Soft Clustering

Davide Ciucci

Department of Informatics, Systems and Communication University of Milan-Bicocca

Uncertainty in Computer Science

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline

Soft Clustering approaches

Evaluation

Rough Clustering General case

Outline

Soft Clustering approaches

Evaluation

Rough Clustering General case

Example of Soft Clustering

Evidential Clustering

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Set of k clusters: $\{C_1, C_2, \dots, C_k\}$ and n objects $\{o_1, o_2, \dots, o_n\}$

Evidential Clustering

- Set of k clusters: $\{C_1, C_2, \dots, C_k\}$ and n objects $\{o_1, o_2, \dots, o_n\}$
- Given an object o_i the membership to a cluster is represented by a mass function m_i

Evidential Clustering

- Set of k clusters: $\{C_1, C_2, \dots, C_k\}$ and n objects $\{o_1, o_2, \dots, o_n\}$
- Given an object o_i the membership to a cluster is represented by a mass function m_i
- *m_i(A)* represents the "degree of support attached to the proposition "the true cluster of object *o_i* is in *A*", and to no more specific proposition"

 \blacktriangleright m_1, \ldots, m_n is a credal partition

(日)

э

э

• Butterfly dataset + point 12 (outlier), k = 2

イロト イヨト イヨト イ

프 > 프

• Butterfly dataset + point 12 (outlier), k = 2

• $m_3(C_1) = 1$: object o_3 surely belongs to cluster C_1

Butterfly dataset + point 12 (outlier), k = 2

• $m_3(C_1) = 1$: object o_3 surely belongs to cluster C_1

• $m_6({C_1, C_2}) = 1$ max uncertainty: objects o_6 belongs to C_1 or C_2

(日)

э

- Butterfly dataset + point 12 (outlier), k = 2
- $m_3(C_1) = 1$: object o_3 surely belongs to cluster C_1
- $m_6({C_1, C_2}) = 1$ max uncertainty: objects o_6 belongs to C_1 or C_2
- $m_{12}(\emptyset) = 0.7$ (nb: no normalization): object o_{12} does not belong to any cluster

Thierry Denoeux, Orakanya Kanjanatarakul: Beyond Fuzzy, Possibilistic and Rough: An Investigation of Belief Functions in Clustering. SMPS 2016: 157-164

Three different algorithms: Evclus, Evidential k-means, EK-nn

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Evidential k-means, EK-nn: very efficient with discrete data

- Three different algorithms: Evclus, Evidential k-means, EK-nn
- Evidential k-means, EK-nn: very efficient with discrete data
- Ek-nn: can determine k, the number of clusters, automatically

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Three different algorithms: Evclus, Evidential k-means, EK-nn
- Evidential k-means, EK-nn: very efficient with discrete data
- Ek-nn: can determine k, the number of clusters, automatically
- Evclus, Evidential k-means "produce more informative outputs (with masses assigned to any subsets of clusters)"

- Three different algorithms: Evclus, Evidential k-means, EK-nn
- Evidential k-means, EK-nn: very efficient with discrete data
- Ek-nn: can determine k, the number of clusters, automatically
- Evclus, Evidential k-means "produce more informative outputs (with masses assigned to any subsets of clusters)"
- Evclus: "very effective for dealing with non metric dissimilarity data, and it is suitable to handle very large datasets"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Credal Partition

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Each cluster is described by a fuzzy set f_{Ci}

• Constraint: $\sum_i f_{C_i}(o_j) = 1$ (fuzzy?!?)

