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In a major matter,
no details are small.

French Proverb
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Chapter 5 The Processor: Datapath and Control

Introduction

In Chapter 4, we saw that the performance of a machine was determined by three
key factors: instruction count, clock cycle time, and clock cycles per instruction
(CPI). The compiler and the instruction set architecture, which we examined in
Chapters 2 and 3, determine the instruction count required for a given program.
However, both the clock cycle time and the number of clock cycles per instruction
are determined by the implementation of the processor. In this chapter, we con-
struct the datapath and control unit for two different implementations of the
MIPS instruction set.

This chapter contains an explanation of the principles and techniques used in
implementing a processor, starting with a highly abstract and simplified overview
in this section, followed by sections that build up a datapath and construct a sim-
ple version of a processor sufficient to implement instructions sets like MIPS, and
finally, developing the concepts necessary to implement more complex instruc-
tions sets, like the TA-32.

For the reader interested in understanding the high-level interpretation of
instructions and its impact on program performance, this initial section provides
enough background to understand these concepts as well as the basic concepts of
pipelining, which are explained in Section 6.1 of the next chapter.

For those readers desiring an understanding of how hardware implements
instructions, Sections 5.3 and 5.4 are all the additional material that is needed.
Furthermore, these two sections are sufficient to understand all the material in
Chapter 6 on pipelining. Only those readers with an interest in hardware design
should go further.

The remaining sections of this chapter cover how modern hardware—includ-
ing more complex processors such as the Intel Pentium series—is usually imple-
mented. The basic principles of finite state control are explained, and different
methods of implementation, including microprogramming, are examined. For
the reader interested in understanding the processor and its performance in more
depth, Sections 5.4 and 5.5 will be useful. For readers with an interest in modern
hardware design, @ Section 5.7 covers microprogramming, a technique used to
implement more complex control such as that present in IA-32 processors, and
Section 5.8 describes how hardware design languages and CAD tools are used
to implement hardware.
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A Basic MIPS Implementation

We will be examining an implementation that includes a subset of the core MIPS
instruction set:

B The memory-reference instructions load word (1w) and store word (sw)
m The arithmetic-logical instructions add, sub, and, or,and s1t
B The instructions branch equal (beq) and jump (j), which we add last

This subset does not include all the integer instructions (for example, shift, multi-
ply, and divide are missing), nor does it include any floating-point instructions.
However, the key principles used in creating a datapath and designing the control
will be illustrated. The implementation of the remaining instructions is similar.
In examining the implementation, we will have the opportunity to see how the
instruction set architecture determines many aspects of the implementation, and
how the choice of various implementation strategies affects the clock rate and CPI
for the machine. Many of the key design principles introduced in Chapter 4 can be
illustrated by looking at the implementation, such as the guidelines Make the com-
mon case fast and Simplicity favors regularity. In addition, most concepts used to
implement the MIPS subset in this chapter and the next are the same basic ideas
that are used to construct a broad spectrum of computers, from high-perfor-
mance servers to general-purpose microprocessors to embedded processors,
which are used increasingly in products ranging from VCRs to automobiles.

An Overview of the Implementation

In Chapters 2 and 3, we looked at the core MIPS instructions, including the inte-
ger arithmetic-logical instructions, the memory-reference instructions, and the
branch instructions. Much of what needs to be done to implement these instruc-
tions is the same, independent of the exact class of instruction. For every instruc-
tion, the first two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and
fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the regis-
ters to read. For the load word instruction, we need to read only one regis-
ter, but most other instructions require that we read two registers.

After these two steps, the actions required to complete the instruction depend on
the instruction class. Fortunately, for each of the three instruction classes (mem-
ory-reference, arithmetic-logical, and branches), the actions are largely the same,
independent of the exact opcode.
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Even across different instruction classes there are some similarities. For exam-
ple, all instruction classes, except jump, use the arithmetic-logical unit (ALU)
after reading the registers. The memory-reference instructions use the ALU for an
address calculation, the arithmetic-logical instructions for the operation execu-
tion, and branches for comparison. As we can see, the simplicity and regularity of
the instruction set simplifies the implementation by making the execution of
many of the instruction classes similar.

After using the ALU, the actions required to complete various instruction
classes differ. A memory-reference instruction will need to access the memory
either to write data for a store or read data for a load. An arithmetic-logical
instruction must write the data from the ALU back into a register. Lastly, for a
branch instruction, we may need to change the next instruction address based on
the comparison; otherwise the PC should be incremented by 4 to get the address
of the next instruction.

Figure 5.1 shows the high-level view of a MIPS implementation, focusing on
the various functional units and their interconnection. Although this figure shows
most of the flow of data through the processor, it omits two important aspects of
instruction execution.

First, in several places, Figure 5.1 shows data going to a particular unit as
coming from two different sources. For example, the value written into the PC
can come from one of two adders, and the data written into the register file can
come from either the ALU or the data memory. In practice, these data lines can-
not simply be wired together; we must add an element that chooses from among
the multiple sources and steers one of those sources to its destination. This selec-
tion is commonly done with a device called a multiplexor, although this device
might better be called a data selector. The multiplexor, which is described in
detail in @ Appendix B, selects from among several inputs based on the setting
of its control lines. The control lines are set based primarily on information
taken from the instruction being executed.

Second, several of the units must be controlled depending on the type of
insrtruction. For example, the data memory must read on a load and write on a
store. The register file must be written on a load and an arithmetic-logical instruc-
tion. And, of course, the ALU must perform one of several operations, as we saw
in Chapter 3. (@ Appendix B describes the detailed logic design of the ALU.) Like
the muxes, these operations are directed by control lines that are set on the basis
of various fields in the instruction.

Figure 5.2 shows the datapath of Figure 5.1 with the three required multiplex-
ors added, as well as control lines for the major functional units. A control unit
that has the instruction as an input is used to determine how to set the control
lines for the functional units and two of the multiplexors. The third multiplexor,
which determines whether PC + 4 or the branch destination address is written
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FIGURE 5.1 An abstract view of the implementation of the MIPS subset showing the major
functional units and the major connections between them. All instructions start by using the pro-
gram counter to supply the instruction address to the instruction memory. After the instruction is fetched, the
register operands used by an instruction are specified by fields of that instruction. Once the register operands
have been fetched, they can be operated on to compute a memory address (for a load or store), to compute an
arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a branch). If the instruction
is an arithmetic-logical instruction, the result from the ALU must be written to a register. If the operation is a
load or store, the ALU result is used as an address to either store a value from the registers or load a value from
memory into the registers. The result from the ALU or memory is written back into the register file. Branches
require the use of the ALU output to determine the next instruction address, which comes from either the ALU
(where the PC and branch offset are summed) or from an adder that increments the current PC by 4. The thick
lines interconnecting the functional units represent buses, which consist of multiple signals. The arrows are
used to guide the reader in knowing how information flows. Since signal lines may cross, we explicitly show
when crossing lines are connected by the presence of a dot where the lines cross.

into the PC, is set based on the zero output of the ALU, which is used to perform
the comparison of a beq instruction. The regularity and simplicity of the MIPS
instruction set means that a simple decoding process can be used to determine
how to set the control lines.

In the remainder of the chapter, we refine this view to fill in the details, which
requires that we add further functional units, increase the number of connections
between units, and, of course, add a control unit to control what actions are taken
for different instruction classes. Sections 5.3 and 5.4 describe a simple implemen-
tation that uses a single long clock cycle for every instruction and follows the gen-
eral form of Figures 5.1 and 5.2. In this first design, every instruction begins
execution on one clock edge and completes execution on the next clock edge.
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FIGURE 5.2 The basic implementation of the MIPS subset including the necessary multiplexors and control
lines. The top multiplexor controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is con-
trolled by the gate that “ands” together the Zero output of the ALU and a control signal that indicates that the instruction is a
branch. The multiplexor whose output returns to the register file is used to steer the output of the ALU (in the case of an arithmetic-
logical instruction) or the output of the data memory (in the case of a load) for writing into the register file. Finally, the bottommost
multiplexor is used to determine whether the second ALU input is from the registers (for a nonimmediate arithmetic-logical
instruction) or from the offset field of the instruction (for an immediate operation, a load or store, or a branch). The added control
lines are straightforward and determine the operation performed at the ALU, whether the data memory should read or write, and
whether the registers should perform a write operation. The control lines are shown in color to make them easier to see.

While easier to understand, this approach is not practical, since it would be
slower than an implementation that allows different instruction classes to take dif-
ferent numbers of clock cycles, each of which could be much shorter. After design-
ing the control for this simple machine, we will look at an implementation that
uses multiple clock cycles for each instruction. This multicycle design is used



5.2 Logic Design Conventions

289

when we discuss more advanced control concepts, handling exceptions, and the
use of hardware design languages in Sections 5.5 through 5.8.

The single-cycle datapath conceptually described in this section must have sepa-
rate instruction and data memories because

1. the format of data and instructions is different in MIPS and hence different
memories are needed

2. having separate memories is less expensive

3. the processor operates in one cycle and cannot use a single-ported memory
for two different accesses within that cycle

Logic Design Conventions

To discuss the design of a machine, we must decide how the logic implementing
the machine will operate and how the machine is clocked. This section reviews a
few key ideas in digital logic that we will use extensively in this chapter. If you have
little or no background in digital logic, you will find it helpful to read through
Appendix B before continuing.

The functional units in the MIPS implementation consist of two different types
of logic elements: elements that operate on data values and elements that contain
state. The elements that operate on data values are all combinational, which means
that their outputs depend only on the current inputs. Given the same input, a
combinational element always produces the same output. The ALU shown in
Figure 5.1 and discussed in Chapter 3 and @ Appendix B is a combinational ele-
ment. Given a set of inputs, it always produces the same output because it has no
internal storage.

Other elements in the design are not combinational, but instead contain state.
An element contains state if it has some internal storage. We call these elements
state elements because, if we pulled the plug on the machine, we could restart it
by loading the state elements with the values they contained before we pulled the
plug. Furthermore, if we saved and restored the state elements, it would be as if
the machine had never lost power. Thus, these state elements completely charac-
terize the machine. In Figure 5.1, the instruction and data memories as well as the
registers are all examples of state elements.

A state element has at least two inputs and one output. The required inputs are
the data value to be written into the element and the clock, which determines

Check
Yourself

state element A memory
element.
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clocking methodology The
approach used to determine

when data is valid and stable rel-

ative to the clock.

edge-triggered clocking A
clocking scheme in which all
state changes occur on a clock
edge.

control signal A signal used
for multiplexor selection or for
directing the operation of a
functional unit; contrasts with a
data signal, which contains
information that is operated on
by a functional unit.

when the data value is written. The output from a state element provides the value
that was written in an earlier clock cycle. For example, one of the logically sim-
plest state elements is a D-type flip-flop (see Appendix B), which has exactly these
two inputs (a value and a clock) and one output. In addition to flip-flops, our
MIPS implementation also uses two other types of state elements: memories and
registers, both of which appear in Figure 5.1. The clock is used to determine when
the state element should be written; a state element can be read at any time.

Logic components that contain state are also called sequential because their
outputs depend on both their inputs and the contents of the internal state. For
example, the output from the functional unit representing the registers depends
both on the register numbers supplied and on what was written into the registers
previously. The operation of both the combinational and sequential elements and
their construction are discussed in more detail in @ Appendix B.

We will use the word asserted to indicate a signal that is logically high and assert
to specify that a signal should be driven logically high, and deassert or deasserted
to represent logical low.

Clocking Methodology

A clocking methodology defines when signals can be read and when they can be
written. It is important to specify the timing of reads and writes because, if a sig-
nal is written at the same time it is read, the value of the read could correspond to
the old value, the newly written value, or even some mix of the two! Needless to
say, computer designs cannot tolerate such unpredictability. A clocking methodol-
ogy is designed to prevent this circumstance.

For simplicity, we will assume an edge-triggered clocking methodology. An
edge-triggered clocking methodology means that any values stored in a sequential
logic element are updated only on a clock edge. Because only state elements can
store a data value, any collection of combinational logic must have its inputs com-
ing from a set of state elements and its outputs written into a set of state elements.
The inputs are values that were written in a previous clock cycle, while the outputs
are values that can be used in a following clock cycle.

Figure 5.3 shows the two state elements surrounding a block of combinational
logic, which operates in a single clock cycle: All signals must propagate from state
element 1, through the combinational logic, and to state element 2 in the time of
one clock cycle. The time necessary for the signals to reach state element 2 defines
the length of the clock cycle.

For simplicity, we do not show a write control signal when a state element is
written on every active clock edge. In contrast, if a state element is not updated on
every clock, then an explicit write control signal is required. Both the clock signal
and the write control signal are inputs, and the state element is changed only
when the write control signal is asserted and a clock edge occurs.
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1 2
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FIGURE 5.3 Combinational logic, state elements, and the clock are closely related. In a
synchronous digital system, the clock determines when elements with state will write values into internal
storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which
they will not change until after the clock edge) before the active clock edge causes the state to be updated.
All state elements, including memory, are assumed to be edge-triggered.

