Approximations

Relation Based models

Reducts 00 0000 0000 00000000

Introduction to Rough Sets

Davide Ciucci

Dipartimento di Informatica, Sistemistica e Comunicazione Università di Milano Bicocca

PhD 2021/22

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 1/43

Outline

Introduction

- Information Table and Decision Systems
- Approximations

Relation Based models

- Reducts
- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

Relation Based models

Outline

Introduction

- Information Table and Decision Systems
- Approximations

B Relation Based models

- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

< ロ > < 同 > < 回 > < 回 >

What is a Rough set?

Simple question, difficult answer...

What is a Fuzzy Subset of X? $f: X \mapsto [0, 1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
 - A set *H* whose elements are known (extension), but we are not able to describe it (intension)
 - We are able to give (intension and extension) a pair of sets which are an approximation of *H*

Rough set theory includes some tools for knowledge discovery: reducts (feature selection) and rules

What is a Rough set?

Simple question, difficult answer... What is a Fuzzy Subset of X? $f : X \mapsto [0, 1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
 - A set *H* whose elements are known (extension), but we are not able to describe it (intension)
 - We are able to give (intension and extension) a pair of sets which are an approximation of *H*

Rough set theory includes some tools for knowledge discovery: reducts (feature selection) and rules

What is a Rough set?

Simple question, difficult answer... What is a Fuzzy Subset of X? $f : X \mapsto [0, 1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
 - A set *H* whose elements are known (extension), but we are not able to describe it (intension)
 - We are able to give (intension and extension) a pair of sets which are an approximation of *H*

Rough set theory includes some tools for knowledge discovery: reducts (feature selection) and rules

Relation Based models

What is a Rough set?

Simple question, difficult answer...

What is a Fuzzy Subset of X? $f : X \mapsto [0, 1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
 - A set *H* whose elements are known (extension), but we are not able to describe it (intension)
 - We are able to give (intension and extension) a pair of sets which are an approximation of *H*

Rough set theory includes some tools for knowledge discovery: reducts (feature selection) and rules

What is a Rough set?

Simple question, difficult answer...

What is a Fuzzy Subset of X? $f : X \mapsto [0, 1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
 - A set *H* whose elements are known (extension), but we are not able to describe it (intension)
 - We are able to give (intension and extension) a pair of sets which are an approximation of *H*

Rough set theory includes some tools for knowledge discovery: reducts (feature selection) and rules

What is a Rough set?

Simple question, difficult answer...

What is a Fuzzy Subset of X? $f : X \mapsto [0, 1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
 - A set *H* whose elements are known (extension), but we are not able to describe it (intension)
 - We are able to give (intension and extension) a pair of sets which are an approximation of *H*

Rough set theory includes some tools for knowledge discovery: reducts (feature selection) and rules

What is a Rough set?

Simple question, difficult answer...

What is a Fuzzy Subset of X? $f : X \mapsto [0, 1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
 - A set *H* whose elements are known (extension), but we are not able to describe it (intension)
 - We are able to give (intension and extension) a pair of sets which are an approximation of *H*

Rough set theory includes some tools for knowledge discovery: reducts (feature selection) and rules

What is a Rough set?

Simple question, difficult answer...

What is a Fuzzy Subset of X? $f : X \mapsto [0, 1]$

- We need several notions: indiscernibility, granulation of the universe, approximations, ...
- More than one definition is possible... some "ingredients" are
 - A set *H* whose elements are known (extension), but we are not able to describe it (intension)
 - We are able to give (intension and extension) a pair of sets which are an approximation of *H*

Rough set theory includes some tools for knowledge discovery: reducts (feature selection) and rules

Relation Based models

Outline

Introduction

- Information Table and Decision Systems
- 2) Approximations

3 Relation Based models

- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

< ロ > < 同 > < 回 > < 回 >

Approximations

Relation Based models

Reducts 00 0000 0000

Information Table - example

HA = Head Ache MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	38–39	yes
P2	High	no	36–37	yes
P3	High	no	36-37	yes
P4	Low	yes	35–36	no
P5	Normal	yes	36–37	yes

イロト イヨト イヨト イヨト

Approximations

Relation Based models

Reducts 00 0000 0000 00000000

Information Table - example

HA = Head Ache MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	38–39	yes
P2	High	no	36–37	yes
P3	High	no	36-37	yes
P4	Low	yes	35–36	no
P5	Normal	yes	36–37	yes

イロト イヨト イヨト イヨト

Approximations

Relation Based models

Reducts

Information Table - example

HA = Head Ache MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	38–39	yes
P2	High	no	36–37	yes
P3	High	no	36-37	yes
P4	Low	yes	35–36	no
P5	Normal	yes	36–37	yes

イロト イヨト イヨト イヨト

Approximations

Relation Based models

Information Table - definition

Definition (Information Table or Information System)

 $S(U) = \langle U, Att, Val, F \rangle$ U set of objects

Att set of attributes

Val set of possible values for the attributes

 $F: U \times A \mapsto V$ function that assigns to each object a value for any attribute

Sometimes: Val_a with $a \in Att$

In the example: objects ={P1, ..., P5}, Attributes = {Pressure, HA, Temperature, MP}, Val ={Yes, No, 37-38, ...} F(P2, Pressure) = High

Davide Ciucci (DISCo)

Approximations

Relation Based models

Information Table - definition

Definition (Information Table or Information System)

 $S(U) = \langle U, Att, Val, F \rangle$ U set of objects

Att set of attributes

Val set of possible values for the attributes

 $F: U \times A \mapsto V$ function that assigns to each object a value for any attribute

Sometimes: Val_a with $a \in Att$

In the example: objects ={P1, ..., P5}, Attributes = {Pressure, HA, Temperature, MP}, Val ={Yes, No, 37-38, ...} F(P2, Pressure) = High

Davide Ciucci (DISCo)

Approximations

Relation Based models

Information Table - definition

Definition (Information Table or Information System)

 $\mathcal{S}(U) = \langle U, Att, Val, F \rangle$

U set of objects

Att set of attributes

Val set of possible values for the attributes

 $F: U \times A \mapsto V$ function that assigns to each object a value for any attribute

Sometimes: Val_a with $a \in Att$

In the example: objects ={P1, ..., P5}, Attributes = {Pressure, HA, Temperature, MP}, Val ={Yes, No, 37-38, ...} F(P2, Pressure) = High

Davide Ciucci (DISCo)

Approximations

Relation Based models

Information Table - definition

Definition (Information Table or Information System)

 $S(U) = \langle U, Att, Val, F \rangle$ U set of objects Att set of attributes Val set of possible values for the attributes $F : U \times A \mapsto V$ function that assigns to each object a value for any attribute

Sometimes: Val_a with $a \in Att$

In the example: objects ={P1, ..., P5}, Attributes = {Pressure, HA, Temperature, MP}, Val ={Yes, No, 37-38, ...} F(P2, Pressure) = High

Davide Ciucci (DISCo)

Approximations

Relation Based models

Information Table - definition

Definition (Information Table or Information System)

 $S(U) = \langle U, Att, Val, F \rangle$ U set of objects Att set of attributes Val set of possible values for the attributes $F : U \times A \mapsto V$ function that assigns to each object a value for any attribute

Sometimes: Val_a with $a \in Att$

In the example: objects ={P1, ..., P5}, Attributes = {Pressure, HA, Temperature, MP}, Val ={Yes, No, 37-38, ...} F(P2, Pressure) = High

Davide Ciucci (DISCo)

Approximations

Relation Based models

Information Table - definition

Definition (Information Table or Information System)

