Introduction to Rough Sets

Davide Ciucci

Dipartimento di Informatica, Sistemistica e Comunicazione Università di Milano Bicocca

PhD 2021/22

Outline

(1) Introduction

- Information Table and Decision Systems
(2) Approximations
(3) Relation Based models
(4) Reducts
- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

Outline

(1) Introduction

- Information Table and Decision Systems
(2) Approximations
(5) Relation Based models

4 Reducts

- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

What is a Rough set?

Simple question, difficult answer...

What is a Rough set?

Simple question, difficult answer...
What is a Fuzzy Subset of X ? $f: X \mapsto[0,1]$
We need several notions: indiscernibility, granulation of the
universe, approximations,

What is a Rough set?

Simple question, difficult answer...
What is a Fuzzy Subset of X ? $f: X \mapsto[0,1]$

- We need several notions: indiscernibility, granulation of the
universe, approximations,

What is a Rough set?

Simple question, difficult answer...
What is a Fuzzy Subset of $X ? f: X \mapsto[0,1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
More than one definition is possible.. some "ingredients" are
A set H whose elements are known (extension), but we are not able to describe it (intension)

What is a Rough set?

Simple question, difficult answer...
What is a Fuzzy Subset of $X ? f: X \mapsto[0,1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are

What is a Rough set?

Simple question, difficult answer...
What is a Fuzzy Subset of $X ? f: X \mapsto[0,1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
- A set H whose elements are known (extension), but we are not able to describe it (intension)

Rough set theory includes some tools for knowledge discovery

What is a Rough set?

Simple question, difficult answer...
What is a Fuzzy Subset of $X ? f: X \mapsto[0,1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
- A set H whose elements are known (extension), but we are not able to describe it (intension)
- We are able to give (intension and extension) a pair of sets which are an approximation of H

Rough set theory includes some tools for knowledge discovery

What is a Rough set?

Simple question, difficult answer...
What is a Fuzzy Subset of $X ? f: X \mapsto[0,1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
- A set H whose elements are known (extension), but we are not able to describe it (intension)
- We are able to give (intension and extension) a pair of sets which are an approximation of H
Rough set theory includes some tools for knowledge discovery: reducts (feature selection) and rules

Outline

(7) Introduction

- Information Table and Decision Systems
(2) Approximations
(5) Relation Based models

4) Reducts

- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

Information Table - example

HA = Head Ache
MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	$38-39$	yes
P2	High	no	$36-37$	yes
P3	High	no	$36-37$	yes
P4	Low	yes	$35-36$	no
P5	Normal	yes	$36-37$	yes

Information Table - example

HA = Head Ache
MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	$38-39$	yes
P2	High	no	$36-37$	yes
P3	High	no	$36-37$	yes
P4	Low	yes	$35-36$	no
P5	Normal	yes	$36-37$	yes

Information Table - example

HA = Head Ache
MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	$38-39$	yes
P2	High	no	$36-37$	yes
P3	High	no	$36-37$	yes
P4	Low	yes	$35-36$	no
P5	Normal	yes	$36-37$	yes

Information Table - definition

Definition (Information Table or Information System)
$\mathcal{S}(U)=\langle U$, Att, Val, $F\rangle$
U set of objects
Val set of possible values for the attributes

Information Table - definition

Definition (Information Table or Information System)
$\mathcal{S}(U)=\langle U$, Att, Val, $F\rangle$
U set of objects Att set of attributes
Val set of possible values for the attributes $F: U \times A \mapsto V$ function that assigns to each object a value for any

Information Table - definition

Definition (Information Table or Information System)
$\mathcal{S}(U)=\langle U$, Att, Val, $F\rangle$
U set of objects
Att set of attributes
Val set of possible values for the attributes

Sometimes: Vala with $a \in$ Att

Information Table - definition

Definition (Information Table or Information System)
$\mathcal{S}(U)=\langle U$, Att, Val, $F\rangle$
U set of objects
Att set of attributes
Val set of possible values for the attributes
$F: U \times A \mapsto V$ function that assigns to each object a value for any attribute

Sometimes: Vala with $a \in A t t$
In the example: objects $=\{\mathrm{P} 1, \ldots, \mathrm{P} 5\}$, Attributes $=\{$ Pressure, HA ,
Temperature, MP\}, Val =\{Yes, No, 37-38,
F(P2, Pressure)

Information Table - definition

Definition (Information Table or Information System)
$\mathcal{S}(U)=\langle U$, Att, Val, $F\rangle$
U set of objects
Att set of attributes
Val set of possible values for the attributes
$F: U \times A \mapsto V$ function that assigns to each object a value for any attribute

Sometimes: Vala with $a \in A t t$
In the example: objects $=\{\mathrm{P} 1, \ldots, \mathrm{P} 5\}$, Attributes $=\{$ Pressure, HA ,

Information Table - definition

Definition (Information Table or Information System)
$\mathcal{S}(U)=\langle U$, Att, Val, $F\rangle$
U set of objects
Att set of attributes
Val set of possible values for the attributes
$F: U \times A \mapsto V$ function that assigns to each object a value for any attribute

Sometimes: Vala with $a \in A t t$ In the example: objects $=\{\mathrm{P} 1, \ldots, \mathrm{P} 5\}$, Attributes $=\{$ Pressure, HA, Temperature, MP\}, Val =\{Yes, No, 37-38, ...\} $F(P 2$, Pressure $)=$ High

Decision System - Example

HA = Head Ache
MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

[^0]P2, P3: same symptoms, different disease \rightarrow the system is

Decision System - Example

HA = Head Ache
MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

Decision Classes: $U_{A}=\{P 1\}, U_{B}=\{P 3\}, U_{N O}=\{P 2, P 4, P 5\}$

[^1]
Decision System - Example

HA = Head Ache
MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

Decision Classes: $U_{A}=\{P 1\}, U_{B}=\{P 3\}, U_{N O}=\{P 2, P 4, P 5\}$
P2, P3: same symptoms, different disease \rightarrow the system is inconsistent

