Da: Randall et al., Animal Physiology, 4th edition, Freeman & Company, 1997.
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Da: Guyton & Hall. Fisiologia Medica, Il edizione. EdISES, 2002.

Propagazione dell'impulso nel cuore che mostra | tempi di com-
parsa, in frazioni di sec, nelle diverse parti.
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Da: Aidley D.J., The Physiology of Excitable Cells. Cambridge Univ. Press, 1998.
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Abstract: Intracellular calcium (Ca) cycling in the heart plays key roles in excitation—contraction
coupling and arrhythmogenesis. In cardiac myocytes, the Ca release channels, i.e., the ryanodine
receptors (RyRs), are clustered in the sarcoplasmic reticulum membrane, forming Ca release units
(CRUs). The RyRs in a CRU act collectively to give rise to discrete Ca release events, called Ca
sparks. A cell contains hundreds to thousands of CRUs, diffusively coupled via Ca to form a CRU
network. A rich spectrum of spatiotemporal Ca dynamics is observed in cardiac myocytes, including
Ca sparks, spark clusters, mini-waves, persistent whole-cell waves, and oscillations. Models of
different temporal and spatial scales have been developed to investigate these dynamics. Due to the
complexities of the CRU network and the spatiotemporal Ca dynamics, it is challenging to model the
Ca cycling dynamics in the cardiac system, particularly at the tissue sales. In this article, we review
the progress of modeling of Ca cycling in cardiac systems from single RyRs to the tissue scale, the
pros and cons of the current models and different modeling approaches, and the challenges to be

check for
updates tackled in the future.
Citation: Qu, Z,; Yan, D.; Song, Z.
Modeling Calcium Cycling in the Keywords: calcium cycling; excitation—contraction coupling; arrhythmias; computer modeling

Heart: Progress, Pitfalls, and
Challenges. Biomolecules 2022, 12,
1686. https://doi.org/10.3390/

biom12111686 1. Introduction
Academic Editors: Aman Ullah and The heart is probably the most intensively and accurately modeled biological system
Mohsin Saleet Jafri compared to other organs [1-5]. So far, more than 100 action potential models (or modified

versions) have been developed for different types of myocytes and species. Tissue and
organ scale models, including one-dimensional (1D) cable, two-dimensional (2D) sheet,
three-dimensional (3D) slab, and anatomically based ventricle and atrium models, have
been developed. These mathematical and computational models have been widely used to
investigate cardiac excitation-contraction coupling and arrhythmias under physiological
and pathophysiological conditions.

Modeling of the voltage in the heart is relatively well executed, mainly following
the Hodgkin-Huxley (HH) modeling approach [6]. The governing equation for the trans-

membrane potential (V) of a myocyte is simply described by the following differential
equation: ‘fj—‘t/ = —lip /Cy, in which I, is the total ionic current density and C,, is the
cell membrane capacitance. In cardiac myocytes, there are many types of ionic currents
(Figure 1A) which are modeled either using the HH formulation or Markovian approaches.
This article is an open access article 11 the HH formulism, the ionic current density is described as I; = Gsx™y"zM(V — E;), in
distributed under the terms and ~ Which Gs is the maximum conductance, and E; is the reversal potential. x, i, and z are the
conditions of the Creative Commons ~ gating variables described by differential equations with properties (steady states and time
Attribution (CC BY) license (https://  constants) from experimental measurements of whole-cell voltage clamp recordings [6].
creativecommons.org/licenses /by / In the Markovian approaches, there are two ways of modeling. In the first way, single ion
40/). channel openings and closings are simulated using stochastic Markovian transitions, and
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the total ionic current of an assembly of ion channels is described as Iy = gsN,(V — E;),
in which g; is the single-channel conductance and N, is the number of open channels at a
given time. In the second way, differential equations are used to describe the probabilities
of states in the Markovian scheme, and the ionic current of an assembly of ion channels
is described as I; = GsP,(V — Es), in which P, is the open probability of the ion channels.
Note that a ventricular myocyte is a 3D entity with its dimension being roughly [7] 150 x
30 x 15 um?, but in the current action potential models, voltage is considered uniform over
the entire cell membrane. In other words, at any moment, the ion channels in the entire cell
membrane are assumed to sense the same voltage. Moreover, in the Markovian scheme,
it is assumed that the ion channels are statistically independent, and thus the whole-cell
current is simply the summation of the single-channel currents.

However, Ca cycling and its dynamics are much more complex to model. Ca cycling
not only is required for contraction but also plays important roles in regulating ionic
currents (Figure 1A). Ca is stored in the sarcoplasmic reticulum (SR), which forms a
complex network inside the cell. Ca is released from the SR into the cytoplasmic space
through the opening of the ryanodine receptors (RyRs) in the SR membrane. Opening of
the RyRs is activated by Ca on both the cytoplasmic and luminal sides. Under the normal
condition, SR Ca release is mainly triggered by Ca entry from the L-type Ca channels
(LCCs). Under diseased or Ca overload conditions, spontaneous Ca release occur more
frequently. In cardiac myocytes, RyRs form clusters (Figure 1B), which combine with their
associated LCC clusters to form basic units of Ca signaling, called Ca release units (CRUs).
A cell contains hundreds to thousands of CRUs [8-10], which form a coupled network
via Ca diffusion in the cytoplasmic space and SR. A rich spectrum of spatiotemporal Ca
dynamics is observed in cardiac myocytes and other cell types, including Ca sparks, waves,
and oscillations [11-21]. Due to the complex spatiotemporal Ca dynamics, it has been
challenging to model Ca cycling dynamics in the cardiac system, particularly at the tissue
scales. Models of different temporal and spatial scales have been developed to investigate
these spatiotemporal dynamics. In this article, we review the progress of modeling of Ca
cycling in cardiac systems from single RyRs to tissue scales, the pros and cons of the current
models and different modeling approaches, and the challenges to be tackled in the future.
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Figure 1. Ca cycling/signaling in cardiac myocytes. (A) Schematic diagram showing Ca cycling and
signaling and its coupling with voltage, including the major components: (1) ionic currents and their
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