Orthopairs: Knowledge Representation

Davide Ciucci
Department of Informatics, Systems and Communication University of Milan-Bicocca
Uncertainty in Computer Science

Outline

Orthopairs in Knowledge Representation
Orthopair Definition
Other operations on orthopairs
Rough sets as orthopairs

Orthopartitions

Outline

Orthopairs in Knowledge Representation
Orthopair Definition
Other operations on orthopairs
Rough sets as orthopairs

Orthopartitions

Outline

Orthopairs in Knowledge Representation
Orthopair Definition
Other operations on orthopairs
Rough sets as orthopairs

Orthopartitions

Orthopair: a set with uncertainty

- Orthopair: a pair of orthogonal or disjoint subsets (A, B) of a given universe $\mathrm{X}: A, B \in X$ and $A \cap B=\emptyset$

Orthopair: a set with uncertainty

- Orthopair: a pair of orthogonal or disjoint subsets (A, B) of a given universe $X: A, B \in X$ and $A \cap B=\emptyset$
- Nested pairs: $(A, C): A \subseteq C \subseteq X$, equivalent to orthopairs $C=B^{c}$

Orthopair: a set with uncertainty

- Orthopair: a pair of orthogonal or disjoint subsets (A, B) of a given universe $X: A, B \in X$ and $A \cap B=\emptyset$
- Nested pairs: $(A, C): A \subseteq C \subseteq X$, equivalent to orthopairs $C=B^{c}$
- Interpretation: usually $(P, N) \mathrm{P}=$ positive, $\mathrm{N}=$ negative
- Boundary Bnd $=(P \cup N)^{c} \longrightarrow$ a tri-partition of the universe

Orthopair: a set with uncertainty

- Orthopair: a pair of orthogonal or disjoint subsets (A, B) of a given universe $X: A, B \in X$ and $A \cap B=\emptyset$
- Nested pairs: $(A, C): A \subseteq C \subseteq X$, equivalent to orthopairs $C=B^{c}$
- Interpretation: usually $(P, N) \mathrm{P}=$ positive, $\mathrm{N}=$ negative
- Boundary Bnd $=(P \cup N)^{c} \longrightarrow$ a tri-partition of the universe
- Remark: also $(P, B n d)$ and $(N, B n d)$ are orthopairs!

Examples

- (odd numbers, even numbers), boundary is empty

Examples

- (odd numbers, even numbers), boundary is empty
- (odd numbers, $\{2,4\}$), Bnd $=\{6,8, \ldots\}$

Examples

- (odd numbers, even numbers), boundary is empty
- (odd numbers, $\{2,4\}$), Bnd $=\{6,8, \ldots\}$
- (\{Black hair, Brown hair\}, \{Blonde Hair\}) Bnd $=\{$ Red hair, $\ldots\}$

Examples

- (odd numbers, even numbers), boundary is empty
- (odd numbers, $\{2,4\}$), Bnd $=\{6,8, \ldots\}$
- (\{Black hair, Brown hair\}, \{Blonde Hair\}) Bnd $=\{$ Red hair, $\ldots\}$
- (\emptyset, \emptyset), Bnd $=X$

Examples

- (odd numbers, even numbers), boundary is empty
- (odd numbers, $\{2,4\}$), Bnd $=\{6,8, \ldots\}$
- (\{Black hair, Brown hair\}, \{Blonde Hair\}) Bnd $=\{$ Red hair, $\ldots\}$
- (\emptyset, \emptyset), Bnd $=X$
- $\left\{x_{1}, x_{2}, x_{3}\right\}$ Boolean variables, x_{1} is true, x_{2} is false $\left(\left\{x_{1}\right\},\left\{x_{2}\right\}\right)$ Bnd $=\left\{x_{3}\right\}, x_{3}$ is unknown

A few definitions

- A set S is consistent with an orthopair $O=(P, N)$ if

$$
x \in P \rightarrow x \in S \text { and } x \in N \rightarrow x \notin S
$$

Example: $O=(\{1,3\},\{2,4\})$
$S_{1}=\{1,3\}, S_{2}=\{1,3,5\}$ are consistent with O
$S_{3}=\{1,2,3,5\}, S_{4}=\{1,5\}$ are not consistent with O

A few definitions

- A set S is consistent with an orthopair $O=(P, N)$ if

$$
x \in P \rightarrow x \in S \text { and } x \in N \rightarrow x \notin S
$$

Example: $O=(\{1,3\},\{2,4\})$
$S_{1}=\{1,3\}, S_{2}=\{1,3,5\}$ are consistent with O
$S_{3}=\{1,2,3,5\}, S_{4}=\{1,5\}$ are not consistent with O

- O_{1}, O_{2} are disjoint if
- $P_{1} \cap P_{2}=\emptyset$
- $P_{1} \cap B n d_{2}=\emptyset$ and $B n d_{1} \cap P_{2}=\emptyset$

Orthopairs - how to obtain

- Rough sets $\left(L(H), U^{c}(H)\right)$ or $(L(H), \operatorname{Bnd}(H))$

Orthopairs - how to obtain

- Rough sets $\left(L(H), U^{c}(H)\right)$ or $(L(H), \operatorname{Bnd}(H))$
- Partial models X Boolean variables some variables are true, some are false, some unknown \rightarrow it is possible to define the set $E_{(P, N)}$ of valuations which satisfy an orthopair

