## Deep Learning

Elisabetta Fersini
elisabetta.fersini@disco.unimib.it

## HYPER-PARAMETER TUNING

- Hyper-paramters are variables that need to be set and have a strong impact to the Deep Learning generalization abilities
- Hyper-parameters for the training algorithm
- Hyper-parameters for the neural network model
- Choosing hyper-parameter values is formally equivalent to the question of model selection:
- given a family or set of learning algorithms, how to pick the most appropriate one inside the set?


## HYPER-PARAMETER TUNING

- A hyper- parameter for a training algorithm A is a variable to be set prior to the actual application of A to the data
- one that is not directly selected by the learning algorithm itself.
- Hyper-parameters can be fixed by hand or tuned by an algorithm, but their value has to be fixed.
- The value of some hyper-parameters can be selected based on the performance of A on its training data, but most cannot.
- For any hyper-parameter that has an impact on the effective capacity of a learner, we should use out-of-sample data
- validation set performance, cross-validation error.


## HYPER-PARAMETER TUNING

- Loss Functions Can Be Difficult to Optimize by SGD
- Remember: Optimization through gradient descent

$$
\theta \leftarrow \theta-\eta \frac{\partial J(\theta)}{\partial \theta}
$$

- How can we set the LEARNING RATE?
- This is one of the most important hyper-paramter that we have to take care!



## HYPER-PARAMETER TUNING

- Learning Rate:
- Small learning rate converges slowly and gets stuck in false local minima
- Large learning rates overshoot, become unstable and diverge
- Stable learning rates converge smoothly and avoid local minima



## HYPER-PARAMETER TUNING

- Learning Rate:
- Small learning rate converges slowly and gets stuck in false local minima
- Large learning rates overshoot, become unstable and diverge
- Stable learning rates converge smoothly and avoid local minima
- In mini-batch SGD with standardized input the learning rate is usually less than 1 and greater than $10^{-6}$
- A typical choice is 0.001
- If you have the chance to tune this hyper-parameter, you should take care of it
- How to deal with this choice?
- OPTION 1: Try lots of different learning rates and see what works "just right"
- OPTION 2: Design an adaptive learning rate that "adapts" to the landscape


## HYPER-PARAMETER TUNING

- In mini-batch SGD with standardized input the learning rate is usually less than 1 and greater than $10^{-6}$
- A typical choice is 0.001
- If you have the chance to tune this hyper-parameter, you should take care of it
- How to deal with this choice?
- OPTION 1: Try lots of different learning rates and see what works "just right"
- OPTION 2: Design an adaptive learning algorithm that "adapts" to the landscape


## READING

Bengio, Yoshua. "Practical recommendations for gradient-based training of deep architectures." Neural networks: Tricks of the trade. Springer, Berlin, Heidelberg, 2012. 437-478.

## HYPER-PARAMETER TUNING

- Learning rate schedule:
- Learning rates are no longer fixed
- Can be made larger or smaller depending on:
- how large gradient is
- how fast learning is happening
- size of particular weights
- etc...
- One of the choices is to use learning rate decay w.r.t to a time constant:

$$
\eta_{t}=\frac{\eta_{0} \tau}{\max (t, \tau)}
$$

- Which keeps the learning rate constant for the first $\tau$ steps and then decreases it
- for $\tau \rightarrow \infty$ the learning rate is constant over the training iterations


## Hyper-Parameter tuning

- An alternative choice is to use brute force adaptive learning rate heuristics:
- at regular intervals during training
- using a fixed small subset of the training set
- continue training with N different choices of learning rate (all in parallel) keep the value that gave the best results until the next re-estimation of the optimal learning rate.
- These schedules, however, have to be defined in advance and are thus unable to adapt to a dataset's characteristics.
- Additionally, the same learning rate applies to all parameter updates.


## "ADVANCED TRAINING"

- Alternative solution:
- More advanced training approaches
- Momentum
- Nesterov Accelerated Gradient
- Adagrad
- Adadelta
- Adam


## GRadient descent optimization algorithms

- SGD suffers where the surface curves much more steeply in one dimension than in another, which are common around local optima.
- SGD oscillates across the slopes of the ravine while only making hesitant progress along the bottom towards the local optimum.



