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Orthopair: a set with uncertainty

I Orthopair: a pair of orthogonal or disjoint subsets (A,B) of a
given universe X: A,B ∈ X and A ∩ B = ∅

I Nested pairs: (A,C ): A ⊆ C ⊆ X , equivalent to orthopairs
C = Bc

I Interpretation: usually (P,N) P = positive, N = negative

I Boundary Bnd = (P ∪ N)c −→ a tri-partition of the universe

I Remark: also (P,Bnd) and (N,Bnd) are orthopairs!
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Examples

I (odd numbers, even numbers), boundary is empty

I (odd numbers, {2,4}), Bnd ={6,8, . . . }
I ({Black hair, Brown hair}, {Blonde Hair})

Bnd = {Red hair, . . . }
I (∅, ∅), Bnd = X

I {x1, x2, x3} Boolean variables, x1 is true, x2 is false
({x1}, {x2}) Bnd = {x3}, x3 is unknown
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A few definitions

I A set S is consistent with an orthopair O = (P,N) if

x ∈ P → x ∈ S and x ∈ N → x /∈ S .

Example: O = ({1, 3}, {2, 4})
S1 = {1, 3}, S2 = {1, 3, 5} are consistent with O
S3 = {1, 2, 3, 5}, S4 = {1, 5} are not consistent with O

I O1,O2 are disjoint if
I P1 ∩ P2 = ∅
I P1 ∩ Bnd2 = ∅ and Bnd1 ∩ P2 = ∅
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Orthopairs - how to obtain

I Rough sets (L(H),Uc(H)) or (L(H),Bnd(H))

I Partial models X Boolean variables
some variables are true, some are false, some unknown
→ it is possible to define the set E(P,N) of valuations which
satisfy an orthopair
Example: (P,N) = ({x1, x4}, {x3})
v1 : x1 = x2 = x4 = true, x3 = false
v2 : x1 = x4 = true, x2 = x3 = false both satisfy (P,N)

I Shadowed sets: an approximation of a fuzzy set through
{0, [0, 1], 1}

I Bipolar Information: positive/negative preferences,
trust/distrust (in Social Network Analysis), ...
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Generalizations

I Fuzzy orthopairs = (Atanassov) Intuitionistic Fuzzy Sets
IFSs are pairs of fuzzy sets fP , fN : X 7→ [0, 1] such that for all
x ∈ X , fP(x) + fN(x) ≤ 1
I “Generalized Orthopair Fuzzy Sets”, R. Yager, 2017

I Possibility Theory: set of valuations E are arbitrary
The class of orthopairs coincides with the particular class of
hyper-rectangular Boolean possibility distributions on the
space {0, 1}n
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3-Valued Logic and Orthopairs

I Let f be a three valued set on the universe X , f : X 7→ {0, 1
2 , 1}

From f to an orthopair (A1,A0)

A1 := {x : f (x) = 1} The certainty domain

A0 := {x : f (x) = 0} The impossibility domain

I From an orthopair (A,B) to a three valued set f

f (x) =


1 x ∈ A

0 x ∈ B
1
2 ortherwise

All three-valued connectives can be translated to orthopairs
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Conjunctions on Orthopairs
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Nested pairs - implications

n (L1,U1) ⇒ (L2,U2)
1 (U1 → L2,U1 → L2) Sette
2 (U1 → L2, (L1 → L2) ∩ (U1 → U2)) Sobociński
3 (U1 → L2, L1 → L2)
4 (U1 → L2,U1 → U2) Jaśkowski
5 (U1 → L2, L1 → U2) Kleene
6 (U1 → U2,U1 → U2)
7 (U1 → U2, L1 → U2)
8 (L1 → U2, L1 → U2) Bochvar
9 (L1 → L2, L1 → U2) Nelson

10 ((L1 → L2) ∩ (U1 → U2), U1 → U2) Gödel
11 ((L1 → L2) ∩ (U1 → U2), L1 → U2)  Lukasiewicz
12 (L1 → L2, L1 → L2)
13 ((L1 → L2) ∩ (U1 → U2), L1 → L2)
14 ((L1 → L2) ∩ (U1 → U2), (L1 → L2) ∩ (U1 → U2)) Gaines-Rescher
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Order relations 1/2

Pointwise Ordering

Order on V Order on O(X ) Symbol Type
0 ≤ 1

2 ≤ 1 P1 ⊆ P2, N2 ⊆ N1 ≤t Total
1
2 ≤ 1 ≤ 0 N1 ⊆ N2, Bnd2 ⊆ Bnd1 ≤N Total
1
2 ≤ 0 ≤ 1 P1 ⊆ P2, Bnd2 ⊆ Bnd1 ≤P Total

