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What is a Rough set?

Simple question, difficult answer...
What is a Fuzzy Subset of X? f: X — [0, 1]

@ We need several notions: indiscernibility, granulation of the
universe, approximations, . ..
@ More than one definition is possible... some “ingredients” are
o A set H whose elements are known (extension), but we are not able
to describe it (intension)
o We are able to give (intension and extension) a pair of sets which
are an approximation of H
Rough set theory includes some tools for knowledge discovery:
reducts (feature selection) and rules
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Information Table - example

HA = Head Ache
MP = Muscle Pain

Patient | Pressure | HA | Temperature | MP
P1 Normal | yes 38-39 yes

P2 High no 36-37 yes
P3 High no 36-37 yes
P4 Low yes 35-36 no

P5 Normal | yes 36-37 yes
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Information Table - example

HA = Head Ache
MP = Muscle Pain

YNl Pressure  HA  Temperature MP |
Normal | yes 38-39 yes
High no 36-37 yes

High no 36-37 yes
Low yes 35-36 no
Normal yes 36-37 yes
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U set of objects

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 7/43



Introduction
[e]e] Tele]

Information Table - definition

Definition (Information Table or Information System)
S(U) = (U, Att, val, F)

U set of objects

Att set of attributes

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 7/43



Introduction
[e]e] Tele]

Information Table - definition

Definition (Information Table or Information System)
S(U) = (U, Att, val, F)

U set of objects

Att set of attributes

Val set of possible values for the attributes

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 7/43



Introduction
[e]e] Tele]

Information Table - definition

Definition (Information Table or Information System)
S(U) = (U, Att, val, F)

U set of objects

Att set of attributes

Val set of possible values for the attributes

F : U x A~ V function that assigns to each object a value for any
attribute

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 7/43



Introduction
[e]e] Tele]

Information Table - definition

Definition (Information Table or Information System)

S(U) = (U, Att, val, F)

U set of objects

Att set of attributes

Val set of possible values for the attributes

F : U x A~ V function that assigns to each object a value for any
attribute

Sometimes: Val, with a € Att

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 7/43



Introduction
[e]e] Tele]

Information Table - definition

Definition (Information Table or Information System)
S(U) = (U, Att, val, F)

U set of objects

Att set of attributes

Val set of possible values for the attributes

F : U x A~ V function that assigns to each object a value for any
attribute

Sometimes: Val, with a € Att

In the example: objects ={P1, ..., P5}, Attributes = {Pressure, HA,
Temperature, MP}, Val ={Yes, No, 37-38, ...}
F(P2, Pressure) = High
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HA = Head Ache
MP = Muscle Pain

Patient | Pressure | HA | Temperature | MP [IBIEEELS
P1 Normal | yes 38-39 yes A
P2 High no 36-37 yes NO
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Decision System - Example

HA = Head Ache
MP = Muscle Pain

Patient | Pressure | HA | Temperature | MP [IBIEEELS
P1 Normal | yes 38-39 yes A
P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO
P5 Normal | yes 36-37 yes NO

Decision Classes: Uy = {P1}, Ug = {P3}, Uno = {P2, P4, P5}

P2, P3: same symptoms, different disease — the system is
inconsistent
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Definition (Decision System)

S(U) =(U,CuU{d}, Val, F)

U set of objects

C set of condition attributes

d decision attribute

Val set of possible values for the attributes
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Definitions

Definition (Decision System)

S(U)=(U,Cu{d}, Val, F)

U set of objects

C set of condition attributes

d decision attribute

Val set of possible values for the attributes

F: U x Cu{d} — V function that assigns to each object a value for
any attribute

Definition (Consistent Decision Systent)

There are no two objects Oy, O> € U with same value for condition
attributes and different decision

y
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Indiscernibility relation - example

Patient | Pressure | HA | Temperature | MP
P1 Normal | yes 38-39 yes

P2 High no 36-37 yes
P3 High no 36-37 yes
P4 Low yes 35-36 no

P5 Normal | yes 36-37 yes

P2 and P3 same values for all attributes: they are indiscernible
(indistinguishable, equivalent, ...)