Path taken by Gradient Descent

Ideal Path

## GRADIENT DESCENT OPTIMIZATION ALGORITHMS

- To overcome this, we introduce MOMENTUM:
- It takes knowledge from previous steps about where we should be heading.
- We are introducing a new hyperparameter $\gamma$

$$
\begin{aligned}
v_{t} & =\gamma v_{t-1}+\eta \nabla_{\theta} J(\theta) \quad \text { momentum term } \\
\theta & =\theta-v_{t}
\end{aligned}
$$

It adds a fraction $y$ of the update vector of the past time step to the current update vector

- MOMENTUM accelerate SGD in the relevant direction and reduces oscillations


## GRadient descent optimization algorithms

- MOMENTUM:


Path taken by
Gradient Descent
Ideal Path

However, MOMENTUM follows the slope...

## GRADIENT DESCENT OPTIMIZATION ALGORITHMS

- Nesterov Accelerated Gradient (NAG)
- Differently from the standard momentum approach, it evaluates the gradient after the velocity is applied.
- Basically, we know that we will use our momentum term $\mathrm{y}_{\mathrm{V}_{t-1}}$ to move the parameters $\theta$.
- Computing $\theta$ - $y_{v t-1}$ thus gives us an approximation of the next position of the parameters, i.e. a rough idea where our parameters are going to be.
- We can now effectively look ahead by calculating the gradient not w.r.t. to our current parameters $\theta$ but w.r.t. the approximate future position of our parameters:

$$
\begin{aligned}
v_{t} & =\gamma v_{t-1}+\eta \nabla_{\theta} J\left(\theta-\gamma v_{t-1}\right) \\
\theta & =\theta-v_{t}
\end{aligned}
$$

## GRadient descent optimization algorithms

- Nesterov Accelerated Gradient (NAG)
- Momentum first computes the current gradient (small blue vector) and then takes a big jump in the direction of the updated accumulated gradient (big blue vector)
- NAG first makes a big jump in the direction of the previous accumulated gradient (brown vector), measures the gradient and then makes a correction (red vector), which results in the complete NAG update (green vector).

$$
\begin{aligned}
v_{t} & =\gamma v_{t-1}+\eta \nabla_{\theta} J\left(\theta-\gamma v_{t-1}\right) \\
\theta & =\theta-v_{t}
\end{aligned}
$$

## GRADIENT DESCENT OPTIMIZATION ALGORITHMS

- Adagrad
- It adapts the learning rate w.r.t the parameters:
- It performs smaller updates (i.e. low learning rates) for parameters associated with frequently occurring features
- It performs larger updates (i.e. high learning rates) for parameters associated with infrequent features.
- it is well-suited for dealing with sparse data
- Basically it uses a different learning rate for every parameter $\theta_{i}$ at every time step $\dagger$


## GRadient descent optimization algorithms

- Let $g_{t, i}=\nabla_{\theta} J\left(\theta_{t, i}\right)$. be the partial derivative of the objective function w.r.t. to the parameter $\theta_{i}$ at time step $\dagger$
- The SGD update for every parameter $\theta_{i}$ at each time step $\dagger$ as follows:

$$
\theta_{t+1, i}=\theta_{t, i}-\eta \cdot g_{t, i} .
$$

- Adagrad modifies the general learning rate $\eta$ at each time step $t$ for every parameter $\theta_{i}$ based on the past gradients that have been computed for $\theta_{i}$ :

$$
\theta_{t+1, i}=\theta_{t, i}-\frac{\eta}{\sqrt{G_{t, i i}+\epsilon}} \cdot g_{t, i}
$$

historical gradient information
$G_{t}$ is a diagonal matrix where each diagonal element is the sum of the squares of the gradients w.r.t. $\theta_{i}$ up to time step $t$

## GRADIENT DESCENT OPTIMIZATION ALGORITHMS

- Adagrad's main weakness is its accumulation of the squared gradients in the denominator:
- Since every added term is positive, the accumulated sum keeps growing during training.
- This causes the learning rate to shrink and eventually become infinitesimally small,
- the algorithm is no longer able to acquire additional knowledge.
learning rate converges to zero with increase of time!


## GRADIENT DESCENT OPTIMIZATION ALGORITHMS

- Adadelta
- Instead of storing w previous squared gradients, the sum of gradients is recursively defined as a decaying average of all past squared gradients.

$$
\begin{aligned}
& \Delta \theta_{t}=-\frac{R M S\left[\overleftarrow{\Delta \theta]_{t-1}}\right.}{R M S[g]_{t}} g_{t} \\
& \theta_{t+1}=\theta_{t}+\Delta \theta_{t} \quad \begin{array}{l}
\text { squared parameter updates } \\
\text { decaying average over } \\
\text { past squared gradients }
\end{array}
\end{aligned}
$$

- It replaces the learning rate $\eta$ with the root mean squared error of parameter updates


