Chapter 1 - Introduction to plasma physics

1 Rutherford scattering

Consider a Rutherford scattering process between two particles having velocities $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, charges $\mathrm{q}_{1}, \mathrm{q}_{2}$ and masses m_{1}, m_{2}, respectively.
a) Show that, in the centre of mass frame, the equation of motion is given by

$$
\begin{equation*}
\mu \ddot{\mathbf{r}}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}} \hat{\mathbf{r}} \tag{1}
\end{equation*}
$$

where \mathbf{r} is the relative position vector.
b) Define the angular momentum $\mathbf{L}=\mu \mathbf{r} \times \dot{\mathbf{r}}$. By taking its derivative with respect to the time, show that this is a constant vector. In particular, note that this implies that the scattering process must occur in the plane where \mathbf{r} and $\dot{\mathbf{r}}$ lie.
c) Using the geometry shown in 1 , show that $|\mathbf{L}|=\mu b v_{\infty}=\mu r^{2} \dot{\phi}$, from which $\dot{\phi}=b v_{\infty} / r^{2}$.
d) Call $\mathbf{v}_{\mathbf{i}}$ and $\mathbf{v}_{\mathbf{f}}$ the initial and final velocity of the charged particle shown in the figure and note that $\left|\mathbf{v}_{\mathbf{i}}\right|=\left|\mathbf{v}_{\mathbf{f}}\right|$. From symmetry, the x component of the velociy before and after scattering must be unchanged, whereas the y component must flip. Starting from these considerations, evaluate the change of the y velocity component before and after the collision $\left(\Delta v_{y}\right)$ as a function of $v_{y i}$.

Figure 1: Scattering geometry in the centre of mass frame. The scattering centre is in the origin and θ denotes the scattering angle.
e) Starting from the y component of equation 1 , find a relation between $d v_{y}$ and $d \cos \phi$. (Hint: consider the conservation of the angular momentum to write $d t$ as a function of $d \phi$). Call ϕ_{i} and ϕ_{f} the initial and final values of ϕ. By integrating $d v_{y}$, find Δv_{y} for the whole collision and as a function of ϕ_{i} and ϕ_{f}.
f) Using the figure, find the relation between the angles θ and α and between the angles ϕ_{i}, ϕ_{f} and α. By combining the different formulas for Δv_{y} found above, show that

$$
\begin{equation*}
\tan \frac{\theta}{2}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} \mu b v_{\infty}^{2}} \tag{2}
\end{equation*}
$$

and find an approximation for small angle collisions.

