
PYTHON!

"Everything is an Object"

"Everything in Python is an object". If you haven't heard this phrase already, you would

probably hear it eventually anyway. It can make a little sense when you don't know much
about programming. You can think of it in a way that everything you create in Python is

going to be an object of a specific type. Integer 5 is an object, function sum() is an
object, even the imported Excel sheet is also an object.

Say goodbye to the calculator

You can use Python only as a calculator to perform math calculations of any type (and no-
one will judge you for that):

2+2*2

6

Notes: Guess what is the type of 2 ? Correct, that's an object of type int (integer) with
some unique id (which you don't need to worry about). Guess what is the resulting 6 in

the example on the left? Yes, that's another object of int type!

You will see later that each object type has its own properties and functions.

Another big note here is that math operations order in Python is the same as we think of it
"in a real-life". Thus, the result is 6 and not 8 .

Saving your objects

Save the result of a calculation:

x = 2 + 2*2

print(x)

print(type(x))

6

int

Use it later:

y = x - 10

print(y)

-4

Built-in types

You have seen int type already. Here are some more:

var = 5.5 # floating point number

print(type(var))

float

var = "Hello, Neuroscience" # string

print(type(var))

str

var = True # boolean

print(type(var))

bool

Operators

Operation Note

x + y sum of x and y

x - y difference of x and y

x * y product of x and y

x / y quotient of x and y

x // y floored quotient of x and y

x % y remainder of x / y

-x x negated

() b l l i d f

Comparing objects

Notes: Now that you know how to create new variables, you can compare them. This opens

a lot of possibilities for further data manipulation!

Python comparison operations

Operation Meaning

< strictly less than

<= less than or equal

> strictly greater than

>= greater than or equal

== equal

Notes: Comparison always return a Boolean object which can be either True or False .

You can combine multiple comparisons together using & (AND) or | (OR) statements.
Note, that True equals 1 and False equals 0.

Boolean operations

Operation Note

x | y if x is False, then y, else x

x & y if x is False, then x, else y

not x if x is False, then True, else False

(sex == "Male") & (age > 45)

A female who is 50 years old would have False & True result of two comparisons,

resulting in the final False result. And that's exactly what you wanted since you want two
conditions to be True at the same time.

Examples

example 1

x = 45

x <= 100

True

example 2

y = 20

(x > 10) | (y < 5)

True

example 3

result = (x > 10) & (y < 5)

print(result)

print(type(result))

False

bool

Making use of strings

Notes: Strings are another awesome built-in data type. It's very likely that some of the
variables you will be working with in a future will be in a str format, so it's important to

understand how to deal with them.

What are strings?

We can say that strings are sequences of (Unicode) characters.

x = "Neuroscience Rocks!"
print the length of the string (how many characters are in the string)

print(len(x))

19

print("You " + "can " + "also " + "add " + "strings!")

print("Or even multiply!"*3)

You can also add strings!
Or even multiply!Or even multiply!Or even multiply!

x = "Hello" # single quotes

x = 'Hello' # double quotes

What are the differences? There is absolutely no difference which type of quotes you are
going to use, as long you are consistent within one string (for example, "hello' would

raise an Error).

Slicing

Python allows getting slices from the string by calling

string[start:end:step]

start - index where you want to start the slicing (included)

end - index where you want to end the slicing (not included)

step - step of the slice (for example, every second value); default is 1

s = "Neuroscience Rocks!"
print(s[5:12]) # example 1

print(s[5]) # example 2

print(s[:4]) # example 3

print(s[::2]) # example 4

print(s[::-1]) # example 5

science

s

Neur

Nuocec ok!

!skcoR ecneicsorueN

It's important to remember, that indexes in Python start with 0!

Check occurrence

mRNA = "GUAUGCACGUGACUUUCCUCAUGAGCUGAU"

arginine_codon = "CGC"

arginine_codon not in mRNA

False

leucine_codon = "CUC"

leucine_codon in mRNA

True

BUT:

leucine_codon = "cuc"

leucine_codon in mRNA

False

An useful trick is to check whether a string hold some other string using the in operator.
Note, that strings (and Python in general) are case sensitive, so "CUC" and "cuc" are

two different strings.

