
11

Slide su Pipeline e Hazard in datapath,
Parte 1/3, di:

http://www.pitt.edu/~juy9/142/slides/L8-Pipeline.pdf

7 1998 Morgan Kaufmann Publishers

Instruction execution review

 Executing a MIPS instruction can take up to five steps.

 However, as we saw, not all instructions need all five steps.

Step Name Description
Instruction Fetch IF Read an instruction from memory.
Instruction
Decode

ID Read source registers and generate control
signals.

Execute EX Compute an R-type result or a branch outcome.
Memory MEM Read or write the data memory.
Writeback WB Store a result in the destination register.

Instruction Steps required
beq IF ID EX
R-type IF ID EX WB
sw IF ID EX MEM
lw IF ID EX MEM WB

10 1998 Morgan Kaufmann Publishers

Review: Instruction Fetch (IF)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

 Let’s quickly review how lw is executed in the single-cycle datapath.
 We’ll ignore PC incrementing and branching for now.
 In the Instruction Fetch (IF) step, we read the instruction memory.

11 1998 Morgan Kaufmann Publishers

Instruction Decode (ID)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

 The Instruction Decode (ID) step reads the source register from
the register file.

12 1998 Morgan Kaufmann Publishers

Execute (EX)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

 The third step, Execute (EX), computes the effective memory
address from the source register and the instruction’s constant
field.

13 1998 Morgan Kaufmann Publishers

Memory (MEM)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

 The Memory (MEM) step involves reading the data memory, from
the address computed by the ALU.

14 1998 Morgan Kaufmann Publishers

Writeback (WB)

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

 Finally, in the Writeback (WB) step, the memory value is stored
into the destination register.

12

Slide su Pipeline e Hazard in datapath,
Parte 2/3, di:

http://www.eng.auburn.edu/~uguin/teaching/E6200_Spring_2017/lectures/lec5_pipelining.pdf

Basic Pipelined Processor

16

IF/ID

Pipeline Registers

ID/EX EX/MEM MEM/WB

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

5 516

RD1

RD2

RN1 RN2 WN

WD

Register File ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

5

Instruction I

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

32

Control for Pipelined Datapath

RegDst

ALUOp[1:0]

ALUSrc

MemRead

MemWrite

Branch

RegWrite

MemtoReg

EX

M

WB

Control

IF / ID ID / EX EX / MEM MEM / WB

M

WB

WB

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 57

Single-Cycle vs. Pipelined Execution

17

Non-Pipelined
0 200 400 600 800 1000 1200 1400 1600 1800

lw $1, 100($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $2, 200($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $3, 300($0)
Instruction

Fetch

Time
Instruction
Order

800ps

800ps

800ps

Pipelined
0 200 400 600 800 1000 1200 1400 1600

lw $1, 100($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $2, 200($0)

lw $3, 300($0)

Time
Instruction
Order

200ps

Instruction

Fetch
REG

RD
ALU REG

WR
MEM

Instruction

Fetch
REG

RD
ALU REG

WR
MEM

200ps

200ps 200ps 200ps 200ps 200ps

Note: REGRD is at the

end of a stage but

REGWR is at the

beginning of a stage

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Single-Cycle vs. Pipelined Execution (cont.)

 Time taken in pipeline stages is limited by the slowest operation
– Either ALU operation or Memory access

 Time taken in ALU stage (i.e. EX) is used as pipeline clock cycle in the following
discussion

 If most memory access is cache access, MEM < ALU

 Assumptions (Fig 4.27 on p.276)
– Write to the register/memory occurs in the first half of the clock cycle

– Read from register/memory occurs in the second half of the clock cycle

– If no such assumption, Cycle 5 of the following example will have issues
 Executing Multiple Instructions Clock Cycle 5, where the register file is used for 2

instructions at their different stages (ID and WB)

– How to design such an assumption?

