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Introduction Approximations Relation Based models Reducts

What is a Rough set?

Simple question, difficult answer...
What is a Fuzzy Subset of X? f : X 7→ [0,1]

We need several notions: indiscernibility, granulation of the
universe, approximations, . . .
More than one definition is possible... some “ingredients” are

A set H whose elements are known (extension), but we are not able
to describe it (intension)
We are able to give (intension and extension) a pair of sets which
are an approximation of H

Rough set theory includes some tools for knowledge discovery:
reducts (feature selection) and rules
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Introduction Approximations Relation Based models Reducts

Information Table - example

HA = Head Ache
MP = Muscle Pain

Patient Pressure HA Temperature MP
P1 Normal yes 38–39 yes
P2 High no 36–37 yes
P3 High no 36-37 yes
P4 Low yes 35–36 no
P5 Normal yes 36–37 yes
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Introduction Approximations Relation Based models Reducts

Information Table - definition

Definition (Information Table or Information System)

S(U) = 〈U,Att ,Val ,F 〉
U set of objects
Att set of attributes
Val set of possible values for the attributes
F : U × A 7→ V function that assigns to each object a value for any
attribute

Sometimes: Vala with a ∈ Att

In the example: objects ={P1, . . . , P5}, Attributes = {Pressure, HA,
Temperature, MP}, Val ={Yes, No, 37-38, . . . }
F (P2,Pressure) = High
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Introduction Approximations Relation Based models Reducts

Decision System - Example

HA = Head Ache
MP = Muscle Pain

Patient Pressure HA Temperature MP Disease
P1 Normal yes 38–39 yes A
P2 High no 36–37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35–36 no NO
P5 Normal yes 36–37 yes NO

Decision Classes: UA = {P1}, UB = {P3}, UNO = {P2,P4,P5}

P2, P3: same symptoms, different disease→ the system is
inconsistent
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Introduction Approximations Relation Based models Reducts

Definitions

Definition (Decision System)

S(U) = 〈U,C ∪ {d},Val ,F 〉
U set of objects
C set of condition attributes
d decision attribute
Val set of possible values for the attributes
F : U × C ∪ {d} 7→ V function that assigns to each object a value for
any attribute

Definition (Consistent Decision System)

There are no two objects O1,O2 ∈ U with same value for condition
attributes and different decision
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Indiscernibility relation - example

Patient Pressure HA Temperature MP
P1 Normal yes 38–39 yes
P2 High no 36–37 yes
P3 High no 36-37 yes
P4 Low yes 35–36 no
P5 Normal yes 36–37 yes

P2 and P3 same values for all attributes: they are indiscernible
(indistinguishable, equivalent, ...)

{P2, P3} is a granule of information

A partition of the universe: Π = {P1}, {P2,P3}, {P4}, {P5}
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Introduction Approximations Relation Based models Reducts

Indiscernibility relation - definition

Definition (Indiscernibility)

Given a set of attributes A ⊆ Att
two objects x , y ∈ U are indiscernible with respect to A if

∀a ∈ A F (a, x) = F (a, y)

In this case we write xIAy

IA is an equivalence relation: reflexive, symmetric, transitive
IA partitions U in equivalence classes (the granules of information)

[x ]A := {y ∈ U : xIAy}
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Approximations - example

Partition {P1}, {P2,P3}, {P4}, {P5}

The set H = {P1,P2,P3} is the union of two equivalence classes
{P1} ∪ {P2,P3}
The set K = {P1,P2} is not
H is exact, K is rough
K can be approximated by a pair of exact sets: {P1}, {P1,P2,P3}

{P1} ⊆ K ⊆ {P1,P2,P3}
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Introduction Approximations Relation Based models Reducts

Approximations - definition

Definition (Approximations)

Let S(U) = 〈U, Att , val(U), F 〉 be an information table (a decision
system)
Given a set of attributes A ⊆ Att , then for any set of objects H ⊆ U we
define
the lower approximation of H:

L(H) := {x : [x ]A ⊆ H}

the upper approximation of H:

U(H) := {x : [x ]A ∩ H 6= ∅}

The pair r(H) = 〈L(H),U(H)〉 is named rough approximation (or rough
set)Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 14 / 43
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U(H)