- Each cluster is described by a fuzzy set f_{Ci}
- Constraint: $\sum_i f_{C_i}(o_j) = 1$ (fuzzy?!?)
- Fuzzy k-means: the membership degree of an object to a specific cluster is calculated based on the relative distances of the object to the other clusters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Each cluster is described by a fuzzy set f_{Ci}
- Constraint: $\sum_{i} f_{C_i}(o_i) = 1$ (fuzzy?!?)
- Fuzzy k-means: the membership degree of an object to a specific cluster is calculated based on the relative distances of the object to the other clusters
- Many other algorithms
 - Noise clustering: objects far away from all clusters obtain a high membership degree to a noise cluster

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Each cluster is described by a fuzzy set f_{Ci}
- Constraint: $\sum_{i} f_{C_i}(o_j) = 1$ (fuzzy?!?)
- Fuzzy k-means: the membership degree of an object to a specific cluster is calculated based on the relative distances of the object to the other clusters
- Many other algorithms
 - Noise clustering: objects far away from all clusters obtain a high membership degree to a noise cluster
- Tends to avoid local minima
- Can generate wrong global minima, if not handled (i.e., noise clustering) forces outliers to belong to one cluster

KLAWONN, Frank; KRUSE, Rudolf; WINKLER, Roland. Fuzzy clustering: More than just fuzzification. Fuzzy sets and systems, 2015, 281: 272-279

Relaxed the constraint that membership degrees must sum up to 1: ∃i, f_{Ci}(o_j) > 0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Relaxed the constraint that membership degrees must sum up to 1: ∃i, f_{Ci}(o_j) > 0
- f_{C_i} are possibility distributions
- *f_{C_i}(o_j)* represents the typicality of object *o_j* relative to cluster *C_i*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Relaxed the constraint that membership degrees must sum up to 1: ∃i, f_{Ci}(o_j) > 0
- f_{C_i} are possibility distributions
- *f_{C_i}(o_j)* represents the typicality of object *o_j* relative to cluster *C_i*

• an object can have only small membership values $f_{C_1}(o) = f_{C_2}(o) = 0.2$

- Relaxed the constraint that membership degrees must sum up to 1: ∃i, f_{Ci}(o_j) > 0
- f_{C_i} are possibility distributions
- *f_{C_i}(o_j)* represents the typicality of object *o_j* relative to cluster *C_i*

- an object can have only small membership values $f_{C_1}(o) = f_{C_2}(o) = 0.2$
- Sensible to initialization

- Relaxed the constraint that membership degrees must sum up to 1: ∃i, f_{Ci}(o_j) > 0
- *f_{C_i}* are possibility distributions
- *f_{C_i}(o_j)* represents the typicality of object *o_j* relative to cluster *C_i*

- an object can have only small membership values $f_{C_1}(o) = f_{C_2}(o) = 0.2$
- Sensible to initialization
- Other models:
 - Hybrid models fuzzy-possibility

- Relaxed the constraint that membership degrees must sum up to 1: ∃i, f_{Ci}(o_j) > 0
- *f_{C_i}* are possibility distributions
- *f_{C_i}(o_j)* represents the typicality of object *o_j* relative to cluster *C_i*
- an object can have only small membership values $f_{C_1}(o) = f_{C_2}(o) = 0.2$
- Sensible to initialization
- Other models:
 - Hybrid models fuzzy-possibility
 - To reduce the complexity: shadowed set c-means (Shadowed set = three-valued set)

Rough Clustering

Inspired by rough sets: Each cluster C_i is made by a lower region and an uncertain region, named boundary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Rough Clustering

Inspired by rough sets: Each cluster C_i is made by a lower region and an uncertain region, named boundary

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

An instance cannot belong to only one boundary

Rough Clustering

- Inspired by rough sets: Each cluster C_i is made by a lower region and an uncertain region, named boundary
- An instance cannot belong to only one boundary
- Rough k-means: An element x is assigned to the boundary of two (or more) clusters if it is approximately to the same distance to the centroid's clusters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ One Cluster \rightarrow an orthopair Collection of Clusters \rightarrow an orthopartition

► One Cluster → an orthopair Collection of Clusters → an orthopartition

A rough clustering generates an orthopartition

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

► One Cluster → an orthopair Collection of Clusters → an orthopartition

A rough clustering generates an orthopartition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Indeed, a rough clustering should satisfy (Lingras, Peters):

