Causal Networks Project Exam DYNOTEARS: Structure Learning from Time-Series Data

Óscar Espitia, Rishabh Upadhyay

December 3, 2021

Introduction 1

Time-series data?
A collection of observations that we measure repeatedly over time

DYNOTEARS is evaluated in different contexts, including stock market data

Introduction 2

Scope

\hookrightarrow DYNOTEARS is focused on the problem of learning dynamic structures from time-series data.
\hookrightarrow Specifically, it's an approach for learning Bayesian networks
Motivation
\hookrightarrow BN are graphical models that represent a set of variables and their conditional dependencies via Directed Acyclic graphs (DAGs)
\hookrightarrow Interpretable/explainable
\hookrightarrow Allow us to introduce causal insights about the underlying process
\hookrightarrow In a DAG, the edges provide those clues, e.g. relationship between variables in a system.

Introduction 3

Problem:
\hookrightarrow learning the edges in a DAG
\hookrightarrow Observations (Dataset)
\hookrightarrow Temporal dependencies
Solution:
\hookrightarrow Learn Dynamic BN
\hookrightarrow model relationships between variables over adjacent time steps.

Dynamic Bayesian Network

$\left\{\mathbf{x}_{m, t}\right\}_{t \in\{0, \ldots, T}, \mathbf{x} \in \mathbb{R}^{d}$
realization of a stationary time series
d number of variables
\longrightarrow contemporaneous influence (intra-slice)
--- time-lagged influence inter-slice
p autoregression order

Data modeling 1

Considering M independent realizations of a stationary time series, the m th time series modeled by the standard Vector Auto-regressive ${ }^{1}$ is:

$$
\mathbf{x}_{m, t}^{\top}=\mathbf{x}_{m, t}^{\top} \mathbf{W}+\mathbf{x}_{m, t-1}^{\top} \mathbf{A}_{1}+\cdots+\mathbf{x}_{m, t-p}^{\top} \mathbf{A}_{p}+z_{m, t}^{\top}
$$

- $t \in\{p, \cdots, T\}$
- $m \in\{1 . \cdots, M\}$
- vector of centered error variables
- Intra-slice and inter-slice edges (weighted matrices with nonzero elements)

[^0]
Data modeling 2

Assuming the network structure as constant across time, the M independent realizations can be modeled as:

$$
\mathbf{X}=\mathbf{X} \mathbf{W}+\mathbf{Y}_{1} \mathbf{A}_{1}+\cdots+\mathbf{Y}_{p} \mathbf{A}_{p}+\mathbf{Z}
$$

- $\mathbf{X} \in \mathbb{R}^{n \times d}$ (with $\mathbf{x}_{m, t}^{\top}$ as rows), $n=M(T+1-p)$ (an effective sample size)
- Time lagged versions of \mathbf{X}
- matrix of centered error variables
- Intra-slice and inter-slice edges (weighted matrices with nonzero elements)

Data modeling 3

stacking the different \mathbf{Y}_{i} and \mathbf{A}_{i}, respectively, a compact version of the model is:

$$
\mathbf{X}=\mathbf{X W}+\mathbf{Y} \mathbf{A}+\mathbf{Z}
$$

- $\mathbf{X} \in \mathbb{R}^{n \times d}$ (with $\mathbf{x}_{m, t}^{\top}$ as rows), $n=M(T+1-p)$ (an effective sample size)
- Time lagged versions of $\mathbf{X} \rightarrow \mathbf{Y}=\left[\mathbf{Y}_{1}|\cdots| \mathbf{Y}_{p}\right] \in \mathbb{R}^{n \times p d}$
- matrix of centered error variables
- Intra-slice and inter-slice edges (weighted matrices with nonzero elements) $\rightarrow \mathbf{A}=\left[\mathbf{A}_{1}^{\top}|\cdots| \mathbf{A}_{p}^{\top}\right]^{\top} \in \mathbb{R}^{p d \times d}$

Problem statement 1

Given the data \mathbf{X} and \mathbf{Y} and the (DAGs) matrices \mathbf{W} and \mathbf{A}, the problem can be formulated as:
$\min _{\mathbf{W}, \mathbf{A}} \ell(\mathbf{W}, \mathbf{A})$ s.t. \mathbf{W} is acyclic,

$$
\ell(\mathbf{W}, \mathbf{A})=\frac{1}{2 n}\|\mathbf{X}-\mathbf{X} \mathbf{W}-\mathbf{Y A}\|_{F}^{2}
$$

Problem statement 2

promoting sparsity for \mathbf{W} and \mathbf{A}, the problem becomes:

$$
\begin{gathered}
\min _{\mathbf{W}, \mathbf{A}} f(\mathbf{W}, \mathbf{A}) \text { s.t. } \mathbf{W} \text { is acyclic, } \\
f(\mathbf{W}, \mathbf{A})=\ell(\mathbf{W}, \mathbf{A})+\lambda_{\mathbf{W}}\|\mathbf{W}\|_{1}+\lambda_{\mathbf{A}}\|\mathbf{A}\|_{1}
\end{gathered}
$$

with $\|\cdot\|_{1}$ stands for the element-wise ℓ_{1} norm.

