Slide su Pipeline e Hazard in datapath,
Parte 1/3, di:

http://www.pitt.edu/~juy9/142/slides/L8-Pipeline.pdf

11

Instruction execution review

U Executing a MIPS instruction can take up to five steps.

Step Name Description
Instruction Fetch |IF Read an instruction from memory.
Instruction ID Read source registers and generate control
Decode signals.
Execute EX Compute an R-type result or a branch outcome.
Memory MEM | Read or write the data memory.
Writeback WB Store aresult in the destination register.

U However, as we saw, not all instructions need all five steps.

Instruction Steps required

beq IF ID EX

R-type IF ID EX WB
Sw IF ID EX MEM

lw IF ID EX MEM WB

©1998 Morgan Kaufmann Publishers 7

Review: Instruction Fetch (IF)

O Let’s quickly review how Iw is executed in the single-cycle datapath.
a We’ll ignore PC incrementing and branching for now.
O In the Instruction Fetch (IF) step, we read the instruction memory.

RegWrite
| i MemToRe
Read Instruction | [25 - 21] [Read g MemWrite g
aadress [s1.0] [| register 1 e > |
|20 - 16] g data 1 ALU »| Read Read fp(1
Instruction ® > Read rend - > Zero address data M
memory 0 register 2 data 2 —— Result fmg@mmp| Write u
M Write M address X
u register _)li | wiite | Data 0
115 - 11]| X Write Registers) ALUOp data Memory
1 data |
MemRead
RegDSt ALUSrc
I'[15 - 0] Sign
extend|™

©1998 Morgan Kaufmann Publishers 10

Instruction Decode (ID)

4 The Instruction Decode (ID) step reads the source register from
the reqister file.

Read
address

Inst

Instruction
[31-0]

ruction

memory

MemWrite

\ 4

\ 4

Read
data

Read
address

Write
address

wie 020
data y

MemToReg

A 4

MemRead

extend

RegWrite
'[25-21] »| Read Read ‘\
register 1 data 1 i’
1 [20 - 16] - ALU
® » Read Zero
0 register 2 REAU il O Result
) data 2 M
M Write
u register u
Registers X
I[15 - 11]| X Write 1 ALUOp
$ 1 data
RegDst ALUSrc
1 [15 - 0] Sign

o XcZ B

©1998 Morgan Kaufmann Publishers 11

Execute (EX)

4 The third step, Execute (EX), computes the effective memory

address from the source register and the instruction’s constant

field.

1 [15 - 0]

RegWrite
Read Instruction I[25 - 21]
address [31-0] [P > Read Read .
register 1 data 1
I [20 - 16] R q
Instruction ¢ - Rea Read 0
memory 0 register 2 g
, data 2 M
M Write
u register)L(‘
Registers
1115 - 11]| X Write I 1
' 1 data
RegDst ALUSrc

ALU
Zero

Result

ALUOp

MemWrite

\ 4

\ 4

Read
address

Write
address

Data
memory

Read
data

Write
data

MemToReg

[
»

o XcZ B

MemRead

Sign

extend

©1998 Morgan Kaufmann Publishers 12

Memory (MEM)

U The Memory (MEM) step involves reading the data memory, from

the address computed by the ALU.

Read
address

Instruction
[31-0]

Instruction
memory

\ 4

k
> Zero

Result

MemWrite

\ 4

\ 4

ALUOp

Read
data

Read
address

Write
address

Write
data

Data
memory

MemToReg

A 4

MemRead

RegWrite
1[25-21
—® [| »| Read Read
register 1 data 1
1[20 - 16
® [] » Read
0 register 2 Read |fpup| O
. data 2 M
M Write
u register _)li
I [15 - 11] X Write Registers)
' 1 data
RegDst ALUSrc
I [15 - 0] Sign
extend

o XcZ B

©1998 Morgan Kaufmann Publishers 13

Writeback (WB)

d Finally, in the Writeback (WB) step, the memory value is stored
Into the destination register.