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 11/43



Approximations
O®@000000000

Indiscernibility relation - example

Patient | Pressure | HA | Temperature | MP
P1 Normal | yes 38-39 yes

P2 High no 36-37 yes
P3 High no 36-37 yes
P4 Low yes 35-36 no

P5 Normal | yes 36-37 yes

P2 and P3 same values for all attributes: they are indiscernible
(indistinguishable, equivalent, ...)

{P2, P3} is a granule of information

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 11/43



Approximations
O®@000000000

Indiscernibility relation - example

Patient | Pressure | HA | Temperature | MP
P1 Normal | yes 38-39 yes

P2 High no 36-37 yes
P3 High no 36-37 yes
P4 Low yes 35-36 no

P5 Normal | yes 36-37 yes

P2 and P3 same values for all attributes: they are indiscernible
(indistinguishable, equivalent, ...)

{P2, P3} is a granule of information
A partition of the universe: N = {P1}, {P2,P3}, {P4}, {P5}
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Indiscernibility relation - definition

Definition (Indiscernibility)
Given a set of attributes A C Aft
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Indiscernibility relation - definition

Definition (Indiscernibility)
Given a set of attributes A C Att
two objects x, y € U are indiscernible with respect to A if

Vae A F(a,x)=F(ay)

In this case we write xlpy

14 is an equivalence relation: reflexive, symmetric, transitive
14 partitions U in equivalence classes (the granules of information)

[X]a:={y € U: xlay}
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Approximations - example

Partition {P1}, {P2,P3}, {P4}, {P5}
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@ The set K = {P1, P2} is not
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Approximations - example

Partition {P1}, {P2,P3}, {P4}, {P5}

@ The set H = {P1, P2, P3} is the union of two equivalence classes
{P1} U{P2, P3}

@ The set K = {P1, P2} is not

@ His exact, K is rough

@ K can be approximated by a pair of exact sets: {P1}, {P1,P2,P3}

{P1} C K C {P1,P2,P3}
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Definition (Approximations)

Let S(U) = (U, Att, val(U), F) be an information table (a decision
system)

Given a set of attributes A C Att, then for any set of objects H C U we
define

%
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Definition (Approximations)

Let S(U) = (U, Att, val(U), F) be an information table (a decision
system)

Given a set of attributes A C Att, then for any set of objects H C U we
define

the lower approximation of H:

L(H) := {x : [x]a C H}

%
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Approximations - definition

Definition (Approximations)

Let S(U) = (U, Att, val(U), F) be an information table (a decision
system)

Given a set of attributes A C Att, then for any set of objects H C U we
define

the lower approximation of H:

L(H):={x:[x]a € H}
the upper approximation of H:

U(H) == {x : [X]a N H % 0}
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Approximations - definition

Definition (Approximations)

Let S(U) = (U, Att, val(U), F) be an information table (a decision
system)

Given a set of attributes A C Att, then for any set of objects H C U we
define

the lower approximation of H:

L(H):={x:[x]a € H}
the upper approximation of H:

U(H) == {x : [X]a N H % 0}

The pair r(H) = (L(H), U(H)) is named rough approximation (or rough |
e Davide Giucci (DISCo) PhD 2021/22  14/43
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Figura: Lower and Upper approximations. Each square represents an
equivalence class
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Further regions

Exterior E(H) = U°(H) L(H)NE(H) =10
Rough approximation: (L(H), E(H))
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Further regions

Exterior E(H) = U°(H) L(H)NE(H) =10
Rough approximation: (L(H), E(H))

Boundary Bnd(H) = U(H) \ L(H)

Interpretation

Lower sure belong to H
Exterior | sure not belong to H
Boundary uncertain
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Measures of Uncertainty

Accuracy LH)
)= o))
Roughness Brd(H)
n
e = g
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Approximation properties

o LN)=0 LW)=U
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Approximation properties

o LM)=0 LU =U

@ L(HHCH HCU((H)

@ L(HNK)=LH)NLK) LH)ULK)CLHUK)
@ HC K implies L(H)C L(K)
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Approximation properties