∀x ∈ U, there exists at most one lower approximation containing x ⇒ Orthopartition axiom 1

► One Cluster → an orthopair Collection of Clusters → an orthopartition

A rough clustering generates an orthopartition

Indeed, a rough clustering should satisfy (Lingras, Peters):

- ∀x ∈ U, there exists at most one lower approximation containing x ⇒ Orthopartition axiom 1
- ∀x ∈ U, if x does not belong to any lower approximation, then, it belongs to at least two upper approximations = Orthopartition axiom 3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► One Cluster → an orthopair Collection of Clusters → an orthopartition

A rough clustering generates an orthopartition

Indeed, a rough clustering should satisfy (Lingras, Peters):

- ∀x ∈ U, there exists at most one lower approximation containing x ⇒ Orthopartition axiom 1
- ∀x ∈ U, if x does not belong to any lower approximation, then, it belongs to at least two upper approximations = Orthopartition axiom 3
- b the above conditions + (lower ⊆ upper) ⇒ Orthopartition axiom 2

Soft Clustering Techniques

Three-way clustering

Lower approximations cannot be empty

Soft Clustering Techniques

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Three-way clustering

- Lower approximations cannot be empty
- An instance can be in only one boundary

Soft Clustering Techniques

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Three-way clustering

Lower approximations cannot be empty

An instance can be in only one boundary

Example

$$C_1 = (\{x_3, x_4\}, \{x_3, x_4, x_5\})$$

$$C_2 = (\{x_6, x_9\}, \{x_6, x_9, x_1, x_8\})$$

$$C_3 = (\{x_2, x_7\}, \{x_2, x_7, x_8\})\}$$

 x_5 is only in the boundary of C_1

Interval/Three-way Clustering and Orthopartitions

Problem: interval-set/three-way clustering allows an object to be in the boundary of only one cluster (not permitted in orthopartitions)

Interval/Three-way Clustering and Orthopartitions

Problem: interval-set/three-way clustering allows an object to be in the boundary of only one cluster (not permitted in orthopartitions)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: collect all these problematic objects (which represent outliers) in a set *Prob* and define the new cluster (\emptyset , *Prob*)

Interval/Three-way Clustering and Orthopartitions

Problem: interval-set/three-way clustering allows an object to be in the boundary of only one cluster (not permitted in orthopartitions)

Solution: collect all these problematic objects (which represent outliers) in a set *Prob* and define the new cluster (\emptyset , *Prob*)

Interval set clustering result + (\emptyset , *Prob*) is an orthopartition

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Soft Clustering approaches

Evaluation

Rough Clustering General case

Outline

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Soft Clustering approaches

Evaluation Rough Clustering General case

Hard Clustering evaluation

 External evaluation: the cluster is compared to a gold standard

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hard Clustering evaluation

- External evaluation: the cluster is compared to a gold standard
- Several indices exists
 - Mutual information, purity (here)
 - Rand, Jaccard, Fowlkes-Mellows (no need of orthopartitions)

Normalized Mutual Information

$$NMI(\Omega, C) = \frac{m(\Omega, C)}{min\{h(\Omega), h(C)\}}$$

m is a mutual information and h its corresponding entropy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- C is the soft-clustering result
- Ω is the gold standard (it can be a partition or an orthopartition)

Purity

$$\mathsf{purity}(\Omega, C) = rac{1}{|U|} \sum_{\omega \in \Omega} \max_{c \in C} \{|\omega \cap c|\}$$

Purity

Partition $\mathsf{purity}(\Omega, C) = \frac{1}{|U|} \sum_{\omega \in \Omega} \max_{c \in C} \{|\omega \cap c|\}$

Orthopartition

$$ext{soft-purity}(\Omega, C) = rac{1}{|U|} \sum_{O_i} \max_{C_j} P(O_i, C_j)$$

Idea $P(O_i, C_j)$ measures the degree of similarity between one of the clusters $O_i \in \Omega$ and one of the classes $C_j \in C$ (weighting the elements in the boundaries differently)