Orthopairs - how to obtain

- Rough sets $\left(L(H), U^{c}(H)\right)$ or $(L(H), \operatorname{Bnd}(H))$
- Partial models X Boolean variables some variables are true, some are false, some unknown \rightarrow it is possible to define the set $E_{(P, N)}$ of valuations which satisfy an orthopair
Example: $(P, N)=\left(\left\{x_{1}, x_{4}\right\},\left\{x_{3}\right\}\right)$
$v_{1}: x_{1}=x_{2}=x_{4}=$ true, $x_{3}=$ false
$v_{2}: x_{1}=x_{4}=$ true, $x_{2}=x_{3}=$ false both satisfy (P, N)

Orthopairs - how to obtain

- Rough sets $\left(L(H), U^{c}(H)\right)$ or $(L(H), \operatorname{Bnd}(H))$
- Partial models X Boolean variables some variables are true, some are false, some unknown \rightarrow it is possible to define the set $E_{(P, N)}$ of valuations which satisfy an orthopair
Example: $(P, N)=\left(\left\{x_{1}, x_{4}\right\},\left\{x_{3}\right\}\right)$
$v_{1}: x_{1}=x_{2}=x_{4}=$ true, $x_{3}=$ false
$v_{2}: x_{1}=x_{4}=$ true, $x_{2}=x_{3}=$ false both satisfy (P, N)
- Shadowed sets: an approximation of a fuzzy set through $\{0,[0,1], 1\}$

Orthopairs - how to obtain

- Rough sets $\left(L(H), U^{c}(H)\right)$ or $(L(H), \operatorname{Bnd}(H))$
- Partial models X Boolean variables some variables are true, some are false, some unknown \rightarrow it is possible to define the set $E_{(P, N)}$ of valuations which satisfy an orthopair
Example: $(P, N)=\left(\left\{x_{1}, x_{4}\right\},\left\{x_{3}\right\}\right)$
$v_{1}: x_{1}=x_{2}=x_{4}=$ true, $x_{3}=$ false
$v_{2}: x_{1}=x_{4}=$ true, $x_{2}=x_{3}=$ false both satisfy (P, N)
- Shadowed sets: an approximation of a fuzzy set through $\{0,[0,1], 1\}$
- Bipolar Information: positive/negative preferences, trust/distrust (in Social Network Analysis), ...

Generalizations

Generalizations

- Fuzzy orthopairs $=($ Atanassov $)$ Intuitionistic Fuzzy Sets IFSs are pairs of fuzzy sets $f_{P}, f_{N}: X \mapsto[0,1]$ such that for all $x \in X, f_{P}(x)+f_{N}(x) \leq 1$
- "Generalized Orthopair Fuzzy Sets", R. Yager, 2017

Generalizations

- Fuzzy orthopairs $=($ Atanassov $)$ Intuitionistic Fuzzy Sets IFSs are pairs of fuzzy sets $f_{P}, f_{N}: X \mapsto[0,1]$ such that for all $x \in X, f_{P}(x)+f_{N}(x) \leq 1$
- "Generalized Orthopair Fuzzy Sets", R. Yager, 2017
- Possibility Theory: set of valuations E are arbitrary The class of orthopairs coincides with the particular class of hyper-rectangular Boolean possibility distributions on the space $\{0,1\}^{n}$

3-Valued Logic and Orthopairs

- Let f be a three valued set on the universe $X, f: X \mapsto\left\{0, \frac{1}{2}, 1\right\}$

3-Valued Logic and Orthopairs

- Let f be a three valued set on the universe $X, f: X \mapsto\left\{0, \frac{1}{2}, 1\right\}$ From f to an orthopair $\left(A_{1}, A_{0}\right)$

$$
\begin{array}{lr}
A_{1}:=\{x: f(x)=1\} & \text { The certainty domain } \\
A_{0}:=\{x: f(x)=0\} & \text { The impossibility domain }
\end{array}
$$

3-Valued Logic and Orthopairs

- Let f be a three valued set on the universe $X, f: X \mapsto\left\{0, \frac{1}{2}, 1\right\}$ From f to an orthopair $\left(A_{1}, A_{0}\right)$

$$
\begin{array}{rr}
A_{1}:=\{x: f(x)=1\} & \text { The certainty domain } \\
A_{0}:=\{x: f(x)=0\} & \text { The impossibility domain }
\end{array}
$$

- From an orthopair (A, B) to a three valued set f

$$
f(x)= \begin{cases}1 & x \in A \\ 0 & x \in B \\ \frac{1}{2} & \text { ortherwise }\end{cases}
$$

3-Valued Logic and Orthopairs

- Let f be a three valued set on the universe $X, f: X \mapsto\left\{0, \frac{1}{2}, 1\right\}$ From f to an orthopair $\left(A_{1}, A_{0}\right)$

$$
\begin{array}{rr}
A_{1}:=\{x: f(x)=1\} & \text { The certainty domain } \\
A_{0}:=\{x: f(x)=0\} & \text { The impossibility domain }
\end{array}
$$

- From an orthopair (A, B) to a three valued set f

$$
f(x)= \begin{cases}1 & x \in A \\ 0 & x \in B \\ \frac{1}{2} & \text { ortherwise }\end{cases}
$$

