(Hints on) Decision Under Uncertainty

Introduction

- Decision theoretic tools rely on mathematical models for representing agent's preferences
- "prefer $200 €$ instead of $100 €$ "
- Real world problems require also models for
- Representing risk
- Representing uncertainties
- Expected Utility, Prospect Theory, Belief Expected Utility, ...

Risk/Uncertainty

- Risk: "a condition that occurs with known probability as the result of selecting an alternative"*
- Example: decide on stock trading, according to the probability of raise/decline of interest rates
- Probability theory
- Uncertainty: "the probability as the result of selecting an alternative is not known" or is ambigous
- Interest rates are not known or known with imprecision (e.g.,"fairly low" increase)
- Beyond probability theory
*K. Takemura, Behavioral Decision Theory, Springer, 2014

Expected Utility

- A set of decisions D , with a preference order $d_{1} \leq d_{2}$
- A set of possibile consequences $X, x(d)$ is the consequence of decision d
- Lottery: a set of probabilities associated to a set of consequences
- The preference is reflected on consequences $x\left(d_{1}\right) \leq x\left(d_{2}\right)$ iff $d_{1} \leq d_{2}$
- Example: roll a dice. L1 = Win $100 €$ if even, $10 €$ if odd
- Rigged dice, even $p=0.01$, odd $p=0.99$
- Utility function $u: X \mapsto \mathbb{R}$
- $x \leq y$ iff $u(x) \leq u(y)$

EU - axiomatic approach

- Eu used since the 18th century (Cramer, Bernoulli)
- Axiomatic approach in the 20th century
- Von Neumann - Morgenstern, 1944, assumes the existence of an "objective" probability distribution on consequences X
- Savage, 1954, probability derived from the rationality of the agent -> "subjective probability"
- Axioms represent rationality
- Agent is rational iff it follows Expected Utility

Von Neumann-Morgenstern

- Axiom 1: \leq is reflexive, transitive and complete
- Given two possible consequences of a decision, an agent is always capable of determining the preferred one and if $P \leq Q$ and $Q \leq R$ then $P \leq R$
- Axiom 2: $P<Q<R$
- If R is preferred to Q, small perturbations do not change this preference
- $\alpha R+(1-\alpha) P$ with probability α we have R , otherwise P
- there exists α, β such that $\alpha R+(1-\alpha) P<Q<\beta R+(1-\beta) P$

Von Neumann-Morgenstern

- Axiom 3: independence
- $P \leq Q$ iff $\alpha P+(1-\alpha) R \leq \alpha Q+(1-\alpha) R$
- With probability $(1-\alpha): R \leq R$
- With probability $\alpha: P \leq Q$
- Are we rational (in the sense of axioms 1-3)?
- Do we use probability to reach a decision?

Allais Paradox

- Which lottery do you prefer?
- L1 = Win $1 \mathrm{M} €$, probability 1
- L2 = Win $1 \mathrm{M} €$, probability $0.89 ; 5 \mathrm{M} €$ prob. $0.1 ; 0 €$, prob. 0.01
- Which lottery do you prefer?
- L1' = win $1 \mathrm{M} €, \mathrm{p}=0.11 ; 0 €, \mathrm{p}=0.89$
- $\mathrm{L} 2^{\prime}=\operatorname{win} 5 \mathrm{M} €, \mathrm{p}=0.10 ; 0 €, \mathrm{p}=0.90$
- It can be shown that according to independence Axiom 3
- If $L 2<L 1$ then $L 2^{\prime}<L 1^{\prime}$

Ellsberg paradox

- An urn with $1 / 3$ of red balls, the other balls are black or yellow
- Select an alternative of winning according to drawn a ball from a urn
- CASE 1
- Alternative A : win $1 \mathrm{M} €$ if the ball is red, $0 €$ otherwise
- Alternative B : win $1 \mathrm{M} €$ if the ball is black, $0 €$ otherwise

Ellsberg paradox

- CASE 2
- Alternative C : win $1 \mathrm{M} €$ if the ball is red or yellow, $0 €$ otherwise
- Alternative D: win $1 \mathrm{M} €$ if the ball is black or yellow, $0 €$ otherwise
- However, in EU and assuming the additivity of probability:
- If $B<A$ then $D<C$

Rank Dependent Utility

- Prospect Theory and successively Rank Dependent Utility (RDU) take into account the perception of probabilities by the agent
- A generalization of Expected Utility
- Allais paradox can be explained
- "The axiomatic foundation of RDU are quite complicated"*
- Cannot cope with Ellsberg's paradox
- A particular case of Choquet Expect Utility: capacities instead of probabilities
* C. Gonzales, P. Perny, "Decision Under Uncertainty", 2020

Choquet/Belief Expected Utility

- Modify axioms 1-3 using capacities/belief functions instead of probabilities
- Agent is rational iff it follows Choquet/Belief Expected Utility
- Belief function of Ellsberg's urn:
- $f(\varnothing)=f(\{$ yellow $\})=f(\{$ black $\})=0$
- $f(\{r e d\})=1 / 3$
- $f(\{$ black, yellow $\})=2 / 3$

Ellberg's urn - rivisited

- Assume the utility:
- $u(\{0\})=0, u(\{1 M\})=1, u(\{0,1 M\})=\alpha$
- If $\alpha<1 / 2$, the common agent's preferences are respected
- Alternative A : win $1 \mathrm{M} €$ if the ball is red, $0 €$ otherwise
- $\operatorname{BEU}(\mathrm{A})=\frac{2}{3} \cdot u(\{0\})+\frac{1}{3} \cdot u(\{1 M\})=\frac{1}{3}$
- Alternative B : win $1 \mathrm{M} €$ if the ball is black, $0 €$ otherwise
- $\operatorname{BEU}(\mathrm{B})=\frac{1}{3} \cdot u(\{0\})+\frac{2}{3} \cdot u(\{0,1 M\})=\frac{2}{3} \alpha$

Qualitative decision making

- Capacities -> Qualitative Capacities
- Utility —> Qualitative Utility
- Possibility distributions π on an ordered set L to represent lotteries
- Pessimisitic utility function: to which extent it is sure to get a consequence having a "good" utility value
- Optimistic utility function: to which extent it is possible to get a consequence having a "good" utility value

Going further

- Sequential decision models: multiple decisions taken one after the other
- Decision trees
- Multi-criteria decision making (MCDM): several criteria has to be taken into account
- Possibility to use possibility theory, rough sets, etc...
- Behavioural decision theory: how people make decisions
- A descriptive (vs normative) decision theory
- At the crossroads of mathematics, psychology, economy