State
element

Combinational logic

FIGURE 5.4 An edge-triggered methodology allows a state element to be read and writ-
ten in the same clock cycle without creating a race that could lead to indeterminate data
values. Of course, the clock cycle still must be long enough so that the input values are stable when the
active clock edge occurs. Feedback cannot occur within 1 clock cycle because of the edge-triggered update
of the state element. If feedback were possible, this design could not work properly. Our designs in this
chapter and the next rely on the edge-triggered timing methodology and structures like the one shown in
this figure.

An edge-triggered methodology allows us to read the contents of a register,
send the value through some combinational logic, and write that register in the
same clock cycle, as shown in Figure 5.4. It doesn’t matter whether we assume that
all writes take place on the rising clock edge or on the falling clock edge, since the
inputs to the combinational logic block cannot change except on the chosen clock
edge. With an edge-triggered timing methodology, there is no feedback within a
single clock cycle, and the logic in Figure 5.4 works correctly. In [@ Appendix B we
briefly discuss additional timing constraints (such as setup and hold times) as well
as other timing methodologies.

Nearly all of these state and logic elements will have inputs and outputs that are
32 bits wide, since that is the width of most of the data handled by the processor.
We will make it clear whenever a unit has an input or output that is other than 32
bits in width. The figures will indicate buses, which are signals wider than 1 bit,
with thicker lines. At times we will want to combine several buses to form a wider
bus; for example, we may want to obtain a 32-bit bus by combining two 16-bit
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Check
Yourself

datapath element A func-
tional unit used to operate on or
hold data within a processor. In
the MIPS implementation the
datapath elements include the
instruction and data memories,
the register file, the arithmetic
logic unit (ALU), and adders.

program counter (PC) The
register containing the address
of the instruction in the pro-
gram being executed

buses. In such cases, labels on the bus lines will make it clear that we are concate-
nating buses to form a wider bus. Arrows are also added to help clarify the direc-
tion of the flow of data between elements. Finally, color indicates a control signal
as opposed to a signal that carries data; this distinction will become clearer as we
proceed through this chapter.

True or false: Because the register file is both read and written on the same
clock cycle, any MIPS datapath using edge-triggered writes must have more
than one copy of the register file.

Building a Datapath

A reasonable way to start a datapath design is to examine the major components
required to execute each class of MIPS instruction. Let’s start by looking at which
datapath elements each instruction needs. When we show the datapath elements,
we will also show their control signals.

Figure 5.5 shows the first element we need: a memory unit to store the
instructions of a program and supply instructions given an address. Figure 5.5
also shows a register, which we call the program counter (PC), that is used to
hold the address of the current instruction. Lastly, we will need an adder to
increment the PC to the address of the next instruction. This adder, which is
combinational, can be built from the ALU we described in Chapter 3 and
designed in detail in Appendix B, simply by wiring the control lines so that the
control always specifies an add operation. We will draw such an ALU with the
label Add, as in Figure 5.5, to indicate that it has been permanently made an
adder and cannot perform the other ALU functions.

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also increment
the program counter so that it points at the next instruction, 4 bytes later.
Figure 5.6 shows how the three elements from Figure 5.5 are combined to form a
datapath that fetches instructions and increments the PC to obtain the address of
the next sequential instruction.

Now let’s consider the R-format instructions (see Figure 2.7 on page 67). They
all read two registers, perform an ALU operation on the contents of the registers,
and write the result. We call these instructions either R-type instructions or arith-
metic-logical instructions (since they perform arithmetic or logical operations).
This instruction class includes add, sub, and, or, and s1t, which were intro-
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FIGURE 5.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that will be writ-
ten at the end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired
to always perform an add of its two 32-bit inputs and place the result on its output.

Add
4 ——»|
PC (-~ Caress
Instruction ——»
Instruction
memory

FIGURE 5.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.

duced in Chapter 2. Recall that a typical instance of such an instruction is add
$t1,$t2,$t3 , which reads $t2 and $t3 and writes $t1 .

The processor’s 32 general-purpose registers are stored in a structure called a
register file. A register file is a collection of registers in which any register can be

register file A state element
that consists of a set of registers
that can be read and written by
supplying a register number to
be accessed.
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sign-extend To increase the
size of a data item by replicating
the high-order sign bit of the
original data item in the high-
order bits of the larger, destina-
tion data item.

branch target address The
address specified in a branch,
which becomes the new program
counter (PC) if the branch is
taken. In the MIPS architecture
the branch target is given by the
sum of the offset field of the
instruction and the address of the

instruction following the branch.

read or written by specifying the number of the register in the file. The register file
contains the register state of the machine. In addition, we will need an ALU to
operate on the values read from the registers.

Because the R-format instructions have three register operands, we will need to
read two data words from the register file and write one data word into the register
file for each instruction. For each data word to be read from the registers, we need
an input to the register file that specifies the register number to be read and an
output from the register file that will carry the value that has been read from the
registers. To write a data word, we will need two inputs: one to specify the register
number to be written and one to supply the data to be written into the register.
The register file always outputs the contents of whatever register numbers are on
the Read register inputs. Writes, however, are controlled by the write control sig-
nal, which must be asserted for a write to occur at the clock edge. Thus, we need a
total of four inputs (three for register numbers and one for data) and two outputs
(both for data), as shown in Figure 5.7. The register number inputs are 5 bits wide
to specify one of 32 registers (32 = 2°), whereas the data input and two data out-
put buses are each 32 bits wide.

Figure 5.7 shows the ALU, which takes two 32-bit inputs and produces a 32-bit
result, as well as a 1-bit signal if the result is 0. The four-bit control signal of the
ALU is described in detail in Appendix B; we will review the ALU control
shortly when we need to know how to set it.

Next, consider the MIPS load word and store word instructions, which have
the general form 1w $tl,offset_value($t2) or sw $tl,offset_value
($t2). These instructions compute a memory address by adding the base regis-
ter, which is $t2, to the 16-bit signed offset field contained in the instruction. If
the instruction is a store, the value to be stored must also be read from the register
file where it resides in $t 1. If the instruction is a load, the value read from mem-
ory must be written into the register file in the specified register, which is $t1.
Thus, we will need both the register file and the ALU from Figure 5.7.

In addition, we will need a unit to sign-extend the 16-bit offset field in the
instruction to a 32-bit signed value, and a data memory unit to read from or write
to. The data memory must be written on store instructions; hence, it has both
read and write control signals, an address input, as well as an input for the data to
be written into memory. Figure 5.8 shows these two elements.

The beq instruction has three operands, two registers that are compared for
equality, and a 16-bit offset used to compute the branch target address relative to
the branch instruction address. Its form is beq $t1,$t2,o0ffset. To imple-
ment this instruction, we must compute the branch target address by adding the
sign-extended offset field of the instruction to the PC. There are two details in the
definition of branch instructions (see Chapter 2) to which we must pay attention:
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FIGURE 5.7 The two elements needed to implement R-format ALU operations are the reg-
ister file and the ALU. The register file contains all the registers and has two read ports and one write port.
The design of multiported register files is discussed in Section B.8 of Appendix B. The register file always out-
puts the contents of the registers corresponding to the Read register inputs on the outputs; no other control
inputs are needed. In contrast, a register write must be explicitly indicated by asserting the write control signal.
Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to be written, the register
number, and the write control signal) must be valid at the clock edge. Since writes to the register file are edge-
triggered, our design can legally read and write the same register within a clock cycle: the read will get the value
written in an earlier clock cycle, while the value written will be available to a read in a subsequent clock cycle.
The inputs carrying the register number to the register file are all 5 bits wide, whereas the lines carrying data
values are 32 bits wide. The operation to be performed by the ALU is controlled with the ALU operation signal,
which will be 4 bits wide, using the ALU designed in @ Appendix B. We will use the Zero detection output of
the ALU shortly to implement branches. The overflow output will not be needed until Section 5.6, when we
discuss exceptions; we omit it until then.

B The instruction set architecture specifies that the base for the branch address cal-
culation is the address of the instruction following the branch. Since we compute
PC + 4 (the address of the next instruction) in the instruction fetch datapath, it is
easy to use this value as the base for computing the branch target address.

m The architecture also states that the offset field is shifted left 2 bits so that it
is a word offset; this shift increases the effective range of the offset field by a
factor of four.

To deal with the latter complication, we will need to shift the offset field by two.

In addition to computing the branch target address, we must also determine
whether the next instruction is the instruction that follows sequentially or the
instruction at the branch target address. When the condition is true (i.e., the
operands are equal), the branch target address becomes the new PC, and we say
that the branch is taken. If the operands are not equal, the incremented PC
should replace the current PC (just as for any other normal instruction); in this
case, we say that the branch is not taken.

branch taken A branch where
the branch condition is satisfied
and the program counter (PC)
becomes the branch target. All
unconditional branches are
taken branches.

branch not taken A branch
where the branch condition is
false and the program counter
(PC) becomes the address of the
instruction that sequentially fol-
lows the branch.
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MemWrite
Read
— Address datal "
Sign
Data extend
" memor
Write y
data
MemRead
a. Data memory unit b. Sign-extension unit

FIGURE 5.8 The two units needed to implement loads and stores, in addition to the reg-
ister file and ALU of Figure 5.7, are the data memory unit and the sign extension unit. The
memory unit is a state element with inputs for the address and the write data, and a single output for the
read result. There are separate read and write controls, although only one of these may be asserted on any
given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an
invalid address can cause problems, as we will see in Chapter 7. The sign extension unit has a 16-bit input
that is sign-extended into a 32-bit result appearing on the output (see Chapter 3). We assume the data
memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is used
for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be
adapted to work with real memory chips. See Section B.8 of @ Appendix B for a further discussion of how
real memory chips work.

Thus, the branch datapath must do two operations: compute the branch target
address and compare the register contents. (Branches also affect the instruction
fetch portion of the datapath, as we will deal with shortly.) Because of the complex-
ity of handling branches, we show the structure of the datapath segment that han-
dles branches in Figure 5.9. To compute the branch target address, the branch
datapath includes a sign extension unit, just like that in Figure 5.8, and an adder. To
perform the compare, we need to use the register file shown in Figure 5.7 to supply
the two register operands (although we will not need to write into the register file).
In addition, the comparison can be done using the ALU we designed in Appendix B.
Since that ALU provides an output signal that indicates whether the result was 0, we
can send the two register operands to the ALU with the control set to do a subtract.
If the Zero signal out of the ALU unit is asserted, we know that the two values are
equal. Although the Zero output always signals if the result is 0, we will be using it
only to implement the equal test of branches. Later, we will show exactly how to
connect the control signals of the ALU for use in the datapath.

The jump instruction operates by replacing the lower 28 bits of the PC with the
lower 26 bits of the instruction shifted left by 2 bits. This shift is accomplished
simply by concatenating 00 to the jump offset, as described in Chapter 2.
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RegWrite
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ALU operation
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FIGURE 5.9 The datapath for a branch uses the ALU to evaluate the branch condition and a
separate adder to compute the branch target as the sum of the incremented PC and the
sign-extended, lower 16 bits of the instruction (the branch displacement), shifted left 2
bits. The unit labeled Shift left 2 is simply a routing of the signals between input and output that adds 004, to
the low-order end of the sign-extended offset field; no actual shift hardware is needed, since the amount of the
“shift” is constant. Since we know that the offset was sign-extended from 16 bits, the shift will throw away only
“sign bits.” Control logic is used to decide whether the incremented PC or branch target should replace the PC,
based on the Zero output of the ALU.

Elaboration: In the MIPS instruction set, branches are delayed, meaning that the
instruction immediately following the branch is always executed, independent of
whether the branch condition is true or false. When the condition is false, the execu-
tion looks like a normal branch. When the condition is true, a delayed branch first exe-
cutes the instruction immediately following the branch in sequential instruction order
before jumping to the specified branch target address. The motivation for delayed

delayed branch A type of
branch where the instruction
immediately following the
branch is always executed, inde-
pendent of whether the branch
condition is true or false.

branches arises from how pipelining affects branches (see Section 6.6). For simplic-
ity, we ignore delayed branches in this chapter and implement a nondelayed beg

instruction.
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Creating a Single Datapath

Now that we have examined the datapath components needed for the individual
instruction classes, we can combine them into a single datapath and add the con-
trol to complete the implementation. The simplest datapath might attempt to exe-
cute all instructions in one clock cycle. This means that no datapath resource can
be used more than once per instruction, so any element needed more than once
must be duplicated. We therefore need a memory for instructions separate from
one for data. Although some of the functional units will need to be duplicated,
many of the elements can be shared by different instruction flows.

To share a datapath element between two different instruction classes, we may
need to allow multiple connections to the input of an element, using a multi-
plexor and control signal to select among the multiple inputs.

Building a Datapath

The operations of arithmetic-logical (or R-type) instructions and the memory
instructions datapath are quite similar. The key differences are the following:

B The arithmetic-logical instructions use the ALU with the inputs coming
from the two registers. The memory instructions can also use the ALU
to do the address calculation, although the second input is the sign-ex-
tended 16-bit offset field from the instruction.