L@y=0 LU=U

L(H)CH HC U(H)

LHNK)=LH)NLK) LH)ULK)CLHUK)
HC K implies L(H)C L(K)
L(L(H)) = L(H) L(U(H)) = U(H)
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Approximation properties

L@)=0 LWU)=U
L(H)CH HC UH)
LHNK) = L(H) N L(K) L(H)ULK) S L(HUK)

HC K implies L(H)C L(K)
L(L(H)) = L(H) L(U(H)) = U(H)
L(H) = (U(H%))°
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Approximation properties

L@y=0 LU=U

L(H)CH HCU(H)

LHNK)=LH)NLK) LH)ULK)CLHUK)
HC K implies L(H)C L(K)

L(L(H)) = L(H) L(U(H)) = U(H)

L(H) = (U(H°))°

® 6 6 6 o6 o
D

Topological properties: Lower as interior, upper as closure
Modal properties (Ss): Lower as necessity, upper as possibility
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Generalized Decision

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

@ Generalized decision: 04 : U — P(Val)
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Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

@ Generalized decision: 04 : U — P(Val)
@ Example: dar7(P2) = {NO, B}
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Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

@ Generalized decision: 04 : U — P(Val)
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Generalized Decision

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

@ Generalized decision: 04 : U — P(Val)
@ Example: dar7(P2) = {NO, B}
@ Definition:

Sa(x) = {i € Val : 3y, x lay and F(y, d) = i}

@ IfVx € U: |0a(x)| = 1 then the system is consistent
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Generalized Decision - example

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO
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Generic relation

@ Rabinary relatonon U: RC U x U
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Generic relation

@ Rabinary relatonon U: RC U x U

@ Granule of information gr(x) ={y e U: xRy}

@ Approximations
Ir(H) ={x e U:gr(x) C H}
ug(H) ={x e U:gr(x)NH # 0}
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Generic relation

@ Rabinary relatonon U: RC U x U
@ Granule of information gr(x) ={y € U: xRy}
@ Approximations
Ir(H) ={x e U:gr(x) C H}
ug(H) ={x e U:gr(x)NH # 0}
Properties
@ Igr(U) = U, ug(®) =0, I, u are monotone
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Generic relation

@ Rabinary relatonon U: RC U x U
@ Granule of information gr(x) ={y e U: xRy}
@ Approximations

Ir(H)={x e U:gr(x) C H}
up(H)={xe U:gr(x)NH # D}
Properties

@ Ig(U) = U, ug(0) =0, I, u are monotone
e If Ris serial: Ig(H) C ug(H), ur(U) = U, Ig(0) =0
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Generic relation

@ Rabinary relatonon U: RC U x U
@ Granule of information gr(x) ={y e U: xRy}
@ Approximations

Ir(H) ={x e U:gr(x) C H}
ug(Hy={xe U:gr(x)N"H #0}
Properties
@ Igr(U) = U, ug(®) =0, I, u are monotone

0,
e If Ris serial: Ig(H) C ug(H), ur(U) = U, Ig(0) =0
o If Ris reflexive: Ig(H) € H C ug(H)
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Similarity relation

Rough sets based on a similarity relation R
@ Reflexive
@ Symmetric
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Rough sets based on a similarity relation R
@ Reflexive
@ Symmetric

Similarity S(x) :={y € U: xRy}
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Similarity relation

Rough sets based on a similarity relation R
@ Reflexive
@ Symmetric

Similarity S(x) :={y € U: xRy}
= A covering of the universe, not a partition
° UyS(x)=U
@ there can exist objects x and y such that S(x) N S(y) # 0
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Similarity: Example 1

‘R can represent a distance between objects
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Similarity: Example 1

‘R can represent a distance between objects
@ Similar temperature if | Temp(P1) — Temp(P2)| < 0.5
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Similarity: Example 1

‘R can represent a distance between objects
@ Similar temperature if | Temp(P1) — Temp(P2)| < 0.5

