
41

4 Summarizing data

4.1 Types of data
In Chapters 2 and 3 we looked at ways in which data
are collected. In this chapter we shall see how data can
be summarized to help to reveal information they con-
tain. We do this by calculating numbers from the data
which extract the important material. These numbers are
called statistics. A statistic is anything calculated from
the data alone.
It is often useful to distinguish between three types

of data: qualitative, discrete quantitative, and continu-
ous quantitative.Qualitative data arise when individuals
may fall into separate classes. These classes may have
no numerical relationship with one another at all, e.g.
sex: male, female; types of dwelling: house, maisonette,
flat, lodgings; eye colour: brown, grey, blue, green, etc.
Quantitative data are numerical, arising from counts
or measurements. If the measurements can have only
certain specific values, like the number of people in a
household, or number of teeth which have been filled,
those data are said to be discrete. Discrete variables
usually have integer or whole number values. If the val-
ues of the measurements can take any number in a
range, such as height or weight, the data are said to be
continuous. In practice there is overlap between these
categories. Most continuous data are limited by the ac-
curacy with which measurements can be made. Human
height, for example, is difficult to measure more accur-
ately than to the nearest millimetre and is more usually
measured to the nearest centimetre. So only a finite set
of possible measurements is actually available, although
the quantity ‘height’ can take an infinite number of pos-
sible values, and the measured height is really discrete.
However, the methods described below for continu-
ous data will be seen to be those appropriate for its
analysis.

We shall refer to qualities or quantities such as sex,
height, age, etc., as variables, because they vary from
one member of a sample or population to another. A
qualitative variable is also termed a categorical vari-
able, nominal variable, or an attribute. We shall use
these terms interchangeably.

4.2 Frequency distributions
When data are purely qualitative, the simplest way to
deal with them is to count the number of cases in each
category. For example, in the analysis of the census of a
psychiatric hospital population (Section 3.2), one of the
variables of interest was the patient’s principal diagnosis
(Bewley et al. 1975). To summarize these data, we count
the number of patients having each diagnosis. The results
are shown in Table 4.1. The count of individuals having a
particular quality is called the frequency of that quality.
For example, the frequency of schizophrenia is 474. The
proportion of individuals having the quality is called the

Table 4.1 Principal diagnosis of patients in Tooting Bec Hos-
pital (data from Bewley et al. 1975)

Diagnosis Number of patients

Schizophrenia 474

Affective disorders 277

Organic brain syndrome 405

Subnormality 58

Alcoholism 57

Other and not known 196

Total 1 467
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42 Chapter 4 Summarizing data

relative frequency or proportional frequency. The
relative frequency of schizophrenia is 474/1467 = 0.32 or
32%. The set of frequencies of all the possible categories
is called the frequency distribution of the variable.
In this census we assessed whether patients were ‘un-

likely to be discharged’, ‘possibly to be discharged’, or
‘likely to be discharged’. The frequencies of these cat-
egories are shown in Table 4.2. Likelihood of discharge
is a qualitative variable, like diagnosis, but the categor-
ies are ordered. This enables us to use another set of
summary statistics, the cumulative frequencies. The cu-
mulative frequency for a value of a variable is the
number of individuals with values less than or equal
to that value. Thus, if we order likelihood of discharge
from ‘unlikely’, through ‘possibly’ to ‘likely’, the cumula-
tive frequencies are 871, 1 210 (= 871 + 339), and 1 467.
The relative cumulative frequency for a value is the
proportion of individuals in the sample with values less

than or equal to that value. For the example they are
0.59 (= 871/1 467), 0.82, and 1.00. Thus we can see that
the proportion of patients for whom discharge was not
thought likely was 0.82 or 82%.
As we have noted, likelihood of discharge is a quali-

tative variable, with ordered categories. Sometimes this
ordering is taken into account in analysis, sometimes
not. Although the categories are ordered these are not
quantitative data. There is no sense in which the differ-
ence between ‘likely’ and ‘possibly’ is the same as the
difference between ‘possibly’ and ‘unlikely’.
Table 4.3 shows the frequency distribution of a quanti-

tative variable, parity. This shows the number of previous
pregnancies for a sample of women booking for delivery
at St George’s Hospital. Only certain values are possible,
as the number of pregnancies must be an integer, so this
variable is discrete. The frequency of each separate value
is given.

