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NOW BACK TO LINEAR MODELS…
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PERCEPTRON
¢ A perceptron takes a vector of inputs x = (x1, x2, . . . , xn), weights

each feature, and outputs a binary variable, ”+1" or ”-1",
according to an activation function (i.e. depending on whether a
weighted sum exceeds some pre-determined threshold).
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PERCEPTRON

f(x,w)=sign(w1 * x1 + ... + wn * xn + w0 * x0)

Integration

x0=1; w0 alters the position of the decision boundary

Remark: If w0 is negative, then the weighted combination of inputs must produce a 
positive value greater than |b|to push the classifier over the 0 threshold

Activation
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PERCEPTRON
¢ This means that w0 is (usually) a parameter to be estimated
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LIMITATIONS OF LINEAR MODELS
¢ The hypothesis class of linear (and log-linear) models is severely restricted: 

� It cannot represent the XOR function

� There is no wÎ R2 and bÎ R such that:
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LIMITATIONS OF LINEAR MODELS
¢ There is no line that can separete our samples:

¢ However, if we transform our input using a non linear function
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LIMITATIONS OF LINEAR MODELS
¢ In general, we train a linear classifier over a dataset that is not linearly

separable by defining a function that will linearize the data

¢ However, in most of the cases the dimension of the feature space is
much higher that the original input space

� And we need to define a mapping function Φ

¢ Support Vector Machines approach this problem by defining a set of
mappings

� Each of them map the data into a very high dimensional space
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LIMITATIONS OF LINEAR MODELS
¢ One example is the polynomial mapping

¢ For d=2, we obtain

� i.e. all the combinations of the two variables

¢ Although we are now able to train a linear classifier for the XOR problem,
we have a polynomial increase in the number of parameters

¢ Let’s assume that we have a classification problem with 784 input variables

� With a simple polynomial mapping we will move from an input space of
784 to a feature space of 7842=614,656
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LIMITATIONS OF LINEAR MODELS
¢ A different approach is to define a trainable non-linear mapping

function, and train it with the linear classifier

� The mapping function can take the form of a parameterized linear
model, followed by a non-linear activation function g that is
applied to each of the output dimensions:

� By taking g(x)=max(0,x) and and b’=(-1,0) we obtain
the same results as before
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LIMITATIONS OF LINEAR MODELS
¢ The entire expression is differentiable even if not

convex.

� we can apply any gradient-based estimation to learn
simultaneously both the representation function and the linear
classifier on top

� This corresponds to derive what we can call Multi-Layer Perceptron
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ARTIFICIAL NEURAL NETWORKS (ANNS)
THE BASICS

ANNs incorporate the two fundamental components of biological neural nets:

� Neurones (nodes)

� Synapses (weights)

Deep Architecture in the Brain 

Retina 

Area V1 

Area V2 

Area V4 

pixels 

Edge detectors 

Primitive shape detectors 

Higher level visual 

abstractions 
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ARTIFICIAL NEURAL NETWORKS (ANNS)
THE BASICS

ANNs incorporate the two fundamental components of biological neural nets:

� Neurones (nodes)

� Synapses (weights)

weights

nodes
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Activation function limits node output:

ARTIFICIAL NEURAL NETWORKS (ANNS)
STRUCTURE OF A NODE

Node

Activation
Function

IN OUT

4.7 0.98
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Internal representation (interpretation) of data

FEED-FORWARD NEURAL NETWORKS

A feed-forward neural network is an artificial neural network where:

� Information flow is unidirectional

� Information is distributed

� Information processing is parallel

Hidden
(h)

Output
(y)

Input
(x)

Information
E. Fersini



(1 ´ 0.25) + (0.5 ´ (-1.5)) = 0.25 + (-0.75)   =  -0.5

Activation function:

FEED-FORWARD NEURAL NETWORKS
FORWARD PROPAGATION

Feeding the data through the network:

1

?

Hidden
(h)

Output
(y)

Input
(x)

0.5

0.25

-1.5

1
1+ e0.5

= 0.3775
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FEED-FORWARD NEURAL NETWORKS
BACK-PROPAGATION
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FEED-FORWARD NEURAL NETWORKS
BACK-PROPAGATION
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ŷi
h − yi

h( )
2

i

N

∑
h

H

∑

E. Fersini



FEED-FORWARD NEURAL NETWORKS
TRAINING

¢ Backpropagation

� Requires training set (input / output pairs)

� Starts with small random weights

� Error is used to adjust weights

à Gradient descent on error landscape

The cost function C depends on the task!