Definitions

$$
\begin{aligned}
& \text { Definition (Decision System) } \\
& \mathcal{S}(U)=\langle U, C \cup\{d\}, \text { Val, } F\rangle \\
& U \text { set of objects } \\
& C \text { set of condition attributes } \\
& d \text { decision attribute } \\
& \text { Val set of possible values for the attributes }
\end{aligned}
$$

any attribute

\square
\square

Definitions

Definition (Decision System)
$\mathcal{S}(U)=\langle U, C \cup\{d\}$, Val,$F\rangle$
U set of objects
C set of condition attributes
d decision attribute
Val set of possible values for the attributes
$F: U \times C \cup\{d\} \mapsto V$ function that assigns to each object a value for any attribute

There are no two objects $O_{1}, O_{2} \in U$ with same value for condition

\square

Definitions

Definition (Decision System)
$\mathcal{S}(U)=\langle U, C \cup\{d\}, V a l, F\rangle$
U set of objects
C set of condition attributes
d decision attribute
Val set of possible values for the attributes
$F: U \times C \cup\{d\} \mapsto V$ function that assigns to each object a value for any attribute

Definition (Consistent Decision System)

There are no two objects $O_{1}, O_{2} \in U$ with same value for condition attributes and different decision

Outline

(1) Introduction

- Information Table and Decision Systems
(2) Approximations
(3) Relation Based models

4 Reducts

- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

Indiscernibility relation - example

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	$38-39$	yes
P2	High	no	$36-37$	yes
P3	High	no	$36-37$	yes
P4	Low	yes	$35-36$	no
P5	Normal	yes	$36-37$	yes

P2 and P3 same values for all attributes: they are indiscernible (indistinguishable, equivalent, ...)

Indiscernibility relation - example

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	$38-39$	yes
P2	High	no	$36-37$	yes
P3	High	no	$36-37$	yes
P4	Low	yes	$35-36$	no
P5	Normal	yes	$36-37$	yes

P2 and P3 same values for all attributes: they are indiscernible (indistinguishable, equivalent, ...)
$\{\mathrm{P} 2, \mathrm{P} 3\}$ is a granule of information

Indiscernibility relation - example

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	$38-39$	yes
P2	High	no	$36-37$	yes
P3	High	no	$36-37$	yes
P4	Low	yes	$35-36$	no
P5	Normal	yes	$36-37$	yes

P2 and P3 same values for all attributes: they are indiscernible (indistinguishable, equivalent, ...)
$\{\mathrm{P} 2, \mathrm{P} 3\}$ is a granule of information
A partition of the universe: $\Pi=\{P 1\},\{P 2, P 3\},\{P 4\},\{P 5\}$

Indiscernibility relation - definition

Definition (Indiscernibility)
Given a set of attributes $A \subseteq A t t$
two objects $x, y \in U$ are indiscernible with respect to A if

In this case we write $x I_{A} y$

Indiscernibility relation - definition

Definition (Indiscernibility)
Given a set of attributes $A \subseteq$ Att two objects $x, y \in U$ are indiscernible with respect to A if

In this case we write $x I_{A} y$ I_{A} is an equivalence relation: reflexive, symmetric, transitive

I_{A} partitions U in equivalence classes (the granules of information)

Indiscernibility relation - definition

Definition (Indiscernibility)
Given a set of attributes $A \subseteq A t t$ two objects $x, y \in U$ are indiscernible with respect to A if

$$
\forall a \in A \quad F(a, x)=F(a, y)
$$

In this case we write $x I_{A} y$
I_{A} is an equivalence relation: reflexive, symmetric, transitive

Indiscernibility relation - definition

Definition (Indiscernibility)
Given a set of attributes $A \subseteq A t t$ two objects $x, y \in U$ are indiscernible with respect to A if

$$
\forall a \in A \quad F(a, x)=F(a, y)
$$

In this case we write $x I_{A} y$
I_{A} is an equivalence relation: reflexive, symmetric, transitive I_{A} partitions U in equivalence classes (the granules of information)

$$
[x]_{A}:=\left\{y \in U: x l_{A} y\right\}
$$

Approximations - example

Partition \{P1\}, \{P2,P3\}, \{P4\}, \{P5\}

Approximations - example

Partition \{P1\}, \{P2,P3\}, \{P4\}, \{P5\}

- The set $H=\{P 1, P 2, P 3\}$ is the union of two equivalence classes $\{P 1\} \cup\{P 2, P 3\}$
- The set $K=\{P 1, P 2\}$ is not

Approximations - example

Partition \{P1\}, \{P2, P3\}, \{P4\}, \{P5\}

- The set $H=\{P 1, P 2, P 3\}$ is the union of two equivalence classes $\{P 1\} \cup\{P 2, P 3\}$
- The set $K=\{P 1, P 2\}$ is not
- H is exact, K is rough

Approximations - example

Partition \{P1\}, \{P2,P3\}, \{P4\}, \{P5\}

- The set $H=\{P 1, P 2, P 3\}$ is the union of two equivalence classes $\{P 1\} \cup\{P 2, P 3\}$
- The set $K=\{P 1, P 2\}$ is not
- H is exact, K is rough
- K can be approximated by a pair of exact sets: $\{\mathrm{P} 1\},\{\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3\}$

$$
\{P 1\} \subseteq K \subseteq\{P 1, P 2, P 3\}
$$

Approximations - definition

Definition (Approximations)
Let $S(U)=\langle U$, Att, val $(U), F\rangle$ be an information table (a decision system)
Given a set of attributes $A \subseteq A t t$, then for any set of objects $H \subseteq U$ we define