Read
address

Instruction
[31-0]

Instruction
memory

MemWrite

v

v

|
Read Read
address data

Write
address

Write
data

Data
memory

MemToReg

\ 4

o XcZ B

MemRead

extend

RegWrite
[[25 - 21] »| Read Read R
register 1 data 1 v ALU
[[20 - 16]
[» Read Zero
0 register 2 Read \mp(O Result
_ data 2 M
M Write
u register u
X Registers X
1115 - 11] —p| Write ALUOp
o——» 1
1 data
RegDst ALUSIc
I[15 - 0] Sign

©1998 Morgan Kaufmann Publishers 14

Slide su Pipeline e Hazard in datapath,
Parte 2/3, di:

http://www.eng.auburn.edu/~uguin/teaching/E6200_Spring_2017/lectures/lec5_pipelining.pdf

12

Basic Pipelined Processor

—4

_ WW%\ _

ELEC 5200-001/6200-001 Lecture 5

e
ADD
> >
pppa— ADD
>
" >)
Instruction I
—p =1 ADDR . RD ” — % is $5 ¢5
Instruction
Memory RN1 RN2 WN
RD1 >
Register File ALU
ma K >
RD2
= ADDR
Data
E Memory RP >
16 ?I'(32 »| WD
N
D
IF/ID ID/EX EX/IMEM MEM/WB
2/20/2017

16

Control for Pipelined Datapath

WB
P
> M WB
=] Control —p S >
— | S
> —>
EX —p| M —> WB
RegDst MemRead RegWrite
| ALUOPp[1:0] MemWrite MemtoReg
ALUSrc Branch
IF /1D ID/ EX EX/MEM MEM / WB
2/20/2017 ELEC 5200-001/6200-001 Lecture 5 57

Single-Cycle vs. Pipelined Execution

Non-Pipelined
Instruction 0 200 400 600 800 1000 1200 1600 1800]
Order ; : ; ; ; : : : —Time
Instruction JREG REG
1w $1, 100(50) Fetch IRDI ALY I MEM IWR
Instruction REG REG
1w $2, 200($0) g Zooms p| et IRDI ALU I vem [REC
1w $3, 300(%0) < S Rl P AT
etch
v 800ps
< v
800ps
Pipelined
Instruction 0 200 400 600 800 1000 1200 1600]
Order } } } } } } } ; »Time
Instruction REG REG
1w $1, 100($0) Feteh =D ALU MEM WR
1w $2, 200($0) a—p " [RES A | wem |REC
200ps = Instructﬁ — == — Note: REGRD is at the
1w $3, 300(50) m’ Fetch ro| AW VEM T wr end of a stage but
\/ REGWR is at the

2/20/2017

< > > < < < >
200ps 200ps 200ps 200ps 200ps

ELEC 5200-001/6200-001 Lecture 5

beginning of a stage

17

Single-Cycle vs. Pipelined Execution (cont.)

Instruction 0 200 400 600 800 1000 1200 1400 1600

Order »Time
1w $1, 100($0) '”Sge”tcctr‘f” F;EDG ALU MEM Fjﬁf

1w $2, 200 ($0) W'”Sge”t‘;ﬂ"” REGl ALu vem [REC

1w $3, 300($0) bs m'“ség‘éﬂon REGl AL mEm |REC

< > > > > >
200ps 200ps 200ps 200ps 200ps

Time taken in pipeline stages is limited by the slowest operation

— Either ALU operation or Memory access

= Time taken in ALU stage (i.e. EX) is used as pipeline clock cycle in the following
discussion

= |f most memory access is cache access, MEM <ALU
Assumptions (Fig 4.27 on p.276)
— Write to the register/memory occurs in the first half of the clock cycle
— Read from register/memory occurs in the second half of the clock cycle

— If no such assumption, Cycle 5 of the following example will have issues

= Executing Multiple Instructions Clock Cycle 5, where the register file is used for 2
instructions at their different stages (ID and WB)

— How to design such an assumption?

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 18

Comments about Pipelining

* The good news
— Multiple instructions are being processed at the same
time
— This works because stages are isolated by registers
— Best case speedup of #Stages

= The bad news

— Instructions interfere with each other - Hazards

= Different instructions may need the same piece of hardware (e.g.,
memory) in same clock cycle --- Structure Hazard

= Not sure which is the next instruction for the next instruction fetch
(IF) until EX of the branch instruction --- Control Hazard

= [nstruction may require a result produced by an earlier instruction
that is not yet complete --- Data Hazard