Purity

Partition $\mathsf{purity}(\Omega, C) = \frac{1}{|U|} \sum_{\omega \in \Omega} \max_{c \in C} \{|\omega \cap c|\}$

Orthopartition

$$ext{soft-purity}(\Omega, C) = rac{1}{|U|} \sum_{O_i} \max_{C_j} P(O_i, C_j)$$

Idea $P(O_i, C_j)$ measures the degree of similarity between one of the clusters $O_i \in \Omega$ and one of the classes $C_j \in C$ (weighting the elements in the boundaries differently)

$$P(O_i, C_j) = |P_i \cap P_j| + \sum_{x \in Bnd_i \cap P_j} \frac{1}{|\{O_k \in \mathcal{O} | x \in Bnd_k\}|} + \sum_{x \in Bnd_j \cap P_i} \frac{1}{|\{C_k \in C | x \in Bnd_k\}|} \sum_{x \in Bnd_j \cap Bnd_i} [\frac{1}{|\{C_k \in C | x \in Bnd_k\}|} * \frac{1}{|\{O_k \in \mathcal{O} | x \in Bnd_k\}|}]$$

Experiments

There exists several rough/three-way clustering algorithm. We compared

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- 8 partition based
- 5 density based

Preliminary Results (Mutual Information)

MI	k–means	rough k-means
Iris	0.86	0.90
Wine	0.94	0.77
Zoo	0.89	0.91
Yeast	0.80	0.72
Transfusion	0.36	0.23
Abalone	0.90	0.90
Arrhythmia	0.69	0.70
Anuran	0.84	0.84
Dota2	0.25	0.46
Adult	0.40	0.35

- Manual inspection of the clusters says that to high MI corresponds a similarity with the gold standard
- with the exception of the dataset Abalone. However...

Preliminary Results (Purity)

SP	k–means	rough k-means
Iris	0.84	0.89
Wine	0.95	0.69
Zoo	0.88	0.84
Yeast	0.52	0.42
Transfusion	0.76	0.76
Abalone	0.28	0.27
Arrhythmia	0.58	0.58
Anuran	0.95	0.80
Dota2	0.53	0.53
Adult	0.76	0.76

Mutual information and purity should be taken in combination to have a meaningful performance measure

(ロ)、(型)、(E)、(E)、 E) の(()

More extensive study

Mean value table of each algorithm on each metric

Model	R-Rand	Lower-	Coverage	SAMI	SLMI
		Rand			
KM*	0.766	0.766	<u>1.0</u>	<u>0.880</u>	0.880
GM*	0.751	0.751	<u>1.0</u>	0.872	0.872
RKM	0.776	0.785	0.803	0.869	0.883
PRKM	0.765	0.769	0.980	0.871	0.873
RGKM	0.767	0.787	0.763	0.853	0.880
RDCM	<u>0.791</u>	<u>0.846</u>	0.788	0.837	<u>0.892</u>
ТWСМ	0.766	0.776	0.953	0.871	0.875
тwкм	0.741	0.756	0.949	0.844	0.863
тwск	0.739	0.810	0.686	0.820	0.846
TWCS	0.686	0.758	0.517	0.760	0.831

* Hard clustering, rough clustering, three-way clustering

More extensive study

The differences are not always statistically significant

Model	KM	GM	RKM	PRKM	RGKM	RDCM	TWCM	TWKM	TWCK
KM	1.0	0.419	0.136	0.720	0.034	0.435	0.760	0.154	0.009
GM	0.419	1.0	0.491	0.652	0.183	0.979	0.614	0.533	0.066
RKM	0.136	0.491	1.0	0.256	0.516	0.474	0.234	0.947	0.245
PRKM	0.720	0.652	0.256	1.0	0.076	0.671	0.958	0.284	0.023
RGKM	0.034	0.183	0.516	0.076	1.0	0.174	0.068	0.474	0.605
RDCM	0.435	0.979	0.474	0.671	0.174	1.0	0.633	0.516	0.062
TWCM	0.760	0.614	0.234	0.958	0.068	0.633	1.0	0.261	0.020
TWKM	0.154	0.533	0.947	0.284	0.474	0.516	0.261	1.0	0.219
TWCK	0.009	0.066	0.245	0.023	0.605	0.062	0.020	0.219	1.0
TWCS	5.2e-05	0.001	0.007	1.9e-04	0.037	0.001	1.6e-04	0.006	0.114

