= DEGLI STUDI

AR E Corso di Laurea in Informatica
212 Architettura degli elaboratord
BICOCCR a a 2019-2020

Architettura degli Elaboratort

Daftapalh: concetti base

Slide: Claudia Raibulet (commento in video Moodle: Claudio Ferretti)

PC

¢ —— PCWriteCond PCSource
s PCWrite |
Nk ° | Outputs | ALUOp
lorD | | ALUSrcB
MemRead | Control |
MemWrite | | ALUSICA
MemtoReg [50_%] RegWrite
IRWrite \ RegDst (0
Jump
b /S® address [1
Instruction [25-0] 3? | et 2 | 28 31-0] | |,
Instruction L
— L &
0 [31-26] N PC [31-28]
M Instruction Read -0
g Address [25-21] register 1 Read
1 M Instruction Read data 1
emory [20-16] [T° | D register 2
MemData g+ . .
Instruction | & M _ Registers ALUOUL H
[15-0] | [Instruction| u || Write Raad
| Write _ [15-11] X register 4o
data Instruction | ¢———\1 Wi
register rite
—"“/6\ data
Instruction M 3
[15-0] . _
T T N /N
.| Memory , / \\ .
data | | © | sign | F] [snit) || - AU
register h |<mnd | @ '-.._Cﬂntrm;_,
Instruction [5-0]

=C = /'

Datapath

« Consideriamo un processore MIPS che esegue le
seguenti istruzioni:

 Aritmetico-logiche (arithmetic-logical instruction):
add, sub, and, or, slt

 Diinterazione con la memoria (memory-reference
instruction): Iw, sw

+ Di salto (control-flow instruction): beq, |

A

= DEGLI STUDI
=

.
Y
fr %

Datapath

== UNIVERSIT
ONVTIW

« Abbiamo gia’ visto il Register File & ALU

ALU operation
[| Read register
5 | number 1 Read |z
data 1 a—
/| Read register 32
5 number 2 Zero
. Register file > ALU Result
‘ Write Overflow
register
5 Read |_/__ b—=
[y Write data 2 (7 59
32| data Write
CarryQut
I FIGURE C.5.14 The symbol commonly used to represent an ALU, as shown in Figure
€.5.12. This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.
-
5 | Read ALU operation
~ | register 1 h 4
Read
- data 1
Register 4 :5 Read
numbers register 2 Zero —»
5 . Registers - Data ALU ALU
~ | Write result
L register Read |
_ data 2
Data

a. Registers

RegWrite

b. ALU

UNIVERSITA

1 LRS[lé
e
A

=
o

o =
™ =

ONVIIWIO =

Realizzare un datapath

Si stabilisce il set di istruzioni da implementare

Si identificano i componenti del datapath (Alu, register
file, ecc)

Si stabilisce la metodologia di clocking

Si assembla il datapath e si identifcano i segnali di
controllo

Si analizza I'implementazione di ogni istruzione per
determinare il setting dei segnali di controllo

Si assembla la logica di controllo

UNIVERSITA'

=
5,
[
=
2
=
=

ONVIIWIO =

Passi per I'esecuzione di una istruzione

Fetch:

* Legge l'istruzione dalla memoria e la salva in un
registro dedicato (Instruction Register)

* L’indirizzo di memoria che indica l'istruzione da
leggere si trova nel registro Program Counter (PC)

* Dopo la lettura dell; istruzione in PC viene
incrementato di 4 per indicare la prossima istruzione
da leggere (usando 'ALU)

Decode:

« Decodifica i vari campi dell’'istruzione per decidere
quali sono i passi hecessari per la sua esecuzione

Execute:
« Esegue i passi hecessari per eseguire l'istruzione

A

== UNIVERSIT

= DEGLI STUDI
s | =

f

Fetch (1)

« Cosa serve per implementare il fetch?

Instruction
address >
Instruction f——» —— PC ——
Instruction
memory
a. Instruction memory b. Program counter c. Adder

FIGURE 5.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that will be writ-
ten at the end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired
to always perform an add of its two 32-bit inputs and place the result on its output.