— Worst case: Must suspend execution - Stall

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 19

Example - Executing Multiple
Instructions

= Consider the following instruction sequence

1w Sr0, 10(Srl)
SW Sr3, 20(Sr4)
add $r5, $r6, S$r7
sub $r8, $r9, S$rlo0

2/20/2017 ELEC 5200-001/6200-001 Lecture 5

Executing Multiple Instructions
Clock Cycle 1

ELEC 5200-001/6200-001 Lecture 5

LW _
_q IFAD ID/EX EX/MEM MEM/WB
4
>(<2)
PC
ADDR RD » RN1
3 RD1
Instruction | IDIN [e > Zero
Memory 5 Register
5P| WN File Rrp2
—p{ WD E —» ADDR
Data
E Memory RD
16 ¥ 32 » WD
N
s D
2/20/2017

21

Executing Multiple Instructions
Clock Cycle 2

LW

ID/EX EX/IMEM MEM/WB
— u— p—

*i
e RDT 1M — Zero
RN2
s Register —
5 WN File RD2 =
wD E —»} ADDR

Data
Memory RD[

>
Y
l
A 4

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 22

Executing Multiple Instructions

Clock Cycle 3

SW . LW

<

IFAD

ID/EX EX/IMEM

PC

Instruction
Memory

=1 ADDR RD

2/20/2017

ALU

MEM/WB
—» Zero
—»{ ADDR
Data
Memory RD
P WD

ELEC 5200-001/6200-001 Lecture 5

23

Executing Multiple Instructions

Clock Cycle 4

2/20/2017

) SUB ADD . j SW R LW
_q IﬂD ID/IEX EX/MEM MEM/WB
[]
4 I
PC
—»| ADDR RD P4 <»{ RN1 RDA
Instruction L 3 pN2

Memory 5 Register
e File Rgrp2
—p| WD ADDR

16

Data
Memory RP[™

&

ELEC 5200-001/6200-001 Lecture 5 24

Executing Multiple Instructions
Clock Cycle 5

ELEC 5200-001/6200-001 Lecture 5

SUB ~ ADD SW R LW
_q IF/ID ID/IEX EX/MEM MEM/WB
p— []
>G<2) i
PC
~-»1 ADDR RD <! RN1 RDA
Instruction L 3l RN2
Memory 5 Register
5P| WN File Rgrp2 E
—p] WD
@
16 X132
T
N
o D
2/20/2017

25

Executing Multiple Instructions

cle 6

Clock Cy

SUB ADD SW
_q IFAD ID/EX EX/MEM MEM/WB
4
>(<2)
PC
—p; ADDR RD » RN1
3 RD1
Instruction | IDIN [e —> Zero
Memory 5 Register —
5P| WN File Rrp2
—p{ WD E = ADDR
Data
E Memory RD[
16 ¥ 32 » WD
N
s D
2/20/2017

ELEC 5200-001/6200-001 Lecture 5

26

Executing Multiple Instructions

Clock Cycle 7

4

EX/IMEM

IFAD ID/EX
—
4
I >2)
PC
— —»| ADDR RD P —<»| RN1 RD1 =
Instruction L <l RN2
Memory 5 Register
’5' WN File RD2 -
—p] WD

2/20/2017

16

&

SUB ADD
Gl
MEM/WB
—» Zero
—1 ADDR

Data

Memory RPT __:B_

ELEC 5200-001/6200-001 Lecture 5

27

Executing Multiple Instructions

Clock Cycle 8

4

PC

SUB
—
IFID ID/EX EX/MEM MEM/WB
[] — []
4
>(<2)
ADDR RD 4 F—<»| RN RD1 |-
Instruction | _2. RN2 > Zero
Memory 5 Register —
—5"|WN File gp2{-
—p{ WD E —» ADDR
Data
E Memory RP[
16 ¥ 32 | » WD
N
s D
ELEC 5200-001/6200-001 Lecture 5 28

2/20/2017

Compact View

Iw $r0, 10($rl)

sw $r3, 20($r4)

add $r5, $r6, $r7

sub $r8, $r9, $r10

2/20/2017

CC1

cc2 ~ cca) cca) ccs
REG |— Ll _I: DM |— REG

IM __ [{rec __ LU ___I: DM |

IM __ [{rec __ SaLu|—

IM __ [reG |—

CC6

— REG

ELEC 5200-001/6200-001 Lecture 5

CC7

— REG

DM

cCs

REG

29

Pipeline Hazards

= \Where one Instruction cannot immediately follow
another

= Types of hazards

— Structural hazards - attempt to use same resource twice

— Control hazards - attempt to make decision before
condition is evaluated

— Data hazards - attempt to use data before it is ready

= We can always resolve hazards by waiting
— l.e. stall

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 30

Structural Hazards

. Attempt to use same resource twice at same time

= Example: A Single Memory for both instructions and
data
— Accessed by IF stage
— Accessed at same time by MEM stage