NLP: most of the cost functions are based on 
probability distributions underlying language composition

E. Fersini



NON-LINEAR TRANSFORMATIONS

If classes can be linearly separated, this works fine…

E. Fersini



ACTIVATION FUNCTIONS
¢ An activation function is extremely important in neural networks:

� They tell us if a neuron is activated or not

� They represent a non-linear transformation

1. Linear

2. Binary Step Function

3. Sigmoid

4. Tanh

5. ReLU

6. Leaky ReLU

E. Fersini



ACTIVATION FUNCTIONS

scalar-to-scalar function, yielding the neuron’s activation. We use activation functions
for hidden neurons in a neural network to introduce nonlinearity into the network’s
modeling capabilities. Many activation functions belong to a logistic class of trans‐
forms that (when graphed) resemble an S. This class of function is called sigmoidal.
The sigmoid family of functions contains several variations, one of which is known as
the Sigmoid function. Let’s now take a look at some useful activation functions in
neural networks.

Linear
A linear transform (see Figure 2-11) is basically the identity function, and f(x) = Wx,
where the dependent variable has a direct, proportional relationship with the inde‐
pendent variable. In practical terms, it means the function passes the signal through
unchanged.

Figure 2-11. Linear activation function

We see this activation function used in the input layer of neural networks.

Sigmoid
Like all logistic transforms, sigmoids can reduce extreme values or outliers in data
without removing them. The vertical line in Figure 2-12 is the decision boundary.
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¢ Linear Function: A linear transform is basically the identity function



ACTIVATION FUNCTIONS
¢ Binary Step Function: it can be viewed as a threshold based classifier

i.e. whether or not the neuron should be activated

� If the value Y is above a given threshold value then activate the
neuron else leave it deactivated.

E. Fersini



ACTIVATION FUNCTIONS
¢ Binary Step Function:

� It is extremely simple

� It can be used while creating a binary classifier.

E. Fersini



ACTIVATION FUNCTIONS

¢ What’s the problem with the binary step
function?

¢ The gradient of the step function is zero.

� This makes the step function not so
useful

� The gradient of the step function
reduces it all to zero with no
improvement of the model

E. Fersini



ACTIVATION FUNCTIONS
¢ Sigmoid: (also calle logistic function) is an S-shaped function that maps

each value of x into the interval [0,1]

¢ It is a smooth function and is continuously differentiable. 

¢ The biggest advantage over step linear function is that it is non-linear 

� When we have multiple neurons having sigmoid function as
activation function – the output is non linear as well.

1
(1+ e−x )

E. Fersini



ACTIVATION FUNCTIONS
Sigmoid

¢ The gradient is very high between the
values of -3 and 3 but gets much flatter
in other regions.

¢ What does it mean?

E. Fersini



ACTIVATION FUNCTIONS
¢ Sigmoid is dependent on x.

� This means that during backpropagation we can easily use this
function.

� Therefore, the error can be backpropagated and the weights can
be accordingly updated.

¢ So what is the problem with the sigmoid?

E. Fersini



ACTIVATION FUNCTIONS
¢ Tanh:  It is actually just a scaled version of the sigmoid function

� It solves the problem of values all being of the same sign (around
the origin).

� All other properties are the same as that of the sigmoid function.

� It is continuous and differentiable at all points. 

� The function as you can see is non linear so we can easily
backpropagate the errors.

� It ranges into the interval [-1,1]

E. Fersini



ACTIVATION FUNCTIONS
¢ The gradient of the tanh function is steeper as compared to the sigmoid

function.

¢ But…

E. Fersini



ACTIVATION FUNCTIONS
¢ ReLU (Rectified linear unit): It is the most widely used activation function

� it is non linear

� We can easily backpropagate the errors and have multiple layers of
neurons being activated by the ReLU function.

� Main advantage over other activation functions:
¢ it does not activate all the neurons at the same time.