 $S(U) = \langle U, Att, Val, F \rangle$ U set of objects Att set of attributes Val set of possible values for the attributes $F : U \times A \mapsto V$ function that assigns to each object a value for any attribute

Sometimes: Val_a with $a \in Att$ In the example: objects ={P1, ..., P5}, Attributes = {Pressure, HA, Temperature, MP}, Val ={Yes, No, 37-38, ...} F(P2, Pressure) = High

Approximations

Relation Based models

Decision System - Example

HA = Head Ache MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

Decision Classes: $U_A = \{P1\}, U_B = \{P3\}, U_{NO} = \{P2, P4, P5\}$

P2, P3: same symptoms, different disease \rightarrow the system is inconsistent

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 8/43

Approximations

Relation Based models

Decision System - Example

HA = Head Ache MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

Decision Classes: $U_A = \{P1\}, U_B = \{P3\}, U_{NO} = \{P2, P4, P5\}$

P2, P3: same symptoms, different disease \rightarrow the system is inconsistent

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 8/43

Approximations

Relation Based models

Decision System - Example

HA = Head Ache MP = Muscle Pain

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

Decision Classes: $U_A = \{P1\}, U_B = \{P3\}, U_{NO} = \{P2, P4, P5\}$

P2, P3: same symptoms, different disease \rightarrow the system is inconsistent

Relation Based models

Definitions

Definition (Decision System) $S(U) = \langle U, C \cup \{d\}, Val, F \rangle$ U set of objects C set of condition attributes d decision attribute Val set of possible values for the attributes $F : U \times C \cup \{d\} \mapsto V$ function that assigns to each object a value for any attribute

Definition (Consistent Decision System)

There are no two objects $O_1, O_2 \in U$ with same value for condition attributes and different decision

Relation Based models

Definitions

Definition (Decision System) $S(U) = \langle U, C \cup \{d\}, Val, F \rangle$ U set of objects *C* set of condition attributes *d* decision attribute *Val* set of possible values for the attributes $F : U \times C \cup \{d\} \mapsto V$ function that assigns to each object a value for any attribute

Definition (Consistent Decision System)

There are no two objects $O_1, O_2 \in U$ with same value for condition attributes and different decision

PhD 2021/22 9/43

Relation Based models

Definitions

Definition (Decision System) $S(U) = \langle U, C \cup \{d\}, Val, F \rangle$ U set of objects *C* set of condition attributes *d* decision attribute *Val* set of possible values for the attributes $F : U \times C \cup \{d\} \mapsto V$ function that assigns to each object a value for any attribute

Definition (Consistent Decision System)

There are no two objects $O_1, O_2 \in U$ with same value for condition attributes and different decision

Relation Based models

Outline

Introduction

Information Table and Decision Systems

2 Approximations

Relation Based models

- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

< ロ > < 同 > < 回 > < 回 >

Approximations

Relation Based models

Indiscernibility relation - example

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	38–39	yes
P2	High	no	36–37	yes
P3	High	no	36-37	yes
P4	Low	yes	35–36	no
P5	Normal	yes	36–37	yes

P2 and P3 same values for all attributes: they are indiscernible (indistinguishable, equivalent, ...)

{P2, P3} is a granule of information

A partition of the universe: $\Pi = \{P1\}, \{P2, P3\}, \{P4\}, \{P5\}$

Approximations

Relation Based models

Indiscernibility relation - example

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	38–39	yes
P2	High	no	36–37	yes
P3	High	no	36-37	yes
P4	Low	yes	35–36	no
P5	Normal	yes	36–37	yes

P2 and P3 same values for all attributes: they are indiscernible (indistinguishable, equivalent, ...)

{P2, P3} is a granule of information

A partition of the universe: $\Pi = \{P1\}, \{P2,P3\}, \{P4\}, \{P5\}$

Approximations

Relation Based models

Indiscernibility relation - example

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	38–39	yes
P2	High	no	36–37	yes
P3	High	no	36-37	yes
P4	Low	yes	35–36	no
P5	Normal	yes	36–37	yes

P2 and P3 same values for all attributes: they are indiscernible (indistinguishable, equivalent, ...)

{P2, P3} is a granule of information

A partition of the universe: $\Pi = \{P1\}, \{P2,P3\}, \{P4\}, \{P5\}$

Approximations

Relation Based models

Indiscernibility relation - definition

Definition (Indiscernibility)

Given a set of attributes $A \subseteq Att$

two objects $x, y \in U$ are indiscernible with respect to A if

 $\forall a \in A \quad F(a, x) = F(a, y)$

In this case we write xI_Ay

 I_A is an equivalence relation: reflexive, symmetric, transitive I_A partitions U in equivalence classes (the granules of information)

 $[x]_A := \{y \in U : xI_A y\}$

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 12/43

Approximations

Relation Based models

Indiscernibility relation - definition

Definition (Indiscernibility)

Given a set of attributes $A \subseteq Att$ two objects $x, y \in U$ are indiscernible with respect to A if

 $\forall a \in A \quad F(a, x) = F(a, y)$

In this case we write xI_Ay

 I_A is an equivalence relation: reflexive, symmetric, transitive I_A partitions U in equivalence classes (the granules of information)

 $[x]_A := \{y \in U : xI_A y\}$

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 12/43

Approximations

Relation Based models

Indiscernibility relation - definition

Definition (Indiscernibility)

Given a set of attributes $A \subseteq Att$ two objects $x, y \in U$ are indiscernible with respect to A if

$$\forall a \in A \quad F(a, x) = F(a, y)$$

In this case we write xI_Ay

 I_A is an equivalence relation: reflexive, symmetric, transitive I_A partitions U in equivalence classes (the granules of information)

 $[x]_A := \{y \in U : xI_A y\}$

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 12/43

Approximations

Relation Based models

Indiscernibility relation - definition

Definition (Indiscernibility)

Given a set of attributes $A \subseteq Att$ two objects $x, y \in U$ are indiscernible with respect to A if

$$\forall a \in A \quad F(a, x) = F(a, y)$$

In this case we write xI_Ay

 I_A is an equivalence relation: reflexive, symmetric, transitive I_A partitions U in equivalence classes (the granules of information)

$$[x]_{\mathcal{A}} := \{y \in U : xI_{\mathcal{A}}y\}$$

< ロ > < 同 > < 回 > < 回 >

Approximations

Relation Based models

Approximations - example

Partition {P1}, {P2,P3}, {P4}, {P5}

- The set $H = \{P1, P2, P3\}$ is the union of two equivalence classes $\{P1\} \cup \{P2, P3\}$
- The set *K* = {*P*1, *P*2} is not
- *H* is exact, *K* is rough
- K can be approximated by a pair of exact sets: {P1}, {P1,P2,P3}

 $\{P1\} \subseteq K \subseteq \{P1, P2, P3\}$

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 13/43

3

< 日 > < 同 > < 回 > < 回 > < □ > <
Relation Based models

Approximations - example

Partition {P1}, {P2,P3}, {P4}, {P5}

- The set $H = \{P1, P2, P3\}$ is the union of two equivalence classes $\{P1\} \cup \{P2, P3\}$
- The set *K* = {*P*1, *P*2} is not
- *H* is exact, *K* is rough
- K can be approximated by a pair of exact sets: {P1}, {P1,P2,P3}

 $\{P1\} \subseteq K \subseteq \{P1, P2, P3\}$

Relation Based models

Approximations - example

Partition {P1}, {P2,P3}, {P4}, {P5}

- The set $H = \{P1, P2, P3\}$ is the union of two equivalence classes $\{P1\} \cup \{P2, P3\}$
- The set *K* = {*P*1, *P*2} is not
- *H* is exact, *K* is rough
- K can be approximated by a pair of exact sets: {P1}, {P1,P2,P3}

