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HYPER-PARAMETER TUNING

¢ Hyper-paramters are variables that need to be set and have a strong 
impact to the Deep Learning generalization abilities
¢ Hyper-parameters for the training algorithm
¢ Hyper-parameters for the neural network model

¢ Choosing hyper-parameter values is formally equivalent to the question of 
model selection:
� given a family or set of learning algorithms, how to pick the most 

appropriate one inside the set? 
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HYPER-PARAMETER TUNING
¢ A hyper- parameter for a training algorithm A is a variable to be set prior to 

the actual application of A to the data
¢ one that is not directly selected by the learning algorithm itself. 

¢ Hyper-parameters can be fixed by hand or tuned by an algorithm, but their 
value has to be fixed. 
� The value of some hyper-parameters can be selected based on the 

performance of A on its training data, but most cannot.
� For any hyper-parameter that has an impact on the effective capacity 

of a learner, we should use out-of-sample data 
¢ validation set performance, cross-validation error. 
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HYPER-PARAMETER TUNING
¢ Loss Functions Can Be Difficult to Optimize by SGD

� Remember: Optimization through gradient descent 

� How can we set the LEARNING RATE? 
¢ This is one of the most important hyper-paramter that we have to take care!

6.S191 Introduction to Deep Learning
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Loss Functions Can Be Difficult to Optimize

Remember: 
Optimization through gradient descent
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Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Initial guess
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HYPER-PARAMETER TUNING
¢ Learning Rate:

� Small learning rate converges slowly and gets stuck in false local minima 
� Large learning rates overshoot, become unstable and diverge
� Stable learning rates converge smoothly and avoid local minima 
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HYPER-PARAMETER TUNING
¢ Learning Rate:

� Small learning rate converges slowly and gets stuck in false local minima 
� Large learning rates overshoot, become unstable and diverge 
� Stable learning rates converge smoothly and avoid local minima 

¢ In mini-batch SGD with standardized input the learning rate is usually less than 1 
and greater than 10-6

� A typical choice is 0.001

� If you have the chance to tune this hyper-parameter, you should take care of it

¢ How to deal with this choice? 
� OPTION 1: Try lots of different learning rates and see what works “just right”
� OPTION 2: Design an adaptive learning rate that “adapts” to the landscape 
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HYPER-PARAMETER TUNING
¢ In mini-batch SGD with standardized input the learning rate is usually less than 1 

and greater than 10-6

� A typical choice is 0.001
� If you have the chance to tune this hyper-parameter, you should take care of it

¢ How to deal with this choice? 
� OPTION 1: Try lots of different learning rates and see what works “just right”
� OPTION 2: Design an adaptive learning algorithm that “adapts” to the 

landscape 
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HYPER-PARAMETER TUNING
¢ Learning rate schedule:

� Learning rates are no longer fixed
� Can be made larger or smaller depending on:

¢ how large gradient is
¢ how fast learning is happening
¢ size of particular weights
¢ etc...

¢ One of the choices is to use learning rate decay w.r.t to a time constant:

� Which keeps the learning rate constant for the first steps and then
decreases it

� for the learning rate is constant over the training iterations

ηt =
η0τ

max(t,τ )

τ

τ→∞



E. Fersini

HYPER-PARAMETER TUNING
¢ An alternative choice is to use brute force adaptive learning rate heuristics:

� at regular intervals during training
� using a fixed small subset of the training set
� continue training with N different choices of learning rate (all in parallel)

keep the value that gave the best results until the next re-estimation of the
optimal learning rate.

¢ These schedules, however, have to be defined in advance and are thus
unable to adapt to a dataset's characteristics.

¢ Additionally, the same learning rate applies to all parameter updates.
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"ADVANCED TRAINING"
¢ Alternative solution: 

� More advanced training approaches
¢ Momentum
¢ Nesterov Accelerated Gradient 
¢ Adagrad
¢ Adadelta
¢ Adam 
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GRADIENT DESCENT OPTIMIZATION ALGORITHMS

¢ SGD suffers where the surface curves much more steeply in one dimension
than in another, which are common around local optima.

¢ SGD oscillates across the slopes of the ravine while only making hesitant
progress along the bottom towards the local optimum.
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GRADIENT DESCENT OPTIMIZATION ALGORITHMS

¢ To overcome this, we introduce MOMENTUM:
� It takes knowledge from previous steps about where we should be

heading.
� We are introducing a new hyperparameter γ

� MOMENTUM accelerate SGD in the relevant direction and reduces
oscillations

local optima. In these scenarios, SGD oscillates across the slopes of the ravine

while only making hesitant progress along the bottom towards the local

optimum as in Image 2.

Image 2: SGD without momentum Image 3: SGD with momentum

Momentum [ ] is a method that helps accelerate SGD in the relevant direction

and dampens oscillations as can be seen in Image 3. It does this by adding a

fraction  of the update vector of the past time step to the current update

vector:

Note: Some implementations exchange the signs in the equations. The

momentum term  is usually set to 0.9 or a similar value.

