
Chapter 3 - Coulomb collisions in plasmas

1 Rosenbluth’s potentials

Calculate one of the following two Rosenbluth’s potentials
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and verify that
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where erf(x) = 2√
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exp(−y2)dy is the error function and x = v/vth. Here
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2T/mF is the thermal velocity of the field species.

Hint: In order to evaluate the integrals use the variable ξ = v′ − v and
observe that dξ = dv′. It is also convenient to use spherical coordinates such
that dξ = ξ2dξdφd cos θ. θ is here the angle between v and v′. Note also that
v′2 = v2 + ξ2 + 2vξ cos θ1

2 Slowing down of a fast electron beam in a
plasma

A fast electron beam is in a thermal plasma. The electron beam velocity is much
higher than the bulk thermal ion and electron velocities. The bulk plasma ions
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have a charge +Ze and the charge neutrality condition is given by ne = Zni.

� Since the beam velocity is much higher than the bulk plasma speed, we

can approximate (v2− 2v · v′+ v′2)
1
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. Show that, in

this approximation, the Rosenbluth potentials become
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where mT is the test species mass (here the fast electrons), µ is the reduced
mass and nF the bulk plasma density. Write an explicit expression for
hF (v) when the field species are ions and electrons.

� Assume that the electron beam has a velocity oriented along the z axis
so that v ≈ vz. Show that the Fokker-Planck equation for the velocity
distribution of the test species FT (vz) becomes
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where the sum is over the two field species, ions (i) and electrons (e).

� Considering charge neutrality and the fact that vz >> vTi
, show that
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� Finally verify that FT (vz) is given by
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How does the electron beam thermal velocity compare with the bulk ion
and electron thermal velocities?
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