Strings' methods

s = "Neuroscience Rocks!"

basic string methods (does not modify the original string)

s.lower() # returns 'neuroscience rocks!'

s.upper() # returns 'NEUROSCIENCE ROCKS!'

s.startswith('brain') # returns False

s.endswith('!') # returns True

s.isdigit() # returns False

s.find('science') # returns index of first occurrence, which is 5

s.find('Psychology') # returns -1 since not found

s.replace('Neuro','Brain') # replaces all instances of 'Neuro' with 'Brain'

print(s)

Neuroscience Rocks!

Note that some (or even most) of the methods (aka functions), don't change the original
object. In our example we applied multiple methods on the string s , but in the end it was

still the same. If we want to save the modification after the method application we need to
assign it to a variable.

s = "Neuroscience Rocks!"
rewrite the variable

s = s.upper()

print(s)

'NEUROSCIENCE ROCKS!'

Collecting objects together

Notes: So far you have seen how to work with variables that hold a single object (like age

= 20 or DNA = "ATGC"). But wouldn't it be great if you could store multiple objects in one
variable (for example, variable with all participants' age)?

There are 4 commonly used collection types in Python that you will see in the next slides:

Lists

Tuples

Sets

Dictionaries

Lists

List is a collection which is ordered and changeable. Allows duplicate members.

age = [15, 25, 45, 16, 18, 20, 25]

print(type(age))

list

age[:5]) # returns [15, 25, 45, 16, 18]

age[3:7]) # returns [16, 18, 20, 25]

age[::-1] # returns [25, 20, 18, 16, 45, 25, 15]

age[-2] # returns 20

print(age) # object stayed unchanged

[15, 25, 45, 16, 18, 20, 25]

Notes: Remember the slicing we did for the strings? Exactly the same idea applies to the
lists. And no matter what type of slicing you do, as long as you don't rewrite your variable, it

will stay unchanged.

Basic operations with lists

age = [15, 25, 45, 16, 18, 20, 25]

len(age) # returns 7

min(age) # returns 15

max(age) # returns 45

sum(age) # returns 164

avg_age = sum(age) / len(age)

print(round(avg_age,2))

23.43

Lists can hold objects of different types:

i_am_valid_list = [1, "Hello", [1,2,False], True-0, 42<3.14]

print(i_am_valid_list)

[1, 'Hello', [1, 2, False], 1, False]

Notes: There are some trivial built-in functions like sum() , max() , min() that could be
applied to lists. There is no built-in avg() or mean() function, but you could easily

calculate it yourself.

Keep in mind, that list can hold objects of different types, even another lists. Some

functions like sum() wouldn't work in that case since you cannot take the sum of string
and number for obvious reasons.

participants = ['Bob', 'Bill', 'Sarah', 'Max', 'Jill']

methods that modify the initial list

participants.append('Jack') # append one element to the end

['Bob', 'Bill', 'Sarah', 'Max', 'Jill', 'Jack']

participants.extend(['Anna', 'Bill']) # append multiple elements to end

['Bob', 'Bill', 'Sarah', 'Max', 'Jill', 'Jack', 'Anna', 'Bill']

participants.insert(0, 'Louis') # insert element at index 0 (shifts everything to the right)

['Louis', 'Bob', 'Bill', 'Sarah', 'Max', 'Jill', 'Jack', 'Anna', 'Bill']

participants.remove('Jill') # searches for first instance and removes it

['Louis', 'Bob', 'Bill', 'Sarah', 'Max', Jack', 'Anna', 'Bill']

participants.pop(1) # removes the element at index 0 and returns it

['Louis', 'Bill', 'Sarah', 'Max', Jack', 'Anna', 'Bill']

not a method, but in this way you can change the value(s) of the list

participants[2] = 'Ben' # replace element at the index 2

['Louis', Bill', 'Ben', 'Max', Jack', 'Anna', 'Bill']

methods that don't change a sting and return a new object

print(participants.count('Bill')) # returns the number of instances;

print(participants.index('Max')) # returns index of first instance;

2

3

It's important to note that some of these methods change the initial string!

The best way to know whether the method changes the object or returns new objects is

the documentation.

Tuples

Tuple is a collection which is ordered and unchangeable. Allows duplicate members.

brain_lobes = ('frontal', 'parietal', 'temporal', 'occipital')

or:

brain_lobes_list = ['frontal', 'parietal', 'temporal', 'occipital']

brain_lobes = tuple(brain_lobes_list)

print(type(brain_lobes))

tuple

brain_lobes[0] = 'anterior'

TypeError: 'tuple' object does not support item assignment

We defined lists using the square brackets ([1,2,3]), but for tuples we use parentheses

((1,2,3)).

