less than α .

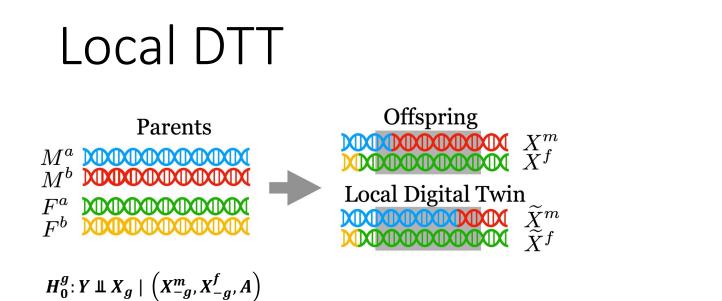
- 1. Parent-offspring generated by real haplotypes from UK Biobank dataset
- 2. Synthetic population of 2500 parent-offspring trios

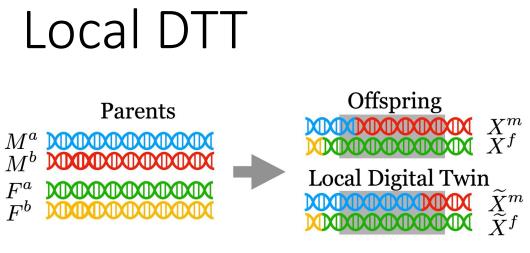
- 1. Parent-offspring generated by real haplotypes from UK Biobank dataset
- 2. Synthetic population of 2500 parent-offspring trios
- 3. Logistic regression model to generate parent-offspring trait

- 1. Parent-offspring generated by real haplotypes from UK Biobank dataset
- 2. Synthetic population of 2500 parent-offspring trios
- 3. Logistic regression model to generate parent-offspring trait
- 4. Confidence level $\alpha = 0.05$

- 1. Parent-offspring generated by real haplotypes from UK Biobank dataset
- 2. Synthetic population of 2500 parent-offspring trios
- 3. Logistic regression model to generate parent-offspring trait
- 4. Confidence level $\alpha = 0.05$
- 5. Comparison with TDT / TDT-Screen algorithms







Compute
$$t^* = T((X_{-g}, X_g), Y)$$

 $H_0^g: Y \perp X_g \mid \left(X_{-g}^m, X_{-g}^f, A\right)$

G is a partition of $\{1, \dots, p\}, g \in G$ is group of SNPs

 X_g denotes $(X_j)_{j \in g}$ X_{-g} denotes $(X_j)_{j \notin g}$

Local DTT Offspring Parents M^b Local Digital Twin F^{a} F^b $H_0^g: Y \perp X_g \mid \left(X_{-g}^m, X_{-g}^f, A\right)$

 $\widetilde{\widetilde{X}}^m_{\widetilde{X}^f}$

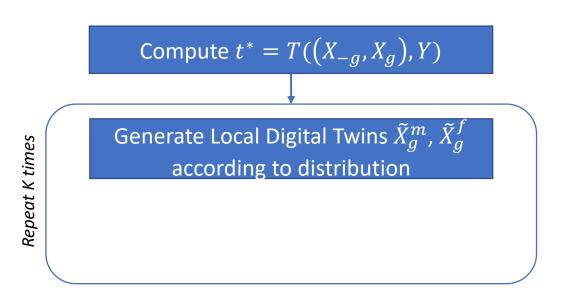
G is a partition of $\{1, ..., p\}, g \in G$ is group of SNPs

$$X_g$$
 denotes $(X_j)_{j \in g}$

$$X_{-g}$$
 denotes $(X_j)_{j \notin g}$

 $T(\cdot)$ can be any statistic

Sampling distribution of Local Digital Twins $(X_g^m, X_g^f) | (X_{-g}^m, X_{-g}^f, A)$



Local DTT Offspring Parents M^b **MODERATION** Local Digital Twin F^{a} F^b $H_0^g: Y \perp X_g \mid \left(X_{-g}^m, X_{-g}^f, A\right)$

