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Instruction execution review 

 Executing a MIPS instruction can take up to five steps. 
 
 
 
 
 
 
 

 However, as we saw, not all instructions need all five steps. 

Step Name Description 
Instruction Fetch IF Read an instruction from memory. 
Instruction 
Decode 

ID Read source registers and generate control 
signals. 

Execute EX Compute an R-type result or a branch outcome. 
Memory MEM Read or write the data memory. 
Writeback WB Store a result in the destination register. 

Instruction Steps required 
beq IF ID EX 
R-type IF ID EX WB 
sw IF ID EX MEM 
lw IF ID EX MEM WB 
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Review: Instruction Fetch (IF) 
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 Let’s quickly review how lw is executed in the single-cycle datapath. 
 We’ll ignore PC incrementing and branching for now. 
 In the Instruction Fetch (IF) step, we read the instruction memory. 
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Instruction Decode (ID) 
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 The Instruction Decode (ID) step reads the source register from 
the register file. 
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Execute (EX) 
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 The third step, Execute (EX), computes the effective memory 
address from the source register and the instruction’s constant 
field. 
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Memory (MEM) 
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 The Memory (MEM) step involves reading the data memory, from 
the address computed by the ALU. 
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Writeback (WB) 
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 Finally, in the Writeback (WB) step, the memory value is stored 
into the destination register. 
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Basic Pipelined Processor
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Control for Pipelined Datapath
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Single-Cycle vs. Pipelined Execution
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Single-Cycle vs. Pipelined Execution (cont.)

 Time taken in pipeline stages is limited by the slowest operation
– Either ALU operation or Memory access

 Time taken in ALU stage (i.e. EX) is used as pipeline clock cycle in the following 
discussion

 If most memory access is cache access, MEM < ALU

 Assumptions (Fig 4.27 on p.276)
– Write to the register/memory occurs in the first half of the clock cycle

– Read from register/memory occurs in the second half of the clock cycle

– If no such assumption, Cycle 5 of the following example will have issues
 Executing Multiple Instructions Clock Cycle 5, where the register file is used for 2 

instructions at their different stages (ID and WB)

– How to design such an assumption?
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Comments about Pipelining

 The good news
– Multiple instructions are being processed at the same 

time

– This works because stages are isolated by registers

– Best case speedup of #Stages

 The bad news
– Instructions interfere with each other - Hazards

 Different instructions may need the same piece of hardware (e.g., 
memory) in same clock cycle --- Structure Hazard

 Not sure which is the next instruction for the next instruction fetch 
(IF) until EX of the branch instruction --- Control Hazard

 Instruction may require a result produced by an earlier instruction 
that is not yet complete --- Data Hazard

– Worst case: Must suspend execution - Stall

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 19



Example - Executing Multiple 

Instructions

 Consider the following instruction sequence

lw $r0, 10($r1)

sw $r3, 20($r4)

add  $r5, $r6, $r7

sub  $r8, $r9, $r10
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Executing Multiple Instructions

Clock Cycle 1
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Executing Multiple Instructions

Clock Cycle 2
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Executing Multiple Instructions

Clock Cycle 3
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Executing Multiple Instructions

Clock Cycle 4
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Executing Multiple Instructions

Clock Cycle 5
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Executing Multiple Instructions

Clock Cycle 6
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Executing Multiple Instructions

Clock Cycle 7

27

ADDSUB
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Executing Multiple Instructions

Clock Cycle 8
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SUB
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Compact View 

IM REG ALU DM REGlw $r0, 10($r1)

sw $r3, 20($r4)

add $r5, $r6, $r7

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

IM REG ALU DM REG

IM REG ALU DM REG

sub $r8, $r9, $r10 IM REG ALU DM REG

CC 8
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Pipeline Hazards

 Where one instruction cannot immediately follow 

another

 Types of hazards

– Structural hazards - attempt to use same resource twice

– Control hazards - attempt to make decision before 

condition is evaluated

– Data hazards - attempt to use data before it is ready

 We can always resolve hazards by waiting

– i.e. stall
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Structural Hazards