= Solutions

— Delay second access by one clock cycle, OR
— Provide separate memories for instructions and data (IM
and DM)

» This is what MIPS does
= Recall “Harvard Architecture”
» Real pipelined processors have separate caches

2/20/2017 ELEC 5200-001/6200-001 Lecture 5 31

Structural Hazard - Single Memory

6 ; 10 12

14 14

p Time

1=

2/20/2017

ELEC 5200-001/6200-001 Lecture 5

mory Co

nflict

32

Slide su Pipeline e Hazard in datapath,
Parte 3/3, di:

http://person.zju.edu.cn/person/fck_filebrowser.php?cmd=download&id=712274

13

Can Pipelining Get Us Into Trouble?
* Yes: Pipeline Hazards

— structural hazards: attempt to use the same resource by
two different instructions at the same time

— data hazards: attempt to use data before it is ready

* Instruction source operands are produced by a prior instruction
still in the pipeline

 load instruction followed immediately by an ALU instruction that
uses the load operand as a source value

— control hazards: attempt to make a decision before
condition has been evaluated

* branch instructions

* Can always resolve hazards by waiting
— pipeline control must detect the hazard
— take action (or delay action) to resolve hazards

14

=~ DO Q =0

A Single Memory Would Be a Structural Hazard

Time (clock cycles)

lw t/lem I.[Reg % IM_er%I.l_R_egi
Inst 1 }llem |.[Reg % ‘Mem Reg
Inst 2 tllem |-|: Reg % ‘Mem {Reg
Inst 3 t/lem I-[Reg % ‘Mem Reg
BN
Inst 4 f"em '-[Reg x ‘Mem Reg
" [men| o

=~ O Q=0

How About Register File Access?

Time (clock cycles)

add r1, [ll Reg)l% ‘DM l_ Reg
>
Inst 1 IM |.[Reg)l% ‘DM Reg
>
Inst 2 IM |.[Reg % ‘DM —{Reg
add r2, : IM |-|:|Reg % ‘DM Reg
Inst 4 IM '-[Reg % ‘DM

Potential

=~ d® Q=0

How About Register File Access?

Time (clock cycles)

add IM |1Reg)l% ‘DM l;_lReg

>
Inst 1 IM |.[Reg)l% ‘DM Reg

>

| 2 IM Re I;\ DM Reg
nst |-E g l)/E) ‘ _
add r2,rl, IM |-ER" —1% ‘DM Reg
Inst 4 IM '-[Reg % ‘DM Reg

Potential

=~ 0O Q=0

add r1,r2,r3 |[mm l.iReg)'5 ‘DM lTReg
~
sub r4,r1,r5 M |.EReg % ‘DM [Reg
and r6,r1,r7 IM |-EReg % ‘DM Reg
or r8,rl, r9 M |-EReg % pm [-Reg
| xor r4,r1,r5 M '-[Reg % ‘DM

Register Usage Can Cause Data Hazards
* Dependencies backward in time cause hazards

Reg

18

S~ W0 S ~

~ DO Q =0

Register Usage Can Cause Data Hazards

* Dependencies backward in time cause hazards

add r1,r2,r3

subrd,rl,r5

and r6,rl,r7

or r8,rl, r9

xor r4.r1,r5

]

Reg

>

>

|M|.IZ

Reg

|M|.IZ

Reg :)Ej plDM —Reg
IM |.|:R" ‘% ‘DM Reg
IM '.[R'_% ‘DM Reg

19

=~ ® Q=0

Loads Can Cause Data Hazards

* Dependencies backward in time cause hazards

lw

sub r4,

and ro6,

1100(r2)

i ge)

I/

or r8,rl, r9

Xorr4,rl1.r5

]

