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Evidential Clustering

I Set of k clusters: {C1,C2, . . . ,Ck} and n objects
{o1, o2, . . . , on}

I Given an object oi the membership to a cluster is represented
by a mass function mi

I mi (A) represents the “degree of support attached to the
proposition “the true cluster of object oi is in A ”, and to no
more specific proposition”

I m1, . . . ,mn is a credal partition
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Credal partition - example

I Butterfly dataset + point 12 (outlier), k = 2

I m3(C1) = 1: object o3 surely belongs to cluster C1

I m6({C1,C2)}) = 1 max uncertainty: objects o6 belongs to C1 or C2

I m12(∅) = 0.7 (nb: no normalization): object o12 does not belong to
any cluster

Thierry Denoeux, Orakanya Kanjanatarakul: Beyond Fuzzy, Possibilistic and Rough:
An Investigation of Belief Functions in Clustering. SMPS 2016: 157-164
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Credal partition algorithms

I Three different algorithms: Evclus, Evidential k-means, EK-nn

I Evidential k-means, EK-nn: very efficient with discrete data

I Ek-nn: can determine k, the number of clusters, automatically

I Evclus, Evidential k-means “produce more informative outputs (with
masses assigned to any subsets of clusters)”

I Evclus: “very effective for dealing with non metric dissimilarity data,
and it is suitable to handle very large datasets”
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Credal Partition



Fuzzy Clustering

I Each cluster is described by a fuzzy set fCi

I Constraint:
∑

i fCi
(oj) = 1 (fuzzy?!?)

I Fuzzy k-means: the membership degree of an object to a
specific cluster is calculated based on the relative distances of
the object to the other clusters

I Many other algorithms
I Noise clustering: objects far away from all clusters obtain a

high membership degree to a noise cluster

I Tends to avoid local minima

I Can generate wrong global minima, if not handled (i.e., noise
clustering) forces outliers to belong to one cluster

KLAWONN, Frank; KRUSE, Rudolf; WINKLER, Roland. Fuzzy clustering: More than
just fuzzification. Fuzzy sets and systems, 2015, 281: 272-279
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Possibilistic clustering

I Relaxed the constraint that membership degrees must sum up
to 1: ∃i , fCi

(oj) > 0

I fCi
are possibility distributions

I fCi
(oj) represents the typicality of object oj relative to cluster

Ci

I an object can have only small membership values
fC1(o) = fC2(o) = 0.2

I Sensible to initialization
I Other models:

I Hybrid models fuzzy-possibility
I To reduce the complexity: shadowed set c-means (Shadowed

set = three-valued set)
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Rough Clustering

I Inspired by rough sets: Each cluster Ci is made by a lower
region and an uncertain region, named boundary

I An instance cannot belong to only one boundary

I Rough k-means: An element x is assigned to the boundary of
two (or more) clusters if it is approximately to the same
distance to the centroid’s clusters
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Rough Clustering and Orthopartitions

I One Cluster → an orthopair
Collection of Clusters → an orthopartition

A rough clustering generates an orthopartition

I Indeed, a rough clustering should satisfy (Lingras, Peters):

I ∀x ∈ U, there exists at most one lower approximation
containing x ⇒ Orthopartition axiom 1

I ∀x ∈ U, if x does not belong to any lower approximation,
then, it belongs to at least two upper approximations =
Orthopartition axiom 3

I the above conditions + (lower ⊆ upper) ⇒ Orthopartition
axiom 2
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Soft Clustering Techniques

Three-way clustering

I Lower approximations cannot be empty

I An instance can be in only one boundary

Example
C1 = ({x3, x4}, {x3, x4, x5})
C2 = ({x6, x9}, {x6, x9, x1, x8})
C3 = ({x2, x7}, {x2, x7, x8})}

x5 is only in the boundary of C1
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Interval/Three-way Clustering and Orthopartitions

Problem: interval-set/three-way clustering allows an object to be in
the boundary of only one cluster (not permitted in orthopartitions)

Solution: collect all these problematic objects (which represent
outliers) in a set Prob and define the new cluster (∅,Prob)

Interval set clustering result + (∅,Prob) is an orthopartition
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Hard Clustering evaluation

I External evaluation: the cluster is compared to a gold
standard

I Several indices exists
I Mutual information, purity (here)
I Rand, Jaccard, Fowlkes-Mellows (no need of orthopartitions)
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Normalized Mutual Information

NMI (Ω,C ) =
m(Ω,C )

min{h(Ω), h(C )}

I m is a mutual information and h its corresponding entropy

I C is the soft-clustering result

I Ω is the gold standard (it can be a partition or an
orthopartition)



Purity

I Partition

purity(Ω,C ) =
1

|U|
∑
ω∈Ω

max
c∈C
{|ω ∩ c |}

I Orthopartition

soft-purity(Ω,C ) =
1

|U|
∑
Oi

max
Cj

P(Oi ,Cj)

Idea P(Oi ,Cj) measures the degree of similarity between one of the
clusters Oi ∈ Ω and one of the classes Cj ∈ C (weighting the
elements in the boundaries differently)

P(Oi ,Cj ) = |Pi ∩ Pj |+
∑

x∈Bndi∩Pj

1

|{Ok ∈ O|x ∈ Bndk}|
+

∑
x∈Bndj∩Pi

1

|{Ck ∈ C |x ∈ Bndk}|
+

∑
x∈Bndj∩Bndi

[
1

|{Ck ∈ C |x ∈ Bndk}|
∗

1

|{Ok ∈ O|x ∈ Bndk}|
]
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Experiments