If the input is negative it will
convert it to zero and the neuron
does not get activated.
• This means that at a time only

a few neurons are activated
making the network sparse
making it efficient and easy for
computation.

E. Fersini



ACTIVATION FUNCTIONS
¢ If we look at the gradient it is …very nice

� ReLU also falls a prey to the gradients moving towards zero

� The gradient is zero for x<0, which means the weights are not updated
during the back-propagation

E. Fersini



ACTIVATION FUNCTIONS
¢ Leaky ReLU: it is the improved version of the ReLU function even if in

practice is not widely used

� Instead of defining the Relu function as 0 for x less than 0, we define it
as a small linear component of x

� It will have a negative slope (0.01)

E. Fersini



¢ Swhish: smooth and non-monotonic function

ACTIVATION FUNCTIONS

f(x) = x · sigmoid(𝛽x)



AND NOW?



READING



PRE-TRAINING STEPS

¢ Some practical suggestions:

� Selection of Data

� Data Preprocessing

� Initial parameter settings

E. Fersini



PRE-TRAINING STEPS

¢ Selection of data

� It is generally difficult to incorporate prior knowledge into a neural
network

¢ therefore the network will only be as good as the data that is used to train it.

� It is not always easy to be sure that the input space is adequately
sampled by the training data.

¢ For simple problems, in which the dimension of the input vector is small, and each element
of the input vector can be chosen independently, we can sample the input space using a
grid…but this can be done when the dimension of the input space is “small”

E. Fersini



PRE-TRAINING STEPS

¢ How can we be sure that the input space has been adequately
sampled by the training data?

� This is difficult to do prior to training

� In addition, we can use techniques that indicate when a network is
being used outside the range of the data with which it was trained.
¢ This will not improve the network performance, but it will prevent us from

using a network in situations where it is not reliable.

E. Fersini



PRE-TRAINING STEPS

¢ The main purpose of the data preprocessing stage is to facilitate network
training.

� Another practical issue to consider is missing data
¢ According to the type of missing value, you can select between two choices

¢ If your missing is a “value of interest”, just put a 0 and let the network to learn
the missing

¢ If your missing is a “a real missing”, it is better to replace it according to your
knowledge

E. Fersini



PRE-TRAINING STEPS

¢ Missing Data: Most Common (MC) value

� If the missing value is continuous
¢ Replace it with the mean value of the attribute for the dataset

� If the missing value is discrete
¢ Replace it with the most frequent value of the attribute for the dataset

� Simple and fast to compute

� Assumes that each attribute presents a normal distribution

Avg

?

Unsupervised Settings

E. Fersini



PRE-TRAINING STEPS

¢ Concept Most Common (CMC) value

¢ Refinement of the MC policy

¢ The MV is replaced with the mean/most 
frequent value computed from the 
instances belonging to the same class

¢ Assumes that the distribution for an 
attribute of all instances from the same 
class is normal

Avg

?

Supervised Settings

E. Fersini



PRE-TRAINING STEPS

¢ Recently…

Śmieja, M., Struski, Ł., Tabor, J., Zieliński, B., & Spurek, P. (2018). Processing 
of missing data by neural networks. In Advances in Neural Information 
Processing Systems (pp. 2719-2729).



PRE-TRAINING STEPS

¢ Before training the network, we need to initialize the weights and biases. 

¢ Traditional strategies for traditional ANN:

1. Initializing all weights to 0

- When you set all weight to 0, the derivative with respect to loss 
function is the same for every w

- all the weights have the same values in the subsequent iteration

- This makes the hidden units symmetric and continues for all the n 
iterations of the training. 

- Setting weights to zero makes your network no better than a linear 
model.

E. Fersini



PRE-TRAINING STEPS

2. Initializing weights randomly

- Initializing weights randomly, following standard normal distribution

- while working with a deep network, this can potentially lead to 2 issues:

a) Vanishing gradients: weights receives an update proportional to the
partial derivative of the error function with respect to the current weight.

� With sigmoid and tanh, if your weights are large, then the gradient will be
really small, preventing the weights from changing their value. This is
because abs(dW) will increase very slightly or possibly get smaller and
smaller every iteration.

� With ReLU vanishing gradients are generally not a problem as the gradient
is inputs less than 0 and 1 for positive inputs.