L(H)

H

Figura: Lower and Upper approximations. Each square represents an
equivalence class
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Introduction Approximations Relation Based models Reducts

Further regions

Exterior E(H) = Uc(H) L(H) ∩ E(H) = ∅
Rough approximation: (L(H),E(H))

Boundary Bnd(H) = U(H) \ L(H)

Interpretation
Lower sure belong to H

Exterior sure not belong to H
Boundary uncertain

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 16 / 43



Introduction Approximations Relation Based models Reducts

Further regions

Exterior E(H) = Uc(H) L(H) ∩ E(H) = ∅
Rough approximation: (L(H),E(H))

Boundary Bnd(H) = U(H) \ L(H)

Interpretation
Lower sure belong to H

Exterior sure not belong to H
Boundary uncertain

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 16 / 43



Introduction Approximations Relation Based models Reducts

Further regions

Exterior E(H) = Uc(H) L(H) ∩ E(H) = ∅
Rough approximation: (L(H),E(H))

Boundary Bnd(H) = U(H) \ L(H)

Interpretation
Lower sure belong to H

Exterior sure not belong to H
Boundary uncertain

Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 16 / 43



Introduction Approximations Relation Based models Reducts

Measures of Uncertainty

Accuracy

α(H) =
|L(H)|
|U(H)|

Roughness

1− α(H) =
|Bnd(H)|
|U(H)|
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Introduction Approximations Relation Based models Reducts

Approximation properties

L(∅) = ∅ L(U) = U
L(H) ⊆ H H ⊆ U(H)

L(H ∩ K ) = L(H) ∩ L(K ) L(H) ∪ L(K ) ⊆ L(H ∪ K )

H ⊆ K implies L(H) ⊆ L(K )

L(L(H)) = L(H) L(U(H)) = U(H)

L(H) = (U(Hc))c

Topological properties: Lower as interior, upper as closure
Modal properties (S5): Lower as necessity, upper as possibility
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Introduction Approximations Relation Based models Reducts

Generalized Decision

Patient Pressure HA Temperature MP Disease
P1 Normal yes 38–39 yes A
P2 High no 36–37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35–36 no NO
P5 Normal yes 36–37 yes NO

Generalized decision: δA : U → P(Val)
Example: δATT (P2) = {NO,B}
Definition:

δA(x) = {i ∈ Val : ∃y , x IAy and F (y ,d) = i}

If ∀x ∈ U : |δA(x)| = 1 then the system is consistent
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Introduction Approximations Relation Based models Reducts

Generalized Decision - example

Patient Pressure HA Temperature MP Disease δAtt
P1 Normal yes 38–39 yes A A,
P2 High no 36–37 yes NO B,NO
P3 High no 36-37 yes B B,NO
P4 Low yes 35–36 no NO NO
P5 Normal yes 36–37 yes NO NO
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Introduction Approximations Relation Based models Reducts

Generic relation

R a binary relation on U: R ⊆ U × U
Granule of information gR(x) = {y ∈ U : x R y}
Approximations

lR(H) = {x ∈ U : gr(x) ⊆ H}
uR(H) = {x ∈ U : gr(x) ∩ H 6= ∅}

Properties
lR(U) = U, uR(∅) = ∅, l ,u are monotone
If R is serial: lR(H) ⊆ uR(H), uR(U) = U, lR(∅) = ∅
If R is reflexive: lR(H) ⊆ H ⊆ uR(H)
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Introduction Approximations Relation Based models Reducts

Similarity relation

Rough sets based on a similarity relation R
Reflexive
Symmetric

Similarity S(x) := {y ∈ U : xRy}

⇒ A covering of the universe, not a partition⋃
x S(x) = U

there can exist objects x and y such that S(x) ∩ S(y) 6= ∅
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Introduction Approximations Relation Based models Reducts

Similarity: Example 1

R can represent a distance between objects
Similar temperature if |Temp(P1)− Temp(P2)| ≤ 0.5
P1 similar to P2 if they have (at least) half of the attributes equal

|{ai ∈ Att : F (ai ,P1) = F (ai ,P2)}|
|Att |

≥ 1
2
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Introduction Approximations Relation Based models Reducts