 $\{P1\} \subseteq K \subseteq \{P1, P2, P3\}$

Relation Based models

Approximations - example

Partition {P1}, {P2,P3}, {P4}, {P5}

- The set $H = \{P1, P2, P3\}$ is the union of two equivalence classes $\{P1\} \cup \{P2, P3\}$
- The set *K* = {*P*1, *P*2} is not
- *H* is exact, *K* is rough
- K can be approximated by a pair of exact sets: {P1}, {P1,P2,P3}

$$\{P1\} \subseteq K \subseteq \{P1, P2, P3\}$$

Approximations - definition

Definition (Approximations)

Let $S(U) = \langle U, Att, val(U), F \rangle$ be an information table (a decision system)

Given a set of attributes $A \subseteq Att$, then for any set of objects $H \subseteq U$ we define

the lower approximation of *H*:

 $L(H) := \{x : [x]_A \subseteq H\}$

the upper approximation of *H*:

 $U(H) := \{x : [x]_A \cap H \neq \emptyset\}$

The pair $r(H) = \langle L(H), U(H) \rangle$ is named *rough approximation* (or rough

Approximations - definition

Definition (Approximations)

Let $S(U) = \langle U, Att, val(U), F \rangle$ be an information table (a decision system)

Given a set of attributes $A \subseteq Att$, then for any set of objects $H \subseteq U$ we define

the lower approximation of *H*:

 $L(H) := \{x : [x]_A \subseteq H\}$

the upper approximation of *H*:

 $U(H) := \{ x : [x]_A \cap H \neq \emptyset \}$

The pair $r(H) = \langle L(H), U(H) \rangle$ is named *rough approximation* (or rough

Approximations - definition

Definition (Approximations)

Let $S(U) = \langle U, Att, val(U), F \rangle$ be an information table (a decision system)

Given a set of attributes $A \subseteq Att$, then for any set of objects $H \subseteq U$ we define

the lower approximation of *H*:

$$L(H) := \{x : [x]_A \subseteq H\}$$

the upper approximation of *H*:

$$U(H) := \{x : [x]_A \cap H \neq \emptyset\}$$

The pair $r(H) = \langle L(H), U(H) \rangle$ is named *rough approximation* (or rough

Approximations - definition

Definition (Approximations)

Let $S(U) = \langle U, Att, val(U), F \rangle$ be an information table (a decision system)

Given a set of attributes $A \subseteq Att$, then for any set of objects $H \subseteq U$ we define

the lower approximation of *H*:

$$L(H) := \{x : [x]_A \subseteq H\}$$

the upper approximation of *H*:

$$U(H) := \{x : [x]_A \cap H \neq \emptyset\}$$

The pair $r(H) = \langle L(H), U(H) \rangle$ is named *rough approximation* (or rough

Davide Ciucci (DISCo)

Approximations

Relation Based models

Figura: Lower and Upper approximations. Each square represents an equivalence class

・ロト ・四ト ・ヨト ・ヨト

Relation Based models

Further regions

Exterior $E(H) = U^{c}(H)$ $L(H) \cap E(H) = \emptyset$ Rough approximation: (L(H), E(H))

Boundary $Bnd(H) = U(H) \setminus L(H)$

Interpretation

Relation Based models

Further regions

Exterior $E(H) = U^{c}(H)$ $L(H) \cap E(H) = \emptyset$ Rough approximation: (L(H), E(H))

Boundary $Bnd(H) = U(H) \setminus L(H)$

Interpretation

▶ ▲ 클 ▶ 클 ∽ ९ ↔ PhD 2021/22 16/43

Relation Based models

Further regions

Exterior
$$E(H) = U^{c}(H)$$
 $L(H) \cap E(H) = \emptyset$
Rough approximation: $(L(H), E(H))$

Boundary $Bnd(H) = U(H) \setminus L(H)$

Interpretation

Lower	sure belong to H
Exterior	sure not belong to H
Boundary	uncertain

イロト イヨト イヨト イヨト

Approximations

Relation Based models

Reducts 00 0000 0000 00000000

Measures of Uncertainty

Accuracy

$$\alpha(H) = \frac{|L(H)|}{|U(H)|}$$

Roughness

$$1 - \alpha(H) = \frac{|Bnd(H)|}{|U(H)|}$$

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 17/43

イロト イヨト イヨト イヨト

Relation Based models

Approximation properties

•
$$L(\emptyset) = \emptyset$$
 $L(U) = U$

- $L(H) \subseteq H$ $H \subseteq U(H)$
- $L(H \cap K) = L(H) \cap L(K)$ $L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$
- $L(L(H)) = L(H) \quad L(U(H)) = U(H)$
- $L(H) = (U(H^c))^c$

• Topological properties: Lower as interior, upper as closure

Modal properties (S₅): Lower as necessity, upper as possibility

Relation Based models

Approximation properties

- $L(\emptyset) = \emptyset$ L(U) = U
- $L(H) \subseteq H$ $H \subseteq U(H)$
- $L(H \cap K) = L(H) \cap L(K)$ $L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$
- $L(L(H)) = L(H) \quad L(U(H)) = U(H)$
- $L(H) = (U(H^c))^c$
- Topological properties: Lower as interior, upper as closure
- Modal properties (S₅): Lower as necessity, upper as possibility

Approximations

Relation Based models

Reducts

Approximation properties

- $L(\emptyset) = \emptyset$ L(U) = U
- $L(H) \subseteq H$ $H \subseteq U(H)$
- $L(H \cap K) = L(H) \cap L(K)$ $L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$
- L(L(H)) = L(H) L(U(H)) = U(H)
- $L(H) = (U(H^c))^c$
- Topological properties: Lower as interior, upper as closure
- Modal properties (S₅): Lower as necessity, upper as possibility

< 日 > < 同 > < 回 > < 回 > < 回 > <

Relation Based models

Approximation properties

- $L(\emptyset) = \emptyset$ L(U) = U
- $L(H) \subseteq H$ $H \subseteq U(H)$
- $L(H \cap K) = L(H) \cap L(K)$ $L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$
- L(L(H)) = L(H) L(U(H)) = U(H)
- $L(H) = (U(H^{\circ}))^{\circ}$
- Topological properties: Lower as interior, upper as closure
- Modal properties (S₅): Lower as necessity, upper as possibility

イロト 不得 トイヨト イヨト

Approximations

Relation Based models

Approximation properties

•
$$L(\emptyset) = \emptyset$$
 $L(U) = U$

•
$$L(H) \subseteq H$$
 $H \subseteq U(H)$

- $L(H \cap K) = L(H) \cap L(K)$ $L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$

•
$$L(L(H)) = L(H)$$
 $L(U(H)) = U(H)$

• $L(H) = (U(H^c))^c$

• Topological properties: Lower as interior, upper as closure

• Modal properties (S₅): Lower as necessity, upper as possibility

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approximations

Relation Based models

Approximation properties

•
$$L(\emptyset) = \emptyset$$
 $L(U) = U$

•
$$L(H) \subseteq H$$
 $H \subseteq U(H)$

- $L(H \cap K) = L(H) \cap L(K)$ $L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$
- L(L(H)) = L(H) L(U(H)) = U(H)
- $L(H) = (U(H^c))^c$

