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Shannon entropy

Intuition:

I X is a set of alternatives with probabilities p(x). Only one
alternative must occur (an outcome of an experiment, a
received message, . . . )

I How to quantify the information given by the fact that x
occurs?

I if x = “tomorrow the sun will rise”, p(x) = 0.9999.... The
fact that the sun rises is not a surprise hence we have no
uncertainty in anticipating it

I if x = “Fiorentina will won the Italian football championship”,
p(x) = 0.0001. If x occurs, it is unexpected, we have a huge
amount of uncertainty in anticipating it
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Shannon entropy (1948)

I Goal: define a function u such that it is
I a decreasing function: the more likely the occurence of x , the

less information is provided

I an additive function if p(x , y) = p(x) · p(y) then
u(p(x , y)) = u(p(x)) + u(p(y))

I the solution is u(p(x)) = K logb p(x).
If we measure uncertainty in bits then b = 2, u( 1

2 ) = 1

(normalization condition) and so K = −1

I hence the information is log2 p(x) bits
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Shannon entropy

I Let p(x) be a probability distribution on a finite set U

I H : P(U) 7→ [0,∞)

I H(X ) = −
∑

x∈X p(x) log2 p(x)

I it measures the expected information content of X
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Hartley entropy (1928)

Let set p(x) = 1
|X |

I uncertainty associated with a choice among n = |X |
alternatives/possibilities

I a measure of non-specificity: the fewer alternatives we have,
the more specific is our choice

I (n) = log2 n
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Logical (Ellerman) entropy

I the information of a partition π

I the information is higher as higher is the ability to distinguish
between two alternatives
I 1 equivalence class → no ability to distinguish the elements,

the lowest information
I n classes → all the elements are distinct, the highest

information

I based on the notion of dits (distinctions): ordered pairs
(ui , uj) of elements in different blocks
dit(π) = {(ui , uj)|ui , uj belong do different blocks of π}

h(π) =
|dit(π)|
|U × U|
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Fuzzy entropy

I De Luca, Termini (1972)

I f : X 7→ [0, 1] a fuzzy susbset of X

h(f ) = −
∑
x∈X

f (x) log2 f (x) + (1− f (x))(log2(1− f (x))

I It represents the degree of fuzziness: h(f ) = 0 iff f is a
Boolean set

I it has the max value in case of a maximally fuzzy set, i.e.,
∀x , f (x) = 1

2

I it captures the idea of less fuzzy then: if f1 ≤ f2 then
h(f1) ≤ h(f2)
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Conflict of Evidence

Between two body of evidence

I How are in conflict two mass distributions m1, m2?

I They conflict if m1(A) 6= 0,m2(B) 6= 0 and A ∩ B = ∅

con(m1,m2) = − log2(1− K )

where K =
∑

A∩B=∅m1(A) ·m2(B) and A,B are focal sets
I con is monotonic increasing with K

I con(m1,m2) = 0 iff m1 and m2 do not conflict (K = 0)
I con(m1,m2) =∞ iff m1 and m2 totally conflict (K = 1)
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Conflict of Evidence

Within a single body of evidence m

I Let mA(B) =

{
1 B = A

0 otherwise

I The amount of conflict of a focal set with all the other focal
sets

con(m,mA) = − log2(1−
∑

B∩A=∅

m(B)) = − log2 Pl(A)

I weigthed average over all focal sets:

E (m) =
∑
A∈F

m(A)con(m,mA) = −
∑
A∈F

m(A) log2 Pl(A)

with F focal sets
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Conflict of Evidence

I If m is a probability distribution (probability assigned to
singletons), E (m) is equivalent to Shannon entropy

I Conflict is also named dissonance
If the focal sets are consonant (not dissonant),
A1 ⊆ A2 ⊆ . . .An, then E (m) = 0
Possibility and necessity have no conflict
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Confusion in Evidence

I From conflict E (m) = −
∑

A∈F m(A) log2 Pl(A)
To confusion

C (m) = −
∑
A∈F

m(A) log2 Bel(A)

I C (m) = 0 iff m(A) = 1 for one particular A and m(B) = 0 for
all other B

I C (m) characterizes
I the uniformity of the distribution of the strength of evidence

among the subsets
I the multitude of subsets supported by evidence:

the greater the number of subsets involved and the more
uniform the distribution, the more we are confused
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Specificity in possibility theory

I A generalization of Hartley entropy I (n) = log2 n

I Defined on ordered possibility distributions
π : {x1, x2, . . . , xn} 7→ [0, 1]
∀i < j , π(xi ) ≤ π(xj)