Problem statement 3

using an equivalent formulation of acyclicity the problem becomes:

$$
\min _{\mathbf{W}, \mathbf{A}} f(\mathbf{W}, \mathbf{A}) \text { s.t. } h(\mathbf{W})=0 \Leftrightarrow \mathbf{W} \text { is acyclic, }
$$

$h(\mathbf{W})=\operatorname{tr} e^{\mathbf{W} \circ \mathbf{W}}-d$ is the trace exponential function and \circ is the Hadamard product.

Problem statement 4

This problem can be solved as a series of unconstrained minimization problems, following the Augmented Lagrangian method:

$$
\begin{array}{rl}
\min _{\mathbf{W}, \mathbf{A}} & F(\mathbf{W}, \mathbf{A}) \\
F(\mathbf{W}, \mathbf{A}) & =f(\mathbf{W}, \mathbf{A})+\frac{\rho}{2}(\mathbf{W})^{2}+\alpha h(\mathbf{W})
\end{array}
$$

The resulting problem can be solved using standard solvers such as L-BFGS-B ${ }^{2}$.

[^1]
Experimental Setup

Stimulation of dataset for benchmarks:

- Generating the weighted graphs G_{W} and G_{A}.
- Generating data matrices X and Y consistent with these graphs.
- Running all algorithms on X and Y and computing performance metrics.

Baselines:

- NOTEARS and Lasso regression to estimate W and A independently ${ }^{3}$.
- SVAR estimation method based on LiNGAM ${ }^{4}$.
- tsGFCI ${ }^{5}$.

[^2]
Stimulated Dataset

Stimulated Dataset:

- Gaussian noise and Exponential.
- 50-500 samples.
- 1 autoregressive term ${ }^{6}$.

Different combinations are used for Intra-slice and Inter-slice:

- ER2-ER2
- BA4-ER2
- ER2-SBM4
- BA4-SBM4

Barabási-Albert- BA, Stochastic block model- SBM and Erdős-Rényi model- ER

[^3]
Result $\mathrm{n}=500$

(a) Gaussian noise, $n=500$

(b) Exponential noise, $n=500$

Result $\mathrm{n}=50$

(c) Gaussian noise, $n=50$

(d) Exponential noise, $n=50$

Result's observation

- DYNOTEARS - best-performing algorithm when the number of variables exceeds the number of samples.
- Second-best algorithm is tsGFCI - performance degrade with more edges to the ground-truth graphs.
- LiNGAM is an algorithm designed for non-Gaussian data performed poor with increase in number of nodes.

Applications

- S\&P 100 stock returns: $\mathrm{n}=1257$ samples (i.e., trading days) and d $=97$ variables (i.e., stocks).
- DREAM4 gene expression: gene regulatory networks from gene expression data. 5 independent datasets, each with 10 different time series with 100 variables.

Applications: S\&P 100 stock returns

- 400 data points of the series for validation.
- The final graph does not contain inter-slice edges - prediction of future returns is the current return.
- Two stocks influence each other if they belong to the same sector.
- Few stocks also get influenced with other sector - Amazon (AMZN), which is part of the Consumer Cyclical sector, is connected to many of the technology stocks, including Facebook, Netflix, NVIDIA, Google, and Microsoft.

Applications: Dream4 gene expression

- Various DBN models were compared using AUPR and AUCROC.
- DYNOTEARS achieves an average AUROC of 0.664 and an average AUPR of 0.173.
- DYNOTEARS is within one standard deviation of the best performing method.
- Final ranks 4th in AUPR and 8th in AUROC when compared with non DBNs model.

Algorithm	Mean AUPR	Mean AUROC
DYNOTEARS	$\mathbf{0 . 1 7 3}$	0.664
G1DBN	0.110	$\mathbf{0 . 6 7 6}$
ScanBMA	0.101	0.657
VBSSMb	0.096	0.618
VBSSMa	0.086	0.624
Ebdbnet	0.043	0.643

Conclusion

- Model's the relationships between the variables in a multi-variate time series using a structural vector autoregressive model, where time-invariant structure of the relationships between variables is modelled using DAGs.
- Simplicity in terms of formulating an objective function and in terms of optimizing it.
- It performs well on simulated data across a wide range of parameter choices in the data-generation process.
- Limitations:
- Behaviour of the algorithm on nonstationary time series data ${ }^{7}$.
- The method was not designed to handle undersampling.
- Linear data assumption is made purely for simplicity.

[^4]
[^0]: ${ }^{1}$ Statistical model that captures the relationship and describes the evolution of a set of variables

[^1]: ${ }^{2}$ an iterative method for solving large scale unconstrained nonlinear optimization problems with limited memory

[^2]: ${ }^{3}$ Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, University of California, Berkeley
 ${ }^{4}$ Hyv" arinen, A., Zhang, K., Shimizu, S., and Hoyer, P. O. (2010). Estimation of a structural vector autoregression model using non-Gaussianity. Journal of Machine Learning Research, 11(May)
 ${ }^{5}$ Malinsky, D. and Spirtes, P. (2018). Causal structure learning from multivariate time series in settings with unmeasured confounding. In Proceedings of 2018 ACM SIGKDD Workshop on Causal Discovery

[^3]: ${ }^{6}$ the number of immediately preceding values in the series that are used to predict the value at the present time

[^4]: ${ }^{7}$ have means, variances, and covariances that change over time