0 200 400 600 800 1000 1200 1400 1600

lw $1, 100($0)
Instruction

Fetch
REG

RD
ALU REG

WR
MEM

lw $2, 200($0)

lw $3, 300($0)

Time
Instruction
Order

200ps

Instruction

Fetch
REG

RD
ALU REG

WR
MEM

Instruction

Fetch
REG

RD
ALU REG

WR
MEM

200ps

200ps 200ps 200ps 200ps 200ps

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 18

Comments about Pipelining

 The good news
– Multiple instructions are being processed at the same

time

– This works because stages are isolated by registers

– Best case speedup of #Stages

 The bad news
– Instructions interfere with each other - Hazards

 Different instructions may need the same piece of hardware (e.g.,
memory) in same clock cycle --- Structure Hazard

 Not sure which is the next instruction for the next instruction fetch
(IF) until EX of the branch instruction --- Control Hazard

 Instruction may require a result produced by an earlier instruction
that is not yet complete --- Data Hazard

– Worst case: Must suspend execution - Stall

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 19

Example - Executing Multiple

Instructions

 Consider the following instruction sequence

lw $r0, 10($r1)

sw $r3, 20($r4)

add $r5, $r6, $r7

sub $r8, $r9, $r10

202/20/2017 ELEC 5200-001/6200-001 Lecture 5

Executing Multiple Instructions

Clock Cycle 1

21

LW

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Executing Multiple Instructions

Clock Cycle 2

22

LWSW

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Executing Multiple Instructions

Clock Cycle 3

23

LWSWADD

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Executing Multiple Instructions

Clock Cycle 4

24

LWSWADDSUB

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Executing Multiple Instructions

Clock Cycle 5

25

LWSWADDSUB

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Executing Multiple Instructions

Clock Cycle 6

26

SWADDSUB

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Executing Multiple Instructions

Clock Cycle 7

27

ADDSUB

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Executing Multiple Instructions

Clock Cycle 8

28

SUB

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Compact View

IM REG ALU DM REGlw $r0, 10($r1)

sw $r3, 20($r4)

add $r5, $r6, $r7

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

IM REG ALU DM REG

IM REG ALU DM REG

sub $r8, $r9, $r10 IM REG ALU DM REG

CC 8

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 29

Pipeline Hazards

 Where one instruction cannot immediately follow

another

 Types of hazards

– Structural hazards - attempt to use same resource twice

– Control hazards - attempt to make decision before

condition is evaluated

– Data hazards - attempt to use data before it is ready

 We can always resolve hazards by waiting

– i.e. stall

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 30

31

Structural Hazards

 Attempt to use same resource twice at same time

 Example: A Single Memory for both instructions and
data
– Accessed by IF stage

– Accessed at same time by MEM stage

 Solutions
– Delay second access by one clock cycle, OR

– Provide separate memories for instructions and data (IM
and DM)
 This is what MIPS does

 Recall “Harvard Architecture”

 Real pipelined processors have separate caches

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Structural Hazard - Single Memory

0 2 4 6 8 10
Time

12

IF ID EX MEM WB

14

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

14

Memory Conflict

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 32

13

Slide su Pipeline e Hazard in datapath,
Parte 3/3, di:

http://person.zju.edu.cn/person/fck_filebrowser.php?cmd=download&id=712274

14

Can Pipelining Get Us Into Trouble?
• Yes: Pipeline Hazards

– structural hazards: attempt to use the same resource by
two different instructions at the same time

– data hazards: attempt to use data before it is ready
• instruction source operands are produced by a prior instruction

still in the pipeline

• load instruction followed immediately by an ALU instruction that
uses the load operand as a source value

– control hazards: attempt to make a decision before
condition has been evaluated

• branch instructions

• Can always resolve hazards by waiting
– pipeline control must detect the hazard

– take action (or delay action) to resolve hazards

15

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3
A

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A Single Memory Would Be a Structural Hazard

Reading data from
memory

Reading instruction
from memory

16

How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,

Inst 1

Inst 2

Inst 4

add r2,r1,

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

Potential read before write data hazard

17

How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

Inst 4
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

Can fix register file
access hazard by
doing reads in the
second half of the
cycle and writes in
the first half.

add r1,

add r2,r1,

Potential read before write data hazard

18

Register Usage Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r5

and r6,r1,r7

xor r4,r1,r5

or r8, r1, r9
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

• Dependencies backward in time cause hazards

Which are read before write data hazards?

