Uncertainty in Computer Science 2021/22

DAVIDE CIUCCI UNIVERSITY OF MILANO-BICOCCA

UNCERTAINTY THEORIES BEYOND PROBABILITY

BEYOND PROBABILITY

Extending probability

- Belief functions
- Imprecise probabilities

Different from probability

- Possibility Theory/Logic
- Fuzzy Sets/Logic
- Modal Logic
- Interval Sets
- Rough Sets

DIFFERENT TOOLS FOR DIFFERENT UNCERTAINTIES

- Possibility theory
- Belief function
- Rough Sets

Starting from the notion of capacity

CAPACITY: EXAMPLES

A capacity is a number associated to a set

- Example 1
 - X = possible answers to a questions, only 1 answer is correct
 - The capacity of a set of answers A⊆X quantifies the uncertainty that A contains the correct answer
 - The bigger is A, the greater its capacity

CAPACITY: EXAMPLES

Not necessarily related to uncertainty

- Example 2
 - X = a set of goods
 - The capacity of a set of goods A⊆X is the total price
 - Usually, it is additive: the total price is the sum of the single prices
 - ...not always: the whole collection of Naruto volumes has much value than the sum of single volumes

CAPACITY: FORMAL DEFINITION

A capacity on a universe X is a function $\mu : 2^X \mapsto L$

- ▶ L can be ℜ, [0,1], ...
- grounded $\mu(\emptyset) = 0$
- ▶ monotone $A \subseteq B$ implies $\mu(A) \leq \mu(B)$

A capacity is normalized if $\mu(X) = 1$

CAPACITY: COMMENTS

- Our interpretation will mostly be µ(A) represents the confidence of an agent wrt A
- Monotony $A \subseteq B$ implies $\mu(A) \leq \mu(B)$
 - If A implies B then the agent has at least confidence in B as in A
 - $\mu(A \cup B) \ge \max\{\mu(A), \mu(B)\}$
 - $\mu(A \cap B) \le \min\{\mu(A), \mu(B)\}$
- Capacities are sometimes called fuzzy measures or confidence measures

CAPACITY AND PROBABILITY

More general than a probability measure

- An additive capacity is a probability measure
- Additivity: $P(A \cup B) = P(A) + P(B)$

CAPACITIES AND POSSIBILITY THEORY

More general than a possibility measure

- A maxitive capacity is a possibility measure
- Maxitivity: $\Pi(A \cup B) = \max{\Pi(A), \Pi(B)}$

What is a possibility measure? More generally, what is possibility theory?

POSSIBILITY THEORY

- The term was coined in 1978 by L. Zadeh: imprecise linguistic statements modeled by fuzzy sets interpreted as possibility distributions
- The theory was formalized and developed by Dubois and Prade
- Spohn (1988): independently define similar ideas

POSSIBILITY DISTRIBUTION

A possibility distribution is a function

 $\pi: X \mapsto [0,1]$

- it represents the state of knowledge of an agent
 - the state a is impossible $\pi(a) = 0$
 - the state a is totally possible $\pi(a) = 1$
 - more that one state can be totally possible $\pi(a) = 1$, $\pi(b) = 1$
 - complete knowledge $\exists a, \pi(a) = 1 \quad \forall b \neq a, \pi(b) = 0$
 - complete ignorance $\forall a, \pi(a) = 1$

• Usually normalization is assumed: $\exists a, \pi(a) = 1$

POSSIBILITY & NECESSITY MEASURES

Possibility measure $\Pi(A) = \sup_{a \in A} \pi(A)$

Necessity measure $N(A) = 1 - \Pi(A^c) = \inf_{a \notin A} (1 - \pi(A))$

- Necessity implies possibility: $N(A) \leq \Pi(A)$
- Necessity is a minitive capacity:

 $N(A \cap B) = \min\{N(A), N(B)\}$

EXAMPLES

- "I am highly confident that the thief's car is blue or black"
 - N({blue, black}) = 0.8
- ✓I exclude that she likes tomatoes, but she might like carrots and salad″
 Π({tomatoes}) = 0, N({carrots} = N({salad}) = 0.6
- "I have no idea about A", "I do not know A"
 $\Pi(A) = 1, N(A) = 0$