B The value stored into a destination register comes from the ALU (for an
R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the memory ref-
erence and arithmetic-logical instructions that uses a single register file and a
single ALU to handle both types of instructions, adding any necessary multi-
plexors.

To create a datapath with only a single register file and a single ALU, we must
support two different sources for the second ALU input, as well as two differ-
ent sources for the data stored into the register file. Thus, one multiplexor is
placed at the ALU input and another at the data input to the register file.
Figure 5.10 shows the operational portion of the combined datapath.

Now we can combine all the pieces to make a simple datapath for the MIPS
architecture by adding the datapath for instruction fetch (Figure 5.6 on page 293),
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FIGURE 5.10 The datapath for the memory instructions and the R-type instructions. This example shows how
a single datapath can be assembled from the pieces in Figures 5.7 and 5.8 by adding multiplexors. Two multiplexors are needed,

as described as in the example.

the datapath from R-type and memory instructions (Figure 5.10 on page 299),
and the datapath for branches (Figure 5.9 on page 297). Figure 5.11 shows the
datapath we obtain by composing the separate pieces. The branch instruction uses
the main ALU for comparison of the register operands, so we must keep the
adder in Figure 5.9 for computing the branch target address. An additional mul-
tiplexor is required to select either the sequentially following instruction address
(PC + 4) or the branch target address to be written into the PC.

Now that we have completed this simple datapath, we can add the control unit.
The control unit must be able to take inputs and generate a write signal for each
state element, the selector control for each multiplexor, and the ALU control. The
ALU control is different in a number of ways, and it will be useful to design it first
before we design the rest of the control unit.

Which of the following is correct for a load instruction?

a. MemtoReg should be set to cause the data from memory to be sent to the
register file.

b. MemtoReg should be set to cause the correct register destination to be sent
to the register file.

c. We do not care about the setting of MemtoReg.

Check
Yourself
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FIGURE 5.11 The simple datapath for the MIPS architecture combines the elements required by different instruction
classes. This datapath can execute the basic instructions (load/store word, ALU operations, and branches) in a single clock cycle. An additional mul-
tiplexor is needed to integrate branches. The support for jumps will be added later.

A Simple Implementation Scheme

In this section, we look at what might be thought of as the simplest possible
implementation of our MIPS subset. We build this simple implementation using
the datapath of the last section and adding a simple control function. This simple
implementation covers load word (1w), store word (sw), branch equal (beq), and
the arithmetic-logical instructions add, sub, and, or, and set on Tess than.
We will later enhance the design to include a jump instruction (j).
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The ALU Control

As can be seen in Appendix B, the ALU has four control inputs. These bits were not
encoded; hence, only 6 of the possible 16 possible input combinations are used in
this subset. The MIPS ALU in [@ Appendix B shows the 6 following combinations:

0000 AND
0001 OR

0010 add

0110 subtract
0111 set on less than
1100 NOR

Depending on the instruction class, the ALU will need to perform one of these first
five functions. (NOR is needed for other parts of the MIPS instruction set.) For load
word and store word instructions, we use the ALU to compute the memory address
by addition. For the R-type instructions, the ALU needs to perform one of the five
actions (AND, OR, subtract, add, or set on less than), depending on the value of the
6-bit funct (or function) field in the low-order bits of the instruction (see Chapter
2). For branch equal, the ALU must perform a subtraction.

We can generate the 4-bit ALU control input using a small control unit that has
as inputs the function field of the instruction and a 2-bit control field, which we
call ALUOp. ALUOp indicates whether the operation to be performed should be
add (00) for loads and stores, subtract (01) for beq, or determined by the opera-
tion encoded in the funct field (10). The output of the ALU control unit is a 4-bit
signal that directly controls the ALU by generating one of the 4-bit combinations
shown previously.

In Figure 5.12, we show how to set the ALU control inputs based on the 2-bit
ALUOpP control and the 6-bit function code. For completeness, the relationship
between the ALUOp bits and the instruction opcode is also shown. Later in this
chapter we will see how the ALUOp bits are generated from the main control unit.

This style of using multiple levels of decoding—that is, the main control unit
generates the ALUOP bits, which then are used as input to the ALU control that
generates the actual signals to control the ALU unit—is a common implementa-
tion technique. Using multiple levels of control can reduce the size of the main
control unit. Using several smaller control units may also potentially increase the
speed of the control unit. Such optimizations are important, since the control unit
is often performance-critical.

There are several different ways to implement the mapping from the 2-bit
ALUOPp field and the 6-bit funct field to the three ALU operation control bits.
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Instruction Instruction Desired ALU control
opcode operation ALU action input
LW 00 add

load word XXXXXX 0010
SW 00 store word XXXXXX add 0010
Branch equal 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 and 0000
R-type 10 OR 100101 or 0001
R-type 10 set on less than 101010 set on less than 0111

FIGURE 5.12 How the ALU control bits are set depends on the ALUOp control bits and
the different function codes for the R-type instruction. The opcode, listed in the first column,
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the
ALUOp code is 00 or 01, the desired ALU action does not depend on the function code field; in this case, we
say that we “don’t care” about the value of the function code, and the funct field is shown as XXXXXX.
When the ALUOp value is 10, then the function code is used to set the ALU control input.

T e [ rwsew |
T T N R N
X X X X X

0 0 X 0010
X 1 X X X X X X 0110
1 X X X 0 0 0 0 0010
1 X X X 0 0 1 0 0110
1 X X X 0 1 0 0 0000
1 X X X 0 1 0 1 0001
1 X X X 1 0 1 0 0111

FIGURE 5.13 The truth table for the three ALU control bits (called Operation). The inputs
are the ALUOp and function code field. Only the entries for which the ALU control is asserted are shown.
Some don’t-care entries have been added. For example, the ALUOp does not use the encoding 11, so the
truth table can contain entries 1X and X1, rather than 10 and 01. Also, when the function field is used, the
first two bits (F5 and F4) of these instructions are always 10, so they are don’t-care terms and are replaced
with XX in the truth table.

Because only a small number of the 64 possible values of the function field are of
interest and the function field is used only when the ALUOp bits equal 10, we can
use a small piece of logic that recognizes the subset of possible values and causes
the correct setting of the ALU control bits.

As a step in designing this logic, it is useful to create a truth table for the inter-
esting combinations of the function code field and the ALUOp bits, as we’ve done
in Figure 5.13; this truth table shows how the 3-bit ALU control is set depending
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on these two input fields. Since the full truth table is very large (28 = 256 entries)
and we don’t care about the value of the ALU control for many of these input
combinations, we show only the truth table entries for which the ALU control
must have a specific value. Throughout this chapter, we will use this practice of
showing only the truth table entries that must be asserted and not showing those
that are all zero or don’t care. (This practice has a disadvantage, which we discuss
in Section C.2 of Appendix C.)

Because in many instances we do not care about the values of some of the
inputs and to keep the tables compact, we also include don’t-care terms. A don’t-
care term in this truth table (represented by an X in an input column) indicates
that the output does not depend on the value of the input corresponding to that
column. For example, when the ALUOp bits are 00, as in the first line of the table
in Figure 5.13, we always set the ALU control to 010, independent of the function
code. In this case, then, the function code inputs will be don’t cares in this line of
the truth table. Later, we will see examples of another type of don’t-care term. If
you are unfamiliar with the concept of don’t-care terms, see Appendix B for more
information.

Once the truth table has been constructed, it can be optimized and then turned
into gates. This process is completely mechanical. Thus, rather than show the final
steps here, we describe the process and the result in Section C.2 of Appendix C.

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code
and a 2-bit signal as its control inputs, we can return to looking at the rest of the
control. To start this process, let’s identify the fields of an instruction and the con-
trol lines that are needed for the datapath we constructed in Figure 5.11 on page
300. To understand how to connect the fields of an instruction to the datapath, it
is useful to review the formats of the three instruction classes: the R-type, branch,
and load/store instructions. Figure 5.14 shows these formats.

There are several major observations about this instruction format that we will
rely on:

m The op field, also called the opcode, is always contained in bits 31:26. We
will refer to this field as Op[5:0].

B The two registers to be read are always specified by the rs and rt fields, at
positions 25:21 and 20:16. This is true for the R-type instructions, branch
equal, and for store.

B The base register for load and store instructions is always in bit positions
25:21 (rs).

don’t-care term An element of
a logical function in which the
output does not depend on the
values of all the inputs. Don’t-
care terms may be specified in
different ways.

opcode The field that denotes
the operation and format of an
instruction.
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a.

Field 0 rs rt rd shamt funct
Bit positions 31:26 25:21 20:16 15:11 10:6 5:0
R-type instruction

Field 35 0r 43 rs rt address
Bit positions 31:26 25:21 20:16 15:0

b. Load or store instruction

Field 4 rs rt address
Bit positions 31:26 25:21 20:16 15:0
c. Branch instruction

FIGURE 5.14 The three instruction classes (R-type, load and store, and branch) use two
different instruction formats. The jump instructions use another format, which we will discuss
shortly. (a) Instruction format for R-format instructions, which all have an opcode of 0. These instructions
have three register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. The ALU
function is in the funct field and is decoded by the ALU control design in the previous section. The R-type
instructions that we implement are add, sub, and, or, and s1t. The shamt field is used only for shifts; we
will ignore it in this chapter. (b) Instruction format for load (opcode = 35,,) and store (opcode = 43.,)
instructions. The register rs is the base register that is added to the 16-bit address field to form the memory
address. For loads, rt is the destination register for the loaded value. For stores, rt is the source register
whose value should be stored into memory. (c) Instruction format for branch equal (opcode = 4). The reg-
isters rs and rt are the source registers that are compared for equality. The 16-bit address field is sign-
extended, shifted, and added to the PC to compute the branch target address.

B The 16-bit offset for branch equal, load, and store is always in positions
15:0.

m The destination register is in one of two places. For a load it is in bit
positions 20:16 (rt), while for an R-type instruction it is in bit positions
15:11 (rd). Thus we will need to add a multiplexor to select which field of
the instruction is used to indicate the register number to be written.

Using this information, we can add the instruction labels and extra multiplexor
(for the Write register number input of the register file) to the simple datapath.
Figure 5.15 shows these additions plus the ALU control block, the write signals for
state elements, the read signal for the data memory, and the control signals for the
multiplexors. Since all the multiplexors have two inputs, they each require a single
control line.

Figure 5.15 shows seven single-bit control lines plus the 2-bit ALUOp control
signal. We have already defined how the ALUOp control signal works, and it is
useful to define what the seven other control signals do informally before we
determine how to set these control signals during instruction execution.
Figure 5.16 describes the function of these seven control lines.
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FIGURE 5.15 The datapath of Figure 5.12 with all necessary multiplexors and all control lines identified. The control lines are
shown in color. The ALU control block has also been added. The PC does not require a write control, since it is written once at the end of every clock
cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address.

Now that we have looked at the function of each of the control signals, we can
look at how to set them. The control unit can set all but one of the control signals
based solely on the opcode field of the instruction. The PCSrc control line is the
exception. That control line should be set if the instruction is branch on equal (a
decision that the control unit can make) and the Zero output of the ALU, which is
used for equality comparison, is true. To generate the PCSrc signal, we will need
to AND together a signal from the control unit, which we call Branch, with the
Zero signal out of the ALU.

These nine control signals (seven from Figure 5.16 and two for ALUOp) can now
be set on the basis of six input signals to the control unit, which are the opcode bits.
Figure 5.17 shows the datapath with the control unit and the control signals.



306

Chapter 5 The Processor: Datapath and Control

Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the | The register destination number for the Write
Write register comes from the rt field (bits | register comes from the rd field (bits 15:11).
20:16).
RegWrite None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes from the | The second ALU operand is the sign-extended,
second register file output (Read data 2). | lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | None. Data memory contents designated by the
address input are replaced by the value on the
Write data input.
MemtoReg | The value fed to the register Write data | The value fed to the register Write data input
input comes from the ALU. comes from the data memory.

FIGURE 5.16 The effect of each of the seven control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is
deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. The clock is never gated externally to a state
element, since this can create timing problems. (See [@ Appendix B for further discussion of this problem.)

Before we try to write a set of equations or a truth table for the control unit, it
will be useful to try to define the control function informally. Because the setting
of the control lines depends only on the opcode, we define whether each control
signal should be 0, 1, or don’t care (X), for each of the opcode values. Figure 5.18
defines how the control signals should be set for each opcode; this information
follows directly from Figures 5.12, 5.16, and 5.17.

Operation of the Datapath

With the information contained in Figures 5.16 and 5.18, we can design the con-
trol unit logic, but before we do that, let’s look at how each instruction uses the
datapath. In the next few figures, we show the flow of three different instruction
classes through the datapath. The asserted control signals and active datapath ele-
ments are highlighted in each of these. Note that a multiplexor whose control is 0
has a definite action, even if its control line is not highlighted. Multiple-bit control
signals are highlighted if any constituent signal is asserted.