Essentially, when using momentum, we push a ball down a hill. The ball

accumulates momentum as it rolls downhill, becoming faster and faster on the

way (until it reaches its terminal velocity if there is air resistance, i.e. ). The

same thing happens to our parameter updates: The momentum term

increases for dimensions whose gradients point in the same directions and

reduces updates for dimensions whose gradients change directions. As a

result, we gain faster convergence and reduced oscillation.

Nesterov accelerated gradient

However, a ball that rolls down a hill, blindly following the slope, is highly

unsatisfactory. We'd like to have a smarter ball, a ball that has a notion of

where it is going so that it knows to slow down before the hill slopes up again.

Nesterov accelerated gradient (NAG) [ ] is a way to give our momentum term

2

γ

vt
θ

= γ + η J(θ)vt−1 ∇θ
= θ − vt

γ

γ < 1

7

It adds a fraction γ of the update vector of the past time step to the 
current update vector

momentum term
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GRADIENT DESCENT OPTIMIZATION ALGORITHMS

¢ MOMENTUM:

However, MOMENTUM follows the slope…
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GRADIENT DESCENT OPTIMIZATION ALGORITHMS

¢ Nesterov Accelerated Gradient (NAG) 

¢ Differently from the standard momentum approach, it evaluates the gradient 
after the velocity is applied. 

¢ Basically, we know that we will use our momentum term γvt−1 to move the 
parameters θ. 
� Computing θ − γvt−1 thus gives us an approximation of the next position of

the parameters, i.e. a rough idea where our parameters are going to be.
� We can now effectively look ahead by calculating the gradient not w.r.t. 

to our current parameters θ but w.r.t. the approximate future position of our 
parameters: 

this kind of prescience. We know that we will use our momentum term 

to move the parameters . Computing  thus gives us an

approximation of the next position of the parameters (the gradient is missing

for the full update), a rough idea where our parameters are going to be. We

can now e"ectively look ahead by calculating the gradient not w.r.t. to our

current parameters  but w.r.t. the approximate future position of our

parameters:

Again, we set the momentum term  to a value of around 0.9. While

Momentum #rst computes the current gradient (small blue vector in Image 4)

and then takes a big jump in the direction of the updated accumulated

gradient (big blue vector), NAG #rst makes a big jump in the direction of the

previous accumulated gradient (brown vector), measures the gradient and

then makes a correction (red vector), which results in the complete NAG

update (green vector). This anticipatory update prevents us from going too fast

and results in increased responsiveness, which has signi#cantly increased the

performance of RNNs on a number of tasks [ ].

Image 4: Nesterov update (Source: )

Refer to  for another explanation about the intuitions behind NAG, while

Ilya Sutskever gives a more detailed overview in his PhD thesis [ ].

Now that we are able to adapt our updates to the slope of our error function

and speed up SGD in turn, we would also like to adapt our updates to each

individual parameter to perform larger or smaller updates depending on their

importance.

Adagrad

Adagrad [ ] is an algorithm for gradient-based optimization that does just this:

γvt−1
θ θ − γvt−1

θ

vt
θ

= γ + η J(θ − γ )vt−1 ∇θ vt−1
= θ − vt

γ

8

G. Hinton's lecture 6c

here

9

3
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GRADIENT DESCENT OPTIMIZATION ALGORITHMS

¢ Nesterov Accelerated Gradient (NAG)
� Momentum first computes the current gradient (small blue vector) and then

takes a big jump in the direction of the updated accumulated gradient (big
blue vector)

� NAG first makes a big jump in the direction of the previous accumulated
gradient (brown vector), measures the gradient and then makes a correction
(red vector), which results in the complete NAG update (green vector).
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4 Gradient descent optimization algorithms

In the following, we will outline some algorithms that are widely used by the Deep Learning
community to deal with the aforementioned challenges. We will not discuss algorithms that are
infeasible to compute in practice for high-dimensional data sets, e.g. second-order methods such as
Newton’s method7.

4.1 Momentum

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one
dimension than in another [20], which are common around local optima. In these scenarios, SGD
oscillates across the slopes of the ravine while only making hesitant progress along the bottom
towards the local optimum as in Figure 2a.

(a) SGD without momentum (b) SGD with momentum

Figure 2: Source: Genevieve B. Orr

Momentum [17] is a method that helps accelerate SGD in the relevant direction and dampens
oscillations as can be seen in Figure 2b. It does this by adding a fraction � of the update vector of the
past time step to the current update vector8

vt = �vt�1 + ⌘r✓J(✓)

✓ = ✓ � vt
(4)

The momentum term � is usually set to 0.9 or a similar value.

Essentially, when using momentum, we push a ball down a hill. The ball accumulates momentum
as it rolls downhill, becoming faster and faster on the way (until it reaches its terminal velocity, if
there is air resistance, i.e. � < 1). The same thing happens to our parameter updates: The momentum
term increases for dimensions whose gradients point in the same directions and reduces updates for
dimensions whose gradients change directions. As a result, we gain faster convergence and reduced
oscillation.