Table 4.2 Likelihood of discharge of patients in Tooting Bec Hospital (data from Bewley et al. 1975)

Discharge: Frequency Relative frequency Cumulative frequency Relative cumulative frequency

Unlikely 871 0.59 871 0.59

Possible 339 0.23 1 210 0.82

Likely 257 0.18 1 467 1.00

Total 1 467 1.00 1 467 1.00

Table 4.3 Parity of 125 women attending antenatal clinics at St George’s Hospital (data supplied by Rebecca McNair, personal
communication)

Parity Frequency Relative frequency Cumulative frequency Relative cumulative frequency
(per cent) (per cent)

0 59 47.2 59 47.2

1 44 35.2 103 82.4

2 14 11.2 117 93.6

3 3 2.4 120 96.0

4 4 3.2 124 99.2

5 1 0.8 125 100.0

Total 125 100.0 125 100.0
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4.2 Frequency distributions 43

Table 4.4 FEV1 (litres) of 57 male medical students (data from Physiology practical class, St George’s Hospital Medical School)

2.85 3.19 3.50 3.69 3.90 4.14 4.32 4.50 4.80 5.20

2.85 3.20 3.54 3.70 3.96 4.16 4.44 4.56 4.80 5.30

2.98 3.30 3.54 3.70 4.05 4.20 4.47 4.68 4.90 5.43

3.04 3.39 3.57 3.75 4.08 4.20 4.47 4.70 5.00

3.10 3.42 3.60 3.78 4.10 4.30 4.47 4.71 5.10

3.10 3.48 3.60 3.83 4.14 4.30 4.50 4.78 5.10

Table 4.4 shows a continuous variable, forced expira-
tory volume in one second (FEV1) in a sample of male
medical students. As most of the values occur only once,
to get a useful frequency distribution we need to div-
ide the FEV1 scale into class intervals, e.g. from 3.0 to
3.5, from 3.5 to 4.0, and so on, and count the number
of individuals with FEV1s in each class interval. The class
intervals should not overlap, so we must decide which
interval contains the boundary point to avoid it being
counted twice. It is usual to put the lower boundary of
an interval into that interval and the higher boundary
into the next interval. Thus the interval starting at 3.0 and
ending at 3.5 contains 3.0 but not 3.5. We can write this
as ‘3.0 — ’ or ‘3.0 — 3.5–’ or ‘3.0 — 3.499’. Including the
lower boundary in the class interval has this advantage:
most distributions of measurements have a zero point
below which we cannot go, whereas few have an exact
upper limit. If we were to include the upper boundary
in the interval instead of the lower, we would have two
possible ways of dealing with zero. It could be left as an
isolated point, not in an interval. Alternatively, it could
be included in the lowest interval, which would then not
be exactly comparable with the others as it would in-
clude both boundaries while all the other intervals only
included the upper.
If we take a starting point of 2.5 and an interval of

0.5, we get the frequency distribution shown in Table 4.5.
Note that this is not unique. If we take a starting point
of 2.4 and an interval of 0.2, we get a different set of
frequencies.
The frequency distribution can be calculated easily and

accurately using a computer. Manual calculation is not
so easy and must be done carefully and systematically.

Table 4.5 Frequency distribution of FEV1 in 57 male med-
ical students (data from Physiology practical class, St George’s
Hospital Medical School)

FEV1 Frequency Relative frequency
(per cent)

2.0 — 0 0.0

2.5 — 3 5.3

3.0 — 9 15.8

3.5 — 14 24.6

4.0 — 15 26.3

4.5 — 10 17.5

5.0 — 6 10.5

5.5 — 0 0.0

Total 57 100.0

One way recommended by many older texts (e.g.
Hill 1977) is to set up a tally system, as in Table 4.6.
We go through the data and for each individual make
a tally mark by the appropriate interval. We then count
up the number in each interval. In practice this is very
difficult to do accurately, and it needs to be checked
and double-checked. Hill (1977) recommends writing
each number on a card and dealing the cards into piles
corresponding to the intervals. It is then easy to check
that each pile contains only those cases in that inter-
val and count them. This is undoubtedly superior to the
tally system. Another method is to order the observa-
tions from lowest to highest before marking the interval
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44 Chapter 4 Summarizing data