Figure 5.19 shows the operation of the datapath for an R-type instruction, such as
add $tl1,$t2,$t3. Although everything occurs in 1 clock cycle, we can think of four
steps to execute the instruction; these steps are ordered by the flow of information:



5.4 A Simple Implementation Scheme 307

Add

xc= ©

ALU
result

—_

4 — Add

RegDst
Branch
| MemRead
\ MemtoReg
Control ALUOp
)W
| ALUSrc
RegWrite

Instruction [31-26]

Instruction [25-21] Read

Read register 1

address

Read
Instruction [20—16] Read data 1

register 2

Instruction | |
[31-0]

Instruction
memory

Read
Address data

Read

Write data 2

register

Instruction [15—11]

Oxcz—

| Write
data  Registers

) a
Write memory

data
Instruction [15-0] 16 Sign 32 I

Instruction [5-0]

FIGURE 5.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction. The
outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three signals for con-
trolling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining whether to
possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch control signal and the Zero
output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now a derived signal, rather than one coming
directly from the control unit. Thus we drop the signal name in subsequent figures.
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Memto- Reg Mem
RegDst Reg Write Read Branch ALUOPO
1 1 0 0

R-format

Tw 0
SwW X
beq X

X |X|Rr|O
R|O|O|O

o|r|O|O

O|r|kr|O
o|Oo|O|r

1 1 0
0 0 0
0 0 1

FIGURE 5.18 The setting of the control lines is completely determined by the opcode fields of the instruction. The first row of
the table corresponds to the R-format instructions (add, sub, and, or, and s1t). For all these instructions, the source register fields are rs and rt,
and the destination register field is rd; this defines how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction writes a register
(RegWrite = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally replaced with PC + 4; oth-
erwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The ALUOp field for R-type instructions is set to 10 to indi-
cate that the ALU control should be generated from the funct field. The second and third rows of this table give the control signal settings for 1w and
Sw. These ALUSrc and ALUOPp fields are set to perform the address calculation. The MemRead and MemWrite are set to perform the memory access.
Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt register. The branch instruction is similar to an R-format
operation, since it sends the rs and rt registers to the ALU. The ALUOp field for branch is set for a subtract (ALU control = 01), which is used to test for
equality. Notice that the MemtoReg field is irrelevant when the RegWrite signal is 0: since the register is not being written, the value of the data on the
register data write port is not used. Thus, the entry MemtoReg in the last two rows of the table is replaced with X for don’t care. Don’t cares can also be
added to RegDst when RegWrite is 0. This type of don’t care must be added by the designer, since it depends on knowledge of how the datapath works.

1. The instruction is fetched, and the PC is incremented.

2. Two registers, $t2 and $t3, are read from the register file, and the main
control unit computes the setting of the control lines during this step also.

3. The ALU operates on the data read from the register file, using the function
code (bits 5:0, which is the funct field, of the instruction) to generate the
ALU function.

4. The result from the ALU is written into the register file using bits 15:11 of
the instruction to select the destination register ($t1).

Similarly, we can illustrate the execution of a load word, such as
Tw $t1, offset($t2)

in a style similar to Figure 5.19. Figure 5.20 on page 310 shows the active func-
tional units and asserted control lines for a load. We can think of a load instruc-
tion as operating in five steps (similar to the R-type executed in four):

1. Aninstruction is fetched from the instruction memory, and the PC is incre-
mented.

2. Aregister ($t2) value is read from the register file.

3. The ALU computes the sum of the value read from the register file and the
sign-extended, lower 16 bits of the instruction (offset).

4. The sum from the ALU is used as the address for the data memory.
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FIGURE 5.19 The datapath in operation for an R-type instruction such as add $t1,$t2, $t3. The control lines, datapath units, and

connections that are active are highlighted.

5. The data from the memory unit is written into the register file; the register
destination is given by bits 20:16 of the instruction ($t1) .

Finally, we can show the operation of the branch-on-equal instruction, such as
beq $t1,$t2,0ffset, in the same fashion. It operates much like an R-format
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Instruction [5-0]

0
| M
Add u
X
ALU
1
4 Add result
RegDst
Branch
\ MemRead
Instruction [31-26] | MemtoReg
>
Control ALUOp
MemWrite
| ALUSrc
RegWrite
I
Instruction [25-21] Read
Read -
register 1
~|PC address 9 Read
Instruction [20—16] Read data 1
Instruction | | [ 0 register 2
(31-0] M Write Read Address Rde;g 1
. u 1
Instruction Instruction [15—-11] | x register data 2 I\dl
memory | 1 u
Write 0
data  Registers _ Data
Write memory
ta
Instruction [15-0] 16 @ 32 I

FIGURE 5.20 The datapath in operation for a load instruction. The control lines, datapath units, and connections that are active are high-
lighted. A store instruction would operate very similarly. The main difference would be that the memory control would indicate a write rather than a read,
the second register value read would be used for the data to store, and the operation of writing the data memory value to the register file would not occur.

instruction, but the ALU output is used to determine whether the PC is written with
PC + 4 or the branch target address. Figure 5.21 shows the four steps in execution:

1. Aninstruction is fetched from the instruction memory, and the PC is incre-
mented.

2. Two registers, $t1 and $t2, are read from the register file.
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FIGURE 5.21 The datapath in operation for a branch equal instruction. The control lines, datapath units, and connections that are
active are highlighted. After using the register file and ALU to perform the compare, the Zero output is used to select the next program counter from
between the two candidates.

3. The ALU performs a subtract on the data values read from the register file.
The value of PC + 4 is added to the sign-extended, lower 16 bits of the
instruction (offset) shifted left by two; the result is the branch target
address.

4. The Zero result from the ALU is used to decide which adder result to store
into the PC.
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single-cycle

implementation Also called
single clock cycle implementa-
tion. An implementation in
which an instruction is executed
in one clock cycle.

In the next section, we will examine machines that are truly sequential, namely,
those in which each of these steps is a distinct clock cycle.

Finalizing the Control

Now that we have seen how the instructions operate in steps, let’s continue with
the control implementation. The control function can be precisely defined using
the contents of Figure 5.18 on page 308. The outputs are the control lines, and the
input is the 6-bit opcode field, Op [5:0]. Thus, we can create a truth table for each
of the outputs based on the binary encoding of the opcodes.

Figure 5.22 shows the logic in the control unit as one large truth table that
combines all the outputs and that uses the opcode bits as inputs. It completely
specifies the control function, and we can implement it directly in gates in an
automated fashion. We show this final step in Section C.2 in @] Appendix C.

Op5 0

Inputs 1 1 0
Op4 0 0 0 0
0p3 0 0 1 0
0p2 0 0 0 1
Op1 0 1 1 0
0p0 0 1 1 0
Outputs RegDst 1 0 X X
ALUSrc 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOp1 1 0 0 0
ALUOPO 0 0 0 1

FIGURE 5.22 The control function for the simple single-cycle implementation is com-
pletely specified by this truth table. The top half of the table gives the combinations of input signals
that correspond to the four opcodes that determine the control output settings. (Remember that Op [5:0]
corresponds to bits 31:26 of the instruction, which is the op field.) The bottom portion of the table gives the
outputs. Thus, the output RegWrite is asserted for two different combinations of the inputs. If we consider
only the four opcodes shown in this table, then we can simplify the truth table by using don’t cares in the
input portion. For example, we can detect an R-format instruction with the expression Op5 * Op2, since
this is sufficient to distinguish the R-format instructions from 1w, Sw, and beq. We do not take advantage
of this simplification, since the rest of the MIPS opcodes are used in a full implementation.
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Now, let’s add the jump instruction to show how the basic datapath and con-
trol can be extended to handle other instructions in the instruction set.

Implementing Jumps

Figure 5.17 on page 307 shows the implementation of many of the instruc-
tions we looked at in Chapter 2. One class of instructions missing is that of
the jump instruction. Extend the datapath and control of Figure 5.17 to in-

clude the jump instruction. Describe how to set any new control lines.

The jump instruction looks somewhat like a branch instruction but com-
putes the target PC differently and is not conditional. Like a branch, the low-
order 2 bits of a jump address are always 00,,,,. The next lower 26 bits of this
32-bit address come from the 26-bit immediate field in the instruction, as
shown in Figure 5.23. The upper 4 bits of the address that should replace the
PC come from the PC of the jump instruction plus 4. Thus, we can imple-
ment a jump by storing into the PC the concatenation of

B the upper 4 bits of the current PC + 4 (these are bits 31:28 of the se-
quentially following instruction address)

B the 26-bit immediate field of the jump instruction
m the bits 00

two

Figure 5.24 shows the addition of the control for jump added to Figure 5.17.
An additional multiplexor is used to select the source for the new PC value,
which is either the incremented PC (PC + 4), the branch target PC, or the
jump target PC. One additional control signal is needed for the additional
multiplexor. This control signal, called Jump, is asserted only when the in-
struction is a jump—that is, when the opcode is 2.

Field 000010 address
Bit positions 31:26 25:0

FIGURE 5.23 Instruction format for the jump instruction (opcode = 2). The destination
address for a jump instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the
26-bit address field in the jump instruction and adding 00 as the 2 low-order bits.
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Instruction [25-0] @ Jump address [31-0]
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FIGURE 5.24 The simple control and datapath are extended to handle the jump instruction. An additional multiplexor (at the
upper right) is used to choose between the jump target and either the branch target or the sequential instruction following this one. This multiplexor
is controlled by the jump control signal. The jump target address is obtained by shifting the lower 26 bits of the jump instruction left 2 bits, effectively
adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a 32-bit address.

Why a Single-Cycle Implementation Is Not Used Today

Although the single-cycle design will work correctly, it would not be used in modern
designs because it is inefficient. To see why this is so, notice that the clock cycle must
have the same length for every instruction in this single-cycle design, and the CPI
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(see Chapter 4) will therefore be 1. Of course, the clock cycle is determined by the
longest possible path in the machine. This path is almost certainly a load instruc-
tion, which uses five functional units in series: the instruction memory, the register
file, the ALU, the data memory, and the register file. Although the CPI is 1, the over-
all performance of a single-cycle implementation is not likely to be very good, since
several of the instruction classes could fit in a shorter clock cycle.

Performance of Single-Cycle Machines

Assume that the operation times for the major functional units in this imple-
mentation are the following:

B Memory units: 200 picoseconds (ps)
B ALU and adders: 100 ps
B Register file (read or write): 50 ps

Assuming that the multiplexors, control unit, PC accesses, sign extension
unit, and wires have no delay, which of the following implementations would
be faster and by how much?

1. An implementation in which every instruction operates in 1 clock cycle
of a fixed length.

2. An implementation where every instruction executes in 1 clock cycle
using a variable-length clock, which for each instruction is only as long
as it needs to be. (Such an approach is not terribly practical, but it will
allow us to see what is being sacrificed when all the instructions must
execute in a single clock of the same length.)

To compare the performance, assume the following instruction mix: 25%
loads, 10% stores, 45% ALU instructions, 15% branches, and 5% jumps.

Let’s start by comparing the CPU execution times. Recall from Chapter 4 that

CPU execution time = Instruction count X CPI X Clock cycle time

Since CPI must be 1, we can simplify this to

CPU execution time = Instruction count X Clock cycle time
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We need only find the clock cycle time for the two implementations, since the
instruction count and CPI are the same for both implementations. The criti-
cal path for the different instruction classes is as follows:

m Functional units used by the instruction class

R-type Instruction fetch Register access Register access

Load word Instruction fetch Register access ALU | Memory access | Register access
Store word Instruction fetch Register access ALU | Memory access

Branch Instruction fetch Register access ALU

Jump Instruction fetch

Using these critical paths, we can compute the required length for each instruc-

tion class:
Instruction | Register Data Register
memory read operatlon memory write

R-type 400 ps
Load word 200 50 100 200 50 600 ps
Store word 200 50 100 200 550 ps
Branch 200 50 100 0 350 ps
Jump 200 200 ps

The clock cycle for a machine with a single clock for all instructions will be
determined by the longest instruction, which is 600 ps. (This timing is ap-
proximate, since our timing model is quite simplistic. In reality, the timing of
modern digital systems is complex.)

A machine with a variable clock will have a clock cycle that varies between
200 ps and 600 ps. We can find the average clock cycle length for a machine
with a variable-length clock using the information above and the instruction
frequency distribution.

Thus, the average time per instruction with a variable clock is

CPU clock cycle = 600 X 25% + 550 X 10% + 400 X 45% + 350 X 15% + 200 X 5%

= 447.5 ps

Since the variable clock implementation has a shorter average clock cycle, it is
clearly faster. Let’s find the performance ratio:
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CPU performance CPU execution time

variable clock —
CPU execution time

single clock

CPU performance

single clock variable clock

3 ( IC X CPU clock cycleg e ok CPU clock cyclesingle ok )
IC X CPU clock cycle,, ibie dock  CPU clock cycle v o
= 600 _ 3y
447.5

The variable clock implementation would be 1.34 times faster. Unfortunately,
implementing a variable-speed clock for each instruction class is extremely
difficult, and the overhead for such an approach could be larger than any ad-
vantage gained. As we will see in the next section, an alternative is to use a
shorter clock cycle that does less work and then vary the number of clock cy-
cles for the different instruction classes.