Tuples are quite "boring" since they don't have so many methods that can be applied to

them. But there is a reason for that. Tuples are unchangeable. This means that no function
or method can change objects in the tuple.

Sets

Set is a collection which is unsorted and un-indexed. No duplicate members.

languages = {'python', 'r', 'java'} # create a set directly

snakes = set(['cobra', 'viper', 'python']) # create a set from a list

Set operations:

languages & snakes # intersection, AND

{'python'}

languages | snakes # union, OR

{'cobra', 'java', 'python', 'r', 'viper'}

languages - snakes # set difference

{'java', 'r'}

Figure brackets are the indicator for sets, another collection type. You cannot access items
in a set by referring to an index since sets are unordered and have no index. But you can

loop through the set items using a for loop, or ask if a specified value is present in a set,
by using the in keyword.

You can apply basic sets commands (like union or intersection). Note that we didn't get
'python' twice for the union since sets consist only of unique values. This fact can

become handy used when looking for the unique values in a list.

Dictionaries

Dictionaries are: unordered, iterable, mutable.

participant = {'name': 'Jon Doe', 'group': 'Control', 'age': 42}

print(participant['name'])

Jon Doe

add new key-value pair to the dictionary

participant['ID'] = 'CJD'

print(participant)

{'name': 'Jon Doe', 'group': 'Control', 'age': 42, 'ID': 'CJD'}

participant.keys()

['name', 'group', 'age', 'ID']

my_dict.values()

['Jon Doe', 'Control', 42, 'CJD']

Dictionaries are structures which can contain multiple data types, and is ordered with key-
value pairs: for each unique key, the dictionary has one value. Keys can be strings,

numbers, or tuples, while the corresponding values can be any Python object.

dict_obj = {

 'key1': value1,

 'key2': value2,

 ...}

As you can see from the first example, you cannot access values of the dictionary by the

indexes (like you did in lists). But you can access them by the key. Due to this feature
dictionaries don't allow duplicated keys.

You can also access just the keys or just the indexes by .keys() and .values()
methods.

if statement

General form:

if condition is True:

 do something

elif another condition is True:

 do something

else:

 do something else

x = 100

y = 500

if x > y:

 print('X is greater than Y')

elif x == y:

 print('X equals Y')

else:

 print('X is smaller than Y')

X is smaller that Y

We have looked at the comparisons in a previous chapter (like == , != or <). Now we

want to take some actions which will depend on the outcome of the comparison.

The form is pretty straightforward. if something is True , take one action, if something

else (elif) is true, take another action. If none of the statements were true, do something
else (else). You can see the trivial example by comparing x and y variables.

A couple of comments:

1. 4 spaces at the beginning of the line are there for a reason. They tell Python that this
line corresponds to the if statement body. There can be more than one line;

2. You can skip else statement in case you don't want to take any actions when the
above conditions were false;

3. You can add as many elif statements as you want to make a sophisticated pattern

or you can skip it at all;

4. You can combine multiple comparisons, like if (x>5) & (y<10) .

while loop

Using the while loop we execute the set of statements as long as condition is True .

General form:

while condition is True:

 do something

x = 0

while x < 4:

 x += 1 # which is the equivalent of `x = x + 1`

 print(x)

1

2

3

4

You can also say that you want to keep on taking some actions as long as condition is

True using while loop.

for loops

A for loop is used for iterating over a sequence (like lists, tuples, dictionaries, sets,
strings).

my_list = ['data', 'science', 'rocks']

for word in my_list: # iterate over all values in the list

 print(word.upper()) # change to upper register and print out the value

DATA

SCIENCE

ROCKS

stdev = [2, 4, 1.5, 2, 4] # list of standard deviations

variances = [] # initialize the empty list that will hold variances

for val in stdev: # iterate over all values in the list

 variances.append(val**2) # append the variances list with squared value

print(variances)

[4, 16, 2.25, 4, 16]

Notes: Unlike while loops, for loops don't require any condition. But they require an

iterable object (like a list).

In the first example, we were iterating over the list my_list , which consists of three

strings. At each step of the loop, we defined a temporary variable word (name word is
arbitrary, you can call it as you wish) as a value from the lists.

Step 1. word = 'data'

Step 2. word = 'science'

Step 3. word = 'rocks'

Since no more objects left in the list, exit the loop.

