Collider scope: when selection bias can substantially influence observed associations

Marcus R Munafò , Kate Tilling, Amy E Taylor, David M Evans, and George Davey Smith

Presentation by
Lucrezia Patruno, Manuel Vimercati, Francesco Craighero

Paper Focus

Large scale cross sectional and cohort studies aim at finding associations between variables such as genetic/environmental factors (G/E) and a specific outcome (O).

Samples in association studies must be representative of the intended study population.

However, the same variables may also contribute in the predisposition to be part of the sample ($\mathrm{S}=1$). This phenomenon is called selection bias and happens for different reasons:

- Unrepresentativeness of the population at inception.
- Attrition from the study (also influenced by the same variables).
- A subset of the original sample is selected for further analysis.

Paper Focus

Selection bias results in collider bias.
General opinion: collider bias has an effect on
(1) representativeness
(2) prevalence estimates,
but is negligible in association studies.

Paper Focus

Selection bias results in collider bias.
General opinion: collider bias has an effect on
(1) representativeness
(2) prevalence estimates,
but is negligible in association studies.
Claim of the authors: collider bias may result in the identification of spurious/biased associations.

Study the collider bias with simulations

Design the Simulation

Scenario: simulated allele score ($\boldsymbol{A S}$), phenotype (\boldsymbol{P}) and outcome (\boldsymbol{O}):

- \boldsymbol{P} and \boldsymbol{O} influence selection (\boldsymbol{S}) into the study.
- NO association between $\boldsymbol{A S}$ and \boldsymbol{O} in the population.
- Population of 9,000,000 individuals.
- Selection \boldsymbol{S} of of 500,000 individuals.

Settings Parameters

Each setting is identified by three parameters, i.e. $\mathbf{O R}, \boldsymbol{r}, \boldsymbol{C}$:

- Association between P/O and S constrained by the odds ratio (OR) for missingness:

$$
O R=\frac{P(S=0 \mid P=p+\sigma)}{P(S=0 \mid P=p)}=1.2,1.5,1.8
$$

where σ is the standard deviation.

Settings Parameters

Each setting is identified by three parameters, i.e. $\mathbf{O R}, \boldsymbol{r}, \boldsymbol{C}$:

- Association between P/O and S constrained by the odds ratio (OR) for missingness:

$$
O R=\frac{P(S=0 \mid P=p+\sigma)}{P(S=0 \mid P=p)}=1.2,1.5,1.8
$$

where σ is the standard deviation.

- The correlation \boldsymbol{r} between AS and P :

$$
\boldsymbol{r}(A S, P)=0.05,0.1,0.15,0.20,0.30
$$

Correlation was set to mimic the real values found in a real dataset of the UK biobank.

Settings Parameters

Each setting is identified by three parameters, i.e. $\mathbf{O R}, \boldsymbol{r}, \boldsymbol{C}$:

- Association between P/O and S constrained by the odds ratio (OR) for missingness:

$$
O R=\frac{P(S=0 \mid P=p+\sigma)}{P(S=0 \mid P=p)}=1.2,1.5,1.8
$$

where σ is the standard deviation.

- The correlation \boldsymbol{r} between AS and P :

$$
\boldsymbol{r}(A S, P)=0.05,0.1,0.15,0.20,0.30
$$

Correlation was set to mimic the real values found in a real dataset of the UK biobank.

- Causal effect of P on O in the original population:
- Null association, regression coefficient $\boldsymbol{C}=0 .($ Setting 1$)$
- Positive association, $\boldsymbol{C}=0.1$. (Setting 2)

Final inference and Experiment Recap

Check if the association between $\boldsymbol{A S}$ and \boldsymbol{O} exists in both settings,
i.e. if the correlation coefficient $\boldsymbol{C}^{A S, O}$ is not null in the selected sample with 500,000 elements.

Experimental Settings

SETTING 1: true null association ($C^{P, 0}=0$)
 SETTING 1: true null association

Two trends:

- As r increases, the number of Cls containing 0 decreases.
- As OR increases, the number of Cls containing 0 decreases

For high values of both OR and \mathbf{r} (1.8 and [.2, .3] respectively), a spurious association is always found.

SETIING 2: c ${ }^{p, 0}=0.1$

The same behaviour is observed also when an association actually exists in the original whole population.

- As \mathbf{r} increases, the number of Cls containing 0 decreases.
- As OR increases, the number of Cls containing 0 decreases

Real-word example: ALSPAC and ARIES

ALPSAC [1]: cohort of mothers-children pairs.
ARIES [2]: subset of ALPSAC. Mothers-children were selected based on the availability of DNA samples (2 for the mother).

Three variables in the study: genetic risk score, smoking (ever, never) and maternal education.

$$
C^{G, M}
$$

Association	OR	pval
\mathbf{r}	1.07	0.003
$\mathbf{O R}^{\mathbf{S , A}}$	0.59	<0.001
$\mathbf{O R}^{\mathrm{M}, \mathbf{A}}$	1.86	<0.001
$\boldsymbol{C}^{\mathrm{S,M}}$ (ALSPAC)	0.45	<0.001
$\boldsymbol{C}^{\mathrm{S,M}}$ (ARIES)	0.61	0.003
$\boldsymbol{C}^{\mathrm{G}, \mathrm{M}}$ (ALSPAC)	1.01	0.74
$\boldsymbol{C}^{\mathbf{G , M}}$ (ARIES)	1.20	$\mathbf{0 . 0 3}$

Other cases with collider bias

- P, O associated by environmental factors U
- $\mathrm{P}=$ "smoking", $\mathrm{O}=$ "Alzheimer", $\mathrm{P} \rightarrow \mathrm{S}=$ "mortality"

B

- P,O association: biased
- SNP, O association: unbiased

- SNPs directly cause O
- SNP, O association: biased
- P, O association in C, E: biased

D

E
SNP

Conclusions

Collider Bias

Real-world scenarios

Selection/attrition can induce misleading associations

Representativeness

Studies with polygenic scores are most at risk of producing misleading results

- It is important having representative cohorts
- Baseline data availability to investigate selection

Thank

You