• Topological properties: Lower as interior, upper as closure

• Modal properties (S₅): Lower as necessity, upper as possibility

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relation Based models

Approximation properties

•
$$L(\emptyset) = \emptyset$$
 $L(U) = U$

- $L(H) \subseteq H$ $H \subseteq U(H)$
- $L(H \cap K) = L(H) \cap L(K)$ $L(H) \cup L(K) \subseteq L(H \cup K)$
- $H \subseteq K$ implies $L(H) \subseteq L(K)$
- L(L(H)) = L(H) L(U(H)) = U(H)
- $L(H) = (U(H^c))^c$
- Topological properties: Lower as interior, upper as closure
- Modal properties (S₅): Lower as necessity, upper as possibility

Approximations

Relation Based models

Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

• Generalized decision: $\delta_A : U \to \mathcal{P}(Val)$

• Example: $\delta_{ATT}(P2) = \{NO, B\}$

• Definition:

 $\delta_A(x) = \{i \in Val : \exists y, x \ l_A y \text{ and } F(y, d) = i\}$

Approximations

Relation Based models

Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

- Generalized decision: $\delta_A : U \to \mathcal{P}(Val)$
- Example: $\delta_{ATT}(P2) = \{NO, B\}$

Definition:

 $\delta_A(x) = \{i \in Val : \exists y, x \ l_A y \text{ and } F(y, d) = i\}$

Approximations

Relation Based models

Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

- Generalized decision: $\delta_A : U \to \mathcal{P}(Val)$
- Example: $\delta_{ATT}(P2) = \{NO, B\}$
- Definition:

$$\delta_A(x) = \{i \in Val : \exists y, x \ l_A y \text{ and } F(y, d) = i\}$$

Approximations

Relation Based models

Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

- Generalized decision: $\delta_A : U \to \mathcal{P}(Val)$
- Example: $\delta_{ATT}(P2) = \{NO, B\}$
- Definition:

$$\delta_A(x) = \{i \in Val : \exists y, x \ l_A y \text{ and } F(y, d) = i\}$$

Relation Based models

Generalized Decision - example

Patient	Pressure	HA	Temperature	MP	Disease	δ_{Att}
P1	Normal	yes	38–39	yes	А	Α,
P2	High	no	36–37	yes	NO	B,NO
P3	High	no	36-37	yes	В	B,NO
P4	Low	yes	35–36	no	NO	NO
P5	Normal	yes	36–37	yes	NO	NO

イロト イヨト イヨト イヨト

Relation Based models

Outline

Introduction

- Information Table and Decision Systems
- Approximations

Relation Based models

- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

< ロ > < 同 > < 回 > < 回 >

Approximations

Relation Based models

Generic relation

• R a binary relation on $U: R \subseteq U \times U$

- Granule of information $g_R(x) = \{y \in U : x R y\}$
- Approximations

$$I_R(H) = \{ x \in U : gr(x) \subseteq H \}$$
$$u_R(H) = \{ x \in U : gr(x) \cap H \neq \emptyset \}$$

Properties

- $I_R(U) = U$, $u_R(\emptyset) = \emptyset$, I, u are monotone
- If *R* is serial: $I_R(H) \subseteq u_R(H)$, $u_R(U) = U$, $I_R(\emptyset) = \emptyset$
- If *R* is reflexive: $I_R(H) \subseteq H \subseteq u_R(H)$

Relation Based models

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_R(x) = \{y \in U : x R y\}$
- Approximations

 $I_R(H) = \{ x \in U : gr(x) \subseteq H \}$ $u_R(H) = \{ x \in U : gr(x) \cap H \neq \emptyset \}$

Properties

• $I_R(U) = U$, $u_R(\emptyset) = \emptyset$, I, u are monotone

• If *R* is serial: $I_R(H) \subseteq u_R(H)$, $u_R(U) = U$, $I_R(\emptyset) = \emptyset$

• If *R* is reflexive: $I_R(H) \subseteq H \subseteq u_R(H)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_R(x) = \{y \in U : x R y\}$
- Approximations

$$I_{R}(H) = \{x \in U : gr(x) \subseteq H\}$$
$$u_{R}(H) = \{x \in U : gr(x) \cap H \neq \emptyset\}$$

Properties

• $I_R(U) = U$, $u_R(\emptyset) = \emptyset$, I, u are monotone

- If *R* is serial: $I_R(H) \subseteq u_R(H)$, $u_R(U) = U$, $I_R(\emptyset) = \emptyset$
- If *R* is reflexive: $I_R(H) \subseteq H \subseteq u_R(H)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_R(x) = \{y \in U : x R y\}$
- Approximations

$$I_{R}(H) = \{x \in U : gr(x) \subseteq H\}$$
$$u_{R}(H) = \{x \in U : gr(x) \cap H \neq \emptyset\}$$

Properties

- $I_R(U) = U$, $u_R(\emptyset) = \emptyset$, I, u are monotone
- If *R* is serial: $I_R(H) \subseteq u_R(H)$, $u_R(U) = U$, $I_R(\emptyset) = \emptyset$
- If *R* is reflexive: $I_R(H) \subseteq H \subseteq u_R(H)$

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_R(x) = \{y \in U : x R y\}$
- Approximations

$$I_{R}(H) = \{x \in U : gr(x) \subseteq H\}$$
$$u_{R}(H) = \{x \in U : gr(x) \cap H \neq \emptyset\}$$

Properties

• $I_R(U) = U$, $u_R(\emptyset) = \emptyset$, I, u are monotone

- If *R* is serial: $I_R(H) \subseteq u_R(H)$, $u_R(U) = U$, $I_R(\emptyset) = \emptyset$
- If *R* is reflexive: $I_R(H) \subseteq H \subseteq u_R(H)$

Generic relation

- R a binary relation on $U: R \subseteq U \times U$
- Granule of information $g_R(x) = \{y \in U : x R y\}$
- Approximations

$$I_{R}(H) = \{x \in U : gr(x) \subseteq H\}$$
$$u_{R}(H) = \{x \in U : gr(x) \cap H \neq \emptyset\}$$

Properties

• $I_R(U) = U$, $u_R(\emptyset) = \emptyset$, I, u are monotone

- If *R* is serial: $I_R(H) \subseteq u_R(H)$, $u_R(U) = U$, $I_R(\emptyset) = \emptyset$
- If *R* is reflexive: $I_R(H) \subseteq H \subseteq u_R(H)$

Relation Based models

Similarity relation

Rough sets based on a similarity relation $\ensuremath{\mathcal{R}}$

- Reflexive
- Symmetric

Similarity $S(x) := \{y \in U : x \mathcal{R} y\}$

 \Rightarrow A covering of the universe, not a partition

- $\bigcup_{x} S(x) = U$
- there can exist objects x and y such that $S(x) \cap S(y) \neq \emptyset$

Relation Based models

Similarity relation

Rough sets based on a similarity relation $\ensuremath{\mathcal{R}}$

- Reflexive
- Symmetric

Similarity $S(x) := \{y \in U : x \mathcal{R} y\}$

 \Rightarrow A covering of the universe, not a partition

 $\bigcup_{x} S(x) = U$

• there can exist objects x and y such that $S(x) \cap S(y) \neq \emptyset$

Relation Based models

Similarity relation

Rough sets based on a similarity relation $\ensuremath{\mathcal{R}}$

- Reflexive
- Symmetric

Similarity $S(x) := \{y \in U : x \mathcal{R} y\}$

 \Rightarrow A covering of the universe, not a partition

•
$$\bigcup_x S(x) = U$$

• there can exist objects x and y such that $S(x) \cap S(y) \neq \emptyset$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approximations