Similarity: Example 2

Deal with incomplete information

Patient Pressure HA Temperature MP Malattia
P1 Normal yes 38–39 yes A
P2 High no 36–37 * NO
P3 High no * yes B
P4 * yes 35–36 no NO
P5 Normal * * yes NO

xRDy iff ∀ai ∈ D F (x ,ai ) = F (y ,ai ) or F (x ,ai ) = ∗ or F (y ,ai ) = ∗
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Introduction Approximations Relation Based models Reducts

Aim

Simplify the table: eliminate “useless” attributes
Given a decision system, found the rules:

condition attribute→ decision

Example:

If Pressure = Normal AND Temp. = 38–39 THEN Disease = A
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Introduction Approximations Relation Based models Reducts

Inf. Table Reduct - example

Patient Pressure HA Temperature MP
P1 Normal yes 38–39 yes
P2 High no 36–37 yes
P3 High no 36-37 yes
P4 Low yes 35–36 no
P5 Normal yes 36–37 yes

ΠAtt = {P1}, {P2,P3}, {P4}, {P5}
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Inf. Table Reduct - example

Patient Pressure HA Temperature MP
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P4 Low yes 35–36 no
P5 Normal yes 36–37 yes

ΠAtt = {P1}, {P2,P3}, {P4}, {P5}
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Introduction Approximations Relation Based models Reducts

Inf. Table Reduct - definition

Definition (Reduct)

A ⊆ B ⊆ Att
A is a reduct of B if

1 ΠA = ΠB

2 6 ∃C ⊂ A and ΠC = ΠB

a ∈ A ⊆ Att is indispensable in A if ΠA 6= ΠA\{a}

CORE= set of indispensable attributes in Att = intersection of all
reducts in Att
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Introduction Approximations Relation Based models Reducts

Complexity issues

Given n attributes, there are at most O( 3n
√

n ) reducts

Find the shortest reduct is a NPNP complete problem
reduction to the prime implicant problem by means of the
discernibility matrix

Solutions
Heuristics (Approximate reducts, genetic algorithms, entropy, ...)
Parallel algorithms
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Introduction Approximations Relation Based models Reducts

Reduct

Definition (Reduct)

A reduct is a minimal subset of condition C ⊆ ATT that preserves
classification wrt the decision attribute

1 Consistence: same ability of the whole ATT to distinguish objects
belonging to two different decision classes

2 Minimality: any smaller subset is not consistent
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Introduction Approximations Relation Based models Reducts

Example

Patient Pressure HA Temperature MP Disease
P1 Normal yes 38–39 yes A
P3 High no 36-37 yes B
P4 Low yes 35–36 no NO
P5 Normal yes 36–37 yes NO
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Introduction Approximations Relation Based models Reducts

Example: rules

Patient Pressure HA Temperature MP Disease
P1 Normal yes 38–39 yes A
P3 High no 36-37 yes B
P4 Low yes 35–36 no NO
P5 Normal yes 36–37 yes NO

Reduct = {Pressure, Temperature}

IF Pressure = Normal AND Temp. = 38–39 THEN Disease = A
IF Pressure = High AND Temp. = 36–37 THEN Disease = B
IF Pressure = Low AND Temp. = 35–36 THEN Disease = NO
IF Pressure = Normal AND Temp. = 36–37 THEN Disease = NO
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Solution 1: Generalized Decision

Patient Pressure HA Temperature MP Disease
P1 Normal yes 38–39 yes A
P2 High no 36–37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35–36 no NO
P5 Normal yes 36–37 yes NO

Generalized decision: δA : U → P(Val)
Example: δATT (P2) = {NO,B}
Definition:

δA(x) = {i ∈ Val : ∃y , x IAy and F (y ,d) = i}

If ∀x ∈ U : |δA(x)| = 1 then the system is consistent
Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 37 / 43



Introduction Approximations Relation Based models Reducts

Solution 1: Generalized Decision

Patient Pressure HA Temperature MP Disease
P1 Normal yes 38–39 yes A
P2 High no 36–37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35–36 no NO
P5 Normal yes 36–37 yes NO

Generalized decision: δA : U → P(Val)
Example: δATT (P2) = {NO,B}
Definition:

δA(x) = {i ∈ Val : ∃y , x IAy and F (y ,d) = i}

If ∀x ∈ U : |δA(x)| = 1 then the system is consistent
Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 37 / 43



Introduction Approximations Relation Based models Reducts

Solution 1: Generalized Decision

Patient Pressure HA Temperature MP Disease
P1 Normal yes 38–39 yes A
P2 High no 36–37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35–36 no NO
P5 Normal yes 36–37 yes NO

Generalized decision: δA : U → P(Val)
Example: δATT (P2) = {NO,B}
Definition:

δA(x) = {i ∈ Val : ∃y , x IAy and F (y ,d) = i}

If ∀x ∈ U : |δA(x)| = 1 then the system is consistent
Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 37 / 43



Introduction Approximations Relation Based models Reducts

Solution 1: Generalized Decision

Patient Pressure HA Temperature MP Disease
P1 Normal yes 38–39 yes A
P2 High no 36–37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35–36 no NO
P5 Normal yes 36–37 yes NO

Generalized decision: δA : U → P(Val)
Example: δATT (P2) = {NO,B}
Definition:

δA(x) = {i ∈ Val : ∃y , x IAy and F (y ,d) = i}

If ∀x ∈ U : |δA(x)| = 1 then the system is consistent
Davide Ciucci (DISCo) Introduction to Rough Sets PhD 2021/22 37 / 43



Introduction Approximations Relation Based models Reducts

Generalized Decision reduct

Definition

Given a set of attributes A ⊆ B ⊆ ATT , A is a reduct of B if
δA = δB (I do not introduce further inconsistency)
Minimality: 6 ∃C ⊂ A such that δC = δB
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Generalized Decision Reduct - example

Patient Pressure HA Temperature MP Disease δAtt
P1 Normal yes 38–39 yes A A,
P2 High no 36–37 yes NO B,NO
P3 High no 36-37 yes B B,NO
P4 Low yes 35–36 no NO NO
P5 Normal yes 36–37 yes NO B

Reduct {Pressure,Temperature}
If (Pressure =High) AND (Temp=36-37) THEN (Disease = NO) OR
(Disease = B)
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Solution 2: Dependence

Definition

Let S(U) be a decision system
A ⊆ Att a set of attributes, Xi the decision classes
The Coefficient of Dependence of decision d from A is

Dip(A,d) =

∑
|LA(Xi)|
|X |

Dip(A,d) is the ratio of correctly classified objects by the set of
attributes A

Dip(A,d) = 1 if the system is consistent
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Reduct: dependence definition

Definition (Reduct)

Let S(U) be a decision system
A ⊆ B ⊆ Att , A is a reduct of B if

1 Dip(A,d)=Dip(B,d)
2 Minimality: 6 ∃C ⊂ A such that Dip(C,d) = Dip(B,d)
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Reduct: dependence example

Patient Pressure HA Temperature DM Disease
P1 Normal yes 38–39 yes A
P2 High no 36–37 yes NO
P3 High no 36-37 yes B
P4 Low yes 35–36 no NO
P5 Normal yes 36–37 yes NO

LC(XA) = {P1}, LC(XNO) = {P4,P5}, LC(XB) = ∅

Dip(Att ,Disease) = 3
5

Dip({Pressure,Temperature,DM},Disease) = 3
5

Dip({Pressure,Temperature},Disease) = 3
5

IF (Pressure=High AND Temp= 36–37) THEN (Disease =NO OR Disease =B)
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Introduction Approximations Relation Based models Reducts

Software

Free software based on rough sets
Rosetta (2001), limited to tables with 500 objects and 20 attributes
http://www.lcb.uu.se/tools/rosetta

Rough Set and Machine Learning Open Source in Java (2019)
Also avalaible in WEKA
https://rseslib.mimuw.edu.pl/index.html

R package “RoughSets: Data Analysis Using Rough Set and
Fuzzy Rough Set Theories” (2019) https://cran.r-project.
org/web/packages/RoughSets/index.html

R package “Soft Clustering” (2019) https://cran.r-project.
org/web/packages/SoftClustering/index.html

Fuzzy Rough Learn (2021) python library
https://fuzzy-rough-learn.readthedocs.io/en/latest/
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