 \overline{X}^{f}

 $\widetilde{\widetilde{X}}^m_{\widetilde{X}^f}$

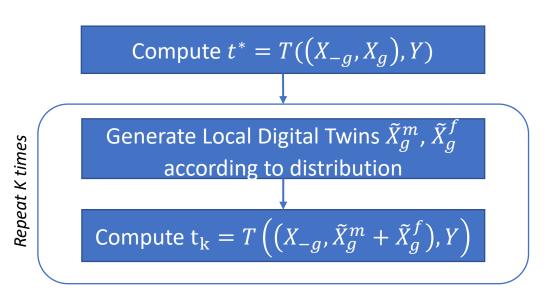
G is a partition of $\{1, ..., p\}, g \in G$ is group of SNPs

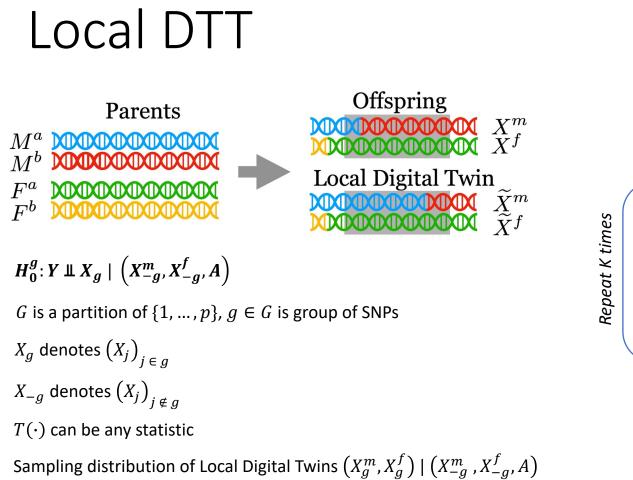
$$X_g$$
 denotes $(X_j)_{j \in \mathcal{X}}$

 X_{-g} denotes $(X_j)_{j \notin g}$

 $T(\cdot)$ can be any statistic

Sampling distribution of Local Digital Twins $(X_g^m, X_g^f) \mid (X_{-g}^m, X_{-g}^f, A)$





Compute $t^* = T((X_{-g}, X_g), Y)$ Generate Local Digital Twins $\tilde{X}_g^m, \tilde{X}_g^f$ according to distribution Compute $t_k = T((X_{-g}, \tilde{X}_g^m + \tilde{X}_g^f), Y)$ Compute $p - value = \frac{1 + \#\{k: t^* \le t_k\}}{K+1}$

The algorithm returns *p*-values that require statistical corrections (e.g., Bonferroni or BH) to ensure independency

(a slightly modification of the algorithm leads to independent p-values)

Experimental setting

1. Synthetic population of 10,000 parent-offspring trios

- 1. Synthetic population of 10,000 parent-offspring trios
- 2. Logistic regression model to generate parent-offspring trait

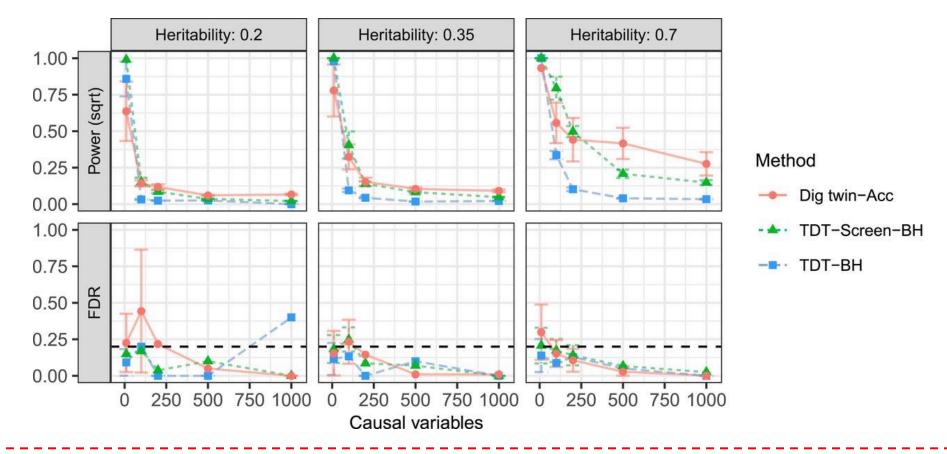
- 1. Synthetic population of 10,000 parent-offspring trios
- 2. Logistic regression model to generate parent-offspring trait
- 3. FDR nominal level $\alpha = 0.2$

