Uncertainty measures

Davide Ciucci
Department of Informatics, Systems and Communication
University of Milan-Bicocca

April 6, 2022

Outline

Classical Measures

Generalized measures

Shannon entropy

Intuition:

- X is a set of alternatives with probabilities $p(x)$. Only one alternative must occur (an outcome of an experiment, a received message, ...)

Shannon entropy

Intuition:

- X is a set of alternatives with probabilities $p(x)$. Only one alternative must occur (an outcome of an experiment, a received message, ...)
- How to quantify the information given by the fact that x occurs?

Shannon entropy

Intuition:

- X is a set of alternatives with probabilities $p(x)$. Only one alternative must occur (an outcome of an experiment, a received message, ...)
- How to quantify the information given by the fact that x occurs?
- if $x=$ "tomorrow the sun will rise", $p(x)=0.9999 \ldots$... The fact that the sun rises is not a surprise hence we have no uncertainty in anticipating it

Shannon entropy

Intuition:

- X is a set of alternatives with probabilities $p(x)$. Only one alternative must occur (an outcome of an experiment, a received message, ...)
- How to quantify the information given by the fact that x occurs?
- if $x=$ "tomorrow the sun will rise", $p(x)=0.9999 \ldots$ The fact that the sun rises is not a surprise hence we have no uncertainty in anticipating it
- if $x=$ "Fiorentina will won the Italian football championship", $p(x)=0.0001$. If x occurs, it is unexpected, we have a huge amount of uncertainty in anticipating it

Shannon entropy (1948)

- Goal: define a function u such that it is
- a decreasing function: the more likely the occurence of x, the less information is provided

Shannon entropy (1948)

- Goal: define a function u such that it is
- a decreasing function: the more likely the occurence of x, the less information is provided
- an additive function if $p(x, y)=p(x) \cdot p(y)$ then $u(p(x, y))=u(p(x))+u(p(y))$

Shannon entropy (1948)

- Goal: define a function u such that it is
- a decreasing function: the more likely the occurence of x, the less information is provided
- an additive function if $p(x, y)=p(x) \cdot p(y)$ then $u(p(x, y))=u(p(x))+u(p(y))$
- the solution is $u(p(x))=K \log _{b} p(x)$. If we measure uncertainty in bits then $b=2, u\left(\frac{1}{2}\right)=1$ (normalization condition) and so $K=-1$
- hence the information is $\log _{2} p(x)$ bits

Shannon entropy

- Let $p(x)$ be a probability distribution on a finite set U
- $H: \mathcal{P}(U) \mapsto[0, \infty)$

Shannon entropy

- Let $p(x)$ be a probability distribution on a finite set U
- $H: \mathcal{P}(U) \mapsto[0, \infty)$
- $H(X)=-\sum_{x \in X} p(x) \log _{2} p(x)$
- it measures the expected information content of X

Hartley entropy (1928)

Let set $p(x)=\frac{1}{|X|}$

- uncertainty associated with a choice among $n=|X|$ alternatives/possibilities

Hartley entropy (1928)

Let set $p(x)=\frac{1}{|X|}$

- uncertainty associated with a choice among $n=|X|$ alternatives/possibilities
- a measure of non-specificity: the fewer alternatives we have, the more specific is our choice

$$
I(n)=\log _{2} n
$$

Logical (Ellerman) entropy

- the information of a partition π

Logical (Ellerman) entropy

- the information of a partition π
- the information is higher as higher is the ability to distinguish between two alternatives

Logical (Ellerman) entropy

- the information of a partition π
- the information is higher as higher is the ability to distinguish between two alternatives
- 1 equivalence class \rightarrow no ability to distinguish the elements, the lowest information

Logical (Ellerman) entropy

- the information of a partition π
- the information is higher as higher is the ability to distinguish between two alternatives
- 1 equivalence class \rightarrow no ability to distinguish the elements, the lowest information
- n classes \rightarrow all the elements are distinct, the highest information

Logical (Ellerman) entropy

- the information of a partition π
- the information is higher as higher is the ability to distinguish between two alternatives
- 1 equivalence class \rightarrow no ability to distinguish the elements, the lowest information
- n classes \rightarrow all the elements are distinct, the highest information
- based on the notion of dits (distinctions): ordered pairs (u_{i}, u_{j}) of elements in different blocks $\operatorname{dit}(\pi)=\left\{\left(u_{i}, u_{j}\right) \mid u_{i}, u_{j}\right.$ belong do different blocks of $\left.\pi\right\}$