## GRADIENT DESCENT OPTIMIZATION ALGORITHMS

- Adaptive Moment Estimation (Adam)
- In addition to storing an exponentially decaying average of past squared gradients $\vee_{f}$ (like Adadelta), Adam also keeps an exponentially decaying average of past gradients $m_{t}$ (similar to momentum)

$$
\begin{gathered}
m_{t}=\beta_{1} m_{t-1}+\left(1-\beta_{1}\right) g_{t} \\
v_{t}=\beta_{2} v_{t-1}+\left(1-\beta_{2}\right) g_{t}^{2}
\end{gathered} \begin{array}{r}
\hat{m}_{t}=\frac{m_{t}}{1-\beta_{1}^{t}} \\
\hat{v}_{t}=\frac{v_{t}}{1-\beta_{2}^{t}} \\
\theta_{t+1}=\theta_{t}-\frac{\eta}{\sqrt{\hat{v}_{t}}+\epsilon} \hat{m}_{t}
\end{array}
$$

## GRadient descent optimization algorithms



## READINGS

[ADAMAX] Kingma, D. P., \& Ba, J. L. (2015). Adam: a Method for Stochastic Optimization. International Conference on Learning Representations, 1-13.
[NADAM] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop, (1), 2013-2016.
[AMSGrad] Reddi, Sashank J., Satyen Kale, and Sanjiv Kumar. "On the convergence of adam and beyond." ICLR 2018.
[AdamW] Loshchilov, I., \& Hutter, F. (2019). Decoupled Weight Decay Regularization. In Proceedings of ICLR 2019.
[QHAdam] Ma, J., \& Yarats, D. (2019). Quasi-hyperbolic momentum and Adam for deep learning. In Proceedings of ICLR 2019.
[AggMo] Lucas, J., Sun, S., Zemel, R., \& Grosse, R. (2019). Aggregated Momentum: Stability Through Passive Damping. In Proceedings of ICLR 2019.

## AVOID OVERFITTING

- Hyper-parameter settings has impact on the overfitting problem


Underfitting
Model does not have capacity to fully learn the data

$\longleftarrow$
Ideal fit $\qquad$


Overfitting
Too complex, extra parameters, does not generalize well

## AVOID OVERFITTING

- Number of training iterations (measured in mini-batch updates)
- This hyper-parameter is particular in that it can be optimized almost for free using the principle of EARLY STOPPING:
- Stop training before we have a chance to overfit


Training

## AVOID OVERFITTING

- EARLY STOPPING in practice (heuristic):
- It is based on the idea of patience
- As training proceeds and new candidate selected points T are observed, the patience parameter is increased
- If we find a new minimum at t:
- we save the current best model,
- we update T $\leftarrow \dagger$
- we increase our patience up to ( $\dagger+$ constant) or ( $\dagger \times$ constant)


## AVOID OVERFITTING

- The minimization of the expected risk can be then approximated by (approximately) minimizing the following empirical risk:

$$
\underset{w}{\operatorname{minimize}} \frac{1}{|\mathcal{D}|} \sum_{\left(x_{i}, t_{i}\right) \in \mathcal{D}} E\left(f_{w}\left(x_{i}\right), t_{i}\right)+R(\ldots)
$$

- Which are the component that could contribute to the regularization?
- $\mathcal{D}$ : The training set
- $f$ : The selected model family
- $E$ : The error function
- $R$ : The regularization term
- The optimization procedure itself


## AVOIDING OVERFITTING

- Data Transformation: from training set $\mathcal{D}$ to ia new set $\mathcal{D}_{R}$
- Transformation with stochastic parameters is a function $\tau_{\theta}$ with parameters $\theta$ which follow some probability distribution
- Corruption of inputs by Gaussian noise: generating new samples

$$
\tau_{\theta}(x)=x+\theta, \quad \theta \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})
$$

## AVOIDING OVERFITTING

- Data Tranformation can be distinguished according to the properties of the used transformation and of the distribution of its parameters
- Stochastic parameters: Allow generation of a larger, possibly infinite, dataset. Various strategies for sampling of $\theta$ exist:
- Random: Draw a random $\theta$ from the specified distribution
- Adaptive: $\theta$ is the result of an optimization procedure
- Constrained optimization: $\theta$ found by maximizing error under hard constraints
- Unconstrained optimization: $\theta$ found by maximizing modified error function, using the distribution of $\theta$ as weighting
- Stochastic: $\theta$ found by taking a fixed number of samples of $\theta$ and using the one yielding the highest error