1
2 ≤ 1, 1

2 ≤ 0 P1 ⊆ P2, N1 ⊆ N2 ≤I Partial
0 ≤ 1

2 , 0 ≤ 1 P1 ⊆ P2, Bnd1 ⊆ Bnd2 ≤PB Partial
1 ≤ 1

2 , 1 ≤ 0 N1 ⊆ N2, Bnd1 ⊆ Bnd2 ≤NB Partial

I ≤t truth ordering: O2 is “more true” than O1

I ≤I knowledge ordering: O2 is more informative than the orthopair
O2 (boundary is smaller)
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Aggregation operations from order relations

From the three total order we derive three lattice structures:

I Kleene meet and join from truth ordering (usual min/max)

(P1,N1) ut (P2,N2) := (P1 ∩ P2,N1 ∪ N2)

(P1,N1) tt (P2,N2) := (P1 ∪ P2,N1 ∩ N2)

I Weak Kleene meet and join (not in the table of 14 conjunctions)

(P1,N1) uP (P2,N2) := (P1 ∩ P2, (N1 ∩ N2) ∪ [(N1 ∩ P2) ∪ (N2 ∩ P1)])

(P1,N1) uN (P2,N2) := ((P1 ∩ P2) ∪ [(P1 ∩ N2) ∪ (P2 ∩ N1)],N1 ∩ N2))

I Sobocinski meet and join

(P1,N1) tN (P2,N2) := (P1\N2 ∪ P2\N1,N1 ∪ N2)

(P1,N1) tP (P2,N2) := (P1 ∪ P2,N1\P2 ∪ N2\P1)
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Conjunction and disjunction from uI

Meet and join with respect to information ordering are

I The pessimistic combination operator

(P1,N1) uI (P2,N2) := (P1 ∩ P2,N1 ∩ N2)

I the optimistic combination operator

(P1,N1) tI (P2,N2) := (P1 ∪ P2,N1 ∪ N2)

(it makes sense whenever the two orthopairs are consistent:
P1 ∩ N2 = ∅ and P2 ∩ N1 = ∅)



Conjunction and disjunction from uI

Meet and join with respect to information ordering are

I The pessimistic combination operator

(P1,N1) uI (P2,N2) := (P1 ∩ P2,N1 ∩ N2)

I the optimistic combination operator

(P1,N1) tI (P2,N2) := (P1 ∪ P2,N1 ∪ N2)

(it makes sense whenever the two orthopairs are consistent:
P1 ∩ N2 = ∅ and P2 ∩ N1 = ∅)



Conjunction and disjunction from uI

Meet and join with respect to information ordering are

I The pessimistic combination operator

(P1,N1) uI (P2,N2) := (P1 ∩ P2,N1 ∩ N2)

I the optimistic combination operator

(P1,N1) tI (P2,N2) := (P1 ∪ P2,N1 ∪ N2)

(it makes sense whenever the two orthopairs are consistent:
P1 ∩ N2 = ∅ and P2 ∩ N1 = ∅)



Difference

Several ways to define a difference. For instance

I O1 	 O2 := (P1 \ N2,N1 \ P2)
The consensus (agreement) operation can then be defined
O1 � O2 = (O1 	 O2) tI (O2 	 O1)

I Example
O1 = ({x1, x2}, {x3, x4}): x1, x2 are true x3, x4 are false
O2 = ({x1, x3, x5}, {x2, x4, x6}): x1, x3, x5 are true x2, x4, x6

are false
O1 � O2 = ({x1, x5}, {x4, x6})
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Use of operations: some example

I If two orthopairs represent two agents opinion on the same fact,
then

I we can reach an agreement between them using the operator
�;

I can be combined in a pessimistic or optimistic way, using the
operations uI ,tI

I Sobocinski operations are standard conjunction and disjunction
operations on conditional events;

I If we want to aggregate two shadowed sets, then a first choice is to
use Kleene lattice operations, that corresponds to min and max on
fuzzy sets;

I In case of (three-way) decision theory, where the regions of the
orthopair represent accept and reject, operations can be used to
aggregate two different decisions on the same subject
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Rough Sets and three-valued logics

I R(X ) := {(l(A), u(A)) : A ⊆ X} is a subset of all nested pairs, and
equivalently, of all orthopairs
→ three-valued connectives can be inherited through orthopairs

I Problem

Given (l(A), u(A))� (l(B), u(B)) does there exist an
operation · on 2X such that

(l(A · B), u(A · B))?