@ P1 similar to P2 if they have (at least) half of the attributes equal
|{a;j € Att: F(a;, P1) = F(a;, P2)}| - 1

|Att] -

N
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Similarity: Example 2

@ Deal with incomplete information
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Similarity: Example 2

@ Deal with incomplete information

Patient | Pressure | HA | Temperature | MP | Malattia
P1 Normal | yes 38-39 yes A
P2 High no 36-37 * NO
P3 High no * yes B
P4 * yes 35-36 no NO
P5 Normal * * yes NO
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Similarity: Example 2

@ Deal with incomplete information

Patient | Pressure | HA | Temperature | MP | Malattia
P1 Normal | yes 38-39 yes A
P2 High no 36-37 * NO
P3 High no * yes B
P4 * yes 35-36 no NO
P5 Normal * * yes NO

XRpy iffvaie D F(x,a))=F(y,a) or F(x,a)==* or F(y,a)=x
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Reducts
e0

Outline

© Reducts
@ Case:Information Tables
@ Case: consistent decision system
@ Case: an inconsistent system
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Reducts
oe

Aim

@ Simplify the table: eliminate “useless” attributes
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Reducts
oe

Aim

@ Simplify the table: eliminate “useless” attributes
@ Given a decision system, found the rules:
condition attribute — decision

Example:

If Pressure = Normal AND Temp. = 38-39 THEN Disease = A

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 27/43



Reducts

[ Jelele]

Outline

© Reducts
@ Case:Information Tables
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Reducts
[e] Tele}

Inf. Table Reduct - example

Patient | Pressure | HA | Temperature | MP
P1 Normal | yes 38-39 yes

P2 High no 36-37 yes
P3 High no 36-37 yes
P4 Low yes 35-36 no

P5 Normal | yes 36-37 yes
Mar = {P1}, {P2,P3}, {P4}, {P5}
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sed models

Inf. Table Reduct - example

Patient | Pressure | HA

P1 Normal | yes
P2 High no
P3 High no
P4 Low yes
P5 Normal | yes

Max = {P1}, {P2,P3}, {P4}, {P5}
Nain {rempy = {P1,P5}, {P2,P3}, {P4}
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Reducts
[e] Tele}

Inf. Table Reduct - example

Patient | Pressure Temperature | MP
P1 Normal 38-39 yes
P2 High 36-37 yes
P3 High 36-37 yes
P4 Low 35-36 no
P5 Normal 36-37 yes

May = {P1}, {P2,P3}, {P4}, {P5}

Natw\ (Hay = Mas
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Inf. Table Reduct - example

Patient | Pressure Temperature
P1 Normal 38-39
P2 High 36-37
P3 High 36-37
P4 Low 35-36
P5 Normal 36-37

May = {P1}, {P2,P3}, {P4}, {P5}

Naw (Hampy = Magt
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Inf. Table Reduct - example

Patient

Temperature
38-39
36-37
36-37
35-36
36-37

Max = {P1}, {P2,P3}, {P4}, {P5}
M1emp = {P1}, {P2,P3,P5}, {P4}
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Inf. Table Reduct - example

Patient | Pressure
P1 Normal
P2 High
P3 High
P4 Low
P5 Normal

May = {P1}, {P2,P3}, {P4}, {P5}
I_lPressure = {P1 ,P5}, {P2,P3}, {P4}
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Inf. Table Reduct - example

Patient | Pressure Temperature
P1 Normal 38-39
P2 High 36-37
P3 High 36-37
P4 Low 35-36
P5 Normal 36-37

Nax = {P1}, {P2,P3}, {P4}, {P5}
l Pressure, Temperature — Mg

{Pressure, Temperature} is a reduct of Att

Davide Ciucci (DISCo) Introduction to Rough Sets

PhD 2021/22
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Inf. Table Reduct - definition

Definition (Reduct)

A C B C Att
A is a reduct of B if
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Reducts
[e]e] e}

Inf. Table Reduct - definition

Definition (Reduct)
AC B C Att
A is a reduct of B if

Q Ny="g
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Reducts
[e]e] e}

Inf. Table Reduct - definition

Definition (Reduct)