There exists several rough/three-way clustering algorithm. We
compared

I 8 partition based

I 5 density based



Preliminary Results (Mutual Information)

MI k–means rough k–means
Iris 0.86 0.90

Wine 0.94 0.77
Zoo 0.89 0.91

Yeast 0.80 0.72
Transfusion 0.36 0.23

Abalone 0.90 0.90
Arrhythmia 0.69 0.70

Anuran 0.84 0.84
Dota2 0.25 0.46
Adult 0.40 0.35

I Manual inspection of the clusters says that to high MI corresponds
a similarity with the gold standard

I with the exception of the dataset Abalone. However...



Preliminary Results (Purity)

SP k–means rough k–means
Iris 0.84 0.89

Wine 0.95 0.69
Zoo 0.88 0.84

Yeast 0.52 0.42
Transfusion 0.76 0.76

Abalone 0.28 0.27
Arrhythmia 0.58 0.58

Anuran 0.95 0.80
Dota2 0.53 0.53
Adult 0.76 0.76

I Mutual information and purity should be taken in combination to
have a meaningful performance measure



More extensive study

Mean value table of each algorithm on each metric

Model R-Rand Lower-
Rand

Coverage SAMI SLMI

KM* 0.766 0.766 1.0 0.880 0.880
GM* 0.751 0.751 1.0 0.872 0.872

RKM
0.776 0.785 0.803 0.869 0.883

PRKM
0.765 0.769 0.980 0.871 0.873

RGKM
0.767 0.787 0.763 0.853 0.880

RDCM
0.791 0.846 0.788 0.837 0.892

TWCM
0.766 0.776 0.953 0.871 0.875

TWKM
0.741 0.756 0.949 0.844 0.863

TWCK
0.739 0.810 0.686 0.820 0.846

TWCS
0.686 0.758 0.517 0.760 0.831

* Hard clustering, rough clustering, three-way clustering



More extensive study

The differences are not always statistically significant

Model KM GM RKM PRKM RGKM RDCM TWCM TWKM TWCK TWCS
KM 1.0 0.419 0.136 0.720 0.034 0.435 0.760 0.154 0.009 5.2e-05
GM 0.419 1.0 0.491 0.652 0.183 0.979 0.614 0.533 0.066 0.001
RKM 0.136 0.491 1.0 0.256 0.516 0.474 0.234 0.947 0.245 0.007
PRKM 0.720 0.652 0.256 1.0 0.076 0.671 0.958 0.284 0.023 1.9e-04
RGKM 0.034 0.183 0.516 0.076 1.0 0.174 0.068 0.474 0.605 0.037
RDCM 0.435 0.979 0.474 0.671 0.174 1.0 0.633 0.516 0.062 0.001
TWCM 0.760 0.614 0.234 0.958 0.068 0.633 1.0 0.261 0.020 1.6e-04
TWKM 0.154 0.533 0.947 0.284 0.474 0.516 0.261 1.0 0.219 0.006
TWCK 0.009 0.066 0.245 0.023 0.605 0.062 0.020 0.219 1.0 0.114
TWCS 5.2e-05 0.001 0.007 1.9e-04 0.037 0.001 1.6e-04 0.006 0.114 1.0

Table: Pairwise Quade Test: SAMI
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Soft Clustering evaluation

A part from rough set clustering, there exist some extension of
standard measure, in particular different version of Rand index

I often they fail to satisfy basic metric properties, for instance it
can happen that rand(F ,F ) < 1 or that its value is negative

I hence they cannot be used to compare two clusterings

I do not distinguish different form of uncertainty: ambiguity,
fuzziness
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Soft clustering as distributions over hard clusterings

I evidential clustering → rough clustering → hard clustering

I R rough clustering, R(x) the clusters x belongs to (i.e., the
upper approximation)

I an evidential clustering is represented as a mass function over
hard clusterings:

mM(R) =
∏
x

mx(R(x))
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Transport-based measures

A comparison measure for soft clustering obtained by

I computing the cost of making the two distributions equivalent
by moving masses from one rough clustering to another

I the cost of such movements is determined by a base distance
over hard clusterings.

I any distance is ok → it is framework to generalize different
hard clustering evaluations
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Transport-based measures

An interval [d0, d1] such that

I d0 represent the compatibility between two clustering, i.e.,
whether there exists a hard clustering compatible with both
soft clusterings

I d1 quantifies their similarity

I Pros: they satisfies good metric properties

I Cons: NP-hard to compute → approximate solutions with
bounded error
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Summary of the proposed comparison measures

Measure
Metric

Properties
Computational
Complexity

Transport-based Measure
1− dE

0 consistency
dE

1 metric
dE

0 NP-HARD

dE
1 NP-HARD

Sampling-based
Approximations

- O(n2s + s3 log s)

Approximation for
Rand index

Rand0 consistency
Rand1 similarity

O(n2)

Approximation for
partition distance

1− δE0 consistency
δE1 metric

O(n2k + k3)

A.

Campagner, D. Ciucci, T. Denœux, A General Framework for Evaluating and
Comparing Soft Clusterings, submitted to Information Sciences
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