The second example shows how you can get take every number to the power of two using
for loop.

List comprehensions

List comprehensions provide a concise way to create lists.

stdev = [2, 4, 0, 1.5, 2, 4]

variances = [val**2 for val in stdev]

print(variances)

[4, 16, 0, 2.25, 4, 16]

variances = [val**2 for val in stdev if val != 0]

print(variances)

[4, 16, 2.25, 4, 16]

variances = [val**2 if val != 0 else "wrong value" for val in stdev]

print(variances)

[4, 16, "wrong value", 2.25, 4, 16]

Notes: List comprehensions allow creating a new list in a shorter way using for loops
directly inside the list. However, sometimes such lines of codes become "harder" to read.

You can even add if / else statement. Note the difference in the order of statements
with and without else .

Functions

A function is a block of code that only runs when it is called. You can pass data, known as
parameters, into a function. A function can return data as a result.

General form:

def my_new_function(some_argument1, some_argument2):

 do something

 return something

Example:

def mean(input_list):

 nominator = sum(input_list)

 denominator = len(input_list)

 return nominator/denominator

l = [1,2,3,4,5]

print(mean(input_list=l))

3.0

You have seen the examples of several built-in functions like len() , max() , sorted() !

In the mean() function we specified that there is going to be just one argument

(input_list). That will hold the value of an object we pass to the function when we call
it.

In the function's body, we create two new variables that hold the values of sum and length.
And at the end, we return the value of a division. The last step is very important since now

mean() function returns an object, that could be passed to a variable and used later.

Arguments of the function

def get_pi():

 pi = 22/7

 return pi

print(get_pi())

3.142857142857143

def get_pi(circumference, diameter, digits_to_round=2):

 pi = circumference/diameter

 return round(pi, digits_to_round)

print(get_pi(circumference=22, diameter=7))

print(get_pi(circumference=22, diameter=7, digits_to_round=1))

3.14

3.1

Notes: Functions can take no input arguments, like in the get_pi() example. In such a

case, the result of the function will be always the same.

You can specify as many input arguments as you wish. Also, arguments can have default

values (like digits_to_round=2). This means that if you don't specify its value in the
function run, it will be taken from the default value.

digits_to_round was used inside the round() function and specified the numbers we
want to keep after the coma. In the first run, we didn't specify digits_to_round , so it was

set to 2 . In the first run, we set it to 1 in the function call.

Numerical operations with NumPy

Welcome numpy
NumPy is the fundamental package for scientific computing in Python. It is a Python library
that provides a multidimensional array object, various derived objects (such as masked

arrays and matrices), and an assortment of routines for fast operations on arrays, including
mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier

transforms, basic linear algebra, basic statistical operations, random simulation and much
more.

Website || Documentation

https://numpy.org/
https://numpy.org/doc/

Importing NumPy:

import numpy as np

square root function

print(np.sqrt(4))

2.0

Arrays

NumPy is great for doing vector arithmetic. A NumPy array is a grid of values, all of the

same type (i.e. it is a matrix), and is indexed by a tuple of non-negative integers.

a = np.array([1, 3, 5])

print(type(a))

numpy.ndarray

b = np.array([1, 2, "hello"])

print(b)

['1' '2' 'hello']

c = np.array(

 [[1,2],

 [3,4]]

)

print(c.shape)

(2,2)

Vector operations

Convert values in an array from Celsius to Fahrenheit:

numpy array

temperature_array = np.array([18.0, 21.5, 21.0, 21.0, 18.8, 17.6, 20.9, 20.0])

temperature_array = temperature_array * 9/5 + 32

print(temperature_array)

[64.4, 70.7, 69.8, 69.8, 65.84, 63.68, 69.62, 68.0]

NumPy makes life easier through vectorization. We can apply operations directly on an
array without calling any mapping functions, loops, or so on.

https://blog.paperspace.com/numpy-optimization-vectorization-and-broadcasting/

Linear algebra (1)

A = np.array(

 [[6, 1, 1],

 [4, -2, 5],

 [2, 8, 7]]

)

print("Rank of A:", np.linalg.matrix_rank(A))

print("\nTrace of A:", np.trace(A))

print("\nDeterminant of A:", np.linalg.det(A))

print("\nInverse of A:\n", np.linalg.inv(A))

Rank of A: 3

Trace of A: 11

Determinant of A: -306.0

Inverse of A:

 [[0.17647059 -0.00326797 -0.02287582]

 [0.05882353 -0.13071895 0.08496732]

 [-0.11764706 0.1503268 0.05228758]]

Notes: The Linear Algebra module of NumPy offers various methods to apply linear algebra

on any numpy array. One can find:

rank, determinant, trace, etc. of an array;

eigenvalues/vectors of matrices;

matrix and vector products (dot, inner, outer product), matrix exponentiation;

solve linear or tensor equations, and much more!