POSSIBILITY VS PROBABILITY

Probability

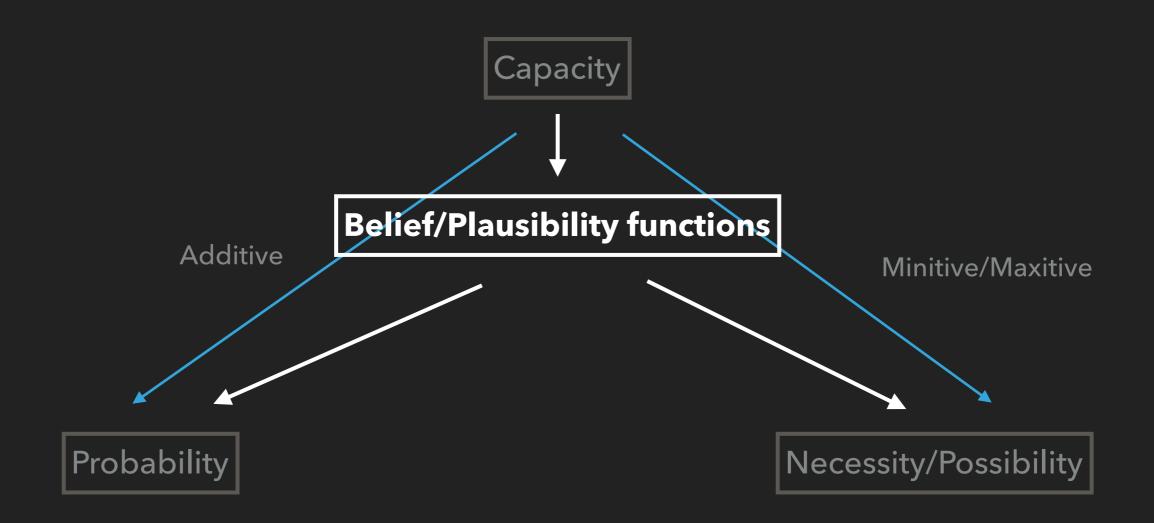
Possibility

$P(A) = \sum_{a \in A} p(a)$	$\Pi(A) = \sup_{a \in A} \{\pi(a)\}$
$\sum_{a \in X} p(a) = 1$	$\exists a, \pi(a) = 1$
$P(A) = 1 - P(A^c)$	$\Pi(A) = 1 - N(A^c)$ $\Pi(A) + \Pi(A^c) \ge 1$

BOOLEAN POSSIBILITY DISTRIBUTION

- A Boolean possibility distribution is a function $\pi: X \mapsto \{0,1\}$
- If X is a set of propositional variables, then π is a partial truth assignment
- ► X ={v1,v2,v3,v4}
- $\pi(v1) = 1(true), \pi(v2) = 1(true), \pi(v3) = 0(false)$
- v4 undefined

BELIEF FUNCTIONS AND CAPACITIES



BELIEF FUNCTION

- Evidence theory
 - "A mathematical theory of evidence", Shafer, 1976
 - belief/plausibility functions: totally monotone/ alternating normalized capacities
- Dempster-Shafer theory
 - Dempster (1967) used the names lower and upper probabilities

THE IDEA

- To associate probabilities to incomplete and imprecise observations
 - A radar measuring the speed of vehicles is imprecise, it only returns an interval
 - I have a king of clubs in my hand and I reveal that it is a black card. Concerning the set {♠,♣,♡,◊} you have an incomplete information
- The true outcome lies in a set, but the exact value is unknown

MASS FUNCTION

- X a set of outcomes of an experiment
- $A \subseteq X \text{ an event}$
- We associate to an event a (belief) mass distribution $m: 2^X \mapsto [0,1]$ such that
 - $m(\emptyset) = 0$ (normalization)
 - $\sum_{A \subseteq X} m(A) = 1 \text{ (m is a probability distribution)}$

MASS FUNCTION

- The card is black: $m(\{ \diamondsuit, \clubsuit \}) = 1$
 - I am certain that the card is spade or club
- m(A) represents the belief committed to A, not to its subsets
 - The fact that the card is black does not tell anything on the fact it is a club or a spade
- Focal sets: m(A) >0

