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Cautious learning
I Not enough evidence to take a decision
I a generalization of supervised learning in which the Machine

Learning (ML) models are allowed to express set-valued
predictions



Three-way strategy

Define algorithms that can abstain

I a general method based on cost of abstention vs cost of error

I ad hoc methods: TW-decision tree, TW-random forest based
on orthopartition

Result: three-way algorithms offer a trade-off among accuracy and
coverage (the points that are classified)



TWO: decision theoretic approach

Given a probabilistic classifier transform it in a three-way classifier

strategy 1 - ε ambiguity - example

I Labels L = {1,2,3,4,5}
I Probabilities for object x classification:

A(x) = 〈0.2, 0.3, 0.15, 0.1, 0.25〉
I Since A(x)2 = 0.3 is the biggest, then the label of x is 2.

However, 0.2 and 0.25 can be considered close to 0.3

I The classification of x is ambiguous: {1,2,5}
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TWO: decision theoretic approach

Given a probabilistic classifier transform it in a three-way classifier

strategy 2: balance the cost of errors and abstention

1. set a cost of error and abstention

2. define the risk of a decision (using probabilities A(x))

3. the decision is the less risky set of labels
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TWO: decision theoretic approach

Some more details:

I ε cost of prediction error
If the error cost is constant, the complexity of the procedure is
O(n)

I α : P(X ) 7→ R cost of partial abstention
α(Z ) the cost of abstaining among the alternatives in Z

I The risk of decision Z

R(Z ) = α(Z ) ·
∑
yi∈Z

A(x)i + ε
∑
yj /∈Z

A(x)j
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TWO: decision theoretic approach

strategy 2 - example

I Labels L = {1,2,3,4,5}
I Probabilities for object x classification:

A(x) = 〈0.2, 0.3, 0.15, 0.1, 0.25〉

I ε = 1 and α(Z ) = |Z |−1
|Y |−1

I Compute the risk for all sets containing label ‘2’
I R({1, 2}) = 1

4 (0.2 + 0.3) + 1(0.15 + 0.1 + 0.25) = 0.625
I R({2}) = 0 · 0.3 + 1 · 0.7
I . . . ...

I The less risky is Z = {2, 5}
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Model specific strategies

The previous strategies are

I generic: take the results of a probabilistic classifier and
transform it in a three-way

I do not exploit directly the ambiguity in data

We implemented modifications of

I Decision Trees

I Random Forest

I Optimization Based Learning (logistic regression, Support
Vector Machines, etc.)

More details on Decision Trees
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Decision Tree

Temperature Outlook Humidity Windy Do Sport?
hot sunny high false no
hot sunny high true no
hot sunny high false yes
cool rain normal false yes
cool overcast normal true yes
mild sunny high false no
cool sunny normal false yes
mild rain normal false yes
mild sunny normal true yes
mild overcast high true yes
hot overcast normal false yes
mild rain high true no
cool rain normal true no
mild rain normal false yes



Decision Tree (ID3)

Outlook

Humidity

Temperature

Windy

N (0/1) N (1/1)

N (0/1)

P (2/0)

P (3/0) Windy

P (3/0) N (0/2)

sunny

high

hot

true false

mild

normal

overcast rainy

false true



The idea

A classification can be

yes/no/undecided

Two steps

1. Define an orthopartition from each attribute

2. Select as split attribute the one with greatest mutual
information wrt the decision



From an attribute to an orthopartition

When to abstain from a decision? When it is less costly!

I Two parameters α < ε to weight errors
I α the cost of an abstention
I ε: the cost of a classification error

I Compute total error for each attribute a and each value i

I If total classification error ≥ total abstention error → better
to abstain
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From an attribute to an orthopartition

I For an attribute a, for each value we assign a decision: yes/no/⊥

I Da
i objects with value i : Da

i = {x ∈ D|va(x) = i}
I The elements in Da

i are in majority classified as yes or no?

We associate to Da
i the classification

C a
i = argmaxj∈{yes,no}{|{x ∈ Da

i |C (x) = j}|}
I and compute the error/abstention costs

I Expected classification error cost

E (Da
i |C a

i ) = ε ∗minj∈{yes,no}{|{x ∈ Da
i |C (x) = j}|}

I Expected abstention error cost

E (Da
i |⊥) = α|Da

i |



From an attribute to an orthopartition

I For an attribute a, for each value we assign a decision: yes/no/⊥
I Da

i objects with value i : Da
i = {x ∈ D|va(x) = i}

I The elements in Da
i are in majority classified as yes or no?

We associate to Da
i the classification

C a
i = argmaxj∈{yes,no}{|{x ∈ Da

i |C (x) = j}|}
I and compute the error/abstention costs

I Expected classification error cost

E (Da
i |C a

i ) = ε ∗minj∈{yes,no}{|{x ∈ Da
i |C (x) = j}|}

I Expected abstention error cost

E (Da
i |⊥) = α|Da

i |



From an attribute to an orthopartition

I For an attribute a, for each value we assign a decision: yes/no/⊥
I Da

i objects with value i : Da
i = {x ∈ D|va(x) = i}

I The elements in Da
i are in majority classified as yes or no?

