

392 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

the block from the next lower level of the hierarchy and load it into the cache. ! e
time to fetch the block has two parts: the latency to the " rst word and the transfer
time for the rest of the block. Clearly, unless we change the memory system, the
transfer time—and hence the miss penalty—will likely increase as the block size
increases. Furthermore, the improvement in the miss rate starts to decrease as the
blocks become larger. ! e result is that the increase in the miss penalty overwhelms
the decrease in the miss rate for blocks that are too large, and cache performance
thus decreases. Of course, if we design the memory to transfer larger blocks more
e# ciently, we can increase the block size and obtain further improvements in cache
performance. We discuss this topic in the next section.

Elaboration: Although it is hard to do anything about the longer latency component of
the miss penalty for large blocks, we may be able to hide some of the transfer time so
that the miss penalty is effectively smaller. The simplest method for doing this, called
early restart, is simply to resume execution as soon as the requested word of the block
is returned, rather than wait for the entire block. Many processors use this technique
for instruction access, where it works best. Instruction accesses are largely sequential,
so if the memory system can deliver a word every clock cycle, the processor may be
able to restart operation when the requested word is returned, with the memory system
delivering new instruction words just in time. This technique is usually less effective for
data caches because it is likely that the words will be requested from the block in a
less predictable way, and the probability that the processor will need another word from
a different cache block before the transfer completes is high. If the processor cannot
access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested
word is transferred from the memory to the cache ! rst. The remainder of the block
is then transferred, starting with the address after the requested word and wrapping
around to the beginning of the block. This technique, called requested word fi rst or
critical word fi rst, can be slightly faster than early restart, but it is limited by the same
properties that limit early restart.

Handling Cache Misses
Before we look at the cache of a real system, let’s see how the control unit deals with
cache misses. (We describe a cache controller in detail in Section 5.9). ! e control
unit must detect a miss and process the miss by fetching the requested data from
memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the
computer continues using the data as if nothing happened.

Modifying the control of a processor to handle a hit is trivial; misses, however,
require some extra work. ! e cache miss handling is done in collaboration with
the processor control unit and with a separate controller that initiates the memory
access and re" lls the cache. ! e processing of a cache miss creates a pipeline stall
(Chapter 4) as opposed to an interrupt, which would require saving the state of all
registers. For a cache miss, we can stall the entire processor, essentially freezing
the contents of the temporary and programmer-visible registers, while we wait

cache miss A request for
data from the cache that
cannot be " lled because
the data is not present in
the cache.