All three-valued connectives can be translated to orthopairs

Conjunctions on Orthopairs

Conjunctions on Orthopairs

n	$\left(P_{1}, N_{1}\right) *\left(P_{2}, N_{2}\right)$	
1	$\left(N_{1}^{c} \cap N_{2}^{c}, N_{1} \cup N_{2}\right)$	
2	$\left(\left(P_{1} \cap N_{2}^{c}\right) \cup\left(P_{2} \cap N_{1}^{c}\right), N_{1} \cup N_{2}\right)$	
3	$\left(P_{1} \cap N_{2}^{c}, N_{1} \cup N_{2}\right)$	
4	$\left(N_{1}^{c} \cap P_{2}, N_{1} \cup N_{2}\right)$	
5	$\left(P_{1} \cap P_{2}, N_{1} \cup N_{2}\right)$	
6	$\left(N_{1}^{c} \cap P_{2}, N_{1} \cup P_{2}^{c}\right)$	
7	$\left(P_{1} \cap P_{2}, N_{1} \cup P_{2}^{c}\right)$	
8	$\left(P_{1} \cap P_{2}, P_{1}^{c} \cup P_{2}^{c}\right)$	
9	$\left(P_{1} \cap P_{2}, P_{1}^{c} \cup N_{2}\right)$	
10	$\left(N_{1}^{c} \cap P_{2},\left(P_{1}^{c} \cap P_{2}^{c}\right) \cup N_{1} \cup N_{2}\right)$	
11	$\left(P_{1} \cap P_{2},\left(P_{1}^{c} \cap P_{2}^{c}\right) \cup N_{1} \cup N_{2}\right)$	
12	$\left(P_{1} \cap N_{2}^{c}, P_{1}^{c} \cup N_{2}\right)$	
13	$\left(P_{1} \cap N_{2}^{c},\left(P_{1}^{c} \cap P_{2}^{c}\right) \cup N_{1} \cup N_{2}\right)$	
14	$\left(\left(P_{1} \cup P_{2}\right) \cap N_{1}^{c} \cap N_{2}^{c},\left(P_{1}^{c} \cap P_{2}^{c}\right) \cup U_{1} \cup U_{2}\right)$	

Nested pairs - implications

n	$\left(L_{1}, U_{1}\right) \Rightarrow\left(L_{2}, U_{2}\right)$	
1	$\left(U_{1} \rightarrow L_{2}, U_{1} \rightarrow L_{2}\right)$	Sette
2	$\left(U_{1} \rightarrow L_{2},\left(L_{1} \rightarrow L_{2}\right) \cap\left(U_{1} \rightarrow U_{2}\right)\right)$	Sobociński
3	$\left(U_{1} \rightarrow L_{2}, L_{1} \rightarrow L_{2}\right)$	
4	$\left(U_{1} \rightarrow L_{2}, U_{1} \rightarrow U_{2}\right)$	Jaśkowski
5	$\left(U_{1} \rightarrow L_{2}, L_{1} \rightarrow U_{2}\right)$	Kleene
6	$\left(U_{1} \rightarrow U_{2}, U_{1} \rightarrow U_{2}\right)$	
7	$\left(U_{1} \rightarrow U_{2}, L_{1} \rightarrow U_{2}\right)$	Bochvar
8	$\left(L_{1} \rightarrow U_{2}, L_{1} \rightarrow U_{2}\right)$	Nelson
9	$\left(L_{1} \rightarrow L_{2}, L_{1} \rightarrow U_{2}\right)$	Gödel
10	$\left(\left(L_{1} \rightarrow L_{2}\right) \cap\left(U_{1} \rightarrow U_{2}\right), U_{1} \rightarrow U_{2}\right)$	Łukasiewicz
11	$\left.\left(L_{1} \rightarrow L_{2}\right) \cap\left(U_{1} \rightarrow U_{2}\right), L_{1} \rightarrow U_{2}\right)$	
12	$\left(L_{1} \rightarrow L_{2}, L_{1} \rightarrow L_{2}\right)$	
13	$\left(\left(L_{1} \rightarrow L_{2}\right) \cap\left(U_{1} \rightarrow U_{2}\right), L_{1} \rightarrow L_{2}\right)$	

Outline

Orthopairs in Knowledge Representation
Orthopair Definition
Other operations on orthopairs
Rough sets as orthopairs

Orthopartitions

Order relations 1/2

Pointwise Ordering

Order relations 1/2

Pointwise Ordering

Order on V	Order on $O(X)$	Symbol	Type
$0 \leq \frac{1}{2} \leq 1$	$P_{1} \subseteq P_{2}, N_{2} \subseteq N_{1}$	\leq_{t}	Total
$\frac{1}{2} \leq 1 \leq 0$	$N_{1} \subseteq N_{2}, B n d_{2} \subseteq B n d_{1}$	\leq_{N}	Total
$\frac{1}{2} \leq 0 \leq 1$	$P_{1} \subseteq P_{2}, B n d_{2} \subseteq B n d_{1}$	\leq_{P}	Total
$\frac{1}{2} \leq 1, \frac{1}{2} \leq 0$	$P_{1} \subseteq P_{2}, N_{1} \subseteq N_{2}$	≤ 1	Partial
$0 \leq \frac{1}{2}, 0 \leq 1$	$P_{1} \subseteq P_{2}, B n d_{1} \subseteq B n d_{2}$	$\leq P B$	Partial
$1 \leq \frac{1}{2}, 1 \leq 0$	$N_{1} \subseteq N_{2}, B_{1} \subseteq d_{1} \subseteq B n d_{2}$	$\leq N B$	Partial