A

= DEGLI STUDI
=

Fetch (1)

=2 UNIVERSIT

: ONVTIW

 (Calcolo: PC+4

Add

Read
address

Instruction ——

Instruction
memory

FIGURE 5.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.

Decode

UNIVERSITA

IVERSITA
Al
i
ONYTIWIT =

* |l processore MIPS legge i vari campi dell’istruzione

* |l processore identifica il tipo di istruzione da eseguire
(OPCODE e FUNC CODE se necessario)

;_EDEGLISTUJ%
21N\ =
‘IZ8: Execute: R-Type il
? | ﬁ pn eyt
(5 Read 4 ALU operation
<" | register 1 Read A
Fiegister< 5 | Read data 1
numbers N register 2 X Zero —»
. Data ALU
. Registers ALU
Ai» Write ’ result
L register Read
dataz -) _-../

Data

RegWrite

a. Registers b. ALU

FIGURE 5.7 The two elements needed to implement R-format ALU operations are the reg-
ister file and the ALU. The register file contains all the registers and has two read ports and one write port.
The design of multiported register files is discussed in Section B.8 of Appendix B. The register file always out-
puts the contents of the registers corresponding to the Read register inputs on the outputs; no other control
inputs are needed. In contrast, a register write must be explicitly indicated by asserting the write control signal.
Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to be written, the register
number, and the write control signal) must be valid at the clock edge. Since writes to the register file are edge-
triggered, our design can legally read and write the same register within a clock cycle: the read will get the value
written in an earlier clock cycle, while the value written will be available to a read in a subsequent clock cycle.
The inputs carrying the register number to the register file are all 5 bits wide, whereas the lines carrying data
values are 32 bits wide. The operation to be performed by the ALU is controlled with the ALU operation signal,
which will be 4 bits wide, using the ALU designed in [@] Appendix B. We will use the Zero detection output of
the ALU shortly to implement branches. The overflow output will not be needed until Section 5.6, when we
discuss exceptions; we omit it until then.

10

= DEGLI STUDI
—

W

Execute: load & store

== UNIVERSITA

— ONVTI

| MemWrite
Read
— Address data——"
Sign
Data extend
Write memory
data
MemRead
a. Data memory unit b. Sign-extension unit

FIGURE 5.8 The two units needed to implement loads and stores, in addition to the reg-
ister file and ALU of Figure 5.7, are the data memory unit and the sigh extension unit. The
memory unit is a state element with inputs for the address and the write data, and a single output for the
read result. There are separate read and write controls, although only one of these may be asserted on any
given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an
invalid address can cause problems, as we will see in Chapter 7. The sign extension unit has a 16-bit input
that is sign-extended into a 32-bit result appearing on the output (see Chapter 3). We assume the data
memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is used
for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be
adapted to work with real memory chips. See Section B.§ of @ Appendix B for a further discussion of how
real memory chips work.

11

= DEGLI STUDI

=

== UNIVERSITA'

Execute: beq

Instruction

PC+4 from instruction datapath —»

o)

Add Sum

ST

> ALU Zero

Read
register 1 Read
Read data 1
register 2
Registers
Write g
register Read
. data 2
Write
data
RegWrite | /—\
{ \
f |
16 | sign | 32

N | extend |

v

Branch
target

4\I\»’-\LU operation
[

To branch
control logic

FIGURE 5.9 The datapath for a branch uses the ALU to evaluate the branch condition and a
separate adder to compute the branch target as the sum of the incremented PC and the
sign-extended, lower 16 bits of the instruction (the branch displacement), shifted left 2
bits. The unit labeled Shift left 2 is simply a routing of the signals between input and output that adds 00,,,, to
the low-order end of the sign-extended offset field; no actual shift hardware is needed, since the amount of the
“shift” is constant. Since we know that the offset was sign-extended from 16 bits, the shift will throw away only
“sign bits.” Control logic is used to decide whether the incremented PC or branch target should replace the PC,

based on the Zero output of the ALU.