I Answer: yes. . . with interpretation problems

All the 14 implications and 14 conjunctions defined on
orthopairs are closed on R(X )
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Conjunctions on rough sets

r(A) ∗1 r(B) = r(u(A) ∩ u(B))

r(A) ∗2 r(B) = r([A ∩ u(B)] ∪ [u(A) ∩ B])

r(A) ∗3 r(B) = r(A ∩ u(B))

r(A) ∗4 r(B) = r(u(A) ∩ B)

r(A) ∗6 r(B) = r(u(A) ∩ l(B))

r(A) ∗7 r(B) = r(A ∩ l(B))
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The lattice (min/max) operations case (1)

Let r(A) = 〈L(A),U(A)〉, r(B) = 〈L(B),U(B)〉 two rough sets

Intersection and union are usually defined as

r(A) u r(B) = (L(A) ∩ L(B),U(A) ∩ U(B))

r(A) t r(B) = (L(A) ∪ L(B),U(A) ∪ U(B))

Are the elements r(A) u r(B) and r(A) t r(B) rough sets?

That is we ask if there exists elements C ,D such that

r(C ) = r(A) u r(B) and r(D) = r(A) t r(B)

In general C 6= A ∩ B and D 6= A ∪ B
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The lattice operation case (2)

Bonikowski proposal (1992)

I C = [L(A) ∩ L(B)] ∪ Y

I a procedure to define Y which requires to choose an element
inside an equivalence class

I several possibilities to define Y

Gehrke, Walker proposal (1992)
Banerjee, Chakraborty proposal (1996)

I C ′ = (A ∩ B) ∪ ((A ∩ U(B)) ∩ (U(A ∩ B)c))

I C ′ is not symmetric in A,B!

I if B = Ac (we want to compute A ∩ Ac) then C ′ 6= ∅!

Dual situation for D (union)
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Example

Let X = {a, b, c , d , e, f } and X1 = {a, b, d} and X2 = {c , e}

Partition π1 = {a, b}, {c , d}, {e, f }

r(X1) = ({a, b}, {a, b, c , d}) r(X2) = (∅, {c , d , e, f })

C ′ = {c} r(C ′) = (∅, {c, d}) = r({a, b, d}) u r({c , e})
Also r({d}) = (∅, {c, d})

Partition π2 = {a, e}, {b, d}, {c , f }

r(X1) = ({b, d}, {a, b, d , e}) r(X2) = (∅, {a, c , e, f })

C ′ = {a} r(C ′) = r({a, b, d}) u r({c , e}) = (∅, {a, e})
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Interpretation Problems

I In some sense A ∩ Ac 6= ∅
I All solutions strongly depend on the partition, through l , u

and hence on the attributes

I The solution is not unique even inside the same partition

I Two languages
I The language of sets (extension)
I The language of attributes (intension) or more generally of the

granulation

We can operate on the language of attributes but then we are
not able to interpret the results on sets
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Orthopartitions

set → ortho-pair of sets (“a set with uncertainty”)
partition → ortho-partition (“a partition with uncertainty”)

Definition
An orthopartition is a set O = {O1, ...,On} of orthopairs such that the
following axioms hold:

(Ax O1) ∀Oi ,Oj ∈ O Oi ,Oj are disjoint

(Ax O2)
⋃

i (Pi ∪ Bndi ) = U; (coverage requirement)

(Ax O3) ∀x ∈ U (x ∈ Bndi )→ (x ∈ Bndj), i 6= j (an object cannot belong
to only 1 boundary)

Example U = {1, 2, . . . , 10}, the collection {O1,O2,O3} is an
orthopartition of U where: O1 = ({1, 2}, {9, 10}), O2 = ({9}, {1, 2}),
O3 = (∅, {1, 2, 9})
(O1,O2) is not an orthopartition
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Consistency

Definition
A partition π is consistent with an orthopartition O iff
∀Oi ∈ O, ∃!Si ∈ π s.t. S is consistent with Oi

Example
U = {1, 2, . . . , 10}, O = {O1,O2,O3}
O1 = ({1, 2}, {9, 10}), O2 = ({9}, {1, 2}), O3 = (∅, {1, 2, 9})

{1, 2, 3}, {7, 8, 9, 10}, {4, 5, 6} is a partition consistent with O

{1, 2}, {9}, {3, 4, 5, 6, 7, 8, 10} is a partition consistent with O
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