Approximations - definition

Definition (Approximations)
Let $S(U)=\langle U$, Att, val $(U), F\rangle$ be an information table (a decision system)
Given a set of attributes $A \subseteq A t t$, then for any set of objects $H \subseteq U$ we define the lower approximation of H :

$$
L(H):=\left\{x:[x]_{A} \subseteq H\right\}
$$

Approximations - definition

Definition (Approximations)
Let $S(U)=\langle U$, Att, val $(U), F\rangle$ be an information table (a decision system)
Given a set of attributes $A \subseteq A t t$, then for any set of objects $H \subseteq U$ we define the lower approximation of H :

$$
L(H):=\left\{x:[x]_{A} \subseteq H\right\}
$$

the upper approximation of H :

$$
U(H):=\left\{x:[x]_{A} \cap H \neq \emptyset\right\}
$$

Approximations - definition

Definition (Approximations)
Let $S(U)=\langle U$, Att, $\operatorname{val}(U), F\rangle$ be an information table (a decision system)
Given a set of attributes $A \subseteq A t t$, then for any set of objects $H \subseteq U$ we define the lower approximation of H :

$$
L(H):=\left\{x:[x]_{A} \subseteq H\right\}
$$

the upper approximation of H :

$$
U(H):=\left\{x:[x]_{A} \cap H \neq \emptyset\right\}
$$

The pair $r(H)=\langle L(H), U(H)\rangle$ is named rough approximation (or rough

Figura: Lower and Upper approximations. Each square represents an equivalence class

Further regions

Exterior $E(H)=U^{c}(H) \quad L(H) \cap E(H)=\emptyset$ Rough approximation: $(L(H), E(H))$

Boundary Bnd(H) $=U(H) \backslash L(H)$

Further regions

Exterior $E(H)=U^{c}(H) \quad L(H) \cap E(H)=\emptyset$
Rough approximation: $(L(H), E(H))$
Boundary $\operatorname{Bnd}(H)=U(H) \backslash L(H)$

Further regions

Exterior $E(H)=U^{c}(H) \quad L(H) \cap E(H)=\emptyset$
Rough approximation: $(L(H), E(H))$
Boundary $\operatorname{Bnd}(H)=U(H) \backslash L(H)$

Interpretation
Lower sure belong to H
Exterior sure not belong to H uncertain

Measures of Uncertainty

Accuracy

$$
\alpha(H)=\frac{|L(H)|}{|U(H)|}
$$

Roughness

$$
1-\alpha(H)=\frac{|B n d(H)|}{|U(H)|}
$$

Approximation properties

- $L(\emptyset)=\emptyset \quad L(U)=U$

Approximation properties

- $L(\emptyset)=\emptyset \quad L(U)=U$
- $L(H) \subseteq H \quad H \subseteq U(H)$

Approximation properties

- $L(\emptyset)=\emptyset \quad L(U)=U$
- $L(H) \subseteq H \quad H \subseteq U(H)$
- $L(H \cap K)=L(H) \cap L(K) \quad L(H) \cup L(K) \subseteq L(H \cup K)$

Approximation properties

- $L(\emptyset)=\emptyset \quad L(U)=U$
- $L(H) \subseteq H \quad H \subseteq U(H)$
- $L(H \cap K)=L(H) \cap L(K) \quad L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$

Approximation properties

- $L(\emptyset)=\emptyset \quad L(U)=U$
- $L(H) \subseteq H \quad H \subseteq U(H)$
- $L(H \cap K)=L(H) \cap L(K) \quad L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$
- $L(L(H))=L(H) \quad L(U(H))=U(H)$
- Topological properties: Lower as interior, upper as closure
- Mndal nronerties (S_{5}) : I nmer as necescity unner as noscihility

Approximation properties

- $L(\emptyset)=\emptyset \quad L(U)=U$
- $L(H) \subseteq H \quad H \subseteq U(H)$
- $L(H \cap K)=L(H) \cap L(K) \quad L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$
- $L(L(H))=L(H) \quad L(U(H))=U(H)$
- $L(H)=\left(U\left(H^{c}\right)\right)^{c}$

Approximation properties

- $L(\emptyset)=\emptyset \quad L(U)=U$
- $L(H) \subseteq H \quad H \subseteq U(H)$
- $L(H \cap K)=L(H) \cap L(K) \quad L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$
- $L(L(H))=L(H) \quad L(U(H))=U(H)$
- $L(H)=\left(U\left(H^{c}\right)\right)^{c}$
- Topological properties: Lower as interior, upper as closure
- Modal properties $\left(S_{5}\right)$: Lower as necessity, upper as possibility

Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

- Generalized decision: $\delta_{A}: U \rightarrow \mathcal{P}($ Val $)$

Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

- Generalized decision: $\delta_{A}: U \rightarrow \mathcal{P}(\mathrm{Val})$
- Example: $\delta_{A T T}(P 2)=\{N O, B\}$

Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

- Generalized decision: $\delta_{A}: U \rightarrow \mathcal{P}(\mathrm{Val})$
- Example: $\delta_{A T T}(P 2)=\{N O, B\}$
- Definition:

$$
\delta_{A}(x)=\left\{i \in \operatorname{Val}: \exists y, x I_{A} y \text { and } F(y, d)=i\right\}
$$

Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

- Generalized decision: $\delta_{A}: U \rightarrow \mathcal{P}(\mathrm{Val})$
- Example: $\delta_{A T T}(P 2)=\{N O, B\}$
- Definition:

$$
\delta_{A}(x)=\left\{i \in \operatorname{Val}: \exists y, x I_{A} y \text { and } F(y, d)=i\right\}
$$