- \leq_{t} truth ordering: O_{2} is "more true" than O_{1}
- \leq_{1} knowledge ordering: O_{2} is more informative than the orthopair O_{2} (boundary is smaller)

Aggregation operations from order relations

From the three total order we derive three lattice structures:

Aggregation operations from order relations

From the three total order we derive three lattice structures:

- Kleene meet and join from truth ordering (usual min/max)

$$
\begin{aligned}
& \left(P_{1}, N_{1}\right) \sqcap_{t}\left(P_{2}, N_{2}\right):=\left(P_{1} \cap P_{2}, N_{1} \cup N_{2}\right) \\
& \left(P_{1}, N_{1}\right) \sqcup_{t}\left(P_{2}, N_{2}\right):=\left(P_{1} \cup P_{2}, N_{1} \cap N_{2}\right)
\end{aligned}
$$

- Weak Kleene meet and join (not in the table of 14 conjunctions)

$$
\begin{aligned}
& \left(P_{1}, N_{1}\right) \sqcap_{P}\left(P_{2}, N_{2}\right):=\left(P_{1} \cap P_{2},\left(N_{1} \cap N_{2}\right) \cup\left[\left(N_{1} \cap P_{2}\right) \cup\left(N_{2} \cap P_{1}\right)\right]\right) \\
& \left.\left(P_{1}, N_{1}\right) \sqcap_{N}\left(P_{2}, N_{2}\right):=\left(\left(P_{1} \cap P_{2}\right) \cup\left[\left(P_{1} \cap N_{2}\right) \cup\left(P_{2} \cap N_{1}\right)\right], N_{1} \cap N_{2}\right)\right)
\end{aligned}
$$

- Sobocinski meet and join

$$
\begin{aligned}
& \left(P_{1}, N_{1}\right) \sqcup_{N}\left(P_{2}, N_{2}\right):=\left(P_{1} \backslash N_{2} \cup P_{2} \backslash N_{1}, N_{1} \cup N_{2}\right) \\
& \left(P_{1}, N_{1}\right) \sqcup_{P}\left(P_{2}, N_{2}\right):=\left(P_{1} \cup P_{2}, N_{1} \backslash P_{2} \cup N_{2} \backslash P_{1}\right)
\end{aligned}
$$

Conjunction and disjunction from $\Pi_{\text {/ }}$

Meet and join with respect to information ordering are

Conjunction and disjunction from $\Pi_{/}$

Meet and join with respect to information ordering are

- The pessimistic combination operator

$$
\left(P_{1}, N_{1}\right) \sqcap_{l}\left(P_{2}, N_{2}\right):=\left(P_{1} \cap P_{2}, N_{1} \cap N_{2}\right)
$$

Conjunction and disjunction from $\Pi_{\text {/ }}$

Meet and join with respect to information ordering are

- The pessimistic combination operator

$$
\left(P_{1}, N_{1}\right) \sqcap_{l}\left(P_{2}, N_{2}\right):=\left(P_{1} \cap P_{2}, N_{1} \cap N_{2}\right)
$$

- the optimistic combination operator

$$
\left(P_{1}, N_{1}\right) \sqcup_{I}\left(P_{2}, N_{2}\right):=\left(P_{1} \cup P_{2}, N_{1} \cup N_{2}\right)
$$

(it makes sense whenever the two orthopairs are consistent:
$P_{1} \cap N_{2}=\emptyset$ and $\left.P_{2} \cap N_{1}=\emptyset\right)$

Difference

Several ways to define a difference. For instance

- $O_{1} \ominus O_{2}:=\left(P_{1} \backslash N_{2}, N_{1} \backslash P_{2}\right)$

The consensus (agreement) operation can then be defined $O_{1} \odot O_{2}=\left(O_{1} \ominus O_{2}\right) \sqcup_{l}\left(O_{2} \ominus O_{1}\right)$

Difference

Several ways to define a difference. For instance

- $O_{1} \ominus O_{2}:=\left(P_{1} \backslash N_{2}, N_{1} \backslash P_{2}\right)$

The consensus (agreement) operation can then be defined $O_{1} \odot O_{2}=\left(O_{1} \ominus O_{2}\right) \sqcup_{l}\left(O_{2} \ominus O_{1}\right)$

- Example
$O_{1}=\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right): x_{1}, x_{2}$ are true x_{3}, x_{4} are false $O_{2}=\left(\left\{x_{1}, x_{3}, x_{5}\right\},\left\{x_{2}, x_{4}, x_{6}\right\}\right): x_{1}, x_{3}, x_{5}$ are true x_{2}, x_{4}, x_{6} are false
$O_{1} \odot O_{2}=\left(\left\{x_{1}, x_{5}\right\},\left\{x_{4}, x_{6}\right\}\right)$

Use of operations: some example

- If two orthopairs represent two agents opinion on the same fact, then
- we can reach an agreement between them using the operator \odot;
- can be combined in a pessimistic or optimistic way, using the operations Π_{l}, \sqcup_{l}

Use of operations: some example

- If two orthopairs represent two agents opinion on the same fact, then
- we can reach an agreement between them using the operator \odot;
- can be combined in a pessimistic or optimistic way, using the operations Π_{l}, \sqcup_{l}
- Sobocinski operations are standard conjunction and disjunction operations on conditional events;