E. Fersini



PRE-TRAINING STEPS

b) Exploding gradients:

- Let’s consider non-negative and large weights for a sigmoid.

- When these weights are multiplied along the layers, they cause a large
change in the cost.

- The gradients become large, implying that the changes in W will be in huge
steps

- This may result in oscillating around the minima or even overshooting the
optimum again and again and the model will never learn!

¢ In order to avoid this issues, there are some heuristics that can be adopted
for initializing weights according to the activation functions that we have

E. Fersini



¢ In principle, we could enlarge the neural network as much as we want…

MULTI-LAYERS NEURAL NETWORKS

E. Fersini



MULTI-LAYERS NEURAL NETWORKS

High-Level linguistic
representation

x

h1

h2

y
Output

Mapping
from 

features

Features

Input

High-
level

features

“Both my inner fan and
inner critic agree: The fifth
season is superb.”

IMAGE TEXT MODEL E. Fersini



¢ Pros

� Very flexible à we can select activation functions according to our goal.

� Highly parallel à we can compute each activation function (neuron) separately.

¢ Cons

� It requires labelled training data.

� The learning time does not scale well with increasing number of layers and 

neurons. 

� It can get stuck in poor local optima (non-convex loss function). 

MULTI-LAYERS NEURAL NETWORKS

Unique optimum: global/local Multiple local optima
E. Fersini



MULTI-LAYERS NEURAL NETWORKS
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SO WHAT IS DEEP LEARNING NOW?



¢ Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning 
algorithm for deep belief nets. Neural computation.

¢ Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2006). 
Greedy layer-wise training of deep networks. Advances in 

neural information processing systems.

¢ Poultney, C., Chopra, S., & Cun, Y. L. (2006). Efficient learning 
of sparse representations with an energy-based 
model. Advances in neural information processing systems.

2006: THE DEEP BREAKTHROUGH
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LAYER-WISE UNSUPERVISED
PRE-TRAINING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012.

Raw INPUT

E. Fersini



LAYER-WISE UNSUPERVISED
PRE-TRAINING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012. E. Fersini



LAYER-WISE UNSUPERVISED
PRE-TRAINING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012.

UNSUPERVISED

E. Fersini



LAYER-WISE UNSUPERVISED
PRE-TRAINING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012. E. Fersini



LAYER-WISE UNSUPERVISED
PRE-TRAINING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012. E. Fersini



LAYER-WISE UNSUPERVISED
PRE-TRAINING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012.

UNSUPERVISED

NEW INPUT !

E. Fersini



LAYER-WISE UNSUPERVISED
PRE-TRAINING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012. E. Fersini



LAYER-WISE UNSUPERVISED
PRE-TRAINING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012. E. Fersini



LAYER-WISE UNSUPERVISED
PRE-TRAINING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012. E. Fersini



LAYER-WISE UNSUPERVISED
PRE-TRAINING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012.

UNSUPERVISED

NEW INPUT !

E. Fersini



SUPERVISED FINE-TUNING

Socher, Richard, Yoshua Bengio, and Christopher D. Manning. "Deep learning for NLP (without 
magic)." Tutorial Abstracts of ACL 2012. Association for Computational Linguistics, 2012. E. Fersini



LAYER-WISE UNSUPERVISED
PRE-TRAINING

¢ The main intuition

E. Fersini

Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., & Bengio, S. (2010). Why does
unsupervised pre-training help deep learning?. Journal of Machine Learning Research, 11(Feb), 625-660.

ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

parameters). Let rk be the probability that a purely random initialization (according to our initial-
ization procedure, which factorizes across parameters) lands in Rk, and let πk be the probability that
pre-training (following a random initialization) lands in Rk, that is, ∑k rk = ∑k πk = 1. We can now
take into account the initialization procedure as a regularization term:

regularizer= − logP(θ).

For pre-trained models, the prior is

Ppre−training(θ) =∑
k
1θ∈Rkπk/vk.

For the models without unsupervised pre-training, the prior is

Pno−pre−training(θ) =∑
k
1θ∈Rkrk/vk.