We associate to Da
i the classification

C a
i = argmaxj∈{yes,no}{|{x ∈ Da

i |C (x) = j}|}

I and compute the error/abstention costs

I Expected classification error cost

E (Da
i |C a

i ) = ε ∗minj∈{yes,no}{|{x ∈ Da
i |C (x) = j}|}

I Expected abstention error cost

E (Da
i |⊥) = α|Da

i |



From an attribute to an orthopartition

I For an attribute a, for each value we assign a decision: yes/no/⊥
I Da

i objects with value i : Da
i = {x ∈ D|va(x) = i}

I The elements in Da
i are in majority classified as yes or no?

We associate to Da
i the classification

C a
i = argmaxj∈{yes,no}{|{x ∈ Da

i |C (x) = j}|}
I and compute the error/abstention costs

I Expected classification error cost

E (Da
i |C a

i ) = ε ∗minj∈{yes,no}{|{x ∈ Da
i |C (x) = j}|}

I Expected abstention error cost

E (Da
i |⊥) = α|Da

i |



From an attribute to an orthopartition

I For an attribute a, for each value we assign a decision: yes/no/⊥
I Da

i objects with value i : Da
i = {x ∈ D|va(x) = i}

I The elements in Da
i are in majority classified as yes or no?

We associate to Da
i the classification

C a
i = argmaxj∈{yes,no}{|{x ∈ Da

i |C (x) = j}|}
I and compute the error/abstention costs

I Expected classification error cost

E (Da
i |C a

i ) = ε ∗minj∈{yes,no}{|{x ∈ Da
i |C (x) = j}|}

I Expected abstention error cost

E (Da
i |⊥) = α|Da

i |



From an attribute to an orthopartition

I If E (Da
i |C a

i ) < E (Da
i |⊥) we assign to the objects in Da

i the
decision C a

i otherwise, the decision is ⊥

I Union over all values i → define an orthopair Oa = (Pa,Na)

Pa =
⋃
{Da

i |C a
i = yes} and Na =

⋃
{Da

i |C a
i = no}

I Define the orthopartition Oa = {Oa,¬Oa}
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The algorithm

Input: Dataset D, error cost ε, abstention cost α
Output: Three-way Decision Tree built on D

1 Feature a → orthopartition Oa using ε, α;
2 Orthopartition Oa → mutual information m(D,Oa);
3 split attribute = the feature amax which gives the greatest

mutual information value;
4 Recur on the subsets of D determined by amax ;



Example

Humidity

Outlook

Temperature

Windy

N (0/1) ⊥(1/1)

N (0/1)

P (1/0) N (0/1)

Outlook

P (2/0) P (2/0) Windy

P (3/0) N (0/1)

high

sunny

hot

true false

mild

overcast rainy

normal

sunny overcast rainy

false true



Some comments

I Not discussed here
I Extension of the method to more than two-valued (yes/no)

decisions

I In case of indecision the algorithm returns a subset of
decisions: the correct one is always included in this subset

I problem: accuracy depends on arbitrary error weights ε and α
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TWO experiments

I Compared KNN,Logistic Regression, Random Forest, Naive
Bayes, SVM and their 3-way variants

I 6 UCI datasets + 1 real-world medical dataset
Dataset # instances # attributes # classes

Iris 150 4 3
Wine 178 13 3
Digits 1797 64 10

Breast cancer 569 30 2
Olivetti faces 400 4096 40

Yeast 1484 8 10
SF12 462 10 2
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TWO experiments
The three-way versions (Strategies 1/2) are better than the
standard version
Yeast dataset



TWO experiments

The best algorithms are the ones derived from random forest

Alg. TWRF DIFID-TWRF ε-TWRF Lε-TWLC TWLR TWSVM TWKNN RF KNN/ε-TWLR/ε-TWSVM

Rank 2.14 2.28 2.71 3.71 4.00 4.14 4.42 4.86 5.86

Table: Average ranks of the top 10 performing algorithms.

I No significant differences among strategy 1, strategy 2 and
ad-hoc algorithms

I Strategy 1: comparable performance but with less parameters
to set and increased computational efficiency
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Conclusions

I The capability of directly using and conveniently
communicating the ambiguity encountered by the algorithm in
recommending a class could be critical to deliver reliable
Machine Learning-based Decision Support Systems

I Abstention in ML output is a way to trade (decision) accuracy
with efficiency: unresolved advice implies that decision-makers
have to look for and consider more evidence, even beyond the
available data



Conclusions

I The capability of directly using and conveniently
communicating the ambiguity encountered by the algorithm in
recommending a class could be critical to deliver reliable
Machine Learning-based Decision Support Systems

I Abstention in ML output is a way to trade (decision) accuracy
with efficiency: unresolved advice implies that decision-makers
have to look for and consider more evidence, even beyond the
available data