- If $\forall x \in U:\left|\delta_{A}(x)\right|=1$ then the system is consistent

Generalized Decision - example

Patient	Pressure	HA	Temperature	MP	Disease	$\delta_{\text {Att }}$
P1	Normal	yes	$38-39$	yes	A	A,
P2	High	no	$36-37$	yes	NO	B,NO
P3	High	no	$36-37$	yes	B	B,NO
P4	Low	yes	$35-36$	no	NO	NO
P5	Normal	yes	$36-37$	yes	NO	NO

Outline

(I) Introduction

- Information Table and Decision Systems
(2) Approximations
(3) Relation Based models
(4) Reducts
- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_{R}(x)=\{y \in U: x R y\}$ - Approximations

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_{R}(x)=\{y \in U: x R y\}$

Properties

- $I_{R}(U)=U, U_{R}(\theta)=0,1, u$ are monotone

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_{R}(x)=\{y \in U: x R y\}$
- Approximations

$$
\begin{aligned}
I_{R}(H) & =\{x \in U: \operatorname{gr}(x) \subseteq H\} \\
U_{R}(H) & =\{x \in U: \operatorname{gr}(x) \cap H \neq \emptyset\}
\end{aligned}
$$

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_{R}(x)=\{y \in U: x R y\}$
- Approximations

$$
\begin{aligned}
I_{R}(H) & =\{x \in U: \operatorname{gr}(x) \subseteq H\} \\
U_{R}(H) & =\{x \in U: \operatorname{gr}(x) \cap H \neq \emptyset\}
\end{aligned}
$$

Properties

- $I_{R}(U)=U, u_{R}(\emptyset)=\emptyset, I, u$ are monotone

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_{R}(x)=\{y \in U: x R y\}$
- Approximations

$$
\begin{aligned}
I_{R}(H) & =\{x \in U: \operatorname{gr}(x) \subseteq H\} \\
u_{R}(H) & =\{x \in U: \operatorname{gr}(x) \cap H \neq \emptyset\}
\end{aligned}
$$

Properties

- $I_{R}(U)=U, u_{R}(\emptyset)=\emptyset, I, u$ are monotone
- If R is serial: $I_{R}(H) \subseteq u_{R}(H), u_{R}(U)=U, I_{R}(\emptyset)=\emptyset$

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_{R}(x)=\{y \in U: x R y\}$
- Approximations

$$
\begin{aligned}
I_{R}(H) & =\{x \in U: \operatorname{gr}(x) \subseteq H\} \\
u_{R}(H) & =\{x \in U: \operatorname{gr}(x) \cap H \neq \emptyset\}
\end{aligned}
$$

Properties

- $I_{R}(U)=U, u_{R}(\emptyset)=\emptyset, I, u$ are monotone
- If R is serial: $I_{R}(H) \subseteq u_{R}(H), u_{R}(U)=U, I_{R}(\emptyset)=\emptyset$
- If R is reflexive: $I_{R}(H) \subseteq H \subseteq u_{R}(H)$

Similarity relation

Rough sets based on a similarity relation \mathcal{R}

- Reflexive
- Symmetric

Similarity $S(x):=\{y \in U: x \mathcal{R} y\}$ A covering of the universe, not a partition 1 $. S(x)=U$ - there can exist objects x and y such that $S(x) \cap S(y) \neq \emptyset$

Similarity relation

Rough sets based on a similarity relation \mathcal{R}

- Reflexive
- Symmetric

Similarity $S(x):=\{y \in U: x \mathcal{R} y\}$
A covering of the universe, not a partition
there can exist objects x and y such that $S(x) \cap S(y) \neq \emptyset$

Similarity relation

Rough sets based on a similarity relation \mathcal{R}

- Reflexive
- Symmetric

Similarity $S(x):=\{y \in U: x \mathcal{R} y\}$
$\Rightarrow A$ covering of the universe, not a partition

- $U_{x} S(x)=U$
- there can exist objects x and y such that $S(x) \cap S(y) \neq \emptyset$

Similarity: Example 1

\mathcal{R} can represent a distance between objects

- Similar temperature if $\operatorname{Temp}(P 1)-\operatorname{Temp}(P 2) \mid \leq 0.5$ - P1 similar to P2 if they have (at least) half of the attributes equal

Similarity: Example 1

\mathcal{R} can represent a distance between objects

- Similar temperature if $|\operatorname{Temp}(P 1)-\operatorname{Temp}(P 2)| \leq 0.5$

Similarity: Example 1

\mathcal{R} can represent a distance between objects

- Similar temperature if $|\operatorname{Temp}(P 1)-\operatorname{Temp}(P 2)| \leq 0.5$
- P1 similar to P2 if they have (at least) half of the attributes equal

$$
\frac{\left|\left\{a_{i} \in A t t: F\left(a_{i}, P 1\right)=F\left(a_{i}, P 2\right)\right\}\right|}{|A t t|} \geq \frac{1}{2}
$$

Similarity: Example 2

- Deal with incomplete information

Similarity: Example 2

- Deal with incomplete information

Patient	Pressure	HA	Temperature	MP	Malattia
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	$*$	NO
P3	High	no	$*$	yes	B
P4	\star	yes	$35-36$	no	NO
P5	Normal	$*$	$*$	yes	NO

Similarity: Example 2

- Deal with incomplete information

Patient	Pressure	HA	Temperature	MP	Malattia
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	$*$	NO
P3	High	no	\star	yes	B
P4	\star	yes	$35-36$	no	NO
P5	Normal	$*$	$*$	yes	NO