Relation Based models

Similarity: Example 1

$\mathcal R$ can represent a distance between objects

- Similar temperature if $|Temp(P1) Temp(P2)| \le 0.5$
- P1 similar to P2 if they have (at least) half of the attributes equal

$$\frac{|\{a_i \in Att : F(a_i, P1) = F(a_i, P2)\}|}{|Att|} \ge \frac{1}{2}$$

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 24/43

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approximations

Relation Based models

Similarity: Example 1

$\mathcal R$ can represent a distance between objects

- Similar temperature if $|Temp(P1) Temp(P2)| \le 0.5$
- P1 similar to P2 if they have (at least) half of the attributes equal

$$\frac{|\{a_i \in Att : F(a_i, P1) = F(a_i, P2)\}|}{|Att|} \ge \frac{1}{2}$$

Davide Ciucci (DISCo)

PhD 2021/22 24/43

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Relation Based models

Similarity: Example 1

 \mathcal{R} can represent a distance between objects

- Similar temperature if $|Temp(P1) Temp(P2)| \le 0.5$
- P1 similar to P2 if they have (at least) half of the attributes equal

$$\frac{|\{a_i \in Att : F(a_i, P1) = F(a_i, P2)\}|}{|Att|} \ge \frac{1}{2}$$

Davide Ciucci (DISCo)

PhD 2021/22 24/43

Approximations

Relation Based models

Reducts 00 0000 0000 00000000

Similarity: Example 2

Deal with incomplete information

		*	
*			
	*		

 $x\mathcal{R}_D y \text{ iff } \forall a_i \in D \quad F(x, a_i) = F(y, a_i) \quad \text{or} \quad F(x, a_i) = * \quad \text{or} \quad F(y, a_i) = *$

(a)

Relation Based models

Similarity: Example 2

• Deal with incomplete information

Patient	Pressure	HA	Temperature	MP	Malattia
P1	Normal	yes	38–39	yes	A
P2	High	no	36–37	*	NO
P3	High	no	*	yes	В
P4	*	yes	35–36	no	NO
P5	Normal	*	*	yes	NO

 $x\mathcal{R}_D y \text{ iff } \forall a_i \in D \quad F(x, a_i) = F(y, a_i) \quad \text{or} \quad F(x, a_i) = * \quad \text{or} \quad F(y, a_i) = *$

PhD 2021/22 25/43

(a)

Relation Based models

Similarity: Example 2

• Deal with incomplete information

Patient	Pressure	HA	Temperature	MP	Malattia
P1	Normal	yes	38–39	yes	A
P2	High	no	36–37	*	NO
P3	High	no	*	yes	В
P4	*	yes	35–36	no	NO
P5	Normal	*	*	yes	NO

 $x\mathcal{R}_D y \text{ iff } \forall a_i \in D \quad F(x, a_i) = F(y, a_i) \quad \text{or} \quad F(x, a_i) = * \quad \text{or} \quad F(y, a_i) = *$

イロト 不得 トイヨト イヨト 二日

Outline

- Information Table and Decision Systems

Reducts

- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Simplify the table: eliminate "useless" attributes Given a decision system, found the rules:

condition attribute ightarrow decision

Example:

If Pressure = Normal AND Temp. = 38–39 THEN Disease = A

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 27/43

Aim

- Simplify the table: eliminate "useless" attributes
- Given a decision system, found the rules:

condition attribute \rightarrow decision

Example:

If Pressure = Normal AND Temp. = 38–39 THEN Disease = A

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 27/43

Aim

- Simplify the table: eliminate "useless" attributes
- Given a decision system, found the rules: condition attribute \rightarrow decision

Example:

If Pressure = Normal AND Temp. = 38–39 THEN Disease = A

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 27/43

Aim

- Simplify the table: eliminate "useless" attributes
- Given a decision system, found the rules:

condition attribute \rightarrow decision

Example:

If Pressure = Normal AND Temp. = 38–39 THEN Disease = A

0000

Outline

- Information Table and Decision Systems

Reducts

- Case:Information Tables

Approximations

Relation Based models

Inf. Table Reduct - example

Patient	Pressure	HA	Temperature	MP
P1	Normal	yes	38–39	yes
P2	High	no	36–37	yes
P3	High	no	36-37	yes
P4	Low	yes	35–36	no
P5	Normal	yes	36–37	yes

 $\Pi_{Att} = \{P1\}, \, \{P2, P3\}, \, \{P4\}, \, \{P5\}$

Approximations

Relation Based models

Reducts

0000

Inf. Table Reduct - example

Patient	Pressure	HA	MP
P1	Normal	yes	yes
P2	High	no	yes
P3	High	no	yes
P4	Low	yes	no
P5	Normal	yes	yes

 $\Pi_{Att} = \{P1\}, \{P2, P3\}, \{P4\}, \{P5\}$

 $\Pi_{Att \setminus \{Temp\}} = \{P1, P5\}, \{P2, P3\}, \{P4\}$

(a)

Approximations

Relation Based models

Reducts

0000

Inf. Table Reduct - example

Patient	Pressure	Temperature	MP
P1	Normal	38–39	yes
P2	High	36–37	yes
P3	High	36-37	yes
P4	Low	35–36	no
P5	Normal	36–37	yes

 $\Pi_{Att} = \{P1\}, \{P2,P3\}, \{P4\}, \{P5\}$ $\Pi_{Att \setminus \{HA\}} = \Pi_{Att}$

Approximations

Relation Based models

Reducts

0000

Inf. Table Reduct - example

Patient	Pressure	Temperature	
P1	Normal	38–39	
P2	High	36–37	
P3	High	36-37	
P4	Low	35–36	
P5	Normal	36–37	

 $\Pi_{Att} = \{P1\}, \{P2, P3\}, \{P4\}, \{P5\}$ $\Pi_{Att \setminus \{HA, MP\}} = \Pi_{Att}$

PhD 2021/22 29/43

Approximations

Relation Based models

Reducts

0000

Inf. Table Reduct - example

Patient	Temperature	
P1	38–39	
P2	36–37	
P3	36-37	
P4	35–36	
P5	36–37	

 $\Pi_{Att} = \{P1\}, \{P2,P3\}, \{P4\}, \{P5\}$ $\Pi_{Temp} = \{P1\}, \{P2,P3,P5\}, \{P4\}$

・ロト ・ 四ト ・ ヨト ・ ヨト

Approximations

Relation Based models

Reducts

0000

Inf. Table Reduct - example

Patient	Pressure	
P1	Normal	
P2	High	
P3	High	
P4	Low	
P5	Normal	

 $\Pi_{Att} = \{P1\}, \{P2,P3\}, \{P4\}, \{P5\}$ $\Pi_{Pressure} = \{P1,P5\}, \{P2,P3\}, \{P4\}$

イロン イ理 とく ヨン イヨン

Approximations

Relation Based models

Reducts

0000

Inf. Table Reduct - example

Patient	Pressure	Temperature	
P1	Normal	38–39	
P2	High	36–37	
P3	High	36-37	
P4	Low	35–36	
P5	Normal	36–37	

 $\Pi_{Att} = \{P1\}, \{P2, P3\}, \{P4\}, \{P5\}$

 $\Pi_{\textit{Pressure},\textit{Temperature}} = \Pi_{\textit{Att}}$

{Pressure, Temperature} is a reduct of Att

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 29/43

Approximations

Relation Based models

Reducts

0000

Inf. Table Reduct - definition

Definition (Reduct)

 $A \subseteq B \subseteq Att$ A is a reduct of B if

• $\Pi_A = \Pi_B$ • $\exists C \subset A \text{ and } \Pi_C = \Pi_B$

 $a \in A \subseteq Att$ is indispensable in A if $\Pi_A
eq \Pi_{A \setminus \{a\}}$

CORE= set of indispensable attributes in *Att* = intersection of all reducts in *Att*

Davide Ciucci (DISCo)