Logical (Ellerman) entropy

- the information of a partition π
- the information is higher as higher is the ability to distinguish between two alternatives
- 1 equivalence class \rightarrow no ability to distinguish the elements, the lowest information
- n classes \rightarrow all the elements are distinct, the highest information
- based on the notion of dits (distinctions): ordered pairs (u_{i}, u_{j}) of elements in different blocks $\operatorname{dit}(\pi)=\left\{\left(u_{i}, u_{j}\right) \mid u_{i}, u_{j}\right.$ belong do different blocks of $\left.\pi\right\}$

$$
h(\pi)=\frac{|\operatorname{dit}(\pi)|}{|U \times U|}
$$

Outline

Classical Measures

Generalized measures

Fuzzy entropy

- De Luca, Termini (1972)
- $f: X \mapsto[0,1]$ a fuzzy susbset of X

Fuzzy entropy

- De Luca, Termini (1972)
- $f: X \mapsto[0,1]$ a fuzzy susbset of X

$$
h(f)=-\sum_{x \in X} f(x) \log _{2} f(x)+(1-f(x))\left(\log _{2}(1-f(x))\right.
$$

- It represents the degree of fuzziness: $h(f)=0$ iff f is a Boolean set

Fuzzy entropy

- De Luca, Termini (1972)
- $f: X \mapsto[0,1]$ a fuzzy susbset of X

$$
h(f)=-\sum_{x \in X} f(x) \log _{2} f(x)+(1-f(x))\left(\log _{2}(1-f(x))\right.
$$

- It represents the degree of fuzziness: $h(f)=0$ iff f is a Boolean set
- it has the max value in case of a maximally fuzzy set, i.e., $\forall x, f(x)=\frac{1}{2}$

Fuzzy entropy

- De Luca, Termini (1972)
- $f: X \mapsto[0,1]$ a fuzzy susbset of X

$$
h(f)=-\sum_{x \in X} f(x) \log _{2} f(x)+(1-f(x))\left(\log _{2}(1-f(x))\right.
$$

- It represents the degree of fuzziness: $h(f)=0$ iff f is a Boolean set
- it has the max value in case of a maximally fuzzy set, i.e., $\forall x, f(x)=\frac{1}{2}$
- it captures the idea of less fuzzy then: if $f_{1} \leq f_{2}$ then $h\left(f_{1}\right) \leq h\left(f_{2}\right)$

Conflict of Evidence

Between two body of evidence

- How are in conflict two mass distributions m_{1}, m_{2} ?
- They conflict if $m_{1}(A) \neq 0, m_{2}(B) \neq 0$ and $A \cap B=\emptyset$

Conflict of Evidence

Between two body of evidence

- How are in conflict two mass distributions m_{1}, m_{2} ?
- They conflict if $m_{1}(A) \neq 0, m_{2}(B) \neq 0$ and $A \cap B=\emptyset$

$$
\operatorname{con}\left(m_{1}, m_{2}\right)=-\log _{2}(1-K)
$$

where $K=\sum_{A \cap B=\emptyset} m_{1}(A) \cdot m_{2}(B)$ and A, B are focal sets

Conflict of Evidence

Between two body of evidence

- How are in conflict two mass distributions m_{1}, m_{2} ?
- They conflict if $m_{1}(A) \neq 0, m_{2}(B) \neq 0$ and $A \cap B=\emptyset$

$$
\operatorname{con}\left(m_{1}, m_{2}\right)=-\log _{2}(1-K)
$$

where $K=\sum_{A \cap B=\emptyset} m_{1}(A) \cdot m_{2}(B)$ and A, B are focal sets

- con is monotonic increasing with K
- con $\left(m_{1}, m_{2}\right)=0$ iff m_{1} and m_{2} do not conflict ($K=0$)
- $\operatorname{con}\left(m_{1}, m_{2}\right)=\infty$ iff m_{1} and m_{2} totally conflict $(K=1)$

Conflict of Evidence

Within a single body of evidence m

- Let $m_{A}(B)= \begin{cases}1 & B=A \\ 0 & \text { otherwise }\end{cases}$

Conflict of Evidence

Within a single body of evidence m

- Let $m_{A}(B)= \begin{cases}1 & B=A \\ 0 & \text { otherwise }\end{cases}$
- The amount of conflict of a focal set with all the other focal sets