One can verify that Ppre−training(θ ∈ Rk) = πk and Pno−pre−training(θ ∈ Rk) = rk. When πk is tiny, the
penalty is high when θ ∈ Rk, with unsupervised pre-training. The derivative of this regularizer is
zero almost everywhere because we have chosen a uniform prior inside each region Rk. Hence, to
take the regularizer into account, and having a generative model Ppre−training(θ) for θ (i.e., this is
the unsupervised pre-training procedure), it is reasonable to sample an initial θ from it (knowing
that from this point on the penalty will not increase during the iterative minimization of the training
criterion), and this is exactly how the pre-trained models are obtained in our experiments.

Note that this formalization is just an illustration: it is there to simply show how one could
conceptually think of an initialization point as a regularizer and should not be taken as a literal
interpretation of how regularization is explicitly achieved, since we do not have an analytic formula
for computing the πk’s and vk’s. Instead these are implicitly defined by the whole unsupervised
pre-training procedure.

4. Previous Relevant Work

We start with an overview of the literature on semi-supervised learning (SSL), since the SSL frame-
work is essentially the one in which we operate as well.

4.1 Related Semi-Supervised Methods

It has been recognized for some time that generative models are less prone to overfitting than dis-
criminant ones (Ng and Jordan, 2002). Consider input variable X and target variable Y . Whereas a
discriminant model focuses on P(Y |X), a generative model focuses on P(X ,Y ) (often parametrized
as P(X |Y )P(Y )), that is, it also cares about getting P(X) right, which can reduce the freedom of
fitting the data when the ultimate goal is only to predict Y given X .

Exploiting information about P(X) to improve generalization of a classifier has been the driving
idea behind semi-supervised learning (Chapelle et al., 2006). For example, one can use unsupervised
learning to map X into a representation (also called embedding) such that two examples x1 and x2
that belong to the same cluster (or are reachable through a short path going through neighboring ex-
amples in the training set) end up having nearby embeddings. One can then use supervised learning
(e.g., a linear classifier) in that new space and achieve better generalization in many cases (Belkin
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take the regularizer into account, and having a generative model Ppre−training(θ) for θ (i.e., this is
the unsupervised pre-training procedure), it is reasonable to sample an initial θ from it (knowing
that from this point on the penalty will not increase during the iterative minimization of the training
criterion), and this is exactly how the pre-trained models are obtained in our experiments.

Note that this formalization is just an illustration: it is there to simply show how one could
conceptually think of an initialization point as a regularizer and should not be taken as a literal
interpretation of how regularization is explicitly achieved, since we do not have an analytic formula
for computing the πk’s and vk’s. Instead these are implicitly defined by the whole unsupervised
pre-training procedure.

4. Previous Relevant Work

We start with an overview of the literature on semi-supervised learning (SSL), since the SSL frame-
work is essentially the one in which we operate as well.

4.1 Related Semi-Supervised Methods

It has been recognized for some time that generative models are less prone to overfitting than dis-
criminant ones (Ng and Jordan, 2002). Consider input variable X and target variable Y . Whereas a
discriminant model focuses on P(Y |X), a generative model focuses on P(X ,Y ) (often parametrized
as P(X |Y )P(Y )), that is, it also cares about getting P(X) right, which can reduce the freedom of
fitting the data when the ultimate goal is only to predict Y given X .

Exploiting information about P(X) to improve generalization of a classifier has been the driving
idea behind semi-supervised learning (Chapelle et al., 2006). For example, one can use unsupervised
learning to map X into a representation (also called embedding) such that two examples x1 and x2
that belong to the same cluster (or are reachable through a short path going through neighboring ex-
amples in the training set) end up having nearby embeddings. One can then use supervised learning
(e.g., a linear classifier) in that new space and achieve better generalization in many cases (Belkin
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LAYER-WISE UNSUPERVISED
PRE-TRAINING

¢ Why is unsupervised pre-training working so well?

� Regularization hypothesis:
¢ Representations good for P(x) are good for P(y|x)

Why is unsupervised pre-training working so 
well?

• Regularization hypothesis: 
• Representations good for P(x) 

are good for P(y|x) 

• Optimization hypothesis:
• Unsupervised initializations start 

near better local minimum of 
supervised training error

• Minima otherwise not 
achievable by random 
initialization

Erhan, Courville, Manzagol, 
Vincent, Bengio (JMLR, 2010)
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