## AVOIDING OVERFITTING

- Regularization via the network architecture
- The network architecture is represented by a function $f:(w, x) \rightarrow y$, and together with the set $W$ of all its possible weight configurations defines a set of mappings that this particular architecture can realize: $\left\{f_{w}: x \rightarrow y \mid\right.$ $\forall w \in W\}$.
- Possible strategy:
- Weight sharing: reusing a certain trainable parameter in several parts of the network


## AVOIDING OVERFITTING

- Regularization via the error function
- An example is Dice Loss which is robust to class imbalance

$$
D=\frac{2 \sum_{i}^{N} p_{i} g_{i}}{\sum_{i}^{N} p_{i}^{2}+\sum_{i}^{N} g_{i}^{2}}
$$

$$
\frac{\partial D}{\partial p_{j}}=2\left[\frac{g_{j}\left(\sum_{i}^{N} p_{i}^{2}+\sum_{i}^{N} g_{i}^{2}\right)-2 p_{j}\left(\sum_{i}^{N} p_{i} g_{i}\right)}{\left(\sum_{i}^{N} p_{i}^{2}+\sum_{i}^{N} g_{i}^{2}\right)^{2}}\right]
$$

## AVOIDING OVERFITTING

- Regularization via the regularization term $\mathbf{R}$
- $R$ can depend on:
- the weights $w$
- the network output $y=f w(x)$
- $\partial y / \partial w$ of the output $y=f w(x)$ w.r.t. the weights $w$
- $\partial y / \partial x$ of the output $y=f w(x)$ w.r.t. the input $x$


## AVOID OVERFITTING

- Regularization term constrains our optimization problem to discourage complex models
- Improve generalization of our model on unseen data

$$
\begin{aligned}
\hat{\Theta} & =\underset{\Theta}{\operatorname{argmin}} \mathcal{L}(\Theta)+\lambda R(\Theta) \\
& =\underset{\Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} L\left(f\left(\boldsymbol{x}_{i} ; \Theta\right), \boldsymbol{y}_{i}\right)+\lambda R(\Theta) .
\end{aligned}
$$

## AVOID OVERFITTING

- REGULARIZATION:
- The regularizers $\boldsymbol{R}$ equate complexity with large weights, and work to keep the parameter values low.
- How does the regularizers work?
- It measure the norms of the parameter matrices
- L1 regularization
- L2 regularization


## AVOID OVERFITTING

- L1 regularization (lasso):

$$
R_{L_{1}}(\boldsymbol{W})=\|\boldsymbol{W}\|_{1}=\sum_{i, j}\left|\boldsymbol{W}_{[i, j]}\right|
$$

- L1 regularization makes sure that parameters that are not really very useful are driven to zero


## AVOID OVERFITTING

- L2 regularization (weight decay):

$$
R_{L_{2}}(\boldsymbol{W})=\|\boldsymbol{W}\|_{2}^{2}=\sum_{i, j}\left(\boldsymbol{W}_{[i, j]}\right)^{2}
$$

It strongly penalizes large values of parameters

## AVOID OVERFITTING

- Dropout:
- During training, randomly set some activations to 0
- Typically 'drop' $50 \%$ of activations in layer
- Forces network to not rely on any 1 node


Representation Learning

## Representation learning

- There are several motivations behind layer-wise unsupervised pre-training for deep neural networks and therefore representation learning:

1. Learning features, not just handcrafting them

- Hand-crafting features is time-consuming and incomplete

2. Most all data is unlabeled, we can make use of it
3. Raw data is sparse (extreme case is one-hot) and we need a more efficient and effective representation
4. We can emulate our brain by learning multiple levels of representation in an unsupervised settings

- Humans first learn simpler concepts and then compose them to more complex ones


## Representation learning

- An AUTOENCODER is a neural network that is trained to attempt to copy its input to its output.
- Internally, it has a hidden layer $h$ that describes a code used to represent the input.
- The network may be viewed as consisting of two parts: an encoder function $h=f(x)$ and a decoder that produces a reconstruction $r=g(h)$.



## Representation learning

- Copying the input to the output may sound useless, but we are typically not interested in the output of the decoder.
- Instead, we hope that training the autoencoder to perform the input copying task will result in $h$ taking on useful properties.
- One way to obtain useful features from the autoencoder is to constrain h to have smaller dimension than $x$.
- The autoencoder is said to be undercomplete
- Learning an undercomplete representation forces the autoencoder to capture the most salient features of the training data.