Use of operations: some example

- If two orthopairs represent two agents opinion on the same fact, then
- we can reach an agreement between them using the operator \odot;
- can be combined in a pessimistic or optimistic way, using the operations Π_{l}, \sqcup_{l}
- Sobocinski operations are standard conjunction and disjunction operations on conditional events;
- If we want to aggregate two shadowed sets, then a first choice is to use Kleene lattice operations, that corresponds to min and max on fuzzy sets;

Use of operations: some example

- If two orthopairs represent two agents opinion on the same fact, then
- we can reach an agreement between them using the operator \odot;
- can be combined in a pessimistic or optimistic way, using the operations Π_{l}, \sqcup_{l}
- Sobocinski operations are standard conjunction and disjunction operations on conditional events;
- If we want to aggregate two shadowed sets, then a first choice is to use Kleene lattice operations, that corresponds to min and max on fuzzy sets;
- In case of (three-way) decision theory, where the regions of the orthopair represent accept and reject, operations can be used to aggregate two different decisions on the same subject

Outline

Orthopairs in Knowledge Representation
Orthopair Definition
Other operations on orthopairs
Rough sets as orthopairs

Orthopartitions

Rough Sets and three-valued logics

- $\mathcal{R}(X):=\{(I(A), u(A)): A \subseteq X\}$ is a subset of all nested pairs, and equivalently, of all orthopairs
\rightarrow three-valued connectives can be inherited through orthopairs

Rough Sets and three-valued logics

- $\mathcal{R}(X):=\{(I(A), u(A)): A \subseteq X\}$ is a subset of all nested pairs, and equivalently, of all orthopairs
\rightarrow three-valued connectives can be inherited through orthopairs
- Problem

Given $(I(A), u(A)) \odot(I(B), u(B))$ does there exist an operation - on 2^{X} such that

$$
(I(A \cdot B), u(A \cdot B)) ?
$$

Rough Sets and three-valued logics

- $\mathcal{R}(X):=\{(I(A), u(A)): A \subseteq X\}$ is a subset of all nested pairs, and equivalently, of all orthopairs
\rightarrow three-valued connectives can be inherited through orthopairs
- Problem

Given $(I(A), u(A)) \odot(I(B), u(B))$ does there exist an operation - on 2^{X} such that $(I(A \cdot B), u(A \cdot B))$?

- Answer: yes... with interpretation problems

All the 14 implications and 14 conjunctions defined on orthopairs are closed on $\mathcal{R}(X)$

Conjunctions on rough sets

$$
\begin{array}{ll}
r(A) *_{1} & r(B)=r(u(A) \cap u(B)) \\
r(A) *_{2} & r(B)=r([A \cap u(B)] \cup[u(A) \cap B]) \\
r(A) *_{3} & r(B)=r(A \cap u(B)) \\
r(A) *_{4} & r(B)=r(u(A) \cap B) \\
r(A) *_{6} & r(B)=r(u(A) \cap I(B)) \\
r(A) *_{7} & r(B)=r(A \cap I(B)) \\
r(A) *_{8} & r(B)=r(I(A) \cap I(B)) \quad A \cap B \\
r(A) *_{9} & r(B)=r(I(A) \cap B) \\
r(A) *_{10} r(B)=r([I(A) \cup I(B)] \cap u(A) \cap B) \\
r(A) *_{11} r(B)=r([I(A) \cup I(B)] \cap A \cap B) \\
r(A) *_{12} r(B)=r(I(A) \cap u(B)) \\
r(A) *_{13} r(B)=r([I(A) \cup I(B)] \cap A \cap u(B)) \\
r(A) *_{14} r(B)=r((I(A) \cup I(B)) \cap u(A) \cap u(B))
\end{array}
$$

Implications on rough sets

Implications on rough sets

$$
\begin{array}{ll}
r(A) \Rightarrow_{1} r(B)=r\left(u^{c}(A) \cup I(B)\right) \\
r(A) \Rightarrow_{2} & r(B)=r\left(\left[A^{c} \cup I(B)\right] \cap\left[I\left(A^{c}\right) \cup B\right]\right) \\
r(A) \Rightarrow_{3} r(B)=r\left(A^{c} \cup I(B)\right) \\
r(A) \Rightarrow_{4} r(B)=r\left(I\left(A^{c}\right) \cup B\right) \\
r(A) \Rightarrow_{5} r(B)=r\left(\left(A^{c} \cup B\right) \cap\left(\left(A^{c} \cup I(B)\right) \cup\left(I\left(A^{c} \cup B\right)^{c}\right)\right)\right) \\
r(A) \Rightarrow_{6} & r(B)=r\left(u^{c}(A) \cup u(B)\right) \\
r(A) \Rightarrow_{7} r(B)=r\left(A^{c} \cup u(B)\right) \\
r(A) \Rightarrow_{8} & r(B)=r\left(I^{c}(A) \cup u(B)\right) \\
\left.r(A) \Rightarrow_{9} r(B)=r\left(I^{c}(A) \cup I(B)\right)\right) & A^{c} \cup B \\
r(A) \Rightarrow_{10} r(B)=r\left(\left[I^{c}(A) \cap u(B)\right] \cup B \cup u^{c}(A)\right) \\
r(A) \Rightarrow_{11} r(B)=r\left(\left[l^{c}(A) \cap u(B)\right] \cup B \cup A^{c}\right) \\
r(A) \Rightarrow_{12} r(B)=r\left(u\left(A^{c}\right) \cup I(B)\right) \\
r(A) \Rightarrow_{13} r(B)=r\left(\left[I^{c}(A) \cap u(B)\right] \cup A^{c} \cup I(B)\right) \\
r(A) \Rightarrow_{14} r(B)=r\left(\left[\left(I^{c}(A) \cup(B)\right) \cap\left(u^{c}(A) \cup u(B)\right)\right]\right)
\end{array}
$$