$x \mathcal{R}_{D} y$ iff $\forall a_{i} \in D \quad F\left(x, a_{i}\right)=F\left(y, a_{i}\right) \quad$ or $\quad F\left(x, a_{i}\right)=* \quad$ or $\quad F\left(y, a_{i}\right)=*$

Outline

(I) Introduction

- Information Table and Decision Systems
(2) Approximations
(3) Relation Based models
(4) Reducts
- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

Aim

- Simplify the table: eliminate "useless" attributes - Given a decision system, found the rules: condition attribute \rightarrow decision

Aim

- Simplify the table: eliminate "useless" attributes
- Given a decision system, found the rules:
condition attribute \rightarrow decision
Example:
If Pressure $=$ Normal AND Temp. $=38-39$ THEN Disease $=\mathrm{A}$

Aim

- Simplify the table: eliminate "useless" attributes
- Given a decision system, found the rules: condition attribute \rightarrow decision

Example: If Dressure $=$ Normal AND Temp. $=38-39$ THEN Disease $=\mathrm{A}$

Aim

- Simplify the table: eliminate "useless" attributes
- Given a decision system, found the rules: condition attribute \rightarrow decision

Example:
If Pressure $=$ Normal AND Temp. $=38-39$ THEN Disease $=\mathrm{A}$

Outline

(I) Introduction

- Information Table and Decision Systems
(2) Approximations
(5) Relation Based models

4) Reducts

- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

Inf. Table Reduct - example

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	$38-39$	yes
P2	High	no	$36-37$	yes
P3	High	no	$36-37$	yes
P4	Low	yes	$35-36$	no
P5	Normal	yes	$36-37$	yes

$\Pi_{\text {Att }}=\{\mathrm{P} 1\},\{\mathrm{P} 2, \mathrm{P} 3\},\{\mathrm{P} 4\},\{\mathrm{P} 5\}$

Inf. Table Reduct - example

Patient	Pressure	HA	MP
P1	Normal	yes	yes
P2	High	no	yes
P3	High	no	yes
P4	Low	yes	no
P5	Normal	yes	yes

$\Pi_{\text {Att }}=\{\mathrm{P} 1\},\{\mathrm{P} 2, \mathrm{P} 3\},\{\mathrm{P} 4\},\{\mathrm{P} 5\}$
$\Pi_{\text {Att } \backslash\{\text { Temp }\}}=\{\mathrm{P} 1, \mathrm{P} 5\},\{\mathrm{P} 2, \mathrm{P} 3\},\{\mathrm{P} 4\}$

Inf. Table Reduct - example

Patient	Pressure	Temperature	MP
P1	Normal	$38-39$	yes
P2	High	$36-37$	yes
P3	High	$36-37$	yes
P4	Low	$35-36$	no
P5	Normal	$36-37$	yes

$\Pi_{\text {Att }}=\{\mathrm{P} 1\},\{\mathrm{P} 2, \mathrm{P} 3\},\{\mathrm{P} 4\},\{\mathrm{P} 5\}$
$\Pi_{\text {Att } \backslash H A\}}=\Pi_{\text {Att }}$

Inf. Table Reduct - example

Patient	Pressure		Temperature
P1	Normal		$38-39$
P2	High		$36-37$
P3	High		$36-37$
P4	Low		$35-36$
P5	Normal	$36-37$	

$\Pi_{\text {Att }}=\{P 1\},\{P 2, P 3\},\{P 4\},\{P 5\}$
$\Pi_{\text {Att } \backslash\{H A, M P\}}=\Pi_{\text {Att }}$

Inf. Table Reduct - example

Patient	Temperature
P1	$38-39$
P2	$36-37$
P3	$36-37$
P4	$35-36$
P5	$36-37$

$\Pi_{\text {Att }}=\{\mathrm{P} 1\},\{\mathrm{P} 2, \mathrm{P} 3\},\{\mathrm{P} 4\},\{\mathrm{P} 5\}$
$\Pi_{\text {Temp }}=\{\mathrm{P} 1\},\{\mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 5\},\{\mathrm{P} 4\}$

Inf. Table Reduct - example

Patient	Pressure
P1	Normal
P2	High
P3	High
P4	Low
P5	Normal

$\Pi_{\text {Att }}=\{\mathrm{P} 1\},\{\mathrm{P} 2, \mathrm{P} 3\},\{\mathrm{P} 4\},\{\mathrm{P} 5\}$
$\Pi_{\text {Pressure }}=\{\mathrm{P} 1, \mathrm{P} 5\},\{\mathrm{P} 2, \mathrm{P} 3\},\{\mathrm{P} 4\}$

Inf. Table Reduct - example

Patient	Pressure		Temperature
P1	Normal		$38-39$
P2	High		$36-37$
P3	High		$36-37$
P4	Low		$35-36$
P5	Normal	$36-37$	

$\Pi_{\text {Att }}=\{\mathrm{P} 1\},\{\mathrm{P} 2, \mathrm{P} 3\},\{\mathrm{P} 4\},\{\mathrm{P} 5\}$
$\Pi_{\text {Pressure, } \text { Temperature }}=\Pi_{\text {Att }}$
\{Pressure, Temperature\} is a reduct of Att

Inf. Table Reduct - definition

Definition (Reduct)
$A \subseteq B \subseteq A t t$
A is a reduct of B if

Inf. Table Reduct - definition

Definition (Reduct)
$A \subseteq B \subseteq A t t$
A is a reduct of B if
(1) $\Pi_{A}=\Pi_{B}$
$a \in A \subseteq A t t$ is indispensable in A if $\Pi_{A} \neq \Pi_{A \backslash\{a\}}$