Table 4.6 Tally system for finding the frequency distribu-
tion of FEV1 (data from Physiology practical class, St George’s
Hospital Medical School)

FEV1 Frequency

2.0 — 0

2.5 — /// 3

3.0 — ///// //// 9

3.5 — ///// ///// //// 14

4.0 — ///// ///// ///// 15

4.5 — ///// ///// 10

5.0 — ///// / 6

5.5 — 0

Total 57

boundaries and counting, or to use the stem and leaf plot
described below. Personally, I always use a computer.

4.3 Histograms and other
frequency graphs

Graphical methods are very useful for examining fre-
quency distributions. Figure 4.1 shows a graph of the cu-
mulative frequency distribution for the FEV1 data. This is
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Figure 4.1 Cumulative frequency distribution of FEV1 in a
sample of male medical students (data from Physiology
practical class, St George’s Hospital Medical School).

called a step function, because the frequency increases
in abrupt steps. We can smooth this by joining succes-
sive points where the cumulative frequency changes by
straight lines, to give a cumulative frequency poly-
gon. Figure 4.2 shows this for the cumulative relative
frequency distribution of FEV1.
The most common way of depicting a frequency dis-

tribution is by a histogram. This is a diagram where the
class intervals are on an axis and rectangles with heights
or areas proportional to the frequencies erected on
them. Figure 4.3 shows the histogram for the FEV1 dis-
tribution in Table 4.5. The vertical scale shows frequency,
the number of observations in each interval.
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Figure 4.2 Cumulative frequency polygon of FEV1 (data
from Physiology practical class, St George’s Hospital Medical
School).
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Figure 4.3 Histogram of FEV1: frequency scale (data from
Physiology practical class, St George’s Hospital Medical
School).
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4.3 Histograms and other frequency graphs 45
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Figure 4.4 Histogram of parity (Table 4.3) using integer
cut-off points for the intervals (data supplied by Rebecca
McNair, personal communication).
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Figure 4.5 Histogram of parity (Table 4.3) using fractional
cut-off points for the intervals (data supplied by Rebecca
McNair, personal communication).

Sometimes we want to show the distribution of a
discrete variable (e.g. Table 4.3) as a histogram. If our
intervals are 0 — 1–, 1 — 2–, etc., the actual observations
will all be at one end of the interval (Figure 4.4). Mak-
ing the starting point of the interval a fraction rather than
an integer gives a slightly better picture (Figure 4.5). This
can also be helpful for continuous data when there is a
lot of digit preference (Section 20.1). For example, where
most observations are recorded as integers or as some-
thing point five, starting the interval at something .75 can
give a more accurate picture. We can also emphasize the
discrete nature of the variable by using a narrow interval
(Figure 4.6). We could even use simple vertical lines.
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Figure 4.6 Histogram of parity (Table 4.3) using fractional
cut-off points and narrow intervals (data supplied by Rebecca
McNair, personal communication).
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Figure 4.7 Histogram of FEV1: frequency per unit FEV1 or
frequency density scale (data from Physiology practical class,
St George’s Hospital Medical School).

Figure 4.7 shows a histogram for the same distribution
as Figure 4.3, with frequency per unit FEV1 (or frequency
density) shown on the vertical axis. The distributions ap-
pear identical and we may well wonder whether it mat-
ters which method we choose. We see that it does matter
when we consider a frequency distribution with unequal
intervals, as in Table 4.7. If we plot the histogram using
the heights of the rectangles to represent relative fre-
quency in the interval we get the histogram in Figure 4.8,
whereas if we use the relative frequency per year we get
the histogram in Figure 4.9. These histograms tell differ-
ent stories. Figure 4.8 suggests that the most common
age for accident victims is between 15 and 44 years,
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46 Chapter 4 Summarizing data

Table 4.7 Distribution of age in people suffering accidents in
the home (data from Whittington 1977)

Age group Relative frequency Relative frequency
(per cent) per year (per cent)