Approximations

Relation Based models

Reducts ○○ ○○●○

Inf. Table Reduct - definition

Definition (Reduct)

 $A \subseteq B \subseteq Att$ A is a reduct of B if

• $\Pi_A = \Pi_B$ • $AC \subset A \text{ and } \Pi_C = \Pi_B$

 $a \in A \subseteq Att$ is indispensable in A if $\Pi_A
eq \Pi_{A \setminus \{a\}}$

CORE= set of indispensable attributes in *Att* = intersection of all reducts in *Att*

Approximations

Relation Based models

Reducts

0000

Inf. Table Reduct - definition

Definition (Reduct)

 $A \subseteq B \subseteq Att$ A is a reduct of B if

$$\bigcirc \Pi_A = \Pi_B$$

 $\ 2 \quad \exists C \subset A \text{ and } \Pi_C = \Pi_B$

 $a \in A \subseteq Att$ is indispensable in A if $\Pi_A
eq \Pi_{A \setminus \{a\}}$

CORE= set of indispensable attributes in *Att* = intersection of all reducts in *Att*

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 30/43

Approximations

Relation Based models

Reducts

0000

Inf. Table Reduct - definition

Definition (Reduct)

$$P \not\exists C \subset A \text{ and } \Pi_C = \Pi_B$$

$a \in A \subseteq Att$ is indispensable in A if $\Pi_A \neq \Pi_{A \setminus \{a\}}$

CORE= set of indispensable attributes in *Att* = intersection of all reducts in *Att*

Davide Ciucci (DISCo)

Approximations

Relation Based models

Inf. Table Reduct - definition

Definition (Reduct)

 $A \subseteq B \subseteq Att$ A is a reduct of B if

$$\bigcirc \ \Pi_A = \Pi_B$$

2 $<math> \mathcal{A}C \subset A \text{ and } \Pi_C = \Pi_B$

 $a \in A \subseteq Att$ is indispensable in A if $\Pi_A \neq \Pi_{A \setminus \{a\}}$

CORE= set of indispensable attributes in *Att* = intersection of all reducts in *Att*

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 30/43

Approximations

Relation Based models

Complexity issues

• Given *n* attributes, there are at most $O(\frac{3^n}{\sqrt{n}})$ reducts

- Find the shortest reduct is a NP^{NP} complete problem
 - reduction to the prime implicant problem by means of the *discernibility matrix*

Solutions

- Heuristics (Approximate reducts, genetic algorithms, entropy, ...)
- Parallel algorithms

Complexity issues

- Given *n* attributes, there are at most $O(\frac{3^n}{\sqrt{n}})$ reducts
- Find the shortest reduct is a NP^{NP} complete problem
 - reduction to the prime implicant problem by means of the *discernibility matrix*

Solutions

- Heuristics (Approximate reducts, genetic algorithms, entropy, ...)
- Parallel algorithms

Complexity issues

- Given *n* attributes, there are at most $O(\frac{3^n}{\sqrt{n}})$ reducts
- Find the shortest reduct is a NP^{NP} complete problem
 - reduction to the prime implicant problem by means of the discernibility matrix
- Solutions
 - Heuristics (Approximate reducts, genetic algorithms, entropy, ...)
 - Parallel algorithms

000

Outline

- Information Table and Decision Systems

Reducts

- Case:Information Tables
- Case: consistent decision system

Relation Based models

00 0000 **0000** 00000000

Reduct

Definition (Reduct)

A reduct is a minimal subset of condition $C \subseteq ATT$ that preserves classification wrt the decision attribute

- Consistence: same ability of the whole ATT to distinguish objects belonging to two different decision classes
- Minimality: any smaller subset is not consistent

Davide Ciucci (DISCo)

PhD 2021/22 33/43

Relation Based models

Reduct

Definition (Reduct)

A reduct is a minimal subset of condition $C \subseteq ATT$ that preserves classification wrt the decision attribute

- Consistence: same ability of the whole ATT to distinguish objects belonging to two different decision classes
 - Minimality: any smaller subset is not consistent

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 33/43

Relation Based models

Reduct

Definition (Reduct)

A reduct is a minimal subset of condition $C \subseteq ATT$ that preserves classification wrt the decision attribute

- Consistence: same ability of the whole ATT to distinguish objects belonging to two different decision classes
- Minimality: any smaller subset is not consistent

Relation Based models

Example

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

Approximations

Relation Based models

00 0000 0000 00000000

Example

Patient	Pressure	HA	MP	Disease
P1	Normal	yes	yes	А
P3	High	no	yes	В
P4	Low	yes	no	NO
P5	Normal	yes	yes	NO

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 34/43

Approximations

Relation Based models

Reducts

00 0000 0000 00000000

Example

Patient	Pressure	HA	MP	Disease
P1	Normal	yes	yes	Α
P3	High	no	yes	В
P4	Low	yes	no	NO
P5	Normal	yes	yes	NO

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 34/43

Relation Based models

00 0000 0000 00000000

Example

Patient	Pressure	Temperature	MP	Disease
P1	Normal	38–39	yes	А
P3	High	36-37	yes	В
P4	Low	35–36	no	NO
P5	Normal	36–37	yes	NO

Approximations

Relation Based models

00 0000 0000 00000000

Example

Patient	Pressure	Temperature	Disease
P1	Normal	38–39	А
P3	High	36-37	В
P4	Low	35–36	NO
P5	Normal	36–37	NO

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 34/43

Approximations

Relation Based models

Example

Patient	Temperature	Disease
P1	38–39	A
P3	36-37	В
P4	35–36	NO
P5	36–37	NO

Davide Ciucci (DISCo)

Introduction to Rough Sets

। PhD 2021/22 34/43

Relation Based models

Example

Patient	Pressure		Disease
P1	Normal		Α
P3	High		В
P4	Low		NO
P5	Normal		NO

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 34/43
Relation Based models

Example: rules

Patient	Pressure	Temperature	Disease
P1	Normal	38–39	A
P3	High	36-37	В
P4	Low	35–36	NO
P5	Normal	36–37	NO

Reduct = {Pressure, Temperature}

IF Pressure = Normal AND Temp. = 38–39 THEN Disease = A IF Pressure = High AND Temp. = 36–37 THEN Disease = B IF Pressure = Low AND Temp. = 35–36 THEN Disease = NO IF Pressure = Normal AND Temp. = 36–37 THEN Disease = NO

Davide Ciucci (DISCo)

PhD 2021/22 35/43

Relation Based models

0000 0000 000000000

Example: rules

Patient	Pressure		Temperature	Disease
P1	Normal	-	38–39	A
P3	High		36-37	В
P4	Low		35–36	NO
P5	Normal		36–37	NO

Reduct = {Pressure, Temperature}

IF Pressure = Normal AND Temp. = 38–39 THEN Disease = A IF Pressure = High AND Temp. = 36–37 THEN Disease = B IF Pressure = Low AND Temp. = 35–36 THEN Disease = NO IF Pressure = Normal AND Temp. = 36–37 THEN Disease = NO

< 日 > < 同 > < 回 > < 回 > < □ > <

Relation Based models

0000 0000 000000000

Example: rules

Patient	Pressure		Temperature	Disease
P1	Normal	-	38–39	A
P3	High		36-37	В
P4	Low		35–36	NO
P5	Normal		36–37	NO

Reduct = {Pressure, Temperature}

IF Pressure = Normal AND Temp. = 38–39 THEN Disease = A IF Pressure = High AND Temp. = 36–37 THEN Disease = B IF Pressure = Low AND Temp. = 35–36 THEN Disease = NO IF Pressure = Normal AND Temp. = 36–37 THEN Disease = NO

