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Introduction 1

Time-series data?
A collection of observations that
we measure repeatedly over time

DYNOTEARS is evaluated in
different contexts, including
stock market data
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Introduction 2

Scope

ë DYNOTEARS is focused on the problem of learning dynamic
structures from time-series data.

ë Specifically, it’s an approach for learning Bayesian networks

Motivation

ë BN are graphical models that represent a set of variables and
their conditional dependencies via Directed Acyclic graphs
(DAGs)

ë Interpretable/explainable
ë Allow us to introduce causal insights about the underlying

process

ë In a DAG, the edges provide those clues, e.g. relationship
between variables in a system.
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Introduction 3

Problem:

ë learning the edges in a DAG

ë Observations (Dataset)
ë Temporal dependencies

Solution:

ë Learn Dynamic BN

ë model relationships between variables over adjacent time steps.
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Dynamic Bayesian Network
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Data modeling 1
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Considering M independent realizations of a stationary time series, the
mth time series modeled by the standard Vector Auto-regressive1 is:

xJ
m,t “ xJ

m,tW ` xJ
m,t´1A1 ` ¨ ¨ ¨ ` xJ

m,t´pAp ` zJ
m,t

§ t P tp, ¨ ¨ ¨ ,T u

§ m P t1. ¨ ¨ ¨ ,Mu

§ vector of centered error variables

§ Intra-slice and inter-slice edges (weighted matrices with nonzero
elements)

1Statistical model that captures the relationship and describes the evolution of a set of variables
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Data modeling 2
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Assuming the network structure as constant across time, the M
independent realizations can be modeled as:

X “ XW ` Y1A1 ` ¨ ¨ ¨ ` YpAp ` Z

§ X P Rnˆd (with xJ
m,t as rows), n “ MpT ` 1 ´ pq (an effective

sample size)

§ Time lagged versions of X

§ matrix of centered error variables

§ Intra-slice and inter-slice edges (weighted matrices with nonzero
elements)
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Data modeling 3
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stacking the different Yi and Ai , respectively, a compact version of the
model is:

X “ XW ` YA ` Z

§ X P Rnˆd (with xJ
m,t as rows), n “ MpT ` 1 ´ pq (an effective

sample size)

§ Time lagged versions of X Ñ Y “ rY1| ¨ ¨ ¨ |Yps P Rnˆpd

§ matrix of centered error variables

§ Intra-slice and inter-slice edges (weighted matrices with nonzero
elements) Ñ A “ rAJ

1 | ¨ ¨ ¨ |AJ
p sJ P Rpdˆd
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Problem statement 1
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Given the data X and Y and the (DAGs) matrices W and A, the problem
can be formulated as:

min
W,A

ℓpW,Aq s.t. W is acyclic,

ℓpW,Aq “
1

2n
||X ´ XW ´ YA||2F .
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Problem statement 2
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promoting sparsity for W and A, the problem becomes:

min
W,A

f pW,Aq s.t. W is acyclic,

f pW,Aq “ ℓpW,Aq ` λW||W||1 ` λA||A||1,

with || ¨ ||1 stands for the element-wise ℓ1 norm.
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Problem statement 3
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using an equivalent formulation of acyclicity the problem becomes:

min
W,A

f pW,Aq s.t. hpWq “ 0 ô W is acyclic,

hpWq “ tr eW˝W ´ d is the trace exponential function and ˝ is the
Hadamard product.
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Problem statement 4
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This problem can be solved as a series of unconstrained minimization
problems, following the Augmented Lagrangian method:

min
W,A

F pW,Aq

F pW,Aq “ f pW,Aq `
ρ

2
pWq2 ` αhpWq

The resulting problem can be solved using standard solvers such as
L-BFGS-B2.

2an iterative method for solving large scale unconstrained nonlinear optimization problems with limited memory
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Experimental Setup

Stimulation of dataset for benchmarks:

§ Generating the weighted graphs GW and GA.

§ Generating data matrices X and Y consistent with these graphs.

§ Running all algorithms on X and Y and computing performance
metrics.

Baselines:

§ NOTEARS and Lasso regression to estimate W and A
independently3.

§ SVAR estimation method based on LiNGAM4.

§ tsGFCI5.

3Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis,
University of California, Berkeley

4Hyv¨arinen, A., Zhang, K., Shimizu, S., and Hoyer, P. O. (2010). Estimation of a structural vector
autoregression model using non-Gaussianity. Journal of Machine Learning Research, 11(May)

5Malinsky, D. and Spirtes, P. (2018). Causal structure learning from multivariate time series in settings with
unmeasured confounding. In Proceedings of 2018 ACM SIGKDD Workshop on Causal Discovery
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Stimulated Dataset

Stimulated Dataset:

§ Gaussian noise and Exponential.

§ 50-500 samples.

§ 1 autoregressive term6.

Different combinations are used for Intra-slice and Inter-slice:

§ ER2-ER2

§ BA4-ER2

§ ER2-SBM4

§ BA4-SBM4

Barabási–Albert- BA, Stochastic block model- SBM and Erdős–Rényi
model- ER

6the number of immediately preceding values in the series that are used to predict the value at the present time
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Result n=500
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Result n=50
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Result’s observation

§ DYNOTEARS – best-performing algorithm when the number of
variables exceeds the number of samples.

§ Second-best algorithm is tsGFCI – performance degrade with more
edges to the ground-truth graphs.

§ LiNGAM is an algorithm designed for non-Gaussian data –
performed poor with increase in number of nodes.
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Applications

§ S&P 100 stock returns: n = 1257 samples (i.e., trading days) and d
= 97 variables (i.e., stocks).

§ DREAM4 gene expression: gene regulatory networks from gene
expression data. 5 independent datasets, each with 10 different time
series with 100 variables.
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Applications: S&P 100 stock returns

§ 400 data points of the series for validation.

§ The final graph does not contain inter-slice edges – prediction of
future returns is the current return.

§ Two stocks influence each other if they belong to the same sector.

§ Few stocks also get influenced with other sector – Amazon
(AMZN), which is part of the Consumer Cyclical sector, is
connected to many of the technology stocks, including Facebook,
Netflix, NVIDIA, Google, and Microsoft.
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Applications: Dream4 gene expression

§ Various DBN models were compared using AUPR and AUCROC.

§ DYNOTEARS achieves an average AUROC of 0.664 and an average
AUPR of 0.173.

§ DYNOTEARS is within one standard deviation of the best
performing method.

§ Final ranks 4th in AUPR and 8th in AUROC when compared with
non DBNs model.
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Conclusion

§ Model’s the relationships between the variables in a multi-variate
time series using a structural vector autoregressive model, where
time-invariant structure of the relationships between variables is
modelled using DAGs.

§ Simplicity in terms of formulating an objective function and in terms
of optimizing it.

§ It performs well on simulated data across a wide range of parameter
choices in the data-generation process.

§ Limitations:

§ Behaviour of the algorithm on nonstationary time series data7.
§ The method was not designed to handle undersampling.
§ Linear data assumption is made purely for simplicity.

7have means, variances, and covariances that change over time