The lattice (min/max) operations case (1)

Let $r(A)=\langle L(A), U(A)\rangle, r(B)=\langle L(B), U(B)\rangle$ two rough sets

The lattice (min/max) operations case (1)

Let $r(A)=\langle L(A), U(A)\rangle, r(B)=\langle L(B), U(B)\rangle$ two rough sets Intersection and union are usually defined as

$$
\begin{aligned}
& r(A) \sqcap r(B)=(L(A) \cap L(B), U(A) \cap U(B)) \\
& r(A) \sqcup r(B)=(L(A) \cup L(B), U(A) \cup U(B))
\end{aligned}
$$

The lattice (min/max) operations case (1)

Let $r(A)=\langle L(A), U(A)\rangle, r(B)=\langle L(B), U(B)\rangle$ two rough sets Intersection and union are usually defined as

$$
\begin{aligned}
& r(A) \sqcap r(B)=(L(A) \cap L(B), U(A) \cap U(B)) \\
& r(A) \sqcup r(B)=(L(A) \cup L(B), U(A) \cup U(B))
\end{aligned}
$$

Are the elements $r(A) \sqcap r(B)$ and $r(A) \sqcup r(B)$ rough sets?

The lattice (min/max) operations case (1)

Let $r(A)=\langle L(A), U(A)\rangle, r(B)=\langle L(B), U(B)\rangle$ two rough sets Intersection and union are usually defined as

$$
\begin{aligned}
r(A) \sqcap r(B) & =(L(A) \cap L(B), U(A) \cap U(B)) \\
r(A) \sqcup r(B) & =(L(A) \cup L(B), U(A) \cup U(B))
\end{aligned}
$$

Are the elements $r(A) \sqcap r(B)$ and $r(A) \sqcup r(B)$ rough sets?
That is we ask if there exists elements C, D such that

$$
r(C)=r(A) \sqcap r(B) \text { and } r(D)=r(A) \sqcup r(B)
$$

The lattice (min/max) operations case (1)

Let $r(A)=\langle L(A), U(A)\rangle, r(B)=\langle L(B), U(B)\rangle$ two rough sets Intersection and union are usually defined as

$$
\begin{aligned}
r(A) \sqcap r(B) & =(L(A) \cap L(B), U(A) \cap U(B)) \\
r(A) \sqcup r(B) & =(L(A) \cup L(B), U(A) \cup U(B))
\end{aligned}
$$

Are the elements $r(A) \sqcap r(B)$ and $r(A) \sqcup r(B)$ rough sets?
That is we ask if there exists elements C, D such that

$$
r(C)=r(A) \sqcap r(B) \text { and } r(D)=r(A) \sqcup r(B)
$$

In general $C \neq A \cap B$ and $D \neq A \cup B$

The lattice operation case (2)

Bonikowski proposal (1992)

- $C=[L(A) \cap L(B)] \cup Y$

The lattice operation case (2)

Bonikowski proposal (1992)

- $C=[L(A) \cap L(B)] \cup Y$
- a procedure to define Y which requires to choose an element inside an equivalence class

The lattice operation case (2)

Bonikowski proposal (1992)

- $C=[L(A) \cap L(B)] \cup Y$
- a procedure to define Y which requires to choose an element inside an equivalence class
- several possibilities to define Y

The lattice operation case (2)

Bonikowski proposal (1992)

- $C=[L(A) \cap L(B)] \cup Y$
- a procedure to define Y which requires to choose an element inside an equivalence class
- several possibilities to define Y

Gehrke, Walker proposal (1992)

The lattice operation case (2)

Bonikowski proposal (1992)

- $C=[L(A) \cap L(B)] \cup Y$
- a procedure to define Y which requires to choose an element inside an equivalence class
- several possibilities to define Y

Gehrke, Walker proposal (1992)
Banerjee, Chakraborty proposal (1996)

- $C^{\prime}=(A \cap B) \cup\left((A \cap U(B)) \cap\left(U(A \cap B)^{c}\right)\right)$

The lattice operation case (2)

Bonikowski proposal (1992)

- $C=[L(A) \cap L(B)] \cup Y$
- a procedure to define Y which requires to choose an element inside an equivalence class
- several possibilities to define Y

Gehrke, Walker proposal (1992)
Banerjee, Chakraborty proposal (1996)

- $C^{\prime}=(A \cap B) \cup\left((A \cap U(B)) \cap\left(U(A \cap B)^{c}\right)\right)$
- C^{\prime} is not symmetric in A, B !
- if $B=A^{c}$ (we want to compute $A \cap A^{c}$) then $C^{\prime} \neq \emptyset$!