Reg

>

>

|M|.IZ

Reg

|M|.IZ

N

Reg DM }{Reg
Sl

IM |.|:R" ‘% ‘DM Reg

‘DM

Reg

20

S~ W0 35 ~

~ DO Q=0

One Way to “Fix” a Data Hazard

v

add r1,r2,r3

stall

stall

subrd,rl,r5

and ro,rl1,r7

TR
] =
R

Can fix dat
hazayd by
waiting — S|
| but affects
2 throu

ghput

sl

all —

IM

‘DM |Reg
>

pm | [Rre
)

21

S~ W0 S ~

=~ ®© Q=0

Another Way to “Fix” a Data Hazard

Can|fix daja

add r1,r2,r3 |mm HlReg nazqrd by
forwarding
resylts as soon as
they|are ayailable

IM R

sub rd,r1,r5 |'[j to where tL,ey are
heeded.

and ro,rl1,r7 i |

or r8,rl, r9 v Rl T M iReg

>
Xor r4,r1,r5 IM ‘g ‘DM Reg

22

Data Forwarding (aka Bypassing)
Any data dependence line that goes backwards in time

— EX stage generating R-type ALU results or effective address
calculation

— MEM stage generating Iw results

Forward by taking the inputs to the ALU from any pipeline
register rather than just ID/EX by

— adding multiplexors to the inputs of the ALU so can pass Rd
back to either (or both) of the EX’s stage Rs and Rt ALU inputs
-: normal input (ID/EX pipeline registers)
-: forward from previous instr (EX/MEM pipeline registers)
-: forward from instr 2 back (MEM/WB pipeline registers)

— adding the proper control hardware

With forwarding can run at full speed even in the presence of
data dependencies

27

PC

Datapath with Forwarding Hardware

PCSrc

1le
ol IDIEX
ﬁ EXIMEM
_ IF/ID B k v
> - || g B
YAd > \
MEM/WB
Branc [~
4 —> _h_>* -
. »Read Addr 1
Instruction Register Read i Data
Memory »Read Addr Pata 1 Memory
Read Fi
I - ile Read
Address »\Write Addr Read ¥y Address Data Hi
—-[Write Data Data 21 »\Write Data
16 ; 32
Sign

EXIMEM.RegisterRd

IF/ID.RegisterRs

IEAD PoaictorDt
. = . =

M/WB.RegisterRd

28

= ® Q=0

Forwarding with Load-use Data Hazards

w r1,100(r2) [m |1

sub r4,r1,r5
and r6,rl,r7
or rg, rl, r9 Reg
| xor rd,r1,r5 ‘DM Reg

* Will still need even with forwarding

29

S~ W0 S ~

= ® Q=0

Forwarding with Load-use Data Hazaro

w r1,100(r2)

(flush)

subrd,rl,r5
and r6,rl1,r7

or r8,rl, r9

xor r4.r1,r5

|M|.[

Reg

N

‘DM

£g

>

'|M|.IZ

30

Control Hazards

* When the flow of instruction addresses is not what the pipeline
expects; incurred by change of flow instructions

— Conditional branches (beq, bne)
— Unconditional branches (3j)

* Possible solutions
— Stall
— Move decision point earlier in the pipeline
— Predict
— Delay decision (requires compiler support)

e Control hazards occur less frequently than data hazards; there is
nothing as effective against control hazards as forwarding is for data
hazards

32

e Jumps not decoded until ID, so one stall is needed

Jumps Incur One Stall

\ 4

stall

S~ W0 S ~

W,

and

S~ O Q=0

IM

Reg

* Fortunately, jumps are very infrequent — only 2% of the SPECint

Instruction mix

33

S~ W0 S ~

S~ ® Q=0

beq
stall
stall

stall

W,

and

Review: Branches Incur Three Stalls

\ 4

IM

an fix
ranch
rd by
Ifing —
— but

Jhput

Reg

IM

DM

Branch Prediction

Resolve branch hazards by assuming a given outcome
and proceeding without waiting to see the actual
branch outcome

Predict not taken — always predict branches will not be
taken, continue to fetch from the sequential instruction
stream, only when branch is taken does the pipeline
stall
— If taken, flush instructions in the pipeline after the branch
 inlIF, ID, and EX if branch logic in MEM - three stalls
 in IF if branch logic in ID — one stall

— ensure that those flushed instructions haven’t changed
machine state- automatic in the MIPS pipeline since
machine state changing operations are at the tail end of
the pipeline (MemWrite or RegWrite)

— restart the pipeline at the branch destination

35