Conflict of Evidence

Within a single body of evidence m

- Let $m_{A}(B)= \begin{cases}1 & B=A \\ 0 & \text { otherwise }\end{cases}$
- The amount of conflict of a focal set with all the other focal sets

$$
\operatorname{con}\left(m, m_{A}\right)=-\log _{2}\left(1-\sum_{B \cap A=\emptyset} m(B)\right)=-\log _{2} P /(A)
$$

Conflict of Evidence

Within a single body of evidence m

- Let $m_{A}(B)= \begin{cases}1 & B=A \\ 0 & \text { otherwise }\end{cases}$
- The amount of conflict of a focal set with all the other focal sets

$$
\operatorname{con}\left(m, m_{A}\right)=-\log _{2}\left(1-\sum_{B \cap A=\emptyset} m(B)\right)=-\log _{2} P /(A)
$$

- weigthed average over all focal sets:

$$
E(m)=\sum_{A \in F} m(A) \operatorname{con}\left(m, m_{A}\right)=-\sum_{A \in F} m(A) \log _{2} P I(A)
$$

with F focal sets

Conflict of Evidence

- If m is a probability distribution (probability assigned to singletons), $E(m)$ is equivalent to Shannon entropy

Conflict of Evidence

- If m is a probability distribution (probability assigned to singletons), $E(m)$ is equivalent to Shannon entropy
- Conflict is also named dissonance

If the focal sets are consonant (not dissonant),
$A_{1} \subseteq A_{2} \subseteq \ldots A_{n}$, then $E(m)=0$
Possibility and necessity have no conflict

Confusion in Evidence

- From conflict $E(m)=-\sum_{A \in F} m(A) \log _{2} P I(A)$ To confusion

$$
C(m)=-\sum_{A \in F} m(A) \log _{2} \operatorname{Be} l(A)
$$

Confusion in Evidence

- From conflict $E(m)=-\sum_{A \in F} m(A) \log _{2} P I(A)$ To confusion

$$
C(m)=-\sum_{A \in F} m(A) \log _{2} \operatorname{Be} l(A)
$$

- $C(m)=0$ iff $m(A)=1$ for one particular A and $m(B)=0$ for all other B

Confusion in Evidence

- From conflict $E(m)=-\sum_{A \in F} m(A) \log _{2} P I(A)$ To confusion

$$
C(m)=-\sum_{A \in F} m(A) \log _{2} \operatorname{Be} l(A)
$$

- $C(m)=0$ iff $m(A)=1$ for one particular A and $m(B)=0$ for all other B
- $C(m)$ characterizes
- the uniformity of the distribution of the strength of evidence among the subsets
- the multitude of subsets supported by evidence: the greater the number of subsets involved and the more uniform the distribution, the more we are confused

Specificity in possibility theory

- A generalization of Hartley entropy $I(n)=\log _{2} n$

Specificity in possibility theory

- A generalization of Hartley entropy $I(n)=\log _{2} n$
- Defined on ordered possibility distributions

$$
\pi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \mapsto[0,1]
$$

$$
\forall i<j, \pi\left(x_{i}\right) \leq \pi\left(x_{j}\right)
$$

$$
U(\pi)=\sum_{i=1}^{n}\left(\pi\left(x_{i}\right)-\pi\left(x_{i+1}\right)\right) \log _{2} i
$$

Specificity in possibility theory

- A generalization of Hartley entropy $I(n)=\log _{2} n$
- Defined on ordered possibility distributions

$$
\begin{aligned}
& \pi:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \mapsto[0,1] \\
& \forall i<j, \pi\left(x_{i}\right) \leq \pi\left(x_{j}\right)
\end{aligned}
$$

$$
U(\pi)=\sum_{i=1}^{n}\left(\pi\left(x_{i}\right)-\pi\left(x_{i+1}\right)\right) \log _{2} i
$$

- Weigthed average of Hartley measure for all focal elements A_{i} $U(\pi)=\sum_{i=1}^{n} m\left(A_{i}\right) \log _{2}\left|A_{i}\right|$