Linear algebra (2)

Solving the equation:

A = np.array(

 [[1,2],

 [3,4]])

B = np.array([10, 20])

x = np.linalg.solve(A,B)

print(x)

[0. 5.]

Notes: Example of solving the linear equations. Here we distinguished that x1 = 0, x2 = 0.5.

Packages for data visualization

Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive

visualizations in Python.

Website || Documentation || Gallery

Importing matplotlib :

import matplotlib.pyplot as plt

Notes: Matplotlib must be the most commonly used package for data visualization in

Python. If you have worked in MATLAB, you might see a lot of similarities in the plotting
syntax (hence the name). Matplotlib has a gallery with the possible graphs you can make,

which makes it easy to adapt the code for your own problem.

Most of the time we don't need the whole package, but just a module pyplot , with the

alias name plt .

https://matplotlib.org/
https://matplotlib.org/stable/contents.html
https://matplotlib.org/stable/gallery/index.html

Anatomy of a figure

Notes: Here are some possible parameters you can change in the plot, such as title,

legend, grid, axis labels, grid and so on.

Syntax basics

x = np.linspace(start=0, stop=6*np.pi, num=100)

y_sin = np.sin(x)

plt.figure() # start

plt.plot(x, y_sin)

plt.title("My First Plot")

plt.xlabel("This is x axis")

plt.ylabel("This is y axis")

plt.show() # end

Notes: One of the way to think about the plotting syntax is in this way.

1. Start new figure with plt.figure()

2. Add parameters you need, such as line, bars, labels, legend, etc.

3. Stop figure creation by plt.show()

plt.plot() can be used to create a line plot (be default) or scatter plot (by adding "o"),
so it is not a "universal" plotting function, as it could seen.

Adding more objects to the figure

y_cos = np.cos(x)

plt.figure() # start

plt.plot(x, y_sin, 'o--', color='r', label='Sine')

plt.plot(x, y_cos, color='black', label='Cosine')

plt.axhline(y=0, linewidth=1, color='#42f5b0', linestyle='dashed', label='Zero')

plt.title("My First Plot", fontsize=18)

plt.xlabel("This is x axis")

plt.ylabel("This is y axis")

plt.legend()

plt.show() # end

Notes: Here is an example of how you can add more objects to the figure. Note that order is
not important, as long as you keep all the new plotting objects between plt.figure()

and plt.plot() .

Some explanations:

'o--' in plt.plot() is a shortcut to make a scatter plot connected with a dashed

line;

color can be in a string format with a full word ("green"), with one letter ("g" ,

meaning green), HEX color ("#ffffff") or RGB color as a list ((0.1, 0.2, 0.5))
(and maybe even more other options);

label is responsible for assigning a name to an object on a legend. In order to show

the legend we need to add plt.legend() ;

plt.axhline() creates a h orizontal line through the ax is. There is also

plt.axvline() .

Area chart

plt.figure()

plt.plot(x, y_sin, x, y_cos)

plt.fill_between(x, y_sin, alpha=0.5)

plt.fill_between(x, y_cos, alpha=0.5)

plt.xlabel('x axis')

plt.ylabel('y axis')

plt.title("Sine/Cosine Area Chart", fontsize=18)

plt.show()

Notes: One of the ways to create an area chart is to use plt.fill_between() function.

alpha is responsible for opacity (0 : object is transparent, 1 : full color).

Bar plot

df = pd.DataFrame(

 {"month": ["Jan", "Feb", "Mar", "Apr", "May"],

 "value": [100, 130, 200, 120, 140]})

df.sort_values(by="value", ascending=False, inplace=True)

plt.figure()

plt.bar(df["month"], df["value"])

plt.title("Bar Chart", fontsize=18)

plt.xlabel("Month")

plt.ylabel("Value")

plt.show()

Notes: plt.bar() displays the bar in a given order from the DataFrame/list. So if you
want to represent bars in a specific order (for example, descending as on the example), you

have to perform some manipulations on the DataFrame before calling the plot function.