< 日 > < 同 > < 回 > < 回 > < □ > <

Relation Based models

Example: rules

Patient	Pressure	Temperature	Disease
P1	Normal	38–39	A
P3	High	36-37	В
P4	Low	35–36	NO
P5	Normal	36–37	NO

Reduct = {Pressure, Temperature}

```
IF Pressure = Normal AND Temp. = 38–39 THEN Disease = A
IF Pressure = High AND Temp. = 36–37 THEN Disease = B
IF Pressure = Low AND Temp. = 35–36 THEN Disease = NO
```

Relation Based models

ŏŏoo oooo oooooooo

Example: rules

Patient	Pressure		Temperature	Disease
P1	Normal	-	38–39	A
P3	High		36-37	В
P4	Low		35–36	NO
P5	Normal		36–37	NO

Reduct = {Pressure, Temperature}

```
IF Pressure = Normal AND Temp. = 38–39 THEN Disease = A
IF Pressure = High AND Temp. = 36–37 THEN Disease = B
IF Pressure = Low AND Temp. = 35–36 THEN Disease = NO
IF Pressure = Normal AND Temp. = 36–37 THEN Disease = NO
```

0000000

Outline

- Information Table and Decision Systems

Reducts

- Case:Information Tables
- Case: consistent decision system
- Case: an inconsistent system

Approximations

Relation Based models

0000 0000 00000000

Solution 1: Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

• Generalized decision: $\delta_A : U \to \mathcal{P}(Val)$

• Example: $\delta_{ATT}(P2) = \{NO, B\}$

• Definition:

 $\delta_A(x) = \{i \in Val : \exists y, x \ l_A y \text{ and } F(y, d) = i\}$

Approximations

Relation Based models

Solution 1: Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

- Generalized decision: $\delta_A : U \to \mathcal{P}(Val)$
- Example: $\delta_{ATT}(P2) = \{NO, B\}$

Definition:

 $\delta_A(x) = \{i \in Val : \exists y, x \ l_A y \text{ and } F(y, d) = i\}$

Approximations

Relation Based models

Solution 1: Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

- Generalized decision: $\delta_A : U \to \mathcal{P}(Val)$
- Example: $\delta_{ATT}(P2) = \{NO, B\}$
- Definition:

$$\delta_A(x) = \{i \in Val : \exists y, x \ l_A y \text{ and } F(y, d) = i\}$$

Approximations

Relation Based models

Solution 1: Generalized Decision

Patient	Pressure	HA	Temperature	MP	Disease
P1	Normal	yes	38–39	yes	А
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

- Generalized decision: $\delta_A : U \to \mathcal{P}(Val)$
- Example: $\delta_{ATT}(P2) = \{NO, B\}$
- Definition:

$$\delta_A(x) = \{i \in Val : \exists y, x \ l_A y \text{ and } F(y, d) = i\}$$

Approximations

Relation Based models

Reducts

00 0000 0000 00•00000

Generalized Decision reduct

Definition

Given a set of attributes $A \subseteq B \subseteq ATT$, A is a reduct of B if

- $\delta_A = \delta_B$ (I do not introduce further inconsistency)
- Minimality: $\exists C \subset A$ such that $\delta_C = \delta_B$

Davide Ciucci (DISCo)

PhD 2021/22 38/43

Approximations

Relation Based models

Generalized Decision Reduct - example

Patient	Pressure	HA	Temperature	MP	Disease	δ_{Att}
P1	Normal	yes	38–39	yes	А	Α,
P2	High	no	36–37	yes	NO	B,NO
P3	High	no	36-37	yes	В	B,NO
P4	Low	yes	35–36	no	NO	NO
P5	Normal	yes	36–37	yes	NO	В

Reduct { Pressure, Temperature}

 If (Pressure =High) AND (Temp=36-37) THEN (Disease = NO) OR (Disease = B)

Approximations

Relation Based models

Generalized Decision Reduct - example

Patient	Pressure	HA	Temperature	MP	Disease	δ_{Att}
P1	Normal	yes	38–39	yes	А	Α,
P2	High	no	36–37	yes	NO	B,NO
P3	High	no	36-37	yes	В	B,NO
P4	Low	yes	35–36	no	NO	NO
P5	Normal	yes	36–37	yes	NO	В

• Reduct { *Pressure*, *Temperature*}

 If (Pressure =High) AND (Temp=36-37) THEN (Disease = NO) OR (Disease = B)

Approximations

Relation Based models

0000 0000 000000000

Generalized Decision Reduct - example

Patient	Pressure	HA	Temperature	MP	Disease	δ_{Att}
P1	Normal	yes	38–39	yes	А	Α,
P2	High	no	36–37	yes	NO	B,NO
P3	High	no	36-37	yes	В	B,NO
P4	Low	yes	35–36	no	NO	NO
P5	Normal	yes	36–37	yes	NO	В

• Reduct { *Pressure*, *Temperature*}

 If (Pressure =High) AND (Temp=36-37) THEN (Disease = NO) OR (Disease = B)

Approximations

Relation Based models

Solution 2: Dependence

Definition

Let S(U) be a decision system $A \subseteq Att$ a set of attributes, X_i the decision classes The Coefficient of Dependence of decision *d* from *A* is

$$Dip(A, d) = rac{\sum |L_A(X_i)|}{|X|}$$

Dip(A,d) is the ratio of correctly classified objects by the set of attributes *A*

Dip(A,d) = 1 if the system is consistent

Davide Ciucci (DISCo)

PhD 2021/22 40/43

Approximations

Relation Based models

00 0000 0000 00000000

Solution 2: Dependence

Definition

Let S(U) be a decision system $A \subseteq Att$ a set of attributes, X_i the decision classes The Coefficient of Dependence of decision *d* from *A* i

$$Dip(A, d) = rac{\sum |L_A(X_i)|}{|X|}$$

Dip(A,d) is the ratio of correctly classified objects by the set of attributes A

Dip(A,d) = 1 if the system is consistent

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 40/43

Approximations

Relation Based models

Solution 2: Dependence

Definition

Let S(U) be a decision system $A \subseteq Att$ a set of attributes, X_i the decision classes The Coefficient of Dependence of decision *d* from *A* is

$$Dip(A, d) = rac{\sum |L_A(X_i)|}{|X|}$$

Dip(A,d) is the ratio of correctly classified objects by the set of attributes *A*

Dip(A,d) = 1 if the system is consistent

Davide Ciucci (DISCo)

PhD 2021/22 40/43

Relation Based models

Solution 2: Dependence

Definition

Let S(U) be a decision system $A \subseteq Att$ a set of attributes, X_i the decision classes The Coefficient of Dependence of decision *d* from *A* is

$$Dip(A, d) = rac{\sum |L_A(X_i)|}{|X|}$$

Dip(A,d) is the ratio of correctly classified objects by the set of attributes A

Dip(A,d) = 1 if the system is consistent

Davide Ciucci (DISCo)

PhD 2021/22 40/43

Relation Based models

Solution 2: Dependence

Definition

Let S(U) be a decision system $A \subseteq Att$ a set of attributes, X_i the decision classes The Coefficient of Dependence of decision *d* from *A* is

$$Dip(A, d) = rac{\sum |L_A(X_i)|}{|X|}$$

Dip(A,d) is the ratio of correctly classified objects by the set of attributes A

Dip(A,d) = 1 if the system is consistent

Davide Ciucci (DISCo)

Approximations

Relation Based models

Reducts

00 0000 0000 00000000

Reduct: dependence definition

Definition (Reduct)

Let $\mathcal{S}(U)$ be a decision system

 $A \subseteq B \subseteq Att$, A is a reduct of B if

Dip(A,d)=Dip(B,d)