Orthopartition: Ellerman Entropy

Partition π $\operatorname{dit}(\pi)=\left\{\left(u, u^{\prime}\right) \in U \times U \mid u, u^{\prime}\right.$ belongs to two different blocks of $\left.\pi\right\}$

$$
h(\pi)=\frac{|\operatorname{dit}(\pi)|}{|U|^{2}}
$$

Orthopartition: Ellerman Entropy

Partition π $\operatorname{dit}(\pi)=\left\{\left(u, u^{\prime}\right) \in U \times U \mid u, u^{\prime}\right.$ belongs to two different blocks of $\left.\pi\right\}$

$$
h(\pi)=\frac{|\operatorname{dit}(\pi)|}{|U|^{2}}
$$

Orthopartition \mathcal{O}
$\Pi_{\mathcal{O}}$ the set of all partitions consistent with \mathcal{O}
For $\pi \in \Pi_{\mathcal{O}}$ we can compute $h(\pi)$

Orthopartition: Ellerman Entropy

Partition π $\operatorname{dit}(\pi)=\left\{\left(u, u^{\prime}\right) \in U \times U \mid u, u^{\prime}\right.$ belongs to two different blocks of $\left.\pi\right\}$

$$
h(\pi)=\frac{|\operatorname{dit}(\pi)|}{|U|^{2}}
$$

Orthopartition \mathcal{O}
$\Pi_{\mathcal{O}}$ the set of all partitions consistent with \mathcal{O}
For $\pi \in \Pi_{\mathcal{O}}$ we can compute $h(\pi)$
lower entropy
upper entropy
mean entropy
average entropy

$$
h_{*}=\min \left\{h(\pi) \mid \pi \in \Pi_{\mathcal{O}}\right\}
$$

$$
h^{*}=\max \left\{h(\pi) \mid \pi \in \Pi_{\mathcal{O}}\right\}
$$

$$
\hat{h}=\frac{h^{*}(\mathcal{O})+h_{*}(\mathcal{O})}{2}
$$

$$
h_{A}(\mathcal{O})=\frac{1}{\left|\Pi_{\mathcal{O}}\right|} \sum_{\pi \in \Pi_{\mathcal{O}}} h(\pi)
$$

Entropy example

Consider the orthopartition $\mathcal{O}=\left\{O_{1}, O_{2}\right\}$, with $O_{1}=\langle\{1\},\{3\}\rangle$ and $O_{2}=\langle\{3\},\{1\}\rangle$, defined on universe $U=\{1,2,3,4\}$.

Entropy example

Consider the orthopartition $\mathcal{O}=\left\{O_{1}, O_{2}\right\}$, with $O_{1}=\langle\{1\},\{3\}\rangle$ and $O_{2}=\langle\{3\},\{1\}\rangle$, defined on universe $U=\{1,2,3,4\}$. The set $\Pi_{\mathcal{O}}$ of partitions consistent with \mathcal{O} contains the following partitions:

- $\pi_{1}=\{\{1,2,4\},\{3\}\}$ with entropy $h=\frac{6}{16}$;
- $\pi_{2}=\{\{1\},\{2,3,4\}\}$ with entropy $h=\frac{6}{16}$;
- $\pi_{3}=\{\{1,2\},\{3,4\}\}$ with entropy $h=\frac{8}{16}$;
- $\pi_{4}=\{\{1,4\},\{2,3\}\}$ with entropy $h=\frac{8}{16}$;

Entropy example

Consider the orthopartition $\mathcal{O}=\left\{O_{1}, O_{2}\right\}$, with $O_{1}=\langle\{1\},\{3\}\rangle$ and $O_{2}=\langle\{3\},\{1\}\rangle$, defined on universe $U=\{1,2,3,4\}$. The set $\Pi_{\mathcal{O}}$ of partitions consistent with \mathcal{O} contains the following partitions:

- $\pi_{1}=\{\{1,2,4\},\{3\}\}$ with entropy $h=\frac{6}{16}$;
- $\pi_{2}=\{\{1\},\{2,3,4\}\}$ with entropy $h=\frac{6}{16}$;
- $\pi_{3}=\{\{1,2\},\{3,4\}\}$ with entropy $h=\frac{8}{16}$;
- $\pi_{4}=\{\{1,4\},\{2,3\}\}$ with entropy $h=\frac{8}{16}$;

The lower entropy is thus equal to $h_{*}=\frac{6}{16}$ The upper entropy is equal to $h^{*}=\frac{1}{2}$

Orthopartition: Shannon entropy

- We need a probability distribution $p=\left\langle p_{1}, \ldots, p_{n}\right\rangle$