4.2 Nesterov accelerated gradient

However, a ball that rolls down a hill, blindly following the slope, is highly unsatisfactory. We would
like to have a smarter ball, a ball that has a notion of where it is going so that it knows to slow down
before the hill slopes up again.

Nesterov accelerated gradient (NAG) [14] is a way to give our momentum term this kind of prescience.
We know that we will use our momentum term �vt�1 to move the parameters ✓. Computing ✓��vt�1

thus gives us an approximation of the next position of the parameters (the gradient is missing for the
full update), a rough idea where our parameters are going to be. We can now effectively look ahead
by calculating the gradient not w.r.t. to our current parameters ✓ but w.r.t. the approximate future
position of our parameters:

vt = � vt�1 + ⌘r✓J(✓ � �vt�1)

✓ = ✓ � vt
(5)

7https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
8Some implementations exchange the signs in the equations.

4
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GRADIENT DESCENT OPTIMIZATION ALGORITHMS

¢ Adagrad

¢ It adapts the learning rate w.r.t the parameters:
� It performs smaller updates (i.e. low learning rates) for parameters

associated with frequently occurring features
� It performs larger updates (i.e. high learning rates) for parameters

associated with infrequent features.
� it is well-suited for dealing with sparse data

� Basically it uses a different learning rate for every parameter θi at every
time step t



E. Fersini

GRADIENT DESCENT OPTIMIZATION ALGORITHMS

¢ Let be the partial derivative of the objective function w.r.t. 
to the parameter θi at time step t 

¢ The SGD update for every parameter θi at each time step t as follows:

¢ Adagrad modifies the general learning rate η at each time step t for every
parameter θi based on the past gradients that have been computed for θi:

It adapts the learning rate to the parameters, performing smaller updates 

(i.e. low learning rates) for parameters associated with frequently occurring

features, and larger updates (i.e. high learning rates) for parameters associated

with infrequent features. For this reason, it is well-suited for dealing with

sparse data. Dean et al. [ ] have found that Adagrad greatly improved the

robustness of SGD and used it for training large-scale neural nets at Google,

which -- among other things -- learned to .

Moreover, Pennington et al. [ ] used Adagrad to train GloVe word

embeddings, as infrequent words require much larger updates than frequent

ones.

Previously, we performed an update for all parameters  at once as every

parameter  used the same learning rate . As Adagrad uses a di"erent

learning rate for every parameter  at every time step , we #rst show

Adagrad's per-parameter update, which we then vectorize. For brevity, we use 

 to denote the gradient at time step .  is then the partial derivative of the

objective function w.r.t. to the parameter  at time step :

.

The SGD update for every parameter  at each time step  then becomes:

.

In its update rule, Adagrad modi#es the general learning rate  at each time

step  for every parameter  based on the past gradients that have been

computed for :

.

 here is a diagonal matrix where each diagonal element  is the

sum of the squares of the gradients w.r.t.  up to time step  [ ], while  is a

smoothing term that avoids division by zero (usually on the order of ).

Interestingly, without the square root operation, the algorithm performs much

worse.

4

recognize cats in Youtube videos
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= J( )gt,i ∇θ θt,i

θi t

= − η ⋅θt+1,i θt,i gt,i

η
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θi

= − ⋅θt+1,i θt,i
η

+ ϵGt,ii‾ ‾‾‾‾‾‾‾√
gt,i

∈Gt ℝd×d i, i
θi t 25 ϵ

1e − 8
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Gt is a diagonal matrix where each diagonal element is the sum of the 
squares of the gradients w.r.t. θi up to time step t 

historical gradient information
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GRADIENT DESCENT OPTIMIZATION ALGORITHMS

¢ Adagrad's main weakness is its accumulation of the squared gradients in
the denominator:
� Since every added term is positive, the accumulated sum keeps

growing during training.
� This causes the learning rate to shrink and eventually become

infinitesimally small,
¢ the algorithm is no longer able to acquire additional knowledge.

learning rate converges to zero with increase of time!
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GRADIENT DESCENT OPTIMIZATION ALGORITHMS

¢ Adadelta

� Instead of storing w previous squared gradients, the sum of gradients is
recursively defined as a decaying average of all past squared gradients.

� It replaces the learning rate η with the root mean squared error of
parameter updates

The parameter update vector of Adagrad that we derived previously thus

takes the form:

.

We now simply replace the diagonal matrix  with the decaying average over

past squared gradients :

.

As the denominator is just the root mean squared (RMS) error criterion of the

gradient, we can replace it with the criterion short-hand:

.

The authors note that the units in this update (as well as in SGD, Momentum, or

Adagrad) do not match, i.e. the update should have the same hypothetical

units as the parameter. To realize this, they #rst de#ne another exponentially

decaying average, this time not of squared gradients but of squared parameter

updates:

.

The root mean squared error of parameter updates is thus:

.