AC BC Att

A is a reduct of B if
QNy=Tng
e /HCCAand FIC:I'IB
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Reducts
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Inf. Table Reduct - definition

Definition (Reduct)

AC BC Att

A is a reduct of B if
QNy=Tng
e /HCCAand FIC:I'IB

ac A C Attis indispensable in Aif Mg # Na\ ()

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 30/43



Reducts
[e]e] e}

Inf. Table Reduct - definition

Definition (Reduct)

AC BC Att

A is a reduct of B if
QNy=Tng
e /HCCAand FIC:I'IB

ac A C Attis indispensable in Aif Mg # Na\ ()

CORE-= set of indispensable attributes in Att = intersection of all
reducts in Att

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 30/43



Reducts
[e]e]e] ]

Complexity issues

@ Given n attributes, there are at most O(j—"ﬁ) reducts
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Reducts
[e]e]e] ]

Complexity issues

@ Given n attributes, there are at most O(j—"ﬁ) reducts

@ Find the shortest reduct is a NPVP complete problem

e reduction to the prime implicant problem by means of the
discernibility matrix
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Reducts
[e]e]e] ]

Complexity issues

@ Given n attributes, there are at most O(j—"ﬁ) reducts

@ Find the shortest reduct is a NPVP complete problem

e reduction to the prime implicant problem by means of the
discernibility matrix

Solutions
@ Heuristics (Approximate reducts, genetic algorithms, entropy, ...)
@ Parallel algorithms
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Reducts
[ JeJele}

Outline

© Reducts

@ Case: consistent decision system
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Reducts
[e] lele}

Reduct

Definition (Reduct)
A reduct is a minimal subset of condition C C ATT that preserves
classification wrt the decision attribute
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Reducts
[e] lele}

Reduct

Definition (Reduct)
A reduct is a minimal subset of condition C C ATT that preserves
classification wrt the decision attribute

@ Consistence: same ability of the whole ATT to distinguish objects
belonging to two different decision classes
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Reducts
[e] lele}

Reduct

Definition (Reduct)
A reduct is a minimal subset of condition C C ATT that preserves
classification wrt the decision attribute

@ Consistence: same ability of the whole ATT to distinguish objects
belonging to two different decision classes

© Minimality: any smaller subset is not consistent
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Reducts
[e]e] e}

Example

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO
P5 Normal | yes 36-37 yes NO
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Example

Patient | Pressure
P1 Normal
P3 High
P4 Low
P5 Normal

Davide Ciucci (DISCo)

MP | Disease
yes A
yes B

no NO
yes NO
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Example

Patient | Pressure
P1 Normal
P3 High
P4 Low
P5 Normal

Davide Ciucci (DISCo)

MP | Disease
yes A
yes B

no NO
yes NO
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Reducts
[e]e] e}

Example
Patient | Pressure Temperature | MP | Disease
P1 Normal 38-39 yes A
P3 High 36-37 yes B
P4 Low 35-36 no NO
P5 Normal 36-37 yes NO
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ased models

Example

Patient

Pressure Temperature
P1 Normal 38-39
P3 High 36-37
P4 Low 35-36
P5 Normal 36-37
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ed models

Example

Patient Temperature Disease
38-39
36-37
35-36
36-37
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Approximations Relation Based models Reducts

Example
Patient | Pressure Disease
P1 Normal
P3 High
P4 Low
P5 Normal
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Example: rules

Patient | Pressure Temperature Disease
P1 Normal 38-39 A
P3 High 36-37 B
P4 Low 35-36 NO
P5 Normal 36-37 NO

Reduct = {Pressure, Temperature}
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Example: rules

Patient | Pressure Temperature Disease
P1 Normal 38-39 A
P3 High 36-37 B
P4 Low 35-36 NO
P5 Normal 36-37 NO

Reduct = {Pressure, Temperature}
IF Pressure = Normal AND Temp. = 38-39 THEN Disease = A
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Example: rules

Patient | Pressure Temperature Disease
P1 Normal 38-39 A
P3 High 36-37 B
P4 Low 35-36 NO
P5 Normal 36-37 NO