Orthopartition: Shannon entropy

- We need a probability distribution $p=\left\langle p_{1}, \ldots, p_{n}\right\rangle$
- The set of probability distributions compatible with an orthopartition \mathcal{O} :

$$
\mathcal{P}_{\mathcal{O}}=\left\{\left\langle p_{1}, \ldots, p_{n}\right\rangle \left\lvert\, p_{i} \in\left[\frac{\left|P_{i}\right|}{|U|}, \frac{\mid P_{i} \cup \text { Bnd }_{i} \mid}{|U|}\right]\right. \text { and } \sum_{i=1}^{n} p_{i}=1\right\}
$$

Orthopartition: Shannon entropy

- We need a probability distribution $p=\left\langle p_{1}, \ldots, p_{n}\right\rangle$
- The set of probability distributions compatible with an orthopartition \mathcal{O} :

$$
\mathcal{P}_{\mathcal{O}}=\left\{\left\langle p_{1}, \ldots, p_{n}\right\rangle \left\lvert\, p_{i} \in\left[\frac{\left|P_{i}\right|}{|U|}, \frac{\left|P_{i} \cup B n d_{i}\right|}{|U|}\right]\right. \text { and } \sum_{i=1}^{n} p_{i}=1\right\}
$$

$$
\begin{aligned}
\text { lower entropy } & H_{S_{*}} & =\min \left\{H_{S}(p) \mid p \in \mathcal{P}_{\mathcal{O}}\right\} \\
\text { upper entropy } & H_{S}^{*} & =\max \left\{H_{S}(p) \mid p \in \mathcal{P}_{\mathcal{O}}\right\} \\
\text { mean entropy } & \hat{H}_{S} & =\frac{H_{S}^{*}(\mathcal{O})+H_{S_{*}}(\mathcal{O})}{2} \\
\text { average entropy } & H_{S P}(\mathcal{O}) & =\frac{1}{\left|\Pi_{\mathcal{O}}\right|} \sum_{\pi \in \Pi_{\mathcal{O}}} H_{S}(\pi)
\end{aligned}
$$

Computational complexity

We have polynomial algorithms for all Ellerman entropies

- lower, upper and mean: $O\left(|U| * n * \log _{2} n\right)$
$\mathrm{n}=$ number of orthopairs
- average (in the case that $\left.P_{i} \neq \emptyset\right): \Theta\left(n *|U|^{2}\right)$

Computational complexity

We have polynomial algorithms for all Ellerman entropies

- lower, upper and mean: $O\left(|U| * n * \log _{2} n\right)$
$\mathrm{n}=$ number of orthopairs
- average (in the case that $\left.P_{i} \neq \emptyset\right): \Theta\left(n *|U|^{2}\right)$

Shannon entropy: no simple algorithm to compute it

Orthopartition: Mutual Information

Orthopartition: Mutual Information

- Goal: quantify the common information of two orthopartitions

Orthopartition: Mutual Information

- Goal: quantify the common information of two orthopartitions
- The mutual information

$$
m\left(\mathcal{O}_{1}, \mathcal{O}_{2}\right)=h\left(\mathcal{O}_{1}\right)+h\left(\mathcal{O}_{2}\right)-h\left(\mathcal{O}_{1} \wedge \mathcal{O}_{2}\right)
$$

where h is one of the entropies defined before

Orthopartition: Mutual Information

- Goal: quantify the common information of two orthopartitions
- The mutual information

$$
m\left(\mathcal{O}_{1}, \mathcal{O}_{2}\right)=h\left(\mathcal{O}_{1}\right)+h\left(\mathcal{O}_{2}\right)-h\left(\mathcal{O}_{1} \wedge \mathcal{O}_{2}\right)
$$

where h is one of the entropies defined before

- Meet orthopartition

$$
\mathcal{O}_{1} \wedge \mathcal{O}_{2}=\left\{O_{i 1} \sqcap_{t} O_{j 2} \mid O_{i 1} \in \mathcal{O}_{1} \text { and } O_{j 2} \in \mathcal{O}_{2}\right\}
$$

with \sqcap_{t} the intersection defined by truth ordering

$$
O_{1} \sqcap_{t} O_{2}=\left(L_{1} \cap L_{2}, U_{1} \cup U_{2}\right)
$$

- The choice of Π_{t} is due to the fact that it holds:
$\Pi_{\mathcal{O}_{1} \wedge \mathcal{O}_{2}}=\left\{\pi \wedge \sigma \mid \pi\right.$ is consistent with \mathcal{O}_{1} and σ is consistent with $\left.\mathcal{O}_{2}\right\}$

