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RECURRENT NEURAL NETWORKS
¢ Recurrent Neural Networks (RNNs) are a form of neural networks specialized

for processing sequential data x(1), . . . , x(τ).

¢ For moving from multi-layer networks to RNNs, we need to take advantage
of the idea of sharing parameters across different parts of a model.
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RECURRENT NEURAL NETWORKS
¢ For instance consider the two sentences:

� “I went to Nepal in 2009”

� “In 2009, I went to Nepal.”

¢ Let’s assume that we have trained a feedforward network A that
processes sentences of fixed length.

� A would have separate parameters for each input feature, so it
would need to learn all of the rules of the language separately at
each position in the sentence. By comparison, RNNs share the
same weights across several time steps.
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RNN ARCHITECTURE
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RNN ARCHITECTURE
¢ Unfolding RNNs
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RNN - EXAMPLE
¢ What we need is to have the same parameters independently on the 

lenght of the data
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RNN - EXAMPLE
¢ Let’s take a character level RNN where we have a word “Hello”. So we

provide the first 4 letters i.e. h,e,l,l and ask the network to predict the
last letter i.e.’o’. So here the vocabulary of the task is just 4 letters
{h,e,l,o}.

O
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RNN - EXAMPLE
¢ In this case, the letter “h” has nothing preceding it, let’s take the letter

“e”. So at the time the letter “e” is supplied to the network, a
recurrence formula is applied to the letter “e” and the previous state
which is the letter “h”.

¢ The recurrence formula is applied to both “e” and “h” to obtain the
new state:

where st is the new state, st-1 is the previous state while xt is the current
input.

¢ Basically we have a state that represents the previous input and the
input itself.

st = f (st−1,xt )
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RNN - EXAMPLE
¢ Taking the simplest form of a recurrent neural network, let’s say that the

activation function is tanh, the weight at the recurrent neuron is W and
the weight at the input neuron is U, we can write the equation for the
state at time t as:

¢ Once the final state is computed we can produce the output:

st = tanh(Wst−1 +Uxt )

ot =Vst
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RNN - EXAMPLE
¢ Let’s start.. The inputs are one hot encoded. Our entire vocabulary is

{h,e,l,o} and hence we can easily one hot encode the inputs.

¢ Now the input neuron would transform the input to the hidden state 
using the weight matrix U (initially randomly initialized)

U
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RNN - EXAMPLE

¢ Now for the letter “h”, for the the hidden state we would need U*xt.

U
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RNN - EXAMPLE
¢ Now moving to the recurrent neuron, we have W as the weight which is a 1*1

matrix with value 0.427043 and the bias which is also a 1*1 matrix with value
0.56700.

¢ For the letter “h”, the previous state is [0,0,0] since there is no letter prior to it.

¢ We can compute W*st-1

whh*ht-1+bias
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RNN - EXAMPLE
¢ We can now estimate the current state st

st = tanh(Wst−1 +Uxt )

st
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RNN - EXAMPLE
¢ Now we can move to the next state. The letter “e” is now supplied to

our RNN. The processed output of st, now becomes st-1, while the one
hot encoded “e” is our observation xt.

¢ We can now effectively estimate our current state stas usual:

¢ W*st-1 + bias will be:

¢ U*xt will be:

st = tanh(Wst−1 +Uxt )

W*st+Bias

U
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RNN - EXAMPLE
¢ The activation function will add non-linearity:

¢ Now this would become st-1 for the next state and the recurrent neuron
would use this along with the new character to predict the next one.

¢ At each state, the RNN would produce an output ot as well:

st

ot =Vst
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RNN - EXAMPLE
¢ At each state, the RNN would produce an output ot as well:

ot =Vst

V st ot
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RNN - EXAMPLE
¢ The probability for a given letter from the vocabulary can be estimated

by using the softmax function:

P(ot ) = softmax(ot )

ot
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RNN - EXAMPLE
¢ The probability for a given letter from the vocabulary can be estimated

by using the softmax function:

P(ot ) = softmax(ot )

ot
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The model is wrong, but we
have shown very few
examples and it is not able
to learn!
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RNN TRAINING
¢ Training a RNN means estimate the parameter W, U and V :

1. A single time step of the input is supplied to the network

2. We compute st using a combination of the current input and the
previous state

3. The current ht becomes st-1 for the next time step

4. We can go as many time steps as required

5. Once all the time steps are completed the final current state is used to
compute the output ot

6. The output is then compared to the actual output and the error is
estimated

7. The error is backpropagated to the network
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RNN TRAINING
¢ If ot is the predicted value ōt is the actual value, the error is computed

as a cross entropy loss

¢ And therefore, for all time stamps:

Lt = −ot log(ot )

L = − ot log(ot )∑
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RNN TRAINING
¢ The weights U, W and V are the same at each time step. However, when

doing the backpropagation:

1. The cross entropy error is first computed using the current output and
the actual output (for all the time steps)

2. For the unrolled network, the gradient is computed for each time step
with respect to the weight parameter

3. Since the weights rethe same for all the time steps the gradients can be
combined together for all time steps

4. The weights are then updated.
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h’,y = f1(h,x), g’,z = f2(g,y)DEEP RNN
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PROBLEMS WITH RNN
¢ When dealing with a time series, it tends to forget old information. When there 

is a distant relationship of unknown length, we wish to have a “memory” to it.

¢ Vanishing gradient problem.

¢ Solution: LSTM
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