Reduct = {Pressure, Temperature}

IF Pressure = Normal AND Temp. = 38-39 THEN Disease = A
IF Pressure = High AND Temp. = 36-37 THEN Disease = B
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Example: rules

Patient | Pressure Temperature Disease
P1 Normal 38-39 A
P3 High 36-37 B
P4 Low 35-36 NO
P5 Normal 36-37 NO

Reduct = {Pressure, Temperature}

IF Pressure = Normal AND Temp. = 38-39 THEN Disease = A
IF Pressure = High AND Temp. = 36-37 THEN Disease = B
IF Pressure = Low AND Temp. = 35-36 THEN Disease = NO
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Example: rules

Patient | Pressure Temperature Disease
P1 Normal 38-39 A
P3 High 36-37 B
P4 Low 35-36 NO
P5 Normal 36-37 NO

Reduct = {Pressure, Temperature}

IF Pressure = Normal AND Temp. = 38—-39 THEN Disease = A
IF Pressure = High AND Temp. = 36-37 THEN Disease = B

IF Pressure = Low AND Temp. = 35-36 THEN Disease = NO

IF Pressure = Normal AND Temp. = 36—37 THEN Disease = NO

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22
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Reducts

[ Jele]ele]ele}e)

Outline

© Reducts

@ Case: an inconsistent system
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Reducts
0e000000

Solution 1: Generalized Decision

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

@ Generalized decision: 04 : U — P(Val)
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Reducts
0e000000

Solution 1: Generalized Decision

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

@ Generalized decision: 04 : U — P(Val)
@ Example: dar7(P2) = {NO, B}
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Reducts
0e000000

Solution 1: Generalized Decision

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

@ Generalized decision: 04 : U — P(Val)
@ Example: dar7(P2) = {NO, B}
@ Definition:

Sa(x) = {i € Val : 3y, x lay and F(y, d) = i}
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Reducts
0e000000

Solution 1: Generalized Decision

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

@ Generalized decision: 04 : U — P(Val)
@ Example: dar7(P2) = {NO, B}
@ Definition:

Sa(x) = {i € Val : 3y, x lay and F(y, d) = i}

@ IfVx € U: |0a(x)| = 1 then the system is consistent
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Reducts
[e]e] lelelele]e]

Generalized Decision reduct

Definition

Given a set of attributes A C B C ATT, Ais a reduct of B if
@ dp = dg (I do not introduce further inconsistency)
@ Minimality: AC C A such that 6¢c = dg
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Reducts
[e]e]e] lelele]e]

Generalized Decision Reduct - example

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO
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Reducts
[e]e]e] lelele]e]

Generalized Decision Reduct - example

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

@ Reduct {Pressure, Temperature}
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Reducts
[e]e]e] lelele]e]

Generalized Decision Reduct - example

Patient | Pressure | HA | Temperature | MP | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

@ Reduct {Pressure, Temperature}

@ If (Pressure =High) AND (Temp=36-37) THEN (Disease = NO) OR
(Disease = B)
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Reducts
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Solution 2: Dependence
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Reducts
[e]e]e]e] Telele]
Solution 2: Dependence
Definition

Let S(U) be a decision system
A C Ait a set of attributes, X; the decision classes
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Reducts
[e]e]e]e] Telele]
Solution 2: Dependence

Definition

Let S(U) be a decision system

A C Ait a set of attributes, X; the decision classes

The Coefficient of Dependence of decision d from Ais

|X]
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Reducts
[e]e]e]e] Telele]
Solution 2: Dependence

Definition
Let S(U) be a decision system

A C Att a set of attributes, X; the decision classes
The Coefficient of Dependence of decision d from Ais

D) - =540

Dip(A,d) is the ratio of correctly classified objects by the set of
attributes A
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Reducts
[e]e]e]e] Telele]
Solution 2: Dependence

Definition
Let S(U) be a decision system

A C Att a set of attributes, X; the decision classes
The Coefficient of Dependence of decision d from Ais

