5.3 The Baslics of Caches

391

and

Byte address

— < | X Bytes per block + (Bytes per block — 1
Bytes per block ytesp (Bytesp )

Thus, with 16 bytes per block, byte address 1200 is block address

1200) _ ..
6

which maps to cache block number (75 modulo 64) = 11. In fact, this block
maps all addresses between 1200 and 1215.

Larger blocks exploit spatial locality to lower miss rates. As Figure 5.11 shows,
increasing the block size usually decreases the miss rate. The miss rate may go up
eventually if the block size becomes a significant fraction of the cache size, because
the number of blocks that can be held in the cache will become small, and there will
be a great deal of competition for those blocks. As a result, a block will be bumped
out of the cache before many of its words are accessed. Stated alternatively, spatial
locality among the words in a block decreases with a very large block; consequently,
the benefits in the miss rate become smaller.

A more serious problem associated with just increasing the block size is that the
cost of a miss increases. The miss penalty is determined by the time required to fetch

10%

Miss

o feossaaaansssaaasassssasasssssssassssssaassssssssssssssssssssssssasssssssacassssssasssssssas
rate 5%

\ . 064K

A ——— e
2 A A —Y
0% " A ; ., 256K
16 32 64 128 256

Block size

FIGURE 5.11 Miss rate versus block slze. Note that the miss rate actually goes up if the block size
1s too large relative to the cache size. Each line represents a cache of different size. (This figure is independent
of assoclativity, discussed soon.) Unfortunately, SPEC CPU2000 traces would take too long if block size were
included, so this data is based on SPEC92.



392

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

cache miss A request for
data from the cache that
cannot be filled because
the data is not present in
the cache.

the block from the next lower level of the hierarchy and load it into the cache. The
time to fetch the block has two parts: the latency to the first word and the transfer
time for the rest of the block. Clearly, unless we change the memory system, the
transfer time—and hence the miss penalty—will likely increase as the block size
increases. Furthermore, the improvement in the miss rate starts to decrease as the
blocks become larger. The result is that the increase in the miss penalty overwhelms
the decrease in the miss rate for blocks that are too large, and cache performance
thus decreases. Of course, if we design the memory to transfer larger blocks more
efficiently, we can increase the block size and obtain further improvements in cache
performance. We discuss this topic in the next section.

Elaboration: Although it is hard to do anything about the longer latency component of
the miss penalty for large blocks, we may be able to hide some of the transfer time so
that the miss penalty is effectively smaller. The simplest method for doing this, called
early restart, is simply to resume execution as soon as the requested word of the block
is returned, rather than wait for the entire block. Many processors use this technique
for instruction access, where it works best. Instruction accesses are largely sequential,
so if the memory system can deliver a word every clock cycle, the processor may be
able to restart operation when the requested word is returned, with the memory system
delivering new instruction words just in time. This technique is usually less effective for
data caches because it is likely that the words will be requested from the block in a
less predictable way, and the probability that the processor will need another word from
a different cache block before the transfer completes is high. If the processor cannot
access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested
word is transferred from the memory to the cache first. The remainder of the block
is then transferred, starting with the address after the requested word and wrapping
around to the beginning of the block. This technique, called requested word first or
critical word first, can be slightly faster than early restart, but it is limited by the same
properties that limit early restart.

Handling Cache Misses

Before we look at the cache of a real system, let’s see how the control unit deals with
cache misses. (We describe a cache controller in detail in Section 5.9). The control
unit must detect a miss and process the miss by fetching the requested data from
memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the
computer continues using the data as if nothing happened.

Moditying the control of a processor to handle a hit is trivial; misses, however,
require some extra work. The cache miss handling is done in collaboration with
the processor control unit and with a separate controller that initiates the memory
access and refills the cache. The processing of a cache miss creates a pipeline stall
(Chapter 4) as opposed to an interrupt, which would require saving the state of all
registers. For a cache miss, we can stall the entire processor, essentially freezing
the contents of the temporary and programmer-visible registers, while we wait



