(Hints on) Decision Under Uncertainty

Davide Ciucci

Introduction

- preferences
 - "prefer 200€ instead of 100€"
- Real world problems require also models for
 - Representing risk
 - Representing uncertainties
- Expected Utility, Prospect Theory, Belief Expected Utility, …

Decision theoretic tools rely on mathematical models for representing agent's

Risk/Uncertainty

- alternative"*
 - interest rates
 - Probability theory
- is ambigous

 - Beyond probability theory

*K. Takemura, Behavioral Decision Theory, Springer, 2014

• Risk: "a condition that occurs with known probability as the result of selecting an

• Example: decide on stock trading, according to the probability of raise/decline of

Uncertainty: "the probability as the result of selecting an alternative is not known" or

• Interest rates are not known or known with imprecision (e.g., "fairly low" increase)

Expected Utility

- A set of decisions D, with a preference order $d_1 \leq d_2$
- A set of possibile consequences X, x(d) is the consequence of decision d
 - Lottery: a set of probabilities associated to a set of consequences
 - The preference is reflected on consequences $x(d_1) \leq x(d_2)$ iff $d_1 \leq d_2$
 - Example: roll a dice. $L1 = Win \ 100 \in if \ even, \ 10 \in if \ odd$
 - Rigged dice, even p = 0.01, odd p = 0.99
- Utility function $u: X \mapsto \mathbb{R}$
 - $x \leq y$ iff $u(x) \leq u(y)$

EU - axiomatic approach

- Eu used since the 18th century (Cramer, Bernoulli)
- Axiomatic approach in the 20th century
 - Von Neumann Morgenstern, 1944, assumes the existence of an "objective" probability distribution on consequences X
 - Savage, 1954, probability derived from the rationality of the agent ->"subjective probability"
- Axioms represent rationality
 - Agent is rational iff it follows Expected Utility

Von Neumann-Morgenstern

- Axiom 1: \leq is reflexive, transitive and complete
 - Given two possible consequences of a decision, an agent is always capable of determining the preferred one and if $P \leq Q$ and $Q \leq R$ then $P \leq R$
- Axiom 2: $P \prec Q \prec R$
 - If R is preferred to Q, small perturbations do not change this preference
 - $\alpha R + (1 \alpha)P$ with probability α we have R, otherwise P
 - there exists α, β such that $\alpha R + (1 \alpha)P < Q < \beta R + (1 \beta)P$

Ç

Von Neumann-Morgenstern

- Axiom 3: independence
 - $P \leq Q$ iff $\alpha P + (1 \alpha)R \leq \alpha Q + (1 \alpha)R$
 - With probability (1α) : $R \leq R$
 - With probability $\alpha: P \leq Q$

- Are we rational (in the sense of axioms 1-3)?
- Do we use probability to reach a decision?

Allais Paradox

- Which lottery do you prefer?
 - $L1 = Win 1M \in$, probability 1
 - L2 = Win 1M €, probability 0.89; 5M € prob. 0.1; 0€, prob. 0.01
- Which lottery do you prefer?
 - L1' = win 1M€, p=0.11; 0€, p=0.89
 - L2' = win 5M€, p=0.10; 0€, p=0.90
- It can be shown that according to independence Axiom 3
 - If $L2 \prec L1$ then $L2' \prec L1'$

Ellsberg paradox

- An urn with 1/3 of red balls, the other balls are black or yellow
- Select an alternative of winning according to drawn a ball from a urn
- CASE 1
 - Alternative A: win 1M€ if the ball is red, 0€ otherwise
 - Alternative B: win 1M€ if the ball is black, 0€ otherwise

Ellsberg paradox

- CASE 2
 - Alternative C: win 1M€ if the ball is red or yellow, 0€ otherwise
 - Alternative D: win 1M€ if the ball is black or yellow, 0€ otherwise
- However, in EU and assuming the additivity of probability:
 - If $B \prec A$ then $D \prec C$

Rank Dependent Utility

- account the perception of probabilities by the agent
- A generalization of Expected Utility
 - Allais paradox can be explained
- "The axiomatic foundation of RDU are quite complicated"*
- Cannot cope with Ellsberg's paradox
- * C. Gonzales, P. Perny, "Decision Under Uncertainty", 2020

Prospect Theory and successively Rank Dependent Utility (RDU) take into

A particular case of Choquet Expect Utility: capacities instead of probabilities

Choquet/Belief Expected Utility

- Agent is rational iff it follows Choquet/Belief Expected Utility
- Belief function of Ellsberg's urn:
 - $f(\emptyset) = f(\{vellow\}) = f(\{black\}) = 0$
 - $f(\{red\}) = 1/3$
 - $f(\{black, yellow\}) = 2/3$

Modify axioms 1-3 using capacities/belief functions instead of probabilities

Ellberg's urn - rivisited

- Assume the utility:
 - $u(\{0\}) = 0, u(\{1M\}) = 1, u(\{0, 1M\}) = \alpha$
 - If $\alpha < 1/2$, the common agent's preferences are respected
- Alternative A: win 1M€ if the ball is red, 0€ otherwise
 - BEU(A) = $\frac{2}{3} \cdot u(\{0\}) + \frac{1}{3} \cdot u(\{1M\}) =$
- Alternative B: win 1M€ if the ball is black, 0€ otherwise

• BEU(B) =
$$\frac{1}{3} \cdot u(\{0\}) + \frac{2}{3} \cdot u(\{0, 1M\}) = \frac{2}{3}\alpha$$

$$=\frac{1}{3}$$

Qualitative decision making

- Capacities -> Qualitative Capacities
- Utility —> Qualitative Utility

- Possibility distributions π on an ordered set L to represent lotteries
- having a "good" utility value
- having a "good" utility value

• Pessimisitic utility function: to which extent it is sure to get a consequence

Optimistic utility function: to which extent it is possible to get a consequence

Going further

- Sequential decision models: multiple decisions taken one after the other
 - **Decision trees** lacksquare
- Multi-criteria decision making (MCDM): several criteria has to be taken into account Possibility to use possibility theory, rough sets, etc...
- Behavioural decision theory: how people make decisions
 - A descriptive (vs normative) decision theory
 - At the crossroads of mathematics, psychology, economy