D) - =540

Dip(A,d) is the ratio of correctly classified objects by the set of
attributes A

Dip(A,d) = 1 if the system is consistent
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Reducts
[e]e]e]ele] lele]

Reduct: dependence definition

Definition (Reduct)
Let S(U) be a decision system
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Reducts
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Reduct: dependence definition

Definition (Reduct)

Let S(U) be a decision system
A C B C Att, Ais areduct of B if
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Reducts
[e]e]e]ele] lele]

Reduct: dependence definition

Definition (Reduct)

Let S(U) be a decision system
A C B C Att, Ais areduct of B if

@ Dip(A,d)=Dip(B,d)
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Reducts
[e]e]e]ele] lele]

Reduct: dependence definition

Definition (Reduct)

Let S(U) be a decision system
A C B C Att, Ais areduct of B if

@ Dip(A,d)=Dip(B,d)
© Minimality: AC C A such that Dip(C, d) = Dip(B, d)
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Reducts
00000080

Reduct: dependence example

Patient | Pressure | HA | Temperature | DM | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO
Lo(Xa) = {P1}, Le(Xnvo) = {P4, P5}, Le(Xg) =0
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Reducts
00000080

Reduct: dependence example

Patient | Pressure | HA | Temperature | DM | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

Le(Xa) = {P1}, Le(Xno) = {P4, P5}, Le(Xg) =0
Dip(Att, Disease) = 3
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Reducts
00000080

Reduct: dependence example

Patient | Pressure | HA | Temperature | DM | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

Le(Xa) = {P1}, Le(Xno) = {P4, P5}, Lo(Xs) = 0

Dip(Att, Disease) = 3
Dip({ Pressure, Temperature, DM}, Disease) = %
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Reducts
00000080

Reduct: dependence example

Patient | Pressure | HA | Temperature | DM | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

Le(Xa) = {P1}, Le(Xno) = {P4, P5}, Lo(Xs) = 0
Dip(Att, Disease) =

Dip({Pressure, Temperature DM}, Disease) =

Dip({ Pressure, Temperature}, Disease) = 3
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Reducts
00000080

Reduct: dependence example

Patient | Pressure | HA | Temperature | DM | Disease
P1 Normal | yes 38-39 yes A

P2 High no 36-37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35-36 no NO

P5 Normal | yes 36-37 yes NO

Le(Xa) = {P1}, Le(Xno) = {P4, P5}, Lo(Xs) = 0

Dip(Att, Disease) = 3
Dip({ Pressure, Temperature, DM}, Disease) = %
Dip({ Pressure, Temperature}, Disease) = %

IF (Pressure=High AND Temp= 36—37) THEN (Disease =NO OR Disease =B)
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Reducts
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Software

Free software based on rough sets
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http://www.lcb.uu.se/tools/rosetta
https://rseslib.mimuw.edu.pl/index.html
https://cran.r-project.org/web/packages/RoughSets/index.html
https://cran.r-project.org/web/packages/RoughSets/index.html
https://cran.r-project.org/web/packages/SoftClustering/index.html
https://cran.r-project.org/web/packages/SoftClustering/index.html
https://fuzzy-rough-learn.readthedocs.io/en/latest/

Reducts
0000000e
Software

Free software based on rough sets

@ Rosetta (2001), limited to tables with 500 objects and 20 attributes
http://www.lcb.uu.se/tools/rosetta
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Reducts
0000000e
Software

Free software based on rough sets
@ Rosetta (2001), limited to tables with 500 objects and 20 attributes
http://www.lcb.uu.se/tools/rosetta
@ Rough Set and Machine Learning Open Source in Java (2019)
Also avalaible in WEKA
https://rseslib.mimuw.edu.pl/index.html

@ R package “RoughSets: Data Analysis Using Rough Set and
Fuzzy Rough Set Theories” (2019) https://cran.r-project.
org/web/packages/RoughSets/index.html

@ R package “Soft Clustering” (2019) https://cran.r-project.
org/web/packages/SoftClustering/index.html

@ Fuzzy Rough Learn (2021) python library
https://fuzzy-rough-learn.readthedocs.io/en/latest/
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