Since  is unknown, we approximate it with the RMS of parameter

updates until the previous time step. Replacing the learning rate  in the

previous update rule with  #nally yields the Adadelta update rule:

Δθt
θt+1

= −η ⋅ gt,i
= + Δθt θt

Δ = − ⊙θt
η

+ ϵGt‾ ‾‾‾‾‾√
gt

Gt
E[g2]t

Δ = −θt
η

E[ + ϵg2]t‾ ‾‾‾‾‾‾‾‾‾√
gt

Δ = −θt
η

RMS[g]t
gt

E[Δ = γE[Δ + (1 − γ)Δθ2]t θ2]t−1 θ2
t

RMS[Δθ =]t E[Δ + ϵθ2]t‾ ‾‾‾‾‾‾‾‾‾‾√

RMS[Δθ]t

η
RMS[Δθ]t−1

Δθt

θt+1

= − RMS[Δθ]t−1
RMS[g]t

gt

= + Δθt θt
decaying average over 
past squared gradients

squared parameter updates
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GRADIENT DESCENT OPTIMIZATION ALGORITHMS

¢ Adaptive Moment Estimation (Adam)
� In addition to storing an exponentially decaying average of past

squared gradients vt (like Adadelta), Adam also keeps an exponentially

decaying average of past gradientsmt ( similar to momentum)

The root mean squared error of parameter updates is thus:

RMS[�✓]t =
p

E[�✓2]t + ✏ (16)

Since RMS[�✓]t is unknown, we approximate it with the RMS of parameter updates until the
previous time step. Replacing the learning rate ⌘ in the previous update rule with RMS[�✓]t�1

finally yields the Adadelta update rule:

�✓t = �RMS[�✓]t�1

RMS[g]t
gt

✓t+1 = ✓t +�✓t

(17)

With Adadelta, we do not even need to set a default learning rate, as it has been eliminated from the
update rule.

4.5 RMSprop

RMSprop is an unpublished, adaptive learning rate method proposed by Geoff Hinton in Lecture 6e
of his Coursera Class12.

RMSprop and Adadelta have both been developed independently around the same time stemming
from the need to resolve Adagrad’s radically diminishing learning rates. RMSprop in fact is identical
to the first update vector of Adadelta that we derived above:

E[g2]t = 0.9E[g2]t�1 + 0.1g2t

✓t+1 = ✓t �
⌘p

E[g2]t + ✏
gt

(18)

RMSprop as well divides the learning rate by an exponentially decaying average of squared gradients.
Hinton suggests � to be set to 0.9, while a good default value for the learning rate ⌘ is 0.001.

4.6 Adam

Adaptive Moment Estimation (Adam) [10] is another method that computes adaptive learning rates
for each parameter. In addition to storing an exponentially decaying average of past squared gradients
vt like Adadelta and RMSprop, Adam also keeps an exponentially decaying average of past gradients
mt, similar to momentum:

mt = �1mt�1 + (1� �1)gt

vt = �2vt�1 + (1� �2)g
2
t

(19)

mt and vt are estimates of the first moment (the mean) and the second moment (the uncentered
variance) of the gradients respectively, hence the name of the method. As mt and vt are initialized as
vectors of 0’s, the authors of Adam observe that they are biased towards zero, especially during the
initial time steps, and especially when the decay rates are small (i.e. �1 and �2 are close to 1).

They counteract these biases by computing bias-corrected first and second moment estimates:

m̂t =
mt

1� �t
1

v̂t =
vt

1� �t
2

(20)

12http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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They counteract these biases by computing bias-corrected first and second moment estimates:

m̂t =
mt

1� �t
1

v̂t =
vt

1� �t
2

(20)

12http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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They then use these to update the parameters just as we have seen in Adadelta and RMSprop, which
yields the Adam update rule:

✓t+1 = ✓t �
⌘p

v̂t + ✏
m̂t (21)

The authors propose default values of 0.9 for �1, 0.999 for �2, and 10�8 for ✏. They show empiri-
cally that Adam works well in practice and compares favorably to other adaptive learning-method
algorithms.

4.7 AdaMax

The vt factor in the Adam update rule scales the gradient inversely proportionally to the `2 norm of
the past gradients (via the vt�1 term) and current gradient |gt|2:

vt = �2vt�1 + (1� �2)|gt|2 (22)

We can generalize this update to the `p norm. Note that Kingma and Ba also parameterize �2 as �p
2 :

vt = �p
2vt�1 + (1� �p

2 )|gt|p (23)

Norms for large p values generally become numerically unstable, which is why `1 and `2 norms are
most common in practice. However, `1 also generally exhibits stable behavior. For this reason, the
authors propose AdaMax [10] and show that vt with `1 converges to the following more stable value.
To avoid confusion with Adam, we use ut to denote the infinity norm-constrained vt:

ut = �1
2 vt�1 + (1� �1

2 )|gt|1

= max(�2 · vt�1, |gt|)
(24)

We can now plug this into the Adam update equation by replacing
p
v̂t + ✏ with ut to obtain the

AdaMax update rule:

✓t+1 = ✓t �
⌘

ut
m̂t (25)

Note that as ut relies on the max operation, it is not as suggestible to bias towards zero as mt and vt
in Adam, which is why we do not need to compute a bias correction for ut. Good default values are
again ⌘ = 0.002, �1 = 0.9, and �2 = 0.999.