sis @ MISTICA
E COMUNICAZIONE

12

= DEGLI STUDI

Una vista astratta del datapath

-

4— '_'“\
> R

Add

== UNIVERSITA

L Data

Register #
= PC [®~ Address Instruction Registers >ALU Address
_ Register # Data
Instruction . memory
memory Register #
Data

FIGURE 5.1 An abstract view of the implementation of the MIPS subset showing the major
functional units and the major connections between them. All instructions start by using the pro-
gram counter to supply the instruction address to the instruction memory. After the instruction is fetched, the
register operands used by an instruction are specified by fields of that instruction. Once the register operands
have been fetched, they can be operated on to compute a memory address (for a load or store), to compute an
arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a branch). If the instruction
is an arithmetic-logical instruction, the result from the ALU must be written to a register. If the operation is a
load or store, the ALU result is used as an address to either store a value from the registers or load a value from
memory into the registers. The result from the ALU or memory is written back into the register file. Branches
require the use of the ALU output to determine the next instruction address, which comes from either the ALU
(where the PC and branch offset are summed) or from an adder that increments the current PC by 4. The thick
lines interconnecting the functional units represent buses, which consist of multiple signals. The arrows are
used to guide the reader in knowing how information flows. Since signal lines may cross, we explicitly show
when crossing lines are connected by the presence of a dot where the lines cross. 13

DEGLI S*l 4] Dl

= UNIVERSITA

Multiplexer: per integrare i vari componenti (|)

\4I\ALU operation

T

‘ MemWrite

| Read
" | register 1 Read
Read data 1
Instruction | register 2 ALUSmI
Reqisters
Wiite Read 0)
™" reai data 2 M
gister g
X
Write -

—- 1
data %
RegWrite ‘ / \

' " 32
\ .I Sign |
~ | extend !

\/

Address

Write
data

Read
data

Data
memory

MemtoReg

Iy

M

.

u
X
\0

MemRead

FIGURE 5.10 The datapath for the memory instructions and the R-type instructions. This example shows how
a single datapath can be assembled from the pieces in Figures 5.7 and 5.8 by adding multiplexors. Two multiplexors are needed,
as described as in the example.

14

A

== UNIVERSIT

= DEGLI STUDI
=

Multiplexer: per integrare i vari componenti (ll)

- | extend

o

PCSrc/L
[T
M
Add - \\\ u
X
ALU
T Add osuit _/
Shift
Read ALUSrc ALU operation
| Read register 1 g e
M | acress Read o MemWrite
data 1
Eazéifter 2 Zero MemtoReg
Instruction . J\
Write Registers paaqg N ALU AL[[: Addross Hdeﬁcai p
Instruction register data 2 M resu > M
memory I g —
Write ol X)
data N Data
RegWrit | . Wiite memory
s / \ data
16 |'II Sign H"| 32 MemRead
II :

FIGURE 5.11 The simple datapath for the MIPS architecture combines the elements required by different instruction
classes. This datapath can execute the basic instructions (load/store word, ALU operations, and branches) in a single clock cycle. An additional mul-
tiplexor is needed to integrate branches. The support for jumps will be added later.

15

UNIVERSITA'

T :
RN <
ONVTINIC

A
o
B
E
|
[
=

Metodologia di clocking

 Singolo ciclo
 Ciclo singolo di lunghezza fissa uguale al tempo
necessario per eseguire l'istruzione piu’ lunga
« Ogni istruzione viene eseguita in un ciclo di clock
« Svantaggi: spreco di tempo

* Multi-ciclo
 Ciclo di lunghezza fissa piu’ corto
« Ogni istruzione viene eseguita in piu’ cicli di clock
* Istruzioni di tipo diverso — eseguite in un numero di

cicli di clock diverso

16

A

= DEGLI STUDI

Da leggere

« Chapter 5: The processor: Datapath and Control — disponibile
sul sito elearning del corso

IVERSIT

N

U
ONV

17