U(π) =
n∑

i=1

(π(xi )− π(xi+1)) log2 i

I Weigthed average of Hartley measure for all focal elements Ai

U(π) =
∑n

i=1 m(Ai )log2|Ai |
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Orthopartition: Ellerman Entropy

Partition π
dit(π) = {(u, u′) ∈ U × U| u, u′ belongs to two different blocks of π}

h(π) =
|dit(π)|
|U|2

Orthopartition O
ΠO the set of all partitions consistent with O
For π ∈ ΠO we can compute h(π)

lower entropy h∗ = min{h(π)|π ∈ ΠO}
upper entropy h∗ = max{h(π)|π ∈ ΠO}

mean entropy
∧
h =

h∗(O) + h∗(O)

2

average entropy hA(O) =
1

|ΠO|
∑

π∈ΠO

h(π)
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Entropy example

Consider the orthopartition O = {O1,O2}, with O1 = 〈{1}, {3}〉
and O2 = 〈{3}, {1}〉, defined on universe U = {1, 2, 3, 4}.

The set
ΠO of partitions consistent with O contains the following
partitions:

I π1 = {{1, 2, 4}, {3}} with entropy h = 6
16 ;

I π2 = {{1}, {2, 3, 4}} with entropy h = 6
16 ;

I π3 = {{1, 2}, {3, 4}} with entropy h = 8
16 ;

I π4 = {{1, 4}, {2, 3}} with entropy h = 8
16 ;

The lower entropy is thus equal to h∗ = 6
16

The upper entropy is equal to h∗ = 1
2



Entropy example

Consider the orthopartition O = {O1,O2}, with O1 = 〈{1}, {3}〉
and O2 = 〈{3}, {1}〉, defined on universe U = {1, 2, 3, 4}. The set
ΠO of partitions consistent with O contains the following
partitions:

I π1 = {{1, 2, 4}, {3}} with entropy h = 6
16 ;

I π2 = {{1}, {2, 3, 4}} with entropy h = 6
16 ;

I π3 = {{1, 2}, {3, 4}} with entropy h = 8
16 ;

I π4 = {{1, 4}, {2, 3}} with entropy h = 8
16 ;

The lower entropy is thus equal to h∗ = 6
16

The upper entropy is equal to h∗ = 1
2



Entropy example

Consider the orthopartition O = {O1,O2}, with O1 = 〈{1}, {3}〉
and O2 = 〈{3}, {1}〉, defined on universe U = {1, 2, 3, 4}. The set
ΠO of partitions consistent with O contains the following
partitions:

I π1 = {{1, 2, 4}, {3}} with entropy h = 6
16 ;

I π2 = {{1}, {2, 3, 4}} with entropy h = 6
16 ;

I π3 = {{1, 2}, {3, 4}} with entropy h = 8
16 ;

I π4 = {{1, 4}, {2, 3}} with entropy h = 8
16 ;

The lower entropy is thus equal to h∗ = 6
16

The upper entropy is equal to h∗ = 1
2



Orthopartition: Shannon entropy

I We need a probability distribution p = 〈p1, ..., pn〉

I The set of probability distributions compatible with an
orthopartition O:

PO = {〈p1, ..., pn〉|pi ∈ [
|Pi |
|U|

,
|Pi ∪ Bndi |
|U|

] and
n∑

i=1

pi = 1}

I

lower entropy HS∗ = min{HS(p)|p ∈ PO}
upper entropy H∗S = max{HS(p)|p ∈ PO}

mean entropy
∧
HS =

H∗S (O) + HS∗(O)

2

average entropy HSP(O) =
1

|ΠO|
∑

π∈ΠO

HS(π)
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Computational complexity

We have polynomial algorithms for all Ellerman entropies

I lower, upper and mean: O(|U| ∗ n ∗ log2 n)
n = number of orthopairs

I average (in the case that Pi 6= ∅): Θ(n ∗ |U|2)

Shannon entropy: no simple algorithm to compute it
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Orthopartition: Mutual Information

I Goal: quantify the common information of two orthopartitions

I The mutual information

m(O1,O2) = h(O1) + h(O2)− h(O1 ∧ O2)

where h is one of the entropies defined before

I Meet orthopartition

O1 ∧ O2 = {Oi1 ut Oj2|Oi1 ∈ O1 and Oj2 ∈ O2}

with ut the intersection defined by truth ordering

O1 ut O2 = (L1 ∩ L2,U1 ∪ U2)

I The choice of ut is due to the fact that it holds:

ΠO1∧O2 = {π∧σ|π is consistent with O1 and σ is consistent with O2}
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