Inf. Table Reduct - definition

Definition (Reduct)
$A \subseteq B \subseteq A t t$
A is a reduct of B if
(1) $\Pi_{A}=\Pi_{B}$
(2) $\nexists C \subset A$ and $\Pi_{C}=\Pi_{B}$
$a \in A \subseteq A t t$ is indispensable in A if $\Pi_{A} \neq \Pi_{A \backslash\{a\}}$
$C O R E=$ set of indispensable attributes in $A t t=$ intersection of all reducts in Att

Inf. Table Reduct - definition

Definition (Reduct)
$A \subseteq B \subseteq A t t$
A is a reduct of B if
(1) $\Pi_{A}=\Pi_{B}$
(2) $\nexists C \subset A$ and $\Pi_{C}=\Pi_{B}$
$a \in A \subseteq A t t$ is indispensable in A if $\Pi_{A} \neq \Pi_{A \backslash\{a\}}$
CORE $=$ set of indispensable attributes in $A t t=$ intersection of all
reducts in Att

Inf. Table Reduct - definition

Definition (Reduct)
$A \subseteq B \subseteq A t t$
A is a reduct of B if
(2) $\Pi_{A}=\Pi_{B}$
(2) $\nexists C \subset A$ and $\Pi_{C}=\Pi_{B}$
$a \in A \subseteq A t t$ is indispensable in A if $\Pi_{A} \neq \Pi_{A \backslash\{a\}}$
CORE= set of indispensable attributes in Att = intersection of all reducts in Att

Complexity issues

- Given n attributes, there are at most $O\left(\frac{3^{n}}{\sqrt{n}}\right)$ reducts

> Find the shortest reduct is a NPNP complete problem reduction to the prime implicant problem by means of the discernibility matrix

Solutions

- Heuristics (Approximate reducts, genetic algorithms, entropy, ...)
- Parallel algorithms

Complexity issues

- Given n attributes, there are at most $O\left(\frac{3^{n}}{\sqrt{n}}\right)$ reducts
- Find the shortest reduct is a NP ${ }^{N P}$ complete problem
- reduction to the prime implicant problem by means of the discernibility matrix

Solutions

- Heuristics (Approximate reducts, genetic algorithms, entropy,
- Parallel algorithms

Complexity issues

- Given n attributes, there are at most $O\left(\frac{3^{n}}{\sqrt{n}}\right)$ reducts
- Find the shortest reduct is a NP ${ }^{N P}$ complete problem
- reduction to the prime implicant problem by means of the discernibility matrix

Solutions

- Heuristics (Approximate reducts, genetic algorithms, entropy, ...)
- Parallel algorithms

Outline

(1) Introduction

- Information Table and Decision Systems
(2) Approximations
(5) Relation Based models
(4) Reducts
- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

Reduct

Definition (Reduct)

A reduct is a minimal subset of condition $C \subseteq A T T$ that preserves classification wrt the decision attribute

Reduct

Definition (Reduct)

A reduct is a minimal subset of condition $C \subseteq A T T$ that preserves classification wrt the decision attribute
(1) Consistence: same ability of the whole ATT to distinguish objects belonging to two different decision classes

Reduct

Definition (Reduct)

A reduct is a minimal subset of condition $C \subseteq A T T$ that preserves classification wrt the decision attribute
(1) Consistence: same ability of the whole ATT to distinguish objects belonging to two different decision classes
(2) Minimality: any smaller subset is not consistent

Example

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

Example

Patient	Pressure	HA		MP
P1	Disease			
P1	Normal	yes	yes	A
P3	High	no		yes
P4	Low	Bes		no
P5	Normal	yes		yes
PO	NO			

Example

Patient	Pressure	HA		MP
P1	Disease			
P3	Normal	yes	yes	A
P3	High	no		yes
P4	Low	yes	no	NO
P5	Normal	yes		yes
PO				

Example

Patient	Pressure		Temperature	MP
Disease				
P1	Normal		$38-39$	yes
P3	High		A	
P4	Low		37	yes
P5	B			
P5	Normal		$36-37$	no
No	NO			
		yes	NO	

Example

Patient	Pressure		Temperature	Disease
P1	Normal		$38-39$	
P3	High		A	
P4	Low		37	
P5	Normal		$35-36$	B
P5	$36-37$		NO	
		NO		

Example

Patient	Temperature	Disease
P1	$38-39$	A
P3	$36-37$	B
P4	$35-36$	NO
P5	$36-37$	NO

Example

Patient	Pressure		Disease
P1	Normal		A
P3	High		B
P4	Low		NO
P5	Normal		NO

Example: rules

Patient	Pressure		Temperature	Disease
P1	Normal		$38-39$	A
P3	High	$36-37$	B	
P4	Low	$35-36$		NO
P5	Normal	$36-37$	NO	

Reduct $=\{$ Pressure, Temperature $\}$
IF Pressure $=$ Normal AND Temp. $=38-39$ THEN Disease $=\mathrm{A}$

Example: rules

Patient	Pressure	Temperature	Disease	
P1	Normal	$38-39$	A	
P3	High	$36-37$	B	
P4	Low	$35-36$		NO
P5	Normal	$36-37$	NO	

Reduct $=\{$ Pressure, Temperature $\}$
IF Pressure $=$ Normal AND Temp. $=38-39$ THEN Disease $=\mathrm{A}$

Example: rules

Patient	Pressure	Temperature	Disease	
P1	Normal	$38-39$	A	
P3	High	$36-37$	B	
P4	Low	$35-36$		NO
P5	Normal	$36-37$	NO	

Reduct $=\{$ Pressure, Temperature $\}$
IF Pressure $=$ Normal AND Temp. $=38-39$ THEN Disease $=\mathrm{A}$
IF Pressure $=$ High AND Temp. $=36-37$ THEN Disease $=\mathrm{B}$