The penalty for using the single-cycle design with a fixed clock cycle is signifi-
cant, but might be considered acceptable for this small instruction set. Histori-
cally, early machines with very simple instruction sets did wuse this
implementation technique. However, if we tried to implement the floating-point
unit or an instruction set with more complex instructions, this single-cycle design
wouldn’t work well at all. An example of this is shown in the @] For More Practice
Exercise 5.4.

Because we must assume that the clock cycle is equal to the worst-case delay for
all instructions, we can’t use implementation techniques that reduce the delay of
the common case but do not improve the worst-case cycle time. A single-cycle
implementation thus violates our key design principle of making the common
case fast. In addition, in this single-cycle implementation, each functional unit
can be used only once per clock; therefore, some functional units must be dupli-
cated, raising the cost of the implementation. A single-cycle design is inefficient
both in its performance and in its hardware cost!

We can avoid these difficulties by using implementation techniques that have a
shorter clock cycle—derived from the basic functional unit delays—and that
require multiple clock cycles for each instruction. The next section explores this
alternative implementation scheme. In Chapter 6, we’ll look at another imple-
mentation technique, called pipelining, that uses a datapath very similar to the
single-cycle datapath, but is much more efficient. Pipelining gains efficiency by
overlapping the execution of multiple instructions, increasing hardware utiliza-
tion and improving performance. For those readers interested primarily in the
high-level concepts used in processors, the material of this section is sufficient to
read the introductory sections of Chapter 6 and understand the basic functional-
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ity of a pipelined processor. For those, who want to understand how the hardware
really implements the control, forge ahead!

Check  Look at the control signal in Figure 5.22 on page 312. Can any control signal in
Yourself thefigure be replaced by the inverse of another? (Hint: Take into account the don’t
cares.) If so, can you use one signal for the other without adding an inverter?

A Multicycle Implementation

In an earlier example, we broke each instruction into a series of steps corresponding
to the functional unit operations that were needed. We can use these steps to create a
multicycle multicycle implementation. In a multicycle implementation, each step in the exe-
implementation Also called cution will take 1 clock cycle. The multicycle implementation allows a functional
multiple clock cycle implemen- unit to be used more than once per instruction, as long as it is used on different
tation. An implementation in clock cycles. This sharing can help reduce the amount of hardware required. The
which an instruction is executed . . . . -
in multiple clock cycles. ability to allovx_r instructions to.take dlfferen.t number§ of cl.ock cyc}es and the abll.lty
to share functional units within the execution of a single instruction are the major
advantages of a multicycle design. Figure 5.25 shows the abstract version of the mul-

Instruction
register
PC Address 9 Data ——E
Instruction Register #
Memory ©F data Registers ALU e~ ALUOuUt H
Register #
Memory B
Data data 9~ Register #
register

FIGURE 5.25 The high-level view of the multicycle datapath. This picture shows the key elements of the
datapath: a shared memory unit, a single ALU shared among instructions, and the connections among these shared units. The
use of shared functional units requires the addition or widening of multiplexors as well as new temporary registers that hold
data between clock cycles of the same instruction. The additional registers are the Instruction register (IR), the Memory data
register (MDR), A, B, and ALUOut.
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ticycle datapath. If we compare Figure 5.25 to the datapath for the single-cycle ver-
sion in Figure 5.11 on page 300, we can see the following differences:

B A single memory unit is used for both instructions and data.
B There is a single ALU, rather than an ALU and two adders.

® One or more registers are added after every major functional unit to hold
the output of that unit until the value is used in a subsequent clock cycle.

At the end of a clock cycle, all data that is used in subsequent clock cycles must
be stored in a state element. Data used by subsequent instructions in a later clock
cycle is stored into one of the programmer-visible state elements: the register file,
the PC, or the memory. In contrast, data used by the same instruction in a later
cycle must be stored into one of these additional registers.

Thus, the position of the additional registers is determined by the two factors:
what combinational units will fit in one clock cycle and what data are needed in
later cycles implementing the instruction. In this multicycle design, we assume
that the clock cycle can accommodate at most one of the following operations: a
memory access, a register file access (two reads or one write), or an ALU opera-
tion. Hence, any data produced by one of these three functional units (the mem-
ory, the register file, or the ALU) must be saved, into a temporary register for use
on a later cycle. If it were not saved then the possibility of a timing race could
occur, leading to the use of an incorrect value.

The following temporary registers are added to meet these requirements:

B The Instruction register (IR) and the Memory data register (MDR) are
added to save the output of the memory for an instruction read and a data
read, respectively. Two separate registers are used, since, as will be clear
shortly, both values are needed during the same clock cycle.

m The A and B registers are used to hold the register operand values read from
the register file.

m The ALUOut register holds the output of the ALU.

All the registers except the IR hold data only between a pair of adjacent clock
cycles and will thus not need a write control signal. The IR needs to hold the
instruction until the end of execution of that instruction, and thus will require a
write control signal. This distinction will become more clear when we show the
individual clock cycles for each instruction.

Because several functional units are shared for different purposes, we need
both to add multiplexors and to expand existing multiplexors. For example, since
one memory is used for both instructions and data, we need a multiplexor to
select between the two sources for a memory address, namely, the PC (for instruc-
tion access) and ALUOut (for data access).
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Replacing the three ALUs of the single-cycle datapath by a single ALU means that
the single ALU must accommodate all the inputs that used to go to the three differ-
ent ALUs. Handling the additional inputs requires two changes to the datapath:

1. An additional multiplexor is added for the first ALU input. The multiplexor
chooses between the A register and the PC.

2. The multiplexor on the second ALU input is changed from a two-way to a
four-way multiplexor. The two additional inputs to the multiplexor are the
constant 4 (used to increment the PC) and the sign-extended and shifted
offset field (used in the branch address computation).

Figure 5.26 shows the details of the datapath with these additional multiplex-
ors. By introducing a few registers and multiplexors, we are able to reduce the
number of memory units from two to one and eliminate two adders. Since regis-
ters and multiplexors are fairly small compared to a memory unit or ALU, this
could yield a substantial reduction in the hardware cost.

PC

L

“xXxc= 0

Address

Memory

MemData ¢+

Write
data

L

Instruction Read
[25-21] register 1 Read
Instruction Read data 1
[20-16] T_> 0 register 2
Instruction | M _ Registers ALUOUL
[15-0] | |Instruction| u Y:gitster Read
15-11 X
Instruction [ ] 1 data 2
register 5 Write
e data
Instruction M
[15-0] :
e
16 . 32
S, o
register

FIGURE 5.26 Multicycle datapath for MIPS handles the basic instructions. Although this datapath supports normal incrementing of the
PC, a few more connections and a multiplexor will be needed for branches and jumps; we will add these shortly. The additions versus the single-clock
datapath include several registers (IR, MDR, A, B, ALUOut), a multiplexor for the memory address, a multiplexor for the top ALU input, and expanding
the multiplexor on the bottom ALU input into a four-way selector. These small additions allow us to remove two adders and a memory unit.
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Because the datapath shown in Figure 5.26 takes multiple clock cycles per
instruction, it will require a different set of control signals. The programmer-visible
state units (the PC, the memory, and the registers) as well as the IR will need write
control signals. The memory will also need a read signal. We can use the ALU con-
trol unit from the single-cycle datapath (see Figure 5.13 and [@ Appendix C) to
control the ALU here as well. Finally, each of the two-input multiplexors requires a
single control line, while the four-input multiplexor requires two control lines.
Figure 5.27 shows the datapath of Figure 5.26 with these control lines added.

The multicycle datapath still requires additions to support branches and
jumps; after these additions, we will see how the instructions are sequenced and
then generate the datapath control.

With the jump instruction and branch instruction, there are three possible
sources for the value to be written into the PC:

1. The output of the ALU, which is the value PC + 4 during instruction fetch.
This value should be stored directly into the PC.

2. The register ALUOut, which is where we will store the address of the branch
target after it is computed.

3. The lower 26 bits of the Instruction register (IR) shifted left by two and
concatenated with the upper 4 bits of the incremented PC, which is the
source when the instruction is a jump.

As we observed when we implemented the single-cycle control, the PC is
written both unconditionally and conditionally. During a normal increment
and for jumps, the PC is written unconditionally. If the instruction is a condi-
tional branch, the incremented PC is replaced with the value in ALUOut only if
the two designated registers are equal. Hence, our implementation uses two
separate control signals: PCWrite, which causes an unconditional write of the
PC, and PCWriteCond, which causes a write of the PC if the branch condition
is also true.

We need to connect these two control signals to the PC write control. Just as we
did in the single-cycle datapath, we will use a few gates to derive the PC write con-
trol signal from PCWrite, PCWriteCond, and the Zero signal of the ALU, which is
used to detect if the two register operands of a beq are equal. To determine
whether the PC should be written during a conditional branch, we AND together
the Zero signal of the ALU with the PCWriteCond. The output of this AND gate is
then ORed with PCWrite, which is the unconditional PC write signal. The output
of this OR gate is connected to the write control signal for the PC.

Figure 5.28 shows the complete multicycle datapath and control unit, includ-
ing the additional control signals and multiplexor for implementing the PC
updating.
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FIGURE 5.27 The multicycle datapath from Figure 5.26 with the control lines shown. The signals ALUOp and ALUSrcB are 2-bit
control signals, while all the other control lines are 1-bit signals. Neither register A nor B requires a write signal, since their contents are only read on
the cycle immediately after it is written. The memory data register has been added to hold the data from a load when the data returns from memory.
Data from a load returning from memory cannot be written directly into the register file since the clock cycle cannot accommodate the time required
for both the memory access and the register file write. The MemRead signal has been moved to the top of the memory unit to simplify the figures. The
full set of datapaths and control lines for branches will be added shortly.

Before examining the steps to execute each instruction, let us informally exam-
ine the effect of all the control signals (just as we did for the single-cycle design in
Figure 5.16 on page 306). Figure 5.29 shows what each control signal does when
asserted and deasserted.

Elaboration: To reduce the number of signal lines interconnecting the functional
units, designers can use shared buses. A shared bus is a set of lines that connect mul-
tiple units; in most cases, they include multiple sources that can place data on the bus
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FIGURE 5.28 The complete datapath for the multicycle implementation together with the necessary control lines. The con-
trol lines of Figure 5.27 are attached to the control unit, and the control and datapath elements needed to effect changes to the PC are included. The
major additions from Figure 5.27 include the multiplexor used to select the source of a new PC value; gates used to combine the PC write signals; and
the control signals PCSource, PCWrite, and PCWriteCond. The PCWriteCond signal is used to decide whether a conditional branch should be taken.
Support for jumps is included.

and multiple readers of the value. Just as we reduced the number of functional units for
the datapath, we can reduce the number of buses interconnecting these units by shar-
ing the buses. For example, there are six sources coming to the ALU; however, only two
of them are needed at any one time. Thus, a pair of buses can be used to hold values
that are being sent to the ALU. Rather than placing a large multiplexor in front of the
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Actions of the 1-bit control signals

Effect when deasserted Effect when asserted

RegDst The register file destination number for the Write | The register file destination number for the Write register comes from the
register comes from the rt field. rd field.
RegWrite None. The general-purpose register selected by the Write register number is
written with the value of the Write data input.
ALUSIrcA The first ALU operand is the PC. The first ALU operand comes from the A register.
MemRead None. Content of memory at the location specified by the Address input is put
on Memory data output.
MemWrite None. Memory contents at the location specified by the Address input is
replaced by value on Write data input.
MemtoReg The value fed to the register file Write data input | The value fed to the register file Write data input comes from the MDR.
comes from ALUOut.
lorD The PC is used to supply the address to the ALUOut is used to supply the address to the memory unit.
memory unit.
IRWrite None. The output of the memory is written into the IR.
PCWrite None. The PC is written; the source is controlled by PCSource.
PCWriteCond None. The PC is written if the Zero output from the ALU is also active.

Actions of the 2-bit control sighals

Signiname | volwo ey Jon ]

ALUOp 00 The ALU performs an add operation.
01 The ALU performs a subtract operation.
10 The funct field of the instruction determines the ALU operation.
ALUSrcB 00 The second input to the ALU comes from the B register.
01 The second input to the ALU is the constant 4.
10 The second input to the ALU is the sign-extended, lower 16 bits of the IR.
11 The second input to the ALU is the sign-extended, lower 16 bits of the IR shifted left
2 bits.
PCSource 00 Output of the ALU (PC + 4) is sent to the PC for writing.
01 The contents of ALUOut (the branch target address) are sent to the PC for writing.
10 The jump target address (IR[25:0] shifted left 2 bits and concatenated with
PC + 4[31:28]) is sent to the PC for writing.

FIGURE 5.29 The action caused by the setting of each control signal in Figure 5.28 on page 323. The top table describes the 1-bit
control signals, while the bottom table describes the 2-bit signals. Only those control lines that affect multiplexors have an action when they are deasserted.
This information is similar to that in Figure 5.16 on page 306 for the single-cycle datapath, but adds several new control lines (IRWrite, PCWrite,
PCWriteCond, ALUSrcB, and PCSource) and removes control lines that are no longer used or have been replaced (PCSrc, Branch, and Jump).