The lattice operation case (2)

Bonikowski proposal (1992)

- $C=[L(A) \cap L(B)] \cup Y$
- a procedure to define Y which requires to choose an element inside an equivalence class
- several possibilities to define Y

Gehrke, Walker proposal (1992)
Banerjee, Chakraborty proposal (1996)

- $C^{\prime}=(A \cap B) \cup\left((A \cap U(B)) \cap\left(U(A \cap B)^{c}\right)\right)$
- C^{\prime} is not symmetric in A, B !
- if $B=A^{c}$ (we want to compute $A \cap A^{c}$) then $C^{\prime} \neq \emptyset$!

Dual situation for D (union)

Example

Let $X=\{a, b, c, d, e, f\}$ and $X_{1}=\{a, b, d\}$ and $X_{2}=\{c, e\}$

Example

Let $X=\{a, b, c, d, e, f\}$ and $X_{1}=\{a, b, d\}$ and $X_{2}=\{c, e\}$ Partition $\pi_{1}=\{a, b\},\{c, d\},\{e, f\}$

Example

Let $X=\{a, b, c, d, e, f\}$ and $X_{1}=\{a, b, d\}$ and $X_{2}=\{c, e\}$ Partition $\pi_{1}=\{a, b\},\{c, d\},\{e, f\}$

$$
r\left(X_{1}\right)=(\{a, b\},\{a, b, c, d\}) \quad r\left(X_{2}\right)=(\emptyset,\{c, d, e, f\})
$$

Example

Let $X=\{a, b, c, d, e, f\}$ and $X_{1}=\{a, b, d\}$ and $X_{2}=\{c, e\}$ Partition $\pi_{1}=\{a, b\},\{c, d\},\{e, f\}$

$$
\begin{aligned}
& r\left(X_{1}\right)=(\{a, b\},\{a, b, c, d\}) \quad r\left(X_{2}\right)=(\emptyset,\{c, d, e, f\}) \\
& C^{\prime}=\{c\} \quad r\left(C^{\prime}\right)=(\emptyset,\{c, d\})=r(\{a, b, d\}) \sqcap r(\{c, e\})
\end{aligned}
$$

Example

Let $X=\{a, b, c, d, e, f\}$ and $X_{1}=\{a, b, d\}$ and $X_{2}=\{c, e\}$ Partition $\pi_{1}=\{a, b\},\{c, d\},\{e, f\}$

$$
r\left(X_{1}\right)=(\{a, b\},\{a, b, c, d\}) \quad r\left(X_{2}\right)=(\emptyset,\{c, d, e, f\})
$$

$C^{\prime}=\{c\} \quad r\left(C^{\prime}\right)=(\emptyset,\{c, d\})=r(\{a, b, d\}) \sqcap r(\{c, e\})$ Also $r(\{d\})=(\emptyset,\{c, d\})$

Example

Let $X=\{a, b, c, d, e, f\}$ and $X_{1}=\{a, b, d\}$ and $X_{2}=\{c, e\}$ Partition $\pi_{1}=\{a, b\},\{c, d\},\{e, f\}$

$$
r\left(X_{1}\right)=(\{a, b\},\{a, b, c, d\}) \quad r\left(X_{2}\right)=(\emptyset,\{c, d, e, f\})
$$

$C^{\prime}=\{c\} \quad r\left(C^{\prime}\right)=(\emptyset,\{c, d\})=r(\{a, b, d\}) \sqcap r(\{c, e\})$
Also $r(\{d\})=(\emptyset,\{c, d\})$
Partition $\pi_{2}=\{a, e\},\{b, d\},\{c, f\}$

Example

Let $X=\{a, b, c, d, e, f\}$ and $X_{1}=\{a, b, d\}$ and $X_{2}=\{c, e\}$ Partition $\pi_{1}=\{a, b\},\{c, d\},\{e, f\}$

$$
r\left(X_{1}\right)=(\{a, b\},\{a, b, c, d\}) \quad r\left(X_{2}\right)=(\emptyset,\{c, d, e, f\})
$$

$C^{\prime}=\{c\} \quad r\left(C^{\prime}\right)=(\emptyset,\{c, d\})=r(\{a, b, d\}) \sqcap r(\{c, e\})$
Also $r(\{d\})=(\emptyset,\{c, d\})$
Partition $\pi_{2}=\{a, e\},\{b, d\},\{c, f\}$

$$
r\left(X_{1}\right)=(\{b, d\},\{a, b, d, e\}) \quad r\left(X_{2}\right)=(\emptyset,\{a, c, e, f\})
$$

Example

Let $X=\{a, b, c, d, e, f\}$ and $X_{1}=\{a, b, d\}$ and $X_{2}=\{c, e\}$ Partition $\pi_{1}=\{a, b\},\{c, d\},\{e, f\}$

$$
r\left(X_{1}\right)=(\{a, b\},\{a, b, c, d\}) \quad r\left(X_{2}\right)=(\emptyset,\{c, d, e, f\})
$$

$C^{\prime}=\{c\} \quad r\left(C^{\prime}\right)=(\emptyset,\{c, d\})=r(\{a, b, d\}) \sqcap r(\{c, e\})$
Also $r(\{d\})=(\emptyset,\{c, d\})$
Partition $\pi_{2}=\{a, e\},\{b, d\},\{c, f\}$

$$
\begin{aligned}
& r\left(X_{1}\right)=(\{b, d\},\{a, b, d, e\}) \quad r\left(X_{2}\right)=(\emptyset,\{a, c, e, f\}) \\
& C^{\prime}=\{a\} r\left(C^{\prime}\right)=r(\{a, b, d\}) \sqcap r(\{c, e\})=(\emptyset,\{a, e\})
\end{aligned}
$$