ON THE INTERPRETATION OF M

- m(A) is the probability that the agent only knows that x is in A -> Epistemic point of view
- ▶ It can be non-monotonic: $A \subseteq B$, $m(B) \leq m(A)$ if the agent is sure enough that x in A
- m(X) = 1 the agent knows nothing

BELIEF AND PLAUSIBILITY FUNCTIONS

• Belief function $Bel : 2^X \mapsto [0,1]$

Bel(A) =
$$\sum_{B \subseteq A} m(B)$$

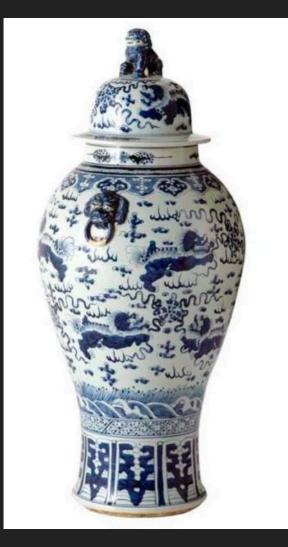
- The total mass of belief certainly committed to A
- ▶ Plausibility function $Pl : 2^X \mapsto [0,1]$

$$Pl(A) = \sum_{B \cap A \neq \emptyset} m(B)$$

- The total mass of belief possibly related to A
- ▶ $Bel(A) \le Pl(A), Pl(A) = 1 Bel(A^c)$ (as it was for possibility/necessity)

EXAMPLE: CHINESE VASE

In an antique shop you see a wonderful, expensive vase



<u>oroa.com</u>, 1355€

<u>amazon.com</u>, 9.39€

EXAMPLE: CHINESE VASE

- X= {genuine, counterfeit}
- CASE 1: not an expert, total ignorance
 - total ignorance: m({genuine})=m({counterfeit}) = 0, m(X) =1
 - Bel({genuine})=Bel({counterfeit})=0
 - Pl({genuine})=Pl({counterfeit}) = 1

EXAMPLE: CHINESE VASE

- X= {genuine, counterfeit}
- CASE 2: expert, there are as many clues in favor of genuine than of counterfeit
 - m({genuine})=m({counterfeit}) = 1/2, m(X) = 0
 - Bel({genuine})=Bel({counterfeit})=1/2
 - Pl({genuine})=Pl({counterfeit}) = 1/2
- In probability theory the two cases (expert/non expert) are not distinguishable
 - P(genuine)=P(counterfeit)=1/2

COMBINING EVIDENCE: DEMPSTER'S RULE

m1, m2 two mass distributions, both reliable

• $m_{1,2}(\emptyset) = 0$ • $m_{1,2}(A) = \frac{1}{1-k} \sum_{B \cap C = A} m_1(B)m_2(C)$ where $K = \sum_{B \cap C = \emptyset} m_1(B)m_2(C)$

K is a measure of conflict

DEMPSTER'S RULE: (COUNTERINTUITIVE) EXAMPLE

- Doctor A: illness a with 99%, illness b with 1% certainty
- Doctor B: illness c with 99%, illness b with 1% certainty
- ➤ X = {a,b,c}
- m1({a})=0.99 m1({b})=0.01
- m2({c})=0.99 m1({b})=0.01
- K = 0.99*0.99+0.99*0.01+0.01*0.99 = 0.9999