4.8 Nadam

As we have seen before, Adam can be viewed as a combination of RMSprop and momentum: RM-
Sprop contributes the exponentially decaying average of past squared gradients vt, while momentum
accounts for the exponentially decaying average of past gradients mt. We have also seen that Nesterov
accelerated gradient (NAG) is superior to vanilla momentum.

Nadam (Nesterov-accelerated Adaptive Moment Estimation) [7] thus combines Adam and NAG. In
order to incorporate NAG into Adam, we need to modify its momentum term mt.

First, let us recall the momentum update rule using our current notation :

gt = r✓tJ(✓t)

mt = �mt�1 + ⌘gt
✓t+1 = ✓t �mt

(26)
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AVOID OVERFITTING
¢ Hyper-parameter settings has impact on the overfitting problem

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/18

The Problem of Overfitting

Underfitting
Model does not have capacity 

to fully learn the data

Ideal fit Overfitting
Too complex, extra parameters, 

does not generalize well
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AVOID OVERFITTING
¢ Number of training iterations (measured in mini-batch updates)

¢ This hyper-parameter is particular in that it can be optimized almost for free 
using the principle of EARLY STOPPING: 
� Stop training before we have a chance to overfit

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/18

Regularization 2: Early Stopping

• Stop training before we have a chance to overfit

Training Iterations

Loss

Training

Legend

Stop training 
here!

Over-fittingUnder-fitting

Testing
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AVOID OVERFITTING
¢ EARLY STOPPING in practice (heuristic):

� It is based on the idea of patience

� As training proceeds and new candidate selected points T are
observed, the patience parameter is increased

� If we find a new minimum at t:
¢ we save the current best model,
¢ we update T ← t

¢ we increase our patience up to (t + constant) or (t x constant)
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AVOID OVERFITTING
¢ The minimization of the expected risk can be then approximated by 

(approximately) minimizing the following empirical risk: 

¢ Which are the component that could contribute to the regularization?

Under review as a conference paper at ICLR 2018

practical recommendations for using existing methods and designing new methods. We are
aware that the many research works discussed in this taxonomy cannot be summarized in a
single sentence. For the sake of structuring the multitude of papers, we decided to merely
describe a certain subset of their properties according to the focus of our taxonomy.

2 Theoretical framework

The central task of our interest is model fitting: finding a function f that can well approx-
imate a desired mapping from inputs x to desired outputs f(x). A given input x can have
an associated target t which dictates the desired output f(x) directly (or in some applica-
tions indirectly (Ulyanov et al., 2016; Johnson et al., 2016)). A typical example of having
available targets t is supervised learning. Data samples (x, t) then follow a ground truth
probability distribution P .

In many applications, neural networks have proven to be a good family of functions to choose
f from. A neural network is a function fw : x 7! y with trainable weights w 2 W . Training

the network means finding a weight configuration w⇤, which is a result of performing a
minimization procedure of a loss function L : W ! R as follows:

w⇤ = minimize L(w). (1)

Usually the loss function takes the form of expected risk :

L = E(x,t)⇠P

h
E
�
fw(x), t

�
+R(. . .)

i
, (2)

where we identify two parts, an error function E and a regularization term R. The error
function depends on the targets and assigns a penalty to model predictions according to
their consistency with the targets. The regularization term assigns a penalty to the model
based on other criteria. It may depend on anything except the targets, for example on the
weights (see Section 6).

The expected risk cannot be minimized directly since the data distribution P is unknown.
Instead, a training set D sampled from the distribution is given. The minimization of the
expected risk can be then approximated by (approximately) minimizing the empirical risk L̂:

minimize
w

1

|D|
X

(xi,ti)2D

E
�
fw(xi), ti

�
+R(. . .) (3)

where (xi, ti) are samples from D.

Now we have the minimal background to formalize the division of regularization methods
into a systematic taxonomy. In the minimization of the empirical risk, Eq. (3), we can
identify the following elements that are responsible for the value of the learned weights, and
thus can contribute to regularization:

• D: The training set, discussed in Section 3
• f : The selected model family, discussed in Section 4
• E: The error function, briefly discussed in Section 5
• R: The regularization term, discussed in Section 6
• The optimization procedure itself, discussed in Section 7

Ambiguity regarding the splitting of methods into these categories and their subcategories
is discussed in Appendix A using notation from Section 3.