- 1. Synthetic population of 10,000 parent-offspring trios
- 2. Logistic regression model to generate parent-offspring trait
- 3. FDR nominal level $\alpha = 0.2$
- 4. 591, 513 SNPs on chromosomes 1 22, split into 532 pre-determined groups of size \sim 5 Mb

- 1. Synthetic population of 10,000 parent-offspring trios
- 2. Logistic regression model to generate parent-offspring trait
- 3. FDR nominal level $\alpha = 0.2$
- 4. 591, 513 SNPs on chromosomes 1 22, split into 532 pre-determined groups of size \sim 5 Mb
- 5. DTT on each group and accumulation test to produce the set of discoveries

- 1. Synthetic population of 10,000 parent-offspring trios
- 2. Logistic regression model to generate parent-offspring trait
- 3. FDR nominal level $\alpha = 0.2$
- 4. 591, 513 SNPs on chromosomes 1 22, split into 532 pre-determined groups of size \sim 5 Mb
- 5. DTT on each group and accumulation test to produce the set of discoveries
- 6. Comparison with TDT / TDT-Screen algorithms applying statistical corrections to *p*-values

- 1. Synthetic population of 10,000 parent-offspring trios
- 2. Logistic regression model to generate parent-offspring trait
- 3. FDR nominal level $\alpha = 0.2$
- 4. 591, 513 SNPs on chromosomes 1 22, split into 532 pre-determined groups of size \sim 5 Mb
- 5. DTT on each group and accumulation test to produce the set of discoveries
- 6. Comparison with TDT / TDT-Screen algorithms applying statistical corrections to *p*-values
- 7. Benchmark algorithms do not have formal guarantees for localization due to full-chromosome null test



TDT / TDT-Screen lead to spurious discoveries because they cannot give reliable information about SNPs locality due to intra-chromosome SNPs depencency (linkage disequilibrium)

Case Study: Autism Spectrum Disorder (ASD)

- 1. Local Digital Twin Test applied to a dataset of 2,565 parent-child trios to study whether the intergenic variant *rs910805* on chromosome 20 can be the cause of ASD
- 2. They applied Local DTT to groups centered around SNP *rs910805* of size ranging from 1Mb to full-chromosome
- 3. Significance level $\alpha = 0.05$

Case Study: Autism Spectrum Disorder (ASD)

Resolution	1 Mb	2 Mb	3 Mb	4 Mb	5 Mb	full-chromosome
<i>p</i> -value	0.237	0.146	0.100	0.0168	0.0244	0.011

Results show that H₀ cannot be rejected at finer resolutions but is rejected for larger groups

Case Study: Autism Spectrum Disorder (ASD)

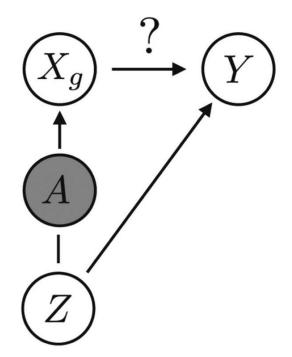
Resolution	1 Mb	2 Mb	3 Mb	4 Mb	5 Mb	full-chromosome
<i>p</i> -value	0.237	0.146	0.100	0.0168	0.0244	0.011

Results show that H₀ cannot be rejected at finer resolutions but is rejected for larger groups

Observed association between the vicinity of SNP *rs910805* and ASD is not due to external confounders

Final Remarks

DTT aims to establish if a genomic region contains causal SNPs



Findings

- 1. the haplotypes *A* block the external confounders
- 2. given *A* we extactly know the distribution of *X*
- 3. given such causal model if A satisfy the backdoor criterion w.r.t. X and Y, $H_0: X_g \perp Y \mid A \text{ only detects causality}$

Limits

- 1. computational phased haplotypes used by DTT can be subject to phased errors
- 2. in some case it might be harder to collect parent-offspring data than unrelated individuals

Thank you!

Daniele Maria Papetti, Alessandro Tundo, Matteo Vaghi