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Table: Pairwise Quade Test: SAMI

Outline

Soft Clustering approaches

Evaluation Rough Clustering General case

Soft Clustering evaluation

A part from rough set clustering, there exist some extension of standard measure, in particular different version of Rand index

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Soft Clustering evaluation

A part from rough set clustering, there exist some extension of standard measure, in particular different version of Rand index

▶ often they fail to satisfy basic metric properties, for instance it can happen that rand(F, F) < 1 or that its value is negative</p>

hence they cannot be used to compare two clusterings

Soft Clustering evaluation

A part from rough set clustering, there exist some extension of standard measure, in particular different version of Rand index

- ▶ often they fail to satisfy basic metric properties, for instance it can happen that rand(F, F) < 1 or that its value is negative</p>
- hence they cannot be used to compare two clusterings
- do not distinguish different form of uncertainty: ambiguity, fuzziness

Soft clustering as distributions over hard clusterings

 \blacktriangleright evidential clustering \rightarrow rough clustering \rightarrow hard clustering

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Soft clustering as distributions over hard clusterings

- \blacktriangleright evidential clustering \rightarrow rough clustering \rightarrow hard clustering
- R rough clustering, R(x) the clusters x belongs to (i.e., the upper approximation)

Soft clustering as distributions over hard clusterings

- \blacktriangleright evidential clustering \rightarrow rough clustering \rightarrow hard clustering
- R rough clustering, R(x) the clusters x belongs to (i.e., the upper approximation)
- an evidential clustering is represented as a mass function over hard clusterings:

$$m_M(R) = \prod_x m_x(R(x))$$

A comparison measure for soft clustering obtained by

computing the cost of making the two distributions equivalent by moving masses from one rough clustering to another

A comparison measure for soft clustering obtained by

- computing the cost of making the two distributions equivalent by moving masses from one rough clustering to another
- the cost of such movements is determined by a base distance over hard clusterings.
- \blacktriangleright any distance is ok \rightarrow it is framework to generalize different hard clustering evaluations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An interval $[d_0, d_1]$ such that

An interval $[d_0, d_1]$ such that

 d₀ represent the compatibility between two clustering, i.e., whether there exists a hard clustering compatible with both soft clusterings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

d₁ quantifies their similarity

An interval $[d_0, d_1]$ such that

- d₀ represent the compatibility between two clustering, i.e., whether there exists a hard clustering compatible with both soft clusterings
- \blacktriangleright d_1 quantifies their similarity
- Pros: they satisfies good metric properties
- \blacktriangleright Cons: NP-hard to compute \rightarrow approximate solutions with bounded error

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary of the proposed comparison measures

Maaaura	Metric	Computational	
Measure	Properties	Complexity	
Transport based Massure	$1 - d_0^E$ consistency	d_0^E NP-HARD	-
Transport-based Weasure	d_1^E metric	d_1^E NP-HARD	
Sampling-based		$O(n^2s+s^3\log s)$	
Approximations	-		
Approximation for	Rand ₀ consistency	$O(n^2)$	-
Rand index	$Rand_1$ similarity	0(11)	
Approximation for	$1-\delta^{\it E}_0$ consistency	$O(n2^k \perp k^3)$	_
partition distance	δ_1^E metric	$O(n^2 + k)$	

Campagner, D. Ciucci, T. Denœux, A General Framework for Evaluating and Comparing Soft Clusterings, submitted to Information Sciences

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