ALU, a designer can use a shared bus and then ensure that only one of the sources is
driving the bus at any point. Although this saves signal lines, the same number of con-
trol lines will be needed to control what goes on the bus. The major drawback to using
such bus structures is a potential performance penalty, since a bus is unlikely to be as
fast as a point-to-point connection.
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Breaking the Instruction Execution into Clock Cycles

Given the datapath in Figure 5.28, we now need to look at what should happen in
each clock cycle of the multicycle execution, since this will determine what addi-
tional control signals may be needed, as well as the setting of the control signals. Our
goal in breaking the execution into clock cycles should be to maximize performance.
We can begin by breaking the execution of any instruction into a series of steps, each
taking one clock cycle, attempting to keep the amount of work per cycle roughly
equal. For example, we will restrict each step to contain at most one ALU operation,
or one register file access, or one memory access. With this restriction, the clock
cycle could be as short as the longest of these operations.

Recall that at the end of every clock cycle any data values that will be needed on
a subsequent cycle must be stored into a register, which can be either one of the
major state elements (e.g., the PC, the register file, or the memory), a temporary
register written on every clock cycle (e.g., A, B, MDR, or ALUOut), or a tempo-
rary register with write control (e.g., IR). Also remember that because our design
is edge-triggered, we can continue to read the current value of a register; the new
value does not appear until the next clock cycle.

In the single-cycle datapath, each instruction uses a set of datapath elements to
carry out its execution. Many of the datapath elements operate in series, using the
output of another element as an input. Some datapath elements operate in paral-
lel; for example, the PC is incremented and the instruction is read at the same
time. A similar situation exists in the multicycle datapath. All the operations listed
in one step occur in parallel within 1 clock cycle, while successive steps operate in
series in different clock cycles. The limitation of one ALU operation, one memory
access, and one register file access determines what can fit in one step.

Notice that we distinguish between reading from or writing into the PC or one
of the stand-alone registers and reading from or writing into the register file. In
the former case, the read or write is part of a clock cycle, while reading or writing
aresult into the register file takes an additional clock cycle. The reason for this dis-
tinction is that the register file has additional control and access overhead com-
pared to the single stand-alone registers. Thus, keeping the clock cycle short
motivates dedicating separate clock cycles for register file accesses.

The potential execution steps and their actions are given below. Each MIPS
instruction needs from three to five of these steps:

1. Instruction fetch step

Fetch the instruction from memory and compute the address of the next sequen-
tial instruction:

IR <= Memory[PC];
PC <= PC + 4;
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Operation: Send the PC to the memory as the address, perform a read, and write
the instruction into the Instruction register (IR), where it will be stored. Also,
increment the PC by 4. We use the symbol “<=" from Verilog; it indicates that all
right-hand sides are evaluated and then all assignments are made, which is effec-
tively how the hardware executes during the clock cycle.

To implement this step, we will need to assert the control signals MemRead and
IRWrite, and set IorD to 0 to select the PC as the source of the address. We also
increment the PC by 4, which requires setting the ALUSrcA signal to 0 (sending the
PC to the ALU), the ALUSrcB signal to 01 (sending 4 to the ALU), and ALUOp to 00
(to make the ALU add). Finally, we will also want to store the incremented instruc-
tion address back into the PC, which requires setting PC source to 00 and setting
PCWrite. The increment of the PC and the instruction memory access can occur in
parallel. The new value of the PC is not visible until the next clock cycle. (The incre-
mented PC will also be stored into ALUOut, but this action is benign.)

2. Instruction decode and register fetch step

In the previous step and in this one, we do not yet know what the instruction is, so
we can perform only actions that are either applicable to all instructions (such as
fetching the instruction in step 1) or are not harmful, in case the instruction isn’t
what we think it might be. Thus, in this step we can read the two registers indi-
cated by the rs and rt instruction fields, since it isn’t harmful to read them even if
it isn’t necessary. The values read from the register file may be needed in later
stages, so we read them from the register file and store the values into the tempo-
rary registers A and B.

We will also compute the branch target address with the ALU, which also is not
harmful because we can ignore the value if the instruction turns out not to be a
branch. The potential branch target is saved in ALUOut.

Performing these “optimistic” actions early has the benefit of decreasing the
number of clock cycles needed to execute an instruction. We can do these optimis-
tic actions early because of the regularity of the instruction formats. For
instance, if the instruction has two register inputs, they are always in the rs and rt
fields, and if the instruction is a branch, the offset is always the low-order 16 bits:

A <= Reg[IR[25:211];
B <= Reg[IR[20:16117;
ALUOut <= PC + (sign-extend (IR[15-0]) << 2);

Operation: Access the register file to read registers rs and rt and store the results
into the registers A and B. Since A and B are overwritten on every cycle, the regis-
ter file can be read on every cycle with the values stored into A and B. This step
also computes the branch target address and stores the address in ALUOut, where
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it will be used on the next clock cycle if the instruction is a branch. This requires
setting ALUSrcA to 0 (so that the PC is sent to the ALU), ALUSrcB to the value 11
(so that the sign-extended and shifted offset field is sent to the ALU), and ALUOp
to 00 (so the ALU adds). The register file accesses and computation of branch tar-
get occur in parallel.

After this clock cycle, determining the action to take can depend on the
instruction contents.

3. Execution, memory address computation, or branch completion

This is the first cycle during which the datapath operation is determined by the
instruction class. In all cases, the ALU is operating on the operands prepared in
the previous step, performing one of four functions, depending on the instruction
class. We specify the action to be taken depending on the instruction class:

Memory reference:
ALUOuUt <= A + sign-extend (IR[15:01);

Operation: The ALU is adding the operands to form the memory address. This
requires setting ALUSrcA to 1 (so that the first ALU input is register A) and setting
ALUSrcB to 10 (so that the output of the sign extension unit is used for the second
ALU input). The ALUOPp signals will need to be set to 00 (causing the ALU to add).

Arithmetic-logical instruction (R-type):
ALUQut <= A op B;

Operation: The ALU is performing the operation specified by the function code
on the two values read from the register file in the previous cycle. This requires
setting ALUSrcA = 1 and setting ALUSrcB = 00, which together cause the registers
A and B to be used as the ALU inputs. The ALUOp signals will need to be set to 10
(so that the funct field is used to determine the ALU control signal settings).

Branch:
if (A == B) PC <= ALUOut;

Operation: The ALU is used to do the equal comparison between the two registers
read in the previous step. The Zero signal out of the ALU is used to determine whether
or not to branch. This requires setting ALUSrcA = 1 and setting ALUSrcB = 00 (so that
the register file outputs are the ALU inputs). The ALUOp signals will need to be set to
01 (causing the ALU to subtract) for equality testing. The PCWriteCond signal will
need to be asserted to update the PC if the Zero output of the ALU is asserted. By set-
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ting PCSource to 01, the value written into the PC will come from ALUOut, which
holds the branch target address computed in the previous cycle. For conditional
branches that are taken, we actually write the PC twice: once from the output of the
ALU (during the Instruction decode/register fetch) and once from ALUOut (during
the Branch completion step). The value written into the PC last is the one used for the
next instruction fetch.

Jump:

# {x, y} is the Verilog notation for concatenation of
bit fields x and y
PC <= {PC [31:28]1, (IR[25:0]11,2'b00)};

Operation: The PC is replaced by the jump address. PCSource is set to direct the
jump address to the PC, and PCWrite is asserted to write the jump address into
the PC.

4. Memory access or R-type instruction completion step

During this step, a load or store instruction accesses memory and an arithmetic-
logical instruction writes its result. When a value is retrieved from memory, it is
stored into the memory data register (MDR), where it must be used on the next
clock cycle.

Memory reference:

MDR <= Memory [ALUOuUt];
or

Memory [ALUOut] <= B;

Operation: If the instruction is a load, a data word is retrieved from memory and
is written into the MDR. If the instruction is a store, then the data is written into
memory. In either case, the address used is the one computed during the previous
step and stored in ALUOut. For a store, the source operand is saved in B. (B is
actually read twice, once in step 2 and once in step 3. Luckily, the same value is
read both times, since the register number—which is stored in IR and used to read
from the register file—does not change.) The signal MemRead (for a load) or
MemWrite (for store) will need to be asserted. In addition, for loads and stores,
the signal TorD is set to 1 to force the memory address to come from the ALU,
rather than the PC. Since MDR is written on every clock cycle, no explicit control
signal need be asserted.
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Arithmetic-logical instruction (R-type):
Reg[IR[15:111] <= ALUOut;

Operation: Place the contents of ALUOut, which corresponds to the output of the
ALU operation in the previous cycle, into the Result register. The signal RegDst
must be set to 1 to force the rd field (bits 15:11) to be used to select the register file
entry to write. RegWrite must be asserted, and MemtoReg must be set to 0 so that
the output of the ALU is written, as opposed to the memory data output.

5. Memory read completion step
During this step, loads complete by writing back the value from memory.

Load:
Reg[IR[20:16]]<=MDR;

Operation: Write the load data, which was stored into MDR in the previous cycle,
into the register file. To do this, we set MemtoReg = 1 (to write the result from
memory), assert RegWrite (to cause a write), and we make RegDst = 0 to choose
the rt (bits 20:16) field as the register number.

This five-step sequence is summarized in Figure 5.30. From this sequence we
can determine what the control must do on each clock cycle.

Action for R-type Action for memory- Action for Action for
Step name instructions reference instructions branches jumps

Instruction fetch IR <= Memory[PC]
PC<=PC+ 4
Instruction decode/register fetch A <= Reg [IR[25:21]]

B <= Reg [IR[20:16]]
ALUOut <= PC + (sign-extend (IR[15:0]) << 2)

Execution, address computation, ALUOut<=AopB ALUOut <= A + sign-extend if (A==B) PC <= {PC [31:28],
branch/jump completion (IR[15:01]) PC <= ALUOut (IR[25:0]],2'b00)}
Memory access or R-type Reg [IR[15:11]] <= Load: MDR <= Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] <= B
Memory read completion Load: Reg[IR[20:16]] <= MDR

FIGURE 5.30 Summary of the steps taken to execute any instruction class. Instructions take from three to five execution steps. The
first two steps are independent of the instruction class. After these steps, an instruction takes from one to three more cycles to complete, depending on
the instruction class. The empty entries for the Memory access step or the Memory read completion step indicate that the particular instruction class
takes fewer cycles. In a multicycle implementation, a new instruction will be started as soon as the current instruction completes, so these cycles are
not idle or wasted. As mentioned earlier, the register file actually reads every cycle, but as long as the IR does not change, the values read from the reg-
ister file are identical. In particular, the value read into register B during the Instruction decode stage, for a branch or R-type instruction, is the same as
the value stored into B during the Execution stage and then used in the Memory access stage for a store word instruction.
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microprogram A symbolic
representation of control in the
form of instructions, called
microinstructions, that are exe-
cuted on a simple micromachine.

Defining the Control

Now that we have determined what the control signals are and when they must be
asserted, we can implement the control unit. To design the control unit for the
single-cycle datapath, we used a set of truth tables that specified the setting of the
control signals based on the instruction class. For the multicycle datapath, the
control is more complex because the instruction is executed in a series of steps.
The control for the multicycle datapath must specify both the signals to be set in
any step and the next step in the sequence.

In this subsection and in @) Section 5.7, we will look at two different techniques
to specify the control. The first technique is based on finite state machines that are
usually represented graphically. The second technique, called microprogramming,
uses a programming representation for control. Both of these techniques repre-
sent the control in a form that allows the detailed implementation—using gates,
ROMs, or PLAs—to be synthesized by a CAD system. In this chapter, we will
focus on the design of the control and its representation in these two forms.

Section 5.8 shows how hardware design languages are used to design modern
processors with examples of both the multicycle datapath and the finite state control.
In modern digital systems design, the final step of taking a hardware description to
actual gates is handled by logic and datapath synthesis tools. Appendix C shows how
this process operates by translating the multicycle control unit to a detailed hardware
implementation. The key ideas of control can be grasped from this chapter without
examining the material in either [@ Section 5.8 or [@ Appendix C. However, if you
want to actually do some hardware design, Section 5.9 is useful, and @ Appendix C
can show you what the implementations are likely to look like at the gate level.

Given this implementation, and the knowledge that each state requires 1 clock
cycle, we can find the CPI for a typical instruction mix.

CPI in a Multicycle CPU

Using the SPECINT2000 instruction mix shown in Figure 3.26, what is the
CPI, assuming that each state in the multicycle CPU requires 1 clock cycle?