3 Regularization via data

The quality of a trained model depends largely on the training data. Apart from acquisi-
tion/selection of appropriate training data, it is possible to employ regularization via data.
This is done by applying some transformation to the training set D, resulting in a new

2
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AVOIDING OVERFITTING

¢ Data Transformation: from training set 𝒟 to ia new set 𝒟𝑅

¢ Transformation with stochastic parameters is a function 𝜏𝜃 with

parameters 𝜃 which follow some probability distribution

� Corruption of inputs by Gaussian noise: generating new samples

Under review as a conference paper at ICLR 2018

set DR. Some transformations perform feature extraction or pre-processing, modifying the
feature space or the distribution of the data to some representation simplifying the learning
task. Other methods allow generating new samples to create a larger, possibly infinite,
augmented dataset. These two principles are somewhat independent and may be combined.
The goal of regularization via data is either one of them, or the other, or both. They both
rely on transformations with (stochastic) parameters:
Definition 2. Transformation with stochastic parameters is a function ⌧✓ with pa-
rameters ✓ which follow some probability distribution.

In this context we consider ⌧✓ which can operate on network inputs, activations in hid-
den layers, or targets. An example of a transformation with stochastic parameters is the
corruption of inputs by Gaussian noise (Bishop, 1995b; An, 1996):

⌧✓(x) = x+ ✓, ✓ ⇠ N (0,⌃). (4)

The stochasticity of the transformation parameters is responsible for generating new sam-
ples, i.e. data augmentation. Note that the term data augmentation often refers specifically
to transformations of inputs or hidden activations, but here we also list transformations of
targets for completeness. The exception to the stochasticity is when ✓ follows a delta distri-
bution, in which case the transformation parameters become deterministic and the dataset
size is not augmented.

We can categorize the data-based methods according to the properties of the used trans-
formation and of the distribution of its parameters. We identify the following criteria for
categorization (some of them later serve as columns in Tables 1–2):

Stochasticity of the transformation parameters ✓

• Deterministic parameters: Parameters ✓ follow a delta distribution, size of the
dataset remains unchanged

• Stochastic parameters: Allow generation of a larger, possibly infinite, dataset. Var-
ious strategies for sampling of ✓ exist:

– Random: Draw a random ✓ from the specified distribution
– Adaptive: Value of ✓ is the result of an optimization procedure, usually with

the objective of maximizing the network error on the transformed sample (such
“challenging” sample is considered to be the most informative one at current
training stage), or minimizing the difference between the network prediction
and a predefined fake target t0

⇤ Constrained optimization: ✓ found by maximizing error under hard con-
straints (support of the distribution of ✓ controls the strongest allowed
transformation)

⇤ Unconstrained optimization: ✓ found by maximizing modified error func-
tion, using the distribution of ✓ as weighting (proposed herein for complete-
ness, not yet tested)

⇤ Stochastic: ✓ found by taking a fixed number of samples of ✓ and using the
one yielding the highest error

Effect on the data representation

• Representation-preserving transformations: Preserve the feature space and attempt
to preserve the data distribution

• Representation-modifying transformations: Map the data to a different represen-
tation (different distribution or even new feature space) that may disentangle the
underlying factors of the original representation and make the learning problem
easier

Transformation space

• Input: Transformation is applied to x

3
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¢ Data Tranformation can be distinguished according to the

properties of the used transformation and of the distribution of its

parameters

¢ Stochastic parameters: Allow generation of a larger, possibly infinite,

dataset. Various strategies for sampling of 𝜃 exist:

� Random: Draw a random 𝜃 from the specified distribution

� Adaptive: 𝜃 is the result of an optimization procedure

¢ Constrained optimization: 𝜃 found by maximizing error under hard constraints

¢ Unconstrained optimization: 𝜃 found by maximizing modified error function, using

the distribution of 𝜃 as weighting

¢ Stochastic: 𝜃 found by taking a fixed number of samples of 𝜃 and using the one

yielding the highest error

AVOIDING OVERFITTING
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¢ Regularization via the network architecture

¢ The network architecture is represented by a function 𝑓 : (𝑤,𝑥) → 𝑦, and

together with the set 𝑊 of all its possible weight configurations defines a

set of mappings that this particular architecture can realize: {𝑓𝑤 : 𝑥 → 𝑦 |

∀𝑤 ∈ 𝑊 }.

¢ Possible strategy:

� Weight sharing: reusing a certain trainable parameter in several parts

of the network

AVOIDING OVERFITTING
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¢ Regularization via the error function

¢ An example is Dice Loss which is robust to class imbalance

AVOIDING OVERFITTING

6

3 Dice loss layer

The network predictions, which consist of two volumes having the same reso-
lution as the original input data, are processed through a soft-max layer which
outputs the probability of each voxel to belong to foreground and to background.
In medical volumes such as the ones we are processing in this work, it is not un-
common that the anatomy of interest occupies only a very small region of the
scan. This often causes the learning process to get trapped in local minima of
the loss function yielding a network whose predictions are strongly biased to-
wards background. As a result the foreground region is often missing or only
partially detected. Several previous approaches resorted to loss functions based
on sample re-weighting where foreground regions are given more importance
than background ones during learning. In this work we propose a novel objec-
tive function based on dice coe�cient, which is a quantity ranging between 0
and 1 which we aim to maximise. The dice coe�cient D between two binary
volumes can be written as