19

Register Usage Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r5

and r6,r1,r7

xor r4,r1,r5

or r8, r1, r9
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

• Dependencies backward in time cause hazards

Read before write data hazards

20

Loads Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw r1,100(r2)

sub r4,r1,r5

and r6,r1,r7

xor r4,r1,r5

or r8, r1, r9
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

• Dependencies backward in time cause hazards

Load-use data hazard

21

stall

stall

One Way to “Fix” a Data Hazard

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

A
L

UIM Reg DM Reg

sub r4,r1,r5

and r6,r1,r7

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

Can fix data
hazard by
waiting – stall –
but affects
throughput

22

Another Way to “Fix” a Data Hazard

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

A
L

UIM Reg DM Reg

sub r4,r1,r5

and r6,r1,r7
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

Can fix data
hazard by
forwarding
results as soon as
they are available
to where they are
needed.

xor r4,r1,r5

or r8, r1, r9

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

27

Data Forwarding (aka Bypassing)
• Any data dependence line that goes backwards in time

– EX stage generating R-type ALU results or effective address
calculation

– MEM stage generating lw results

• Forward by taking the inputs to the ALU from any pipeline
register rather than just ID/EX by
– adding multiplexors to the inputs of the ALU so can pass Rd

back to either (or both) of the EX’s stage Rs and Rt ALU inputs
-: normal input (ID/EX pipeline registers)
-: forward from previous instr (EX/MEM pipeline registers)
-: forward from instr 2 back (MEM/WB pipeline registers)

– adding the proper control hardware

• With forwarding can run at full speed even in the presence of
data dependencies

28

Datapath with Forwarding Hardware
PCSrc

Read
Address

Instruction
Memory

Add

P
C

4

0

1

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU
1

0

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

1

0

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

0

1

ALU
cntrl

Branch

Forward
Unit

IF/ID.RegisterRs

IF/ID.RegisterRt

EX/MEM.RegisterRd

MEM/WB.RegisterRd

29

Forwarding with Load-use Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw r1,100(r2)

sub r4,r1,r5

and r6,r1,r7

xor r4,r1,r5

or r8, r1, r9

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

• Will still need one stall cycle even with forwarding

30

(flush)

Forwarding with Load-use Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw r1,100(r2)

sub r4,r1,r5

and r6,r1,r7

xor r4,r1,r5

or r8, r1, r9
A

L
UIM Reg DM Reg

A
L

UIM Reg DM

A
L

UIM Reg DM Reg
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

32

Control Hazards

• When the flow of instruction addresses is not what the pipeline
expects; incurred by change of flow instructions

– Conditional branches (beq, bne)

– Unconditional branches (j)

• Possible solutions

– Stall

– Move decision point earlier in the pipeline

– Predict

– Delay decision (requires compiler support)

• Control hazards occur less frequently than data hazards; there is
nothing as effective against control hazards as forwarding is for data
hazards

33

stall

Jumps Incur One Stall

I
n
s
t
r.

O
r
d
e
r

j

lw

and
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

• Fortunately, jumps are very infrequent – only 2% of the SPECint
instruction mix

• Jumps not decoded until ID, so one stall is needed

34

stall

stall

stall

Review: Branches Incur Three Stalls

I
n
s
t
r.

O
r
d
e
r

beq

A
L

UIM Reg DM Reg

lw

A
L

UIM Reg DM Reg

A
L

U

and
IM Reg DM

Can fix
branch

hazard by
waiting –

stall – but
affects

throughput

35

Branch Prediction

• Resolve branch hazards by assuming a given outcome
and proceeding without waiting to see the actual
branch outcome

1. Predict not taken – always predict branches will not be
taken, continue to fetch from the sequential instruction
stream, only when branch is taken does the pipeline
stall
– If taken, flush instructions in the pipeline after the branch

• in IF, ID, and EX if branch logic in MEM – three stalls

• in IF if branch logic in ID – one stall

– ensure that those flushed instructions haven’t changed
machine state– automatic in the MIPS pipeline since
machine state changing operations are at the tail end of
the pipeline (MemWrite or RegWrite)

– restart the pipeline at the branch destination