The mix is 25% loads (1% load byte + 24% load word), 10% stores (1% store
byte + 9% store word), 11% branches (6% beq, 5% bne), 2% jumps (1%
jal +1% jr),and 52% ALU (all the rest of the mix, which we assume to be
ALU instructions). From Figure 5.30 on page 329, the number of clock cycles
for each instruction class is the following:
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m Loads: 5

m Stores: 4

m ALU instructions: 4
Bm Branches: 3

|

Jumps: 3
The CPI is given by the following:

CPU clock cycles _ Zlnstruction count, x CPI,

CPI = - ;
Instruction count Instruction count
Instruction count;
= - x CPI;
Instruction count
The ratio

Instruction count;
Instruction count

is simply the instruction frequency for the instruction class i. We can there-
fore substitute to obtain

CPI = 0.25%x5+0.10x4+052%x4+0.11 x3+0.02x3 = 4.12

This CPI is better than the worst-case CPI of 5.0 when all the instructions
take the same number of clock cycles. Of course, overheads in both designs
may reduce or increase this difference. The multicycle design is probably also
more cost-effective, since it uses fewer separate components in the datapath.

The first method we use to specify the multicycle control is a finite state
machine. A finite state machine consists of a set of states and directions on how to
change states. The directions are defined by a next-state function, which maps the
current state and the inputs to a new state. When we use a finite state machine for
control, each state also specifies a set of outputs that are asserted when the
machine is in that state. The implementation of a finite state machine usually
assumes that all outputs that are not explicitly asserted are deasserted. Similarly,
the correct operation of the datapath depends on the fact that a signal that is not
explicitly asserted is deasserted, rather than acting as a don’t care. For example,
the RegWrite signal should be asserted only when a register file entry is to be writ-
ten; when it is not explicitly asserted, it must be deasserted.

finite state machine A sequen-
tial logic function consisting of a
set of inputs and outputs, a next-
state function that maps the cur-
rent state and the inputs to a new
state, and an output function
that maps the current state and
possibly the inputs to a set of
asserted outputs.

next-state function A combi-
national function that, given the
inputs and the current state,
determines the next state of a
finite state machine.
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Multiplexor controls are slightly different, since they select one of the inputs
whether they are 0 or 1. Thus, in the finite state machine, we always specify the
setting of all the multiplexor controls that we care about. When we implement the
finite state machine with logic, setting a control to 0 may be the default and thus
may not require any gates. A simple example of a finite state machine appears in
Appendix B, and if you are unfamiliar with the concept of a finite state machine,
you may want to examine [@ Appendix B before proceeding.

The finite state control essentially corresponds to the five steps of execution
shown on pages 325 through 329; each state in the finite state machine will take 1
clock cycle. The finite state machine will consist of several parts. Since the first two
steps of execution are identical for every instruction, the initial two states of the
finite state machine will be common for all instructions. Steps 3 through 5 differ,
depending on the opcode. After the execution of the last step for a particular
instruction class, the finite state machine will return to the initial state to begin
fetching the next instruction.

Figure 5.31 shows this abstracted representation of the finite state machine. To
fill in the details of the finite state machine, we will first expand the instruction
fetch and decode portion, and then we will show the states (and actions) for the
different instruction classes.

We show the first two states of the finite state machine in Figure 5.32 using a
traditional graphic representation. We number the states to simplify the explana-
tion, though the numbers are arbitrary. State 0, corresponding to step 1, is the
starting state of the machine.

The signals that are asserted in each state are shown within the circle represent-
ing the state. The arcs between states define the next state and are labeled with

Start

t !

Instruction fetch/decode and register fetch
(Figure 5.32)

1 1 1

Memory access R-type instructions Branch instruction Jump instruction
instructions (Figure 5.34) (Figure 5.35) (Figure 5.36)
(Figure 5.33)

FIGURE 5.31 The high-level view of the finite state machine control. The first steps are inde-
pendent of the instruction class; then a series of sequences that depend on the instruction opcode are used
to complete each instruction class. After completing the actions needed for that instruction class, the con-
trol returns to fetch a new instruction. Each box in this figure may represent one to several states. The arc
labeled Start marks the state in which to begin when the first instruction is to be fetched.
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Instruction fetch
Instruction decode/

Register fetch

MemRead

0 ALUSIrcA =0
lorD =0
IRWrite ALUSrcA =0
Start ALUSICB = 01 ALUSIGB = 11
ALUOp = 00 ALUOp =00
PCWrite

PCSource = 00

Memory-reference FSM R-type FSM Branch FSM Jump FSM
(Figure 5.33) (Figure 5.34) (Figure 5.35) (Figure 5.36)

FIGURE 5.32 The instruction fetch and decode portion of every instruction is identi-
cal. These states correspond to the top box in the abstract finite state machine in Figure 5.31. In the first
state we assert two signals to cause the memory to read an instruction and write it into the Instruction
register (MemRead and IRWrite), and we set IorD to 0 to choose the PC as the address source. The signals
ALUSrcA, ALUSrcB, ALUOp, PCWrite, and PCSource are set to compute PC + 4 and store it into the PC.
(It will also be stored into ALUOut, but never used from there.) In the next state, we compute the branch
target address by setting ALUSrcB to 11 (causing the shifted and sign-extended lower 16 bits of the IR to
be sent to the ALU), setting ALUSrcA to 0 and ALUOp to 00; we store the result in the ALUOut register,
which is written on every cycle. There are four next states that depend on the class of the instruction,
which is known during this state. The control unit input, called Op, is used to determine which of these
arcs to follow. Remember that all signals not explicitly asserted are deasserted; this is particularly impor-
tant for signals that control writes. For multiplexors controls, lack of a specific setting indicates that we
do not care about the setting of the multiplexor.

conditions that select a specific next state when multiple next states are possible.
After state 1, the signals asserted depend on the class of instruction. Thus, the
finite state machine has four arcs exiting state 1, corresponding to the four
instruction classes: memory reference, R-type, branch on equal, and jump. This
process of branching to different states depending on the instruction is called
decoding, since the choice of the next state, and hence the actions that follow,
depend on the instruction class.
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From state 1

(Op = 'LW') or (Op = 'SW')

Memory address computation

ALUSIcA =1
ALUSrcB =10
ALUOp = 00

Memory
access

Memory
access

MemRead
lorD =1

MemWrite
lorD =1

Memory read completion step

RegWrite
MemtoReg =1
RegDst =0

To state 0
(Figure 5.32)

FIGURE 5.33 The finite state machine for controlling memory-reference instructions has
four states. These states correspond to the box labeled “Memory access instructions” in Figure 5.31.
After performing a memory address calculation, a separate sequence is needed for load and for store. The
setting of the control signals ALUSrcA, ALUSrcB, and ALUOp is used to cause the memory address compu-
tation in state 2. Loads require an extra state to write the result from the MDR (where the result is written in
state 3) into the register file.

Figure 5.33 shows the portion of the finite state machine needed to implement
the memory-reference instructions. For the memory-reference instructions, the
first state after fetching the instruction and registers computes the memory
address (state 2). To compute the memory address, the ALU input multiplexors
must be set so that the first input is the A register, while the second input is the
sign-extended displacement field; the result is written into the ALUOut register.
After the memory address calculation, the memory should be read or written; this
requires two different states. If the instruction opcode is 1w, then state 3 (corre-
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sponding to the step Memory access) does the memory read (MemRead is
asserted). The output of the memory is always written into MDR. If it is sw, state 5
does a memory write (MemWrite is asserted). In states 3 and 5, the signal IorD is
set to 1 to force the memory address to come from the ALU. After performing a
write, the instruction sw has completed execution, and the next state is state 0. If
the instruction is a load, however, another state (state 4) is needed to write the
result from the memory into the register file. Setting the multiplexor controls
MemtoReg = 1 and RegDst = 0 will send the loaded value in the MDR to be writ-
ten into the register file, using rt as the register number. After this state, corre-
sponding to the Memory read completion step, the next state is state 0.

To implement the R-type instructions requires two states corresponding to
steps 3 (Execute) and 4 (R-type completion). Figure 5.34 shows this two-state
portion of the finite state machine. State 6 asserts ALUSrcA and sets the ALUSrcB

From state 1

(Op = R-Type)

Execution

ALUSIcA =1
ALUSrcB = 00
ALUOp =10

R-type completion

RegDst =1
RegWrite
MemtoReg = 0

To state 0
(Figure 5.32)

FIGURE 5.34 R-type instructions can be implemented with a simple two-state finite
state machine. These states correspond to the box labeled “R-type instructions” in Figure 5.31. The first
state causes the ALU operation to occur, while the second state causes the ALU result (which is in ALUOut)
to be written in the register file. The three signals asserted during state 7 cause the contents of ALUOut to be
written into the register file in the entry specified by the rd field of the Instruction register.
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signals to 00; this forces the two registers that were read from the register file to be
used as inputs to the ALU. Setting ALUOp to 10 causes the ALU control unit to
use the function field to set the ALU control signals. In state 7, RegWrite is
asserted to cause the register file to write, RegDst is asserted to cause the rd field to
be used as the register number of the destination, and MemtoReg is deasserted to
select ALUOut as the source of the value to write into the register file.

For branches, only a single additional state is necessary because they complete
execution during the third step of instruction execution. During this state, the
control signals that cause the ALU to compare the contents of registers A and B
must be set, and the signals that cause the PC to be written conditionally with the
address in the ALUOut register are also set. To perform the comparison requires
that we assert ALUSrcA and set ALUSrcB to 00, and set the ALUOp value to 01
(forcing a subtract). (We use only the Zero output of the ALU, not the result of the
subtraction.) To control the writing of the PC, we assert PCWriteCond and set
PCSource = 01, which will cause the value in the ALUOut register (containing the
branch address calculated in state 1, Figure 5.32 on page 333) to be written into
the PC if the Zero bit out of the ALU is asserted. Figure 5.35 shows this single
state.

The last instruction class is jump; like branch, it requires only a single state
(shown in Figure 5.36) to complete its execution. In this state, the signal PCWrite
is asserted to cause the PC to be written. By setting PCSource to 10, the value sup-
plied for writing will be the lower 26 bits of the Instruction register with 00
added as the low-order bits concatenated with the upper 4 bits of the PC.

We can now put these pieces of the finite state machine together to form a spec-
ification for the control unit, as shown in Figure 5.38. In each state, the signals
that are asserted are shown. The next state depends on the opcode bits of the
instruction, so we label the arcs with a comparison for the corresponding instruc-
tion opcodes.

A finite state machine can be implemented with a temporary register that holds
the current state and a block of combinational logic that determines both the datap-
ath signals to be asserted as well as the next state. Figure 5.37 shows how such an
implementation might look. @ Appendix C describes in detail how the finite state
machine is implemented using this structure. In @ Section C.3, the combinational
control logic for the finite state machine of Figure 5.38 is implemented both with a
ROM (read-only memory) and a PLA (programmable logic array). (Also see [@)
Appendix B for a description of these logic elements.) In the next section of this
chapter, we consider another way to represent control. Both of these techniques are
simply different representations of the same control information.

Pipelining, which is the subject of Chapter 6, is almost always used to accelerate
the execution of instructions. For simple instructions, pipelining is capable of
achieving the higher clock rate of a multicycle design and a single-cycle CPI of a
single-clock design. In most pipelined processors, however, some instructions
take longer than a single cycle and require multicycle control. Floating point-

two
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From state 1

(Op = 'BEQ)

Branch completion

ALUSIcA =1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

To state 0
(Figure 5.32)

FIGURE 5.35 The branch instruction requires a single state. The first three outputs that are
asserted cause the ALU to compare the registers (ALUSrcA, ALUSrcB, and ALUOp), while the signals
PCSource and PCWriteCond perform the conditional write if the branch condition is true. Notice that we
do not use the value written into ALUOut; instead, we use only the Zero output of the ALU. The branch tar-
get address is read from ALUOut, where it was saved at the end of state 1.

From state 1

(Op="J)

Jump completion

PCWrite
PCSource = 10

To state 0
(Figure 5.32)

FIGURE 5.36 The jump instruction requires a single state that asserts two control sig-
nals to write the PC with the lower 26 bits of the Instruction register shifted left 2 bits
and concatenated to the upper 4 bits of the PC of this instruction.
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Combinational

control logic Datapath control outputs

Outputs <

Inputs
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’ State register

Inputs from instruction
register opcode field

T

FIGURE 5.37 Finite state machine controllers are typically implemented using a block of
combinational logic and a register to hold the current state. The outputs of the combinational
logic are the next-state number and the control signals to be asserted for the current state. The inputs to the
combinational logic are the current state and any inputs used to determine the next state. In this case, the inputs
are the instruction register opcode bits. Notice that in the finite state machine used in this chapter, the outputs
depend only on the current state, not on the inputs. The Elaboration above explains this in more detail.

instructions are one universal example. There are many examples in the 1A-32
architecture that require the use of multicycle control.