Example: rules

Patient	Pressure		Temperature	
P1	Normal		Disease	
P3	High		36	
P4	Low	$36-37$		B
P5	Normal	$35-36$		NO
		$36-37$		NO

Reduct $=\{$ Pressure, Temperature $\}$
IF Pressure $=$ Normal AND Temp. $=38-39$ THEN Disease $=$ A
IF Pressure $=$ High AND Temp. $=36-37$ THEN Disease $=$ B
IF Pressure = Low AND Temp. $=35-36$ THEN Disease $=$ NO

Example: rules

Patient	Pressure		Temperature	Disease
P1	Normal		$38-39$	
P3	High		A	
P4	Low		37	
P5	Normal		$35-36$	B
PO	$36-37$	NO		
		NO		

Reduct $=\{$ Pressure, Temperature $\}$
IF Pressure $=$ Normal AND Temp. $=38-39$ THEN Disease $=$ A
IF Pressure $=$ High AND Temp. $=36-37$ THEN Disease $=$ B
IF Pressure = Low AND Temp. $=35-36$ THEN Disease $=$ NO
IF Pressure $=$ Normal AND Temp. $=36-37$ THEN Disease $=$ NO

Outline

(I) Introduction

- Information Table and Decision Systems
(2) Approximations
(5) Relation Based models
(4) Reducts
- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

Solution 1: Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

- Generalized decision: $\delta_{A}: U \rightarrow \mathcal{P}($ Val $)$

Solution 1: Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

- Generalized decision: $\delta_{A}: U \rightarrow \mathcal{P}(\mathrm{Val})$
- Example: $\delta_{A T T}(P 2)=\{N O, B\}$

Solution 1: Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

- Generalized decision: $\delta_{A}: U \rightarrow \mathcal{P}(\mathrm{Val})$
- Example: $\delta_{A T T}(P 2)=\{N O, B\}$
- Definition:

$$
\delta_{A}(x)=\left\{i \in \operatorname{Val}: \exists y, x I_{A} y \text { and } F(y, d)=i\right\}
$$

Solution 1: Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

- Generalized decision: $\delta_{A}: U \rightarrow \mathcal{P}(\mathrm{Val})$
- Example: $\delta_{A T T}(P 2)=\{N O, B\}$
- Definition:

$$
\delta_{A}(x)=\left\{i \in \operatorname{Val}: \exists y, x I_{A} y \text { and } F(y, d)=i\right\}
$$

- If $\forall x \in U:\left|\delta_{A}(x)\right|=1$ then the system is consistent

Generalized Decision reduct

Definition

Given a set of attributes $A \subseteq B \subseteq A T T$, A is a reduct of B if

- $\delta_{A}=\delta_{B}$ (I do not introduce further inconsistency)
- Minimality: $\nexists C \subset A$ such that $\delta_{C}=\delta_{B}$

Generalized Decision Reduct - example

Patient	Pressure	HA	Temperature	MP	Disease	$\delta_{\text {Att }}$
P1	Normal	yes	$38-39$	yes	A	A,
P2	High	no	$36-37$	yes	NO	B,NO
P3	High	no	$36-37$	yes	B	B,NO
P4	Low	yes	$35-36$	no	NO	NO
P5	Normal	yes	$36-37$	yes	NO	B

Generalized Decision Reduct - example

Patient	Pressure	HA	Temperature	MP	Disease	$\delta_{\text {Att }}$
P1	Normal	yes	$38-39$	yes	A	A,
P2	High	no	$36-37$	yes	NO	B,NO
P3	High	no	$36-37$	yes	B	B,NO
P4	Low	yes	$35-36$	no	NO	NO
P5	Normal	yes	$36-37$	yes	NO	B

- Reduct \{Pressure, Temperature\}

Generalized Decision Reduct - example

Patient	Pressure	HA	Temperature	MP	Disease	$\delta_{\text {Att }}$
P1	Normal	yes	$38-39$	yes	A	A,
P2	High	no	$36-37$	yes	NO	B,NO
P3	High	no	$36-37$	yes	B	B,NO
P4	Low	yes	$35-36$	no	NO	NO
P5	Normal	yes	$36-37$	yes	NO	B

- Reduct \{Pressure, Temperature\}
- If (Pressure =High) AND (Temp=36-37) THEN (Disease = NO) OR (Disease = B)

Solution 2: Dependence

Solution 2: Dependence

Definition
Let $\mathcal{S}(U)$ be a decision system
$A \subseteq A t t$ a set of attributes, X_{i} the decision classes

$\operatorname{Dip}(A, d)$ is the ratio of correctly classified objects by the set of
attributes A

Solution 2: Dependence

Definition
Let $\mathcal{S}(U)$ be a decision system
$A \subseteq A t t$ a set of attributes, X_{i} the decision classes
The Coefficient of Dependence of decision d from A is

$$
\operatorname{Dip}(A, d)=\frac{\sum\left|L_{A}\left(X_{i}\right)\right|}{|X|}
$$

$\operatorname{Dip}(A, d)$ is the ratio of correctly classified objects by the set of
attributes A
$\operatorname{Dip}(A, d)=1$ if the system is consistent

Solution 2: Dependence

Definition
Let $\mathcal{S}(U)$ be a decision system
$A \subseteq A t t$ a set of attributes, X_{i} the decision classes
The Coefficient of Dependence of decision d from A is

$$
\operatorname{Dip}(A, d)=\frac{\sum\left|L_{A}\left(X_{i}\right)\right|}{|X|}
$$

Dip(A,d) is the ratio of correctly classified objects by the set of attributes A
$\operatorname{Dip}(A, d)=1$ if the system is consistent

Solution 2: Dependence

Definition
Let $\mathcal{S}(U)$ be a decision system
$A \subseteq A t t$ a set of attributes, X_{i} the decision classes
The Coefficient of Dependence of decision d from A is

$$
\operatorname{Dip}(A, d)=\frac{\sum\left|L_{A}\left(X_{i}\right)\right|}{|X|}
$$