D =
2
PN

i pigiPN
i p2i +

PN
i g2i

where the sums run over the N voxels, of the predicted binary segmentation
volume pi 2 P and the ground truth binary volume gi 2 G. This formulation of
Dice can be di↵erentiated yielding the gradient

@D

@pj
= 2

2

64
gj

⇣PN
i p2i +

PN
i g2i

⌘
� 2pj

⇣PN
i pigi

⌘

⇣PN
i p2i +

PN
i g2i

⌘2

3

75

computed with respect to the j-th voxel of the prediction. Using this formulation
we do not need to assign weights to samples of di↵erent classes to establish
the right balance between foreground and background voxels, and we obtain
results that we experimentally observed are much better than the ones computed
through the same network trained optimising a multinomial logistic loss with
sample re-weighting (Fig. 6).

3.1 Training

Our CNN is trained end-to-end on a dataset of prostate scans in MRI. An
example of the typical content of such volumes is shown in Figure 1. All the
volumes processed by the network have fixed size of 128 ⇥ 128 ⇥ 64 voxels and
a spatial resolution of 1⇥ 1⇥ 1.5 millimeters.

Annotated medical volumes are not easy to obtain due to the fact that one or
more experts are required to manually trace a reliable ground truth annotation
and that there is a cost associated with their acquisition. In this work we found
necessary to augment the original training dataset in order to obtain robustness
and increased precision on the test dataset.
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necessary to augment the original training dataset in order to obtain robustness
and increased precision on the test dataset.
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AVOIDING OVERFITTING
¢ Regularization via the regularization term R

¢ 𝑅 can depend on: 
� the weights 𝑤
� the network output 𝑦 = 𝑓𝑤(𝑥) 
� 𝜕𝑦/𝜕𝑤 of the output 𝑦 = 𝑓𝑤(𝑥) w.r.t. the weights 𝑤
� 𝜕𝑦/𝜕𝑥 of the output 𝑦 = 𝑓𝑤(𝑥) w.r.t. the input 𝑥
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AVOID OVERFITTING
¢ Regularization term constrains our optimization problem to discourage 

complex models 
� Improve generalization of our model on unseen data 
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AVOID OVERFITTING
¢ REGULARIZATION:

� The regularizers R equate complexity with large weights, and work to
keep the parameter values low.

� How does the regularizers work?
¢ It measure the norms of the parameter matrices

� L1 regularization
� L2 regularization
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AVOID OVERFITTING
¢ L1 regularization (lasso):

� L1 regularization makes sure that parameters that are not really very
useful are driven to zero
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AVOID OVERFITTING
� L2 regularization (weight decay):

It strongly penalizes large values of parameters
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E. Fersini

AVOID OVERFITTING
¢ Dropout:

� During training, randomly set some activations to 0 
� Typically ‘drop’ 50% of activations in layer
� Forces network to not rely on any 1 node

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/18

Regularization 1: Dropout
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• During training, randomly set some activations to 0

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/18

Regularization 1: Dropout
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• During training, randomly set some activations to 0
• Typically ‘drop’ 50% of activations in layer
• Forces network to not rely on any 1 node

tf.nn.dropout(hiddenLayer, p=0.5)



REPRESENTATION LEARNING



E. Fersini

REPRESENTATION LEARNING
¢ There are several motivations behind layer-wise unsupervised pre-training for

deep neural networks and therefore representation learning:

1. Learning features, not just handcrafting them
� Hand-crafting features is time-consuming and incomplete

2. Most all data is unlabeled, we can make use of it

3. Raw data is sparse (extreme case is one-hot) and we need a more efficient
and effective representation

4. We can emulate our brain by learning multiple levels of representation in
an unsupervised settings
� Humans first learn simpler concepts and then compose them to more

complex ones



E. Fersini

REPRESENTATION LEARNING
¢ An AUTOENCODER is a neural network that is trained to attempt to copy its 

input  to its output. 

¢ Internally, it has a hidden layer h that describes a code used to represent 
the input. 

¢ The network may be viewed as consisting of two parts: an encoder function 
h = f(x) and a decoder that produces a reconstruction r = g(h). 
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E. Fersini

REPRESENTATION LEARNING
¢ Copying the input to the output may sound useless, but we are typically not

interested in the output of the decoder.

¢ Instead, we hope that training the autoencoder to perform the input
copying task will result in h taking on useful properties.

¢ One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x.
� The autoencoder is said to be undercomplete

¢ Learning an undercomplete representation forces the autoencoder to
capture the most salient features of the training data.



E. Fersini

REPRESENTATION LEARNING
¢ The learning process is described simply as minimizing a loss function

� where L is a loss function penalizing g(f(x)))) for being dissimilar from x,
such as the mean squared error
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E. Fersini

REPRESENTATION LEARNING
¢ Autoencoders
¢ Deep Autoencoders
¢ Denoising Autoencoders
¢ Stacked Denoising Autoencoders



E. Fersini

REPRESENTATION LEARNING
¢ The simplest Autoencoder has an MLP-like (Multi Layer Perceptron) structure:

� Input Layer
� Hidden Layer, and
� Output Layer

¢ However, unlike MLP, autoencoders do not require any target data. As the
network is trying to learn x itself, the learning algorithm is a special case of
unsupervised learning.