 Attempt to use same resource twice at same time

 Example: A Single Memory for both instructions and 
data
– Accessed by IF stage

– Accessed at same time by MEM stage

 Solutions
– Delay second access by one clock cycle, OR

– Provide separate memories for instructions and data (IM 
and DM)
 This is what MIPS does

 Recall “Harvard Architecture”

 Real pipelined processors have separate caches
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Structural Hazard - Single Memory

0 2 4 6 8 10
Time

12

IF ID EX MEM WB
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Can Pipelining Get Us Into Trouble?
• Yes:  Pipeline Hazards

– structural hazards: attempt to use the same resource by 
two different instructions at the same time

– data hazards: attempt to use data before it is ready
• instruction source operands are produced by a prior instruction 

still in the pipeline

• load instruction followed immediately by an ALU instruction that 
uses the load operand as a source value

– control hazards: attempt to make a decision before 
condition has been evaluated

• branch instructions

• Can always resolve hazards by waiting
– pipeline control must detect the hazard

– take action (or delay action) to resolve hazards
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How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,

Inst 1

Inst 2

Inst 4

add  r2,r1,

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

Potential read before write data hazard



17

How About Register File Access?
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Register Usage Can Cause Data Hazards
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• Dependencies backward in time cause hazards

Which are read before write data hazards?
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Register Usage Can Cause Data Hazards
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Loads Can Cause Data Hazards
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stall
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One Way to “Fix” a Data Hazard
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Another Way to “Fix” a Data Hazard
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Data Forwarding (aka Bypassing)
• Any data dependence line that goes backwards in time

– EX stage generating R-type ALU results or effective address 
calculation

– MEM stage generating lw results

• Forward by taking the inputs to the ALU from any pipeline 
register rather than just ID/EX by
– adding multiplexors to the inputs of the ALU so can pass Rd 

back to either (or both) of the EX’s stage Rs and Rt ALU inputs
-: normal input (ID/EX pipeline registers)
-: forward from previous instr (EX/MEM pipeline registers)
-: forward from instr 2 back (MEM/WB pipeline registers)

– adding the proper control hardware

• With forwarding can run at full speed even in the presence of 
data dependencies
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Datapath with Forwarding Hardware
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Forwarding with Load-use Data Hazards
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• Will still need one stall cycle even with forwarding
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(flush)

Forwarding with Load-use Data Hazards
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Control Hazards

• When the flow of instruction addresses is not what the pipeline 
expects; incurred by change of flow instructions

– Conditional branches (beq, bne)

– Unconditional branches (j)

• Possible solutions

– Stall

– Move decision point earlier in the pipeline

– Predict

– Delay decision (requires compiler support)

• Control hazards occur less frequently than data hazards; there is 
nothing as effective against control hazards as forwarding is for data 
hazards
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stall

Jumps Incur One Stall
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• Fortunately, jumps are very infrequent – only 2% of the SPECint 
instruction mix

• Jumps not decoded until ID, so one stall is needed
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Review: Branches Incur Three Stalls
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Branch Prediction

• Resolve branch hazards by assuming a given outcome 
and proceeding without waiting to see the actual 
branch outcome

1. Predict not taken – always predict branches will not be 
taken, continue to fetch from the sequential instruction 
stream, only when branch is taken does the pipeline 
stall
– If taken, flush instructions in the pipeline after the branch

• in IF, ID, and EX if branch logic in MEM – three stalls

• in IF if branch logic in ID – one stall

– ensure that those flushed instructions haven’t changed 
machine state– automatic in the MIPS pipeline since 
machine state changing operations are at the tail end of 
the pipeline (MemWrite or RegWrite) 

– restart the pipeline at the branch destination