Interpretation Problems

- In some sense $A \cap A^{c} \neq \emptyset$
- All solutions strongly depend on the partition, through I, u and hence on the attributes
- The solution is not unique even inside the same partition

Interpretation Problems

- In some sense $A \cap A^{c} \neq \emptyset$
- All solutions strongly depend on the partition, through I, u and hence on the attributes
- The solution is not unique even inside the same partition
- Two languages
- The language of sets (extension)
- The language of attributes (intension) or more generally of the granulation

We can operate on the language of attributes but then we are not able to interpret the results on sets

Outline

Orthopairs in Knowledge Representation
Orthopair Definition
Other operations on orthopairs
Rough sets as orthopairs

Orthopartitions

Orthopartitions

set \rightarrow ortho-pair of sets ("a set with uncertainty") partition \rightarrow ortho-partition ("a partition with uncertainty")

Orthopartitions

> set \rightarrow ortho-pair of sets ("a set with uncertainty") partition \rightarrow ortho-partition ("a partition with uncertainty")

Definition

An orthopartition is a set $\mathcal{O}=\left\{O_{1}, \ldots, O_{n}\right\}$ of orthopairs such that the following axioms hold:
(Ax O1) $\forall O_{i}, O_{j} \in \mathcal{O} O_{i}, O_{j}$ are disjoint
$(\mathrm{A} \times \mathrm{O} 2) \bigcup_{i}\left(P_{i} \cup B n d_{i}\right)=U$; (coverage requirement)
(Ax O3) $\forall x \in U\left(x \in B n d_{i}\right) \rightarrow\left(x \in B n d_{j}\right), i \neq j$ (an object cannot belong to only 1 boundary)

Orthopartitions

> set \rightarrow ortho-pair of sets ("a set with uncertainty") partition \rightarrow ortho-partition ("a partition with uncertainty")

Definition

An orthopartition is a set $\mathcal{O}=\left\{O_{1}, \ldots, O_{n}\right\}$ of orthopairs such that the following axioms hold:
(Ax O1) $\forall O_{i}, O_{j} \in \mathcal{O} O_{i}, O_{j}$ are disjoint
(Ax O2) $\bigcup_{i}\left(P_{i} \cup B n d_{i}\right)=U$; (coverage requirement)
(Ax O3) $\forall x \in U\left(x \in B n d_{i}\right) \rightarrow\left(x \in B n d_{j}\right), i \neq j$ (an object cannot belong to only 1 boundary)

Example $U=\{1,2, \ldots, 10\}$, the collection $\left\{O_{1}, O_{2}, O_{3}\right\}$ is an orthopartition of U where: $O_{1}=(\{1,2\},\{9,10\}), O_{2}=(\{9\},\{1,2\})$, $O_{3}=(\emptyset,\{1,2,9\})$
$\left(O_{1}, O_{2}\right)$ is not an orthopartition

Consistency

Consistency

Definition
A partition π is consistent with an orthopartition \mathcal{O} iff $\forall O_{i} \in \mathcal{O}, \exists!S_{i} \in \pi$ s.t. S is consistent with O_{i}

Consistency

Definition

A partition π is consistent with an orthopartition \mathcal{O} iff $\forall O_{i} \in \mathcal{O}, \exists!S_{i} \in \pi$ s.t. S is consistent with O_{i}

Example
$U=\{1,2, \ldots, 10\}, \mathcal{O}=\left\{O_{1}, O_{2}, O_{3}\right\}$
$O_{1}=(\{1,2\},\{9,10\}), O_{2}=(\{9\},\{1,2\}), O_{3}=(\emptyset,\{1,2,9\})$

Consistency

Definition

A partition π is consistent with an orthopartition \mathcal{O} iff $\forall O_{i} \in \mathcal{O}, \exists!S_{i} \in \pi$ s.t. S is consistent with O_{i}

Example
$U=\{1,2, \ldots, 10\}, \mathcal{O}=\left\{O_{1}, O_{2}, O_{3}\right\}$
$O_{1}=(\{1,2\},\{9,10\}), O_{2}=(\{9\},\{1,2\}), O_{3}=(\emptyset,\{1,2,9\})$
$\{1,2,3\},\{7,8,9,10\},\{4,5,6\}$ is a partition consistent with \mathcal{O}

Consistency

Definition

A partition π is consistent with an orthopartition \mathcal{O} iff $\forall O_{i} \in \mathcal{O}, \exists!S_{i} \in \pi$ s.t. S is consistent with O_{i}

Example
$U=\{1,2, \ldots, 10\}, \mathcal{O}=\left\{O_{1}, O_{2}, O_{3}\right\}$
$O_{1}=(\{1,2\},\{9,10\}), O_{2}=(\{9\},\{1,2\}), O_{3}=(\emptyset,\{1,2,9\})$
$\{1,2,3\},\{7,8,9,10\},\{4,5,6\}$ is a partition consistent with \mathcal{O}
$\{1,2\},\{9\},\{3,4,5,6,7,8,10\}$ is a partition consistent with \mathcal{O}