## Representation learning

- The learning process is described simply as minimizing a loss function

$$
L(\boldsymbol{x}, g(f(\boldsymbol{x})))
$$

- where $L$ is a loss function penalizing $g(f(x))$ )) for being dissimilar from $x$, such as the mean squared error


## Representation learning

- Autoencoders
- Deep Autoencoders
- Denoising Autoencoders
- Stacked Denoising Autoencoders

Original Input


Architecture of an Autoencoder

## Representation learning

- The simplest Autoencoder has an MLP-like (Multi Layer Perceptron) structure:
- Input Layer
- Hidden Layer, and
- Output Layer
- However, unlike MLP, autoencoders do not require any target data. As the network is trying to learn $x$ itself, the learning algorithm is a special case of unsupervised learning.


## Representation learning

- The simplest Autoencoder can then be summarized as follows:

encoder dencoder

$$
h_{i}=f_{\theta}\left(x_{i}\right)
$$

$$
\hat{\mathbf{x}}=g_{\theta}(\mathbf{h})
$$

## Representation learning

- The auto-encoder training consists in finding the parameter set $\theta$ that minimizes the reconstruction error:

$$
\mathcal{L}_{A E}(\theta)=\frac{1}{n} \sum_{i=1}^{n} L\left(x_{i}, g_{\theta}\left(f_{\theta}\left(x_{i}\right)\right)\right)
$$

## Representation learning

- Why the ufunnel»s structure?
- If the only purpose of autoencoders was to copy the input to the output, they would be useless.
- by training the autoencoder to copy the input to the output, the latent representation will take on useful properties.
- This can be achieved by creating constraints on the copying task.
- One way to obtain useful features from the autoencoder is to constraint the hidden to have smaller dimensions than $x$, in this case the autoencoder is called undercomplete.


## Representation learning

- A typical undercomplete autoencoder has the following architecture:

Input layer
Hidden layers
Output layer


## Representation learning

- Sparse Autoencoders
- They offer an alternative method for introducing an information bottleneck without requiring a reduction in the number of nodes on hidden layers.
- It is simply an autoencoder whose training criterion involves a sparsity penalty $\Omega(\mathrm{h})$ on the hidden layer h , in addition to the reconstruction error:

$$
L(\boldsymbol{x}, g(f(\boldsymbol{x})))+\Omega(\boldsymbol{h})
$$

- where g is the decoder output


## Representation learning

- Sparse Autoencoders
- it constructs a loss function in order to penalize activations within a layer.
- For any given observation, we encourage our network to learn an encoding and decoding which only relies on activating a small number of neurons.
- One way to penalize activation within a layer is to impose a sparsity constraint:
- measure the hidden layer activations for each training batch and adding some term to the loss function in order to penalize excessive activations.


## Representation learning

- L1 Regularization: We can add a term to our loss function that penalizes the absolute value of the vector of activations a in layer $h$ for observation i , scaled by a tuning parameter.

$$
\mathcal{L}\left(x, x \hat{)}+\lambda \sum_{i}\left|a_{i}^{(h)}\right|\right.
$$

## Representation learning

- Sparse Autoencoders



## Representation learning

## - DENOISING AUTOENCODERS

- Rather than adding a penalty $\Omega$ to the cost function that learns something useful by changing the reconstruction error term of the cost
- Traditionally, autoencoders minimize some function

$$
L(\boldsymbol{x}, g(f(\boldsymbol{x})))
$$

where $L$ is a loss function penalizing $g(f(x))$ from being dissimilar from $x$

- A denoising autoencoder instead minimizes

$$
L(\boldsymbol{x}, g(f(\tilde{\boldsymbol{x}})))
$$

- where $x \sim$ is a copy of $x$ that has been corrupted by some noise.


## Representation learning

The loss function of Denoising Autoencoder:

$$
\min _{\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{b}_{1}, \mathbf{b}_{2}} \sum_{\ell}\left\|\mathbf{x}^{(\ell)}-\hat{\mathbf{x}}^{(\ell)}\right\|_{2}^{2}+\lambda\left(\left\|\mathbf{W}_{1}\right\|_{F}^{2}+\left\|\mathbf{W}_{2}\right\|_{F}^{2}\right)
$$

where

$$
\begin{aligned}
\mathbf{h}^{(\ell)} & =\sigma\left(\mathbf{W}_{1} \tilde{\mathbf{x}}^{(\ell)}+\mathbf{b}_{1}\right) \\
\hat{\mathbf{x}}^{(\ell)} & =\sigma\left(\mathbf{W}_{2} \mathbf{h}^{(\ell)}+\mathbf{b}_{2}\right)
\end{aligned}
$$

Like deep Autoencoder, we can stack multiple denoising autoencoders layer-wisely to form a Stacked Denoising Autoencoder.

## Representation learning

- Denoising Autoencoder


Measure reconstruction loss against original image