 $m_{1,2}(\{a\}) = m_{1,2}(\{c\}) = 0, m_{1,2}(\{b\}) = 1$

OTHER RULES

Not normalized:
$$m_{1,2}(A) = \sum_{B \cap C = A} m_1(B)m_2(C)$$

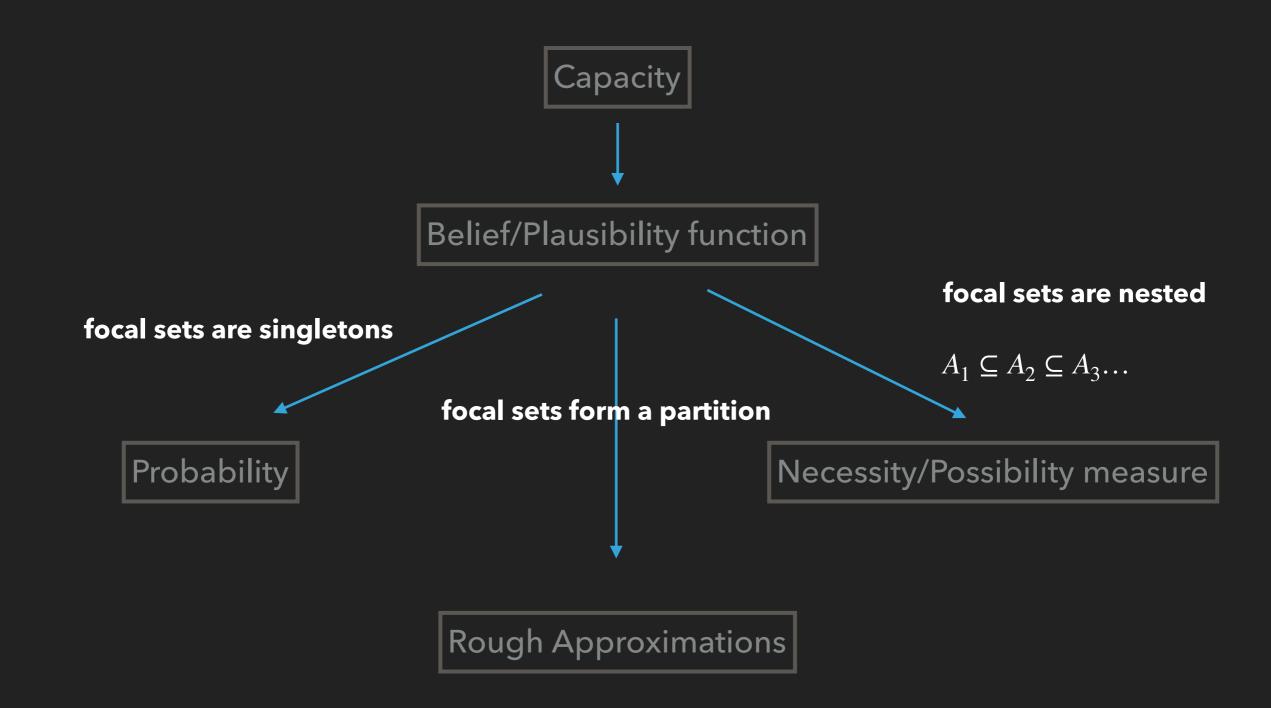
•
$$m_{1,2}(\{a\}) = m_{1,2}(\{c\}) = 0, m_{1,2}(\{b\}) = 0.0001$$

- Rule of thumb:
 - normalized in closed world hypothesis
 - Non-normalized in open world hypothesis
- > m1, m2 two mass distributions, at least one reliable

$$(m_1 \cup m_2)(A) = \sum_{B \cup C = A} m_1(B)m_2(C)$$

Many others...

BELIEF FUNCTIONS AND CAPACITIES



QUALITATIVE CAPACITY

- A capacity on a universe X is a function $\mu : 2^X \mapsto L$
- L a non-numerical totally ordered set representing terms pertaining to belief
- L = {zero, very low, low, medium, high, very high, top}
- Similar theories to the quantitative case can be developed

SOME BIBLIOGRAPHY

- M. Grabisch, "Set Functions, Games and Capacities in Decision Making", Springer, 2016
- Da "A Guided Tour of Artificial Intelligence Research", (P. Marquis O. Papini, H. Prade, Eds), Springer, 2020
 - T. Denoeux, D. Dubois, H. Prade "Representations of Uncertainty in AI: probability and possibility", pp. 69-117 <u>https://doi.org/</u> <u>10.1007/978-3-030-06164-7_3</u>
 - T. Denoeux, D. Dubois, H. Prade"Representations of Uncertainty in Al: beyond probability and possibility", pp. 119-150 <u>https://</u> <u>doi.org/10.1007/978-3-030-06164-7_4</u>

TOTALLY MONOTONE CAPACITY

- A capacity μ is totally monotone if
- $\forall k \geq 2$ it is k-monotone

$$A_1, \dots, A_k \quad \mu(\cup A_i) \ge \sum_{I \subseteq \{1, \dots, k\}} (-1)^{|I|+1} (\mu(\cap_{i \in I} A_i))$$

A generalized version of

$$|\cup A_i| = \sum_{I \subseteq \{1, \dots, k\}} (-1)^{|I|+1} (\cap_{i \in I} A_i)$$