E. Fersini

REPRESENTATION LEARNING
¢ The simplest Autoencoder can then be summarized as follows:

Chapter 4. Deep Learning Architectures for Textual Feature Representation 44

FIGURE 4.3: Auto-encoder architecture.

An auto-encoder initially consists of a feature-extracting function in a specific parameterized

closed form, called encoder, denoted as fq that allows the straightforward and efficient com-

putation of a feature vector h = fq(x) from an input x. For each instance xi from a set of data

X = {x1, . . . ,xn}, the encoder function is defined as:

hi = fq(xi) (4.14)

where hi will be the feature vector representation that codes the input xi.

The other crucial component is the decoder function, which is a closed form parameterized

function gq that maps the feature space back into input space, producing a reconstruction x̂:

x̂ = gq(h) (4.15)

The general structure of auto-encoders is illustrated in Figure 4.3. The auto-encoder training

consists in finding the parameter set q that minimizes the reconstruction error:

LAE(q) =
1
n

n

Â
i=1

L
⇣

xi,gq( fq(xi))
⌘

(4.16)

where xi is a training example. Error minimization is usually carried out by stochastic gradient

descent methods.

encoder dencoder
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where xi is a training example. Error minimization is usually carried out by stochastic gradient

descent methods.
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REPRESENTATION LEARNING

¢ The auto-encoder training  consists in finding the parameter set θ 

that minimizes the reconstruction error: 
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FIGURE 4.3: Auto-encoder architecture.

An auto-encoder initially consists of a feature-extracting function in a specific parameterized

closed form, called encoder, denoted as fq that allows the straightforward and efficient com-

putation of a feature vector h = fq(x) from an input x. For each instance xi from a set of data

X = {x1, . . . ,xn}, the encoder function is defined as:

hi = fq(xi) (4.14)

where hi will be the feature vector representation that codes the input xi.

The other crucial component is the decoder function, which is a closed form parameterized

function gq that maps the feature space back into input space, producing a reconstruction x̂:

x̂ = gq(h) (4.15)

The general structure of auto-encoders is illustrated in Figure 4.3. The auto-encoder training

consists in finding the parameter set q that minimizes the reconstruction error:

LAE(q) =
1
n

n

Â
i=1

L
⇣

xi,gq( fq(xi))
⌘

(4.16)

where xi is a training example. Error minimization is usually carried out by stochastic gradient

descent methods.



E. Fersini

REPRESENTATION LEARNING
¢ Why the «funnel» structure?

� If the only purpose of autoencoders was to copy the input to the output,

they would be useless.

� by training the autoencoder to copy the input to the output, the latent

representation will take on useful properties.

� This can be achieved by creating constraints on the copying task.

� One way to obtain useful features from the autoencoder is to constraint

the hidden to have smaller dimensions than x, in this case the

autoencoder is called undercomplete.



E. Fersini

REPRESENTATION LEARNING
¢ A typical undercomplete autoencoder has the following architecture:



E. Fersini

REPRESENTATION LEARNING
¢ Sparse Autoencoders

� They offer an alternative method for introducing an information
bottleneck without requiring a reduction in the number of nodes on
hidden layers.

� It is simply an autoencoder whose training criterion involves a sparsity
penalty Ω(h) on the hidden layer h, in addition to the reconstruction
error:

� where g is the decoder output
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E. Fersini

REPRESENTATION LEARNING
¢ Sparse Autoencoders

� it constructs a loss function in order to penalize activations within a layer.

� For any given observation, we encourage our network to learn an
encoding and decoding which only relies on activating a small number
of neurons.

¢ One way to penalize activation within a layer is to impose a sparsity
constraint:

� measure the hidden layer activations for each training batch and
adding some term to the loss function in order to penalize excessive
activations.



E. Fersini

REPRESENTATION LEARNING
¢ L1 Regularization: We can add a term to our loss function that penalizes the

absolute value of the vector of activations a in layer h for observation i,
scaled by a tuning parameter.



E. Fersini

REPRESENTATION LEARNING
¢ Sparse Autoencoders



E. Fersini

REPRESENTATION LEARNING
¢ DENOISING AUTOENCODERS 

¢ Rather than adding a penalty Ω to the cost function that learns something useful 
by changing the reconstruction error term of the cost 

¢ Traditionally, autoencoders minimize some function

where L is a loss function penalizing g(f(x)) from being dissimilar from x

¢ A denoising autoencoder instead minimizes

� where x~ is a copy of x that has been corrupted by some noise.
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REPRESENTATION LEARNING
The loss function of Denoising Autoencoder:

where

Like deep Autoencoder, we can stack multiple denoising autoencoders
layer-wisely to form a Stacked Denoising Autoencoder.
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