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Motivating example
Phone company wants to

- identify customers likely to discontinue their services
- offer discount to most promising group

Response types:

- Compliers renew subscription if encouraged, otherwise they do not
- Always takers renew subscription anyway
- Never takers do not renew subscription anyway
- Defiers do not renew subscription if encouraged, otherwise they do

- Reminded they pay for a service they no longer want
- Feel that discount cheapens service
- Are annoyed by the discount claim process



Expected benefit
- Complier: 140$ (profit from renewal) - 40$ (discount) = 100$
- Always taker: - 40$ (discount) - 20$ (discount offering triggers need of 

additional discounts in the future) = - 60$
- Never taker: 0$ (no profit and no discount claimed)

- Defier: -140$ (customer lost)

Expected benefit for characteristic c:

100 P(complier | c) - 60 P(always taker | c) - 0 P(never taker | c) - 140 P(defier | c)

Defined in counterfactual terms! Example: to distinguish an always taker from a 
complier, we would have to observe response both with and without discount.



Unit Selection Problem
Aim: identifying individuals most likely to show a desired response pattern if 
encouraged, and conversely if not.

More precisely: finding the characteristics c that maximize the percentage of 
compliers while minimizing the percentage of other classes.

Find c that maximizes: f(β, γ, θ, δ) = β P(complier | c) + 
             γ P(always-taker | c) + 
             θ P(never-taker | c) + 
             δ P(defier | c)



State of the art: Observational

Machine Learning models can be trained on past observational data:
● Customer churn models
● Click-through-rate models

This approach does not answer causal questions:
● Did the discount cause retention?
● Did the advertisement cause the click?

P(Y=y|c, X = x)



State of the art:
Randomized Controlled Trial

● Users randomly split in control and treatment
● Treatment group receives encouragement, control group doesn’t

RCT can answer causal questions, but cannot answer counterfactual 
questions

P(Y = y|c, do(X = x))



Proposed approach:
Counterfactual formulation

The desired response pattern is not observed directly but rather is 
defined counterfactually in terms of what the individual would do under 
hypothetical unrealized conditions.

P(Y(x)  = y| Y(x’) = y’ , c)

β P(complier | c) + 
γ P(always-taker | c) + 
θ P(never-taker | c) + 
δ P(defier | c)

β P(R(a) = r, R(a’) = r’ | c) + 
γ P(R(a) = r, R(a’) = r | c) + 
θ P(R(a) = r’, R(a’) = r’ | c) + 
δ P(R(a) = r’, R(a’) = r | c)

f(β, γ, θ, δ) = =



Upper and lower bounds are given for the objective function f(β, γ, θ, δ), depending only on experimental 
and observational data. The bounds do not require specifying a Structural Causal Model.

In general, without a SCM, f(β, γ, θ, δ) is not identifiable. It is identifiable under additional assumptions:

● Monotonicity: no defiers
● Gain equality, β + δ = γ + θ: benefit(complier) + benefit(defier) = benefit(always taker) + 

benefit(never taker)

Under monotonicity or gain equality, f(β, γ, θ, δ) takes the same form:

f(β, γ, θ, δ) = (β − θ)P(y | c, do(x)) + (γ − β) P(y | c, do(x’))

Experiments show that the bound midpoint can be effectively used when f(β, γ, θ, δ) is not identifiable

    

Main results



Bounds
The objective function f(β, γ, θ, δ) is bounded as 

follows:

where



Churn 
Management 
Experiment

0.27

Problem

Predicting which customers are about to 

churn, but are likely to change their minds if 

enticed toward retention.

(Unknown) distribution of response types

Causal graph for the customer selection model.

Gains 1 -1 0 -1

0.22

Benefit



Randomized Controlled Trial
Randomly select 700 customers from each group and offer the special renewal deal 
to 350 customers in each group.

RCT data

Observational data
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The heuristic approach comprises of two objective functions,  respectively based on controlled 
experiment and weighted controlled experiment.

The counterfactual objective function  is the proposed approach: midpoint of bounds is used.

Average Treatment Effect:  P(r|c, do(a)) - P(r|c, do(a’))

Assuming monotonicity: P(r|c, do(a)) - 2⋅P(r|c, do(a’))

f(1, -1, 0, 1) = 1⋅P(r
a 

,r’
a’

|c) + 

(-1)⋅P(r
a 

,r
a’

|c) + 

0⋅P(r’
a
, r’

a’
|c) + 

(-1)⋅P(r’
a 

,r
a’

|c) 

✓Bound midpoint



Advertisement 
Recommendations 
Experiment

Problem
Identifying users who are likely to click on a 

given advertisement if (and only if) the 

advertisement is placed in top position

(Unknown) distribution of response types

Causal graph for the user selection model.
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The heuristic approach comprises of two objective functions, respectively based on 
controlled experiment and observational data.

The counterfactual objective function is the proposed approach.

Naive observational:  P(r|c, a) - P(r|c, a’)

Average Treatment Effect:  P(r|c, do(a)) - P(r|c, do(a’))
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Benefit comparison
The benefit of group 1 letting δ vary, and 
keeping β, γ, and θ fixed, as calculated from 
different objective functions.

The proposed objective is the closest to the 
real one. 

The real benefit lies between the bounds.



Exploiting Causal Graphs 
                                            Derived bounds require

● Observational data: 

○ P(r, a | c),  P(r’, a | c), …

○ P(r | c)
Spurious path

If we have a causal graph and observational data 

P(R, A, Q) and a set of variables satisfying the 

backdoor criterion, we don’t need an experiment.

 

● Experimental data:

○ P(r | c, do(a) )

○ P(r | c, do(a’) )

Backdoor adjustment formula



Conclusions

● Unit Selection Problem properly 

treated in counterfactual setting

● Counterfactual objective f(β, γ, θ, δ) 

● Identifiable bounds for f(β, γ, θ, δ): 

need only observational and 

experimental data

● Identifiable objective with additional 

assumptions
● Bound midpoint effective in practical 

settings

● Bounds do not need a causal graph
● If a causal graph is known and 

backdoor criterion can be applied, 

observational data suffice



Questions?