Elaboration: The style of finite state machine in Figure 5.37 is called a Moore
machine, after Edward Moore. Its identifying characteristic is that the output depends
only on the current state. For a Moore machine, the box labeled combinational control
logic can be split into two pieces. One piece has the control output and only the state
input, while the other has only the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The
Mealy machine allows both the input and the current state to be used to determine the
output. Moore machines have potential implementation advantages in speed and size
of the control unit. The speed advantages arise because the control outputs, which are
needed early in the clock cycle, do not depend on the inputs, but only on the current
state. In Appendix C, when the implementation of this finite state machine is taken
down to logic gates, the size advantage can be clearly seen.The potential disadvantage
of a Moore machine is that it may require additional states. For example, in situations
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Start

Memory address
computation

ALUSIrcA =1
ALUSrcB =10
ALUOp = 00

Instruction fetch

MemRead
ALUSrcA=0
lorD=0
IRWrite
ALUSrcB = 01
ALUOp =00
PCWrite
PCSource = 00
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Branch
Execution completion

ALUSIcA =1

ALUSIrcA =1

ALUSrcB = 00 ALUSrcB = 00
ALUOp = 10 ALUOp =01
PCWriteCond

Instruction decode/
register fetch

ALUSrcA =0
ALUSrcB = 11
ALUOp = 00
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(Op

Jump
completion
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PCSource = 10
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MemtoReg = 0
Memory read
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4
RegDst = 1
RegWrite
MemtoReg = 0

FIGURE 5.38 The complete finite state machine control for the datapath shown in
Figure 5.28. The labels on the arcs are conditions that are tested to determine which state is the next state;
when the next state is unconditional, no label is given. The labels inside the nodes indicate the output sig-
nals asserted during that state; we always specify the setting of a multiplexor control signal if the correct

operation requires it. Hence, in some states a multiplexor control will be set to 0.
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where there is a one-state difference between two sequences of states, the Mealy
machine may unify the states by making the outputs depend on the inputs.

Understanding
Program
Performance

Check
Yourself

exception Also called inter-
rupt. An unscheduled event that
disrupts program execution;
used to detect overflow.

interrupt An exception that
comes from outside of the pro-
cessor. (Some architectures
use the term interrupt for all
exceptions.)

For a processor with a given clock rate, the relative performance between two code
segments will be determined by the product of the CPI and the instruction count
to execute each segment. As we have seen here, instructions can vary in their CPI,
even for a simple processor. In the next two chapters, we will see that the intro-
duction of pipelining and the use of caches create even larger opportunities for
variation in the CPI. Although many factors that affect the CPI are controlled by
the hardware designer, the programmer, the compiler, and software system dictate
what instructions are executed, and it is this process that determines what the
effective CPI for the program will be. Programmers seeking to improve perfor-
mance must understand the role of CPI and the factors that affect it.

1. True or false: Since the jump instruction does not depend on the register
values or on computing the branch target address, it can be completed dur-
ing the second state, rather than waiting until the third.

2. True, false, or maybe: The control signal PCWriteCond can be replaced by
PCSource[0].

Exceptions

Control is the most challenging aspect of processor design: it is both the hardest
part to get right and the hardest part to make fast. One of the hardest parts of con-
trol is implementing exceptions and interrupts—events other than branches or
jumps that change the normal flow of instruction execution. An exception is an
unexpected event from within the processor; arithmetic overflow is an example of
an exception. An interrupt is an event that also causes an unexpected change in
control flow but comes from outside of the processor. Interrupts are used by I/O
devices to communicate with the processor, as we will see in Chapter 8.

Many architectures and authors do not distinguish between interrupts and
exceptions, often using the older name interrupt to refer to both types of events.
We follow the MIPS convention, using the term exception to refer to any unex-
pected change in control flow without distinguishing whether the cause is internal
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or external; we use the term interrupt only when the event is externally caused.
The Intel IA-32 architecture uses the word interrupt for all these events.

Interrupts were initially created to handle unexpected events like arithmetic
overflow and to signal requests for service from I/O devices. The same basic
mechanism was extended to handle internally generated exceptions as well. Here
are some examples showing whether the situation is generated internally by the
processor or externally generated:

Type of event MIPS terminology

1/0 device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Many of the requirements to support exceptions come from the specific situa-
tion that causes an exception to occur. Accordingly, we will return to this topic in
Chapter 7, when we discuss memory hierarchies, and in Chapter 8, when we dis-
cuss 1/0, and we better understand the motivation for additional capabilities in
the exception mechanism. In this section, we deal with the control implementa-
tion for detecting two types of exceptions that arise from the portions of the
instruction set and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is often on the
critical timing path of a machine, which determines the clock cycle time and thus
performance. Without proper attention to exceptions during design of the control
unit, attempts to add exceptions to a complicated implementation can significantly
reduce performance, as well as complicate the task of getting the design correct.

How Exceptions Are Handled

The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow. The basic
action that the machine must perform when an exception occurs is to save the
address of the offending instruction in the exception program counter (EPC) and
then transfer control to the operating system at some specified address.

The operating system can then take the appropriate action, which may
involve providing some service to the user program, taking some predefined
action in response to an overflow, or stopping the execution of the program
and reporting an error. After performing whatever action is required because
of the exception, the operating system can terminate the program or may con-
tinue its execution, using the EPC to determine where to restart the execution
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vectored interrupt An inter-
rupt for which the address to
which control is transferred is
determined by the cause of the
exception.

of the program. In Chapter 7, we will look more closely at the issue of restart-
ing the execution.

For the operating system to handle the exception, it must know the reason for
the exception, in addition to the instruction that caused it. There are two main
methods used to communicate the reason for an exception. The method used in
the MIPS architecture is to include a status register (called the Cause register),
which holds a field that indicates the reason for the exception.

A second method is to use vectored interrupts. In a vectored interrupt, the
address to which control is transferred is determined by the cause of the excep-
tion. For example, to accommodate the two exception types listed above, we
might define the following two exception vector addresses:

Exception type Exception vector address (in hex)

Undefined instruction CO00 0000y,
Arithmetic overflow C0O00 0020y,

The operating system knows the reason for the exception by the address at which
it is initiated. The addresses are separated by 32 bytes or 8 instructions, and the
operating system must record the reason for the exception and may perform some
limited processing in this sequence. When the exception is not vectored, a single
entry point for all exceptions can be used, and the operating system decodes the
status register to find the cause.

We can perform the processing required for exceptions by adding a few extra
registers and control signals to our basic implementation and by slightly extend-
ing the finite state machine. Let’s assume that we are implementing the exception
system used in the MIPS architecture. (Implementing vectored exceptions is no
more difficult.) We will need to add two additional registers to the datapath:

m EPC: A 32-bit register used to hold the address of the affected instruction.
(Such a register is needed even when exceptions are vectored.)

m Cause: A register used to record the cause of the exception. In the MIPS
architecture, this register is 32 bits, although some bits are currently unused.
Assume that the low-order bit of this register encodes the two possible
exception sources mentioned above: undefined instruction = 0 and arith-
metic overflow = 1.

We will need to add two control signals to cause the EPC and Cause registers to be
written; call these EPCWrite and CauseWrite. In addition, we will need a 1-bit
control signal to set the low-order bit of the Cause register appropriately; call this
signal IntCause. Finally, we will need to be able to write the exception address,
which is the operating system entry point for exception handling, into the PC; in
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the MIPS architecture, this address is 8000 0180;.,. (The SPIM simulator for
MIPS uses 8000 0080 j,..) Currently, the PC is fed from the output of a three-way
multiplexor, which is controlled by the signal PCSource (see Figure 5.28 on page
323). We can change this to a four-way multiplexor, with additional input wired to
the constant value 8000 0180;,.,. Then PCSource can be set to 11, to select this
value to be written into the PC.

Because the PC is incremented during the first cycle of every instruction, we
cannot just write the value of the PC into the EPC, since the value in the PC will
be the instruction address plus 4. However, we can use the ALU to subtract 4 from
the PC and write the output into the EPC. This requires no additional control sig-
nals or paths, since we can use the ALU to subtract, and the constant 4 is already a
selectable ALU input. The data write port of the EPC, therefore, is connected to
the ALU output. Figure 5.39 shows the multicycle datapath with these additions
needed for implementing exceptions.

Using the datapath of Figure 5.39, the action to be taken for each different type
of exception can be handled in one state apiece. In each case, the state sets the
Cause register, computes and saves the original PC into the EPC, and writes the
exception address into the PC. Thus, to handle the two exception types we are
considering, we will need to add only the two states, but before we add them we
must determine how to check for exceptions, since these checks will control the
arcs to the new states.

two

How Control Checks for Exceptions

Now we have to design a method to detect these exceptions and to transfer control
to the appropriate state in the exception states. Figure 5.40 shows the two new
states (10 and 11) as well as their connection to the rest of the finite state control.
Each of the two possible exceptions is detected differently:

B Undefined instruction: This is detected when no next state is defined from
state 1 for the op value. We handle this exception by defining the next-state
value for all op values other than 1w, sw, 0 (R-type), j, and beq as state 10.
We show this by symbolically using other to indicate that the op field does
not match any of the opcodes that label arcs out of state 1 to the new state
10, which is used for this exception.

B Arithmetic overflow: The ALU, designed in @ Appendix B, included logic to
detect overflow, and a signal called Overflow is provided as an output from the
ALU. This signal is used in the modified finite state machine to specify an
additional possible next state (state 11) for state 7, as shown in Figure 5.40.
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FIGURE 5.39 The multicycle datapath with the addition needed to implement exceptions. The specific additions include the Cause
and EPC registers, a multiplexor to control the value sent to the Cause register, an expansion of the multiplexor controlling the value written into the
PC, and control lines for the added multiplexor and registers. For simplicity, this figure does not show the ALU overflow signal, which would need to
be stored in a one-bit register and delivered as an additional input to the control unit (see Figure 5.40 to see how it is used).

Figure 5.40 represents a complete specification of the control for this MIPS
subset with two types of exceptions. Remember that the challenge in designing the
control of a real machine is to handle the variety of different interactions between
instructions and other exception-causing events in such a way that the control
logic remains both small and fast. The complex interactions that are possible are
what make the control unit the most challenging aspect of hardware design.



5.6 Exceptions

Instruction fetch

MemRead
ALUSrcA =0

Instruction decode/
register fetch

lorD=0
IRWrite ALUSIrcA =0
Start ALUSICB = 01 ALUSrcB = 11
ALUOp = 00 ALUOp =00
PCWrite
PCSource = 00
W)
/\ S
Q7 P & — Q
. sS S & 5 Ca
) P 3 i o,
z % S o 2
S O Q < >
Memory address Branch Jump
computation Execution completion completion
2 6 8
_ _ ALUSrcA=1 )
ALUSrcA__ 1 ALUSIrcA =1 ALUSIGB = 00 PCWrite
ALUSIrcB = 10 ALUSIrcB = 00 -
ALUOp = 01 PCSource = 10
ALUOp =00 ALUOp =10 .
PCWriteCond
/Qo PCSource = 01
< N
= %,
1 &
o | Memory Memory
Q y access access R-type completion

7 IntCause = 1 10 IntCause = 0
CauseWrite CauseWrite
MemRead MemWrite RegDst = 1 ALUSrcA =0 ALUSrcA =0
lorD = 1 lorD = 1 RegWrite ALUSrcB = 01 ALUSrcB = 01
MemtoReg =0 ALUOp =01 ALUOp = 01
EPCWrite EPCWrite
PCWrite PCWrite

Write-back step Overflow

RegDst =0
RegWrite

PCSource = 11

PCSource = 11

MemtoReg = 1

FIGURE 5.40 This shows the finite state machine with the additions to handle exception detection. States 10 and 11 are the new
states that generate the appropriate control for exceptions. The branch out of state 1 labeled (Op = other) indicates the next state when the input does

not match the opcode of any of 1w, sw, 0 (R-type), J, or beq. The branch out of state 7 labeled Overflow indicates the action to be taken when the
ALU signals an overflow.
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Check
Yourself

Elaboration: If you examine the finite state machine in Figure 5.40 closely, you can
see that some problems could occur in the way the exceptions are handled. For exam-
ple, in the case of arithmetic overflow, the instruction causing the overflow completes
writing its result because the overflow branch is in the state when the write completes.
However, it's possible that the architecture defines the instruction as having no effect if
the instruction causes an exception; this is what the MIPS instruction set architecture
specifies. In Chapter 7, we will see that certain classes of exceptions require us to pre-
vent the instruction from changing the machine state, and that this aspect of handling
exceptions becomes complex and potentially limits performance.

Is this optimization proposed in the Check Yourself on page 340 concerning
PCSource still valid in the extended control for exceptions shown in Figure 5.40
on page 3452 Why or why not?

5.7 Microprogramming: Simplifying
. Control Design

Microprogramming is a technique for designing complex control units. It uses a
very simple hardware engine that can then be programmed to implement a
more complex instruction set. Microprogramming is used today to implement
some parts of a complex instruction set, such as a Pentium, as well as in special-
purpose processors. This section, which appears on the CD, explains the basic
concepts and shows how they can be used to implement the MIPS multicycle
control.

58 An Introduction to Digital Design Using a
. Hardware Design Language

Modern digital design is done using hardware description languages and modern
computer-aided synthesis tools that can create detailed hardware designs from the
descriptions using both libraries and logic synthesis. Entire books are written on
such languages and their use in digital design. This section, which appears on the
CD, gives a brief introduction and shows how a hardware design language, Verilog
in this case, can be used to describe the MIPS multicycle control both behaviorally
and in a form suitable for hardware synthesis.