If Minimality: $\exists C \subset A$ such that Dip(C, d) = Dip(B, d)

Davide Ciucci (DISCo)

PhD 2021/22 41/43

< ロ > < 同 > < 回 > < 回 >

Approximations

Relation Based models

Reducts

00 0000 0000 00000000

Reduct: dependence definition

Definition (Reduct)

Let S(U) be a decision system $A \subseteq B \subseteq Att$, A is a reduct of B if

Dip(A,d)=Dip(B,d)

Image: Minimality: $\exists C \subset A$ such that Dip(C, d) = Dip(B, d)

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 41/43

Approximations

Relation Based models

Reducts

00000 0000 0000000000

Reduct: dependence definition

Definition (Reduct)

Let S(U) be a decision system $A \subseteq B \subseteq Att$, A is a reduct of B if

Dip(A,d)=Dip(B,d)

● Minimality: $\exists C \subset A$ such that Dip(C, d) = Dip(B, d)

Davide Ciucci (DISCo)

Introduction to Rough Sets

PhD 2021/22 41/43

Approximations

Relation Based models

Reducts

00 0000 0000 00000000

Reduct: dependence definition

Definition (Reduct)

- Let S(U) be a decision system $A \subseteq B \subseteq Att$, A is a reduct of B if
 - Dip(A,d)=Dip(B,d)
 - Solution Minimality: $\exists C \subset A$ such that Dip(C, d) = Dip(B, d)

Davide Ciucci (DISCo)

Approximations

Relation Based models

Reduct: dependence example

Patient	Pressure	HA	Temperature	DM	Disease
P1	Normal	yes	38–39	yes	A
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

 $L_{C}(X_{A}) = \{P1\}, L_{C}(X_{NO}) = \{P4, P5\}, L_{C}(X_{B}) = \emptyset$

 $Dip(Att, Disease) = \frac{3}{5}$ $Dip({Pressure, Temperature, DM}, Disease) = \frac{3}{5}$ $Dip({Pressure, Temperature}, Disease) = \frac{3}{5}$

IF (Pressure=High AND Temp= 36–37) THEN (Disease =NO OR Disease =B)

Approximations

Relation Based models

Reduct: dependence example

Patient	Pressure	HA	Temperature	DM	Disease
P1	Normal	yes	38–39	yes	A
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

 $L_{C}(X_{A}) = \{P1\}, L_{C}(X_{NO}) = \{P4, P5\}, L_{C}(X_{B}) = \emptyset$

$Dip(Att, Disease) = \frac{3}{5}$

 $Dip(\{Pressure, Temperature, DM\}, Disease) = \frac{3}{5}$ $Dip(\{Pressure, Temperature\}, Disease) = \frac{3}{5}$

IF (Pressure=High AND Temp= 36–37) THEN (Disease =NO OR Disease =B)

Approximations

Relation Based models

Reduct: dependence example

Patient	Pressure	HA	Temperature	DM	Disease
P1	Normal	yes	38–39	yes	A
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

 $L_{C}(X_{A}) = \{P1\}, L_{C}(X_{NO}) = \{P4, P5\}, L_{C}(X_{B}) = \emptyset$

 $\begin{array}{l} \text{Dip}(\textit{Att},\textit{Disease}) = \frac{3}{5}\\ \text{Dip}(\{\textit{Pressure},\textit{Temperature},\textit{DM}\},\textit{Disease}) = \frac{3}{5}\\ \text{Dip}(\{\textit{Pressure},\textit{Temperature}\},\textit{Disease}) = \frac{3}{5}\\ \end{array}$

IF (Pressure=High AND Temp= 36–37) THEN (Disease =NO OR Disease =B)

Approximations

Relation Based models

Reduct: dependence example

Patient	Pressure	HA	Temperature	DM	Disease
P1	Normal	yes	38–39	yes	A
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

 $L_{C}(X_{A}) = \{P1\}, L_{C}(X_{NO}) = \{P4, P5\}, L_{C}(X_{B}) = \emptyset$

 $\begin{array}{l} \text{Dip}(\textit{Att},\textit{Disease}) = \frac{3}{5}\\ \text{Dip}(\{\textit{Pressure},\textit{Temperature},\textit{DM}\},\textit{Disease}) = \frac{3}{5}\\ \text{Dip}(\{\textit{Pressure},\textit{Temperature}\},\textit{Disease}) = \frac{3}{5} \end{array}$

IF (Pressure=High AND Temp= 36–37) THEN (Disease =NO OR Disease =B)

Approximations

Relation Based models

Reduct: dependence example

Patient	Pressure	HA	Temperature	DM	Disease
P1	Normal	yes	38–39	yes	A
P2	High	no	36–37	yes	NO
P3	High	no	36-37	yes	В
P4	Low	yes	35–36	no	NO
P5	Normal	yes	36–37	yes	NO

 $L_{C}(X_{A}) = \{P1\}, L_{C}(X_{NO}) = \{P4, P5\}, L_{C}(X_{B}) = \emptyset$

 $\begin{array}{l} \text{Dip}(\textit{Att},\textit{Disease}) = \frac{3}{5}\\ \text{Dip}(\{\textit{Pressure},\textit{Temperature},\textit{DM}\},\textit{Disease}) = \frac{3}{5}\\ \text{Dip}(\{\textit{Pressure},\textit{Temperature}\},\textit{Disease}) = \frac{3}{5} \end{array}$

IF (Pressure=High AND Temp= 36–37) THEN (Disease =NO OR Disease =B)

Software

Free software based on rough sets

- Rosetta (2001), limited to tables with 500 objects and 20 attributes http://www.lcb.uu.se/tools/rosetta
- Rough Set and Machine Learning Open Source in Java (2019) Also avalaible in WEKA
- R package "RoughSets: Data Analysis Using Rough Set and Fuzzy Rough Set Theories" (2019) https://cran.r-project. org/web/packages/RoughSets/index.html
- R package "Soft Clustering" (2019) https://cran.r-project. org/web/packages/SoftClustering/index.html
- Fuzzy Rough Learn (2021) python library
 https://fuzzy-rough-learn.readthedocs.ip/en/latest/

Davide Ciucci (DISCo)

Software

Free software based on rough sets

- Rosetta (2001), limited to tables with 500 objects and 20 attributes http://www.lcb.uu.se/tools/rosetta
- Rough Set and Machine Learning Open Source in Java (2019) Also avalaible in WEKA https://rseslib.mimuw.edu.pl/index.html
- R package "RoughSets: Data Analysis Using Rough Set and Fuzzy Rough Set Theories" (2019) https://cran.r-project. org/web/packages/RoughSets/index.html
- R package "Soft Clustering" (2019) https://cran.r-project. org/web/packages/SoftClustering/index.html
- Fuzzy Rough Learn (2021) python library
 https://fuzzy-rough-learn.readthedocs.io/en/latest/

Davide Ciucci (DISCo)

Software

Free software based on rough sets

- Rosetta (2001), limited to tables with 500 objects and 20 attributes http://www.lcb.uu.se/tools/rosetta
- Rough Set and Machine Learning Open Source in Java (2019) Also avalaible in WEKA

https://rseslib.mimuw.edu.pl/index.html

- R package "RoughSets: Data Analysis Using Rough Set and Fuzzy Rough Set Theories" (2019) https://cran.r-project. org/web/packages/RoughSets/index.html
- R package "Soft Clustering" (2019) https://cran.r-project. org/web/packages/SoftClustering/index.html
- Fuzzy Rough Learn (2021) python library
 https://fuzzy-rough-learn.readthedocs.io/en/latest/

Davide Ciucci (DISCo)