Dip(A,d) is the ratio of correctly classified objects by the set of attributes A
$\operatorname{Dip}(\mathrm{A}, \mathrm{d})=1$ if the system is consistent

Reduct: dependence definition

Definition (Reduct)
Let $\mathcal{S}(U)$ be a decision system

$$
\text { (0 } \operatorname{Dip}(\mathrm{A}, \mathrm{~d})=\operatorname{Dip}(\mathrm{B}, \mathrm{~d})
$$

Reduct: dependence definition

Definition (Reduct)
Let $\mathcal{S}(U)$ be a decision system
$A \subseteq B \subseteq A t t, \mathrm{~A}$ is a reduct of B if

Reduct: dependence definition

Definition (Reduct)
Let $\mathcal{S}(U)$ be a decision system
$A \subseteq B \subseteq A t t, \mathrm{~A}$ is a reduct of B if
(3) $\operatorname{Dip}(\mathrm{A}, \mathrm{d})=\operatorname{Dip}(\mathrm{B}, \mathrm{d})$

Reduct: dependence definition

Definition (Reduct)
Let $\mathcal{S}(U)$ be a decision system
$A \subseteq B \subseteq A t t, \mathrm{~A}$ is a reduct of B if
(2) $\operatorname{Dip}(\mathrm{A}, \mathrm{d})=\operatorname{Dip}(\mathrm{B}, \mathrm{d})$
(2) Minimality: $\nexists C \subset A$ such that $\operatorname{Dip}(C, d)=\operatorname{Dip}(B, d)$

Reduct: dependence example

Patient	Pressure	HA	Temperature	DM	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

$L_{C}\left(X_{A}\right)=\{P 1\}, L_{C}\left(X_{N O}\right)=\{P 4, P 5\}, L_{C}\left(X_{B}\right)=\emptyset$

Reduct: dependence example

Patient	Pressure	HA	Temperature	DM	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

$L_{C}\left(X_{A}\right)=\{P 1\}, L_{C}\left(X_{N O}\right)=\{P 4, P 5\}, L_{C}\left(X_{B}\right)=\emptyset$
$\operatorname{Dip}($ Att, Disease $)=\frac{3}{5}$

Reduct: dependence example

Patient	Pressure	HA	Temperature	DM	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

$L_{C}\left(X_{A}\right)=\{P 1\}, L_{C}\left(X_{N O}\right)=\{P 4, P 5\}, L_{C}\left(X_{B}\right)=\emptyset$
$\operatorname{Dip}($ Att, Disease $)=\frac{3}{5}$
Dip $(\{$ Pressure, Temperature, DM $\}$, Disease $)=\frac{3}{5}$

Reduct: dependence example

Patient	Pressure	HA	Temperature	DM	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

$L_{C}\left(X_{A}\right)=\{P 1\}, L_{C}\left(X_{N O}\right)=\{P 4, P 5\}, L_{C}\left(X_{B}\right)=\emptyset$
$\operatorname{Dip}($ Att, Disease $)=\frac{3}{5}$
Dip(\{Pressure, Temperature, DM $\}$, Disease $)=\frac{3}{5}$
$\operatorname{Dip}(\{$ Pressure, Temperature $\}$, Disease $)=\frac{3}{5}$

Reduct: dependence example

Patient	Pressure	HA	Temperature	DM	Disease
P1	Normal	yes	$38-39$	yes	A
P2	High	no	$36-37$	yes	NO
P3	High	no	$36-37$	yes	B
P4	Low	yes	$35-36$	no	NO
P5	Normal	yes	$36-37$	yes	NO

$L_{C}\left(X_{A}\right)=\{P 1\}, L_{C}\left(X_{N O}\right)=\{P 4, P 5\}, L_{C}\left(X_{B}\right)=\emptyset$
$\operatorname{Dip}($ Att, Disease $)=\frac{3}{5}$
$\operatorname{Dip}(\{$ Pressure, Temperature, DM $\}$, Disease $)=\frac{3}{5}$
$\operatorname{Dip}(\{$ Pressure, Temperature $\}$, Disease $)=\frac{3}{5}$
IF (Pressure=High AND Temp=36-37) THEN (Disease =NO OR Disease =B)

Software

Free software based on rough sets

- Rosetta (2001), limited to tables with 500 objects and 20 attributes
\square Fuzzy Rough Set Theories" (2019)

Software

Free software based on rough sets

- Rosetta (2001), limited to tables with 500 objects and 20 attributes http://www.lcb.uu.se/tools/rosetta Also avalaible in WEKA

R package "RoughSets: Data Analysis Using Rough Set and

 Fuzzy Rough Set Theories" (2019)Free software based on rough sets

- Rosetta (2001), limited to tables with 500 objects and 20 attributes http://www.lcb.uu.se/tools/rosetta
- Rough Set and Machine Learning Open Source in Java (2019) Also avalaible in WEKA https://rseslib.mimuw.edu.pl/index.html
- R package "RoughSets: Data Analysis Using Rough Set and Fuzzy Rough Set Theories" (2019) https://cran.r-project. org/web/packages/RoughSets/index.html
- R package "Soft Clustering" (2019) https: //cran.r-project. org/web/packages/Softclustering/index.html
- Fuzzy Rough Learn (2021) python library https://fuzzy-rough-learn.readthedocs.io/en/latest/

[^0]: Decision Classes: $U_{A}=\{P 1\}, U_{B}=\{P 3\}, U_{N O}=\{P 2, P 4, P 5$

[^1]: P2,
 P3: same symptoms. different disease \rightarrow the system is