0–4 25.3 5.06

5–14 18.9 1.89

15–44 30.3 1.01

45–64 13.6 0.68

65+ 11.7 0.33
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Figure 4.8 Histograms of age distribution of home accident
victims using the relative frequency scale (data from
Whittington 1977).

whereas Figure 4.9 suggests it is between 0 and 4.
Figure 4.9 is correct, Figure 4.8 being distorted by
the unequal class intervals. It is therefore preferable
in general to use the frequency per unit (frequency
density) rather than per class interval when plotting a
histogram with unequal class intervals. The frequency
for a particular interval is then represented by the area
of the rectangle on that interval. Only when the class
intervals are all equal can the frequency for the class
interval be represented by the height of the rectangle.
The computer programmer finds equal intervals much
easier, however, and histograms with unequal intervals
are now uncommon. I have used equal intervals and the
frequency scale in most of this book.
Rather than a histogram consisting of vertical rect-

angles, we can plot a frequency polygon instead. To do
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Figure 4.9 Histogram of age distribution of home accident
victims using the relative frequency density scale (data from
Whittington 1977).
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Figure 4.10 Frequency polygon of FEV1 in medical students
(data from Physiology practical class, St George’s Hospital
Medical School).

this we join the centre points of the tops of the rectangles,
then omit the rectangles (Figure 4.10). Where a cell of the
histogram is empty, we join the line to the centre of the
cell at the horizontal axis (Figure 4.11, males). This can
be useful if we want to show two or more frequency dis-
tributions on the same graph, as in Figure 4.11. When
we do this, the comparison is easier if we use relative
frequency or relative frequency density rather than fre-
quency. This makes it easier to compare distributions
with different numbers of subjects.
A different version of the histogram has been de-

veloped by Tukey (1977), the stem and leaf plot
(Figure 4.12). The rectangles are replaced by the num-
bers themselves. The ‘stem’ is the first digit or digits of
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4.4 Shapes of frequency distribution 47
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Figure 4.11 Frequency polygons of PEF in medical students
(data from Physiology practical class, St George’s Hospital
Medical School).
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Figure 4.12 Stem and leaf plot for the FEV1 data, rounded
down to one decimal place (data from Physiology practical
class, St George’s Hospital Medical School).

the number and the ‘leaf ’ the trailing digit. The first row
of Figure 4.12 represents the numbers 2.8, 2.8, and 2.9,
which in the data are 2.85, 2.85, and 2.98. The plot pro-
vides a good summary of data structure while at the same
time we can see other characteristics such as a tendency
to prefer some trailing digits to others, called digit prefer-
ence (Section 20.1). It is also easy to construct and much
less prone to error than the tally method of finding a
frequency distribution.

4.4 Shapes of frequency
distribution

Figure 4.3 shows a frequency distribution of a shape
often seen in medical data. The distribution is roughly
symmetrical about its central value and has frequency
concentrated about one central point. The most frequent
value is called the mode of the distribution and the
interval with the greatest frequency is called the modal

interval ormodal class. Figure 4.3 has one such point.
It is unimodal. Figure 4.13 shows a very different shape.
Here there are two distinct modes, one near 100 mm Hg
and the other near 170 mm Hg. There is pronounced
dip in the region between 120 and 160 mm Hg, where
we might expect the systolic pressures of many members
of the general population to be found. This distribution is
bimodal. We must be careful to distinguish between the
unevenness in the histogram which results from using a
small sample to represent a large population and that re-
sulting from genuine bimodality in the data. The trough
between 120 and 160 in Figure 4.13 is very marked and
might represent a genuine bimodality. In this case we
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Figure 4.13 Systolic blood pressure in a sample of patients
in an intensive therapy unit (data from Friedland et al. 1996).
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Figure 4.14 Serum triglyceride in cord blood from 282
babies (Table 4.8) (data supplied by Tessi Hanid, personal
communication).
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48 Chapter 4 Summarizing data

Table 4.8 Serum triglyceride measurements in cord blood from 282 babies (data supplied by Tessi Hanid, personal
communication)

0.15 0.29 0.32 0.36 0.40 0.42 0.46 0.50 0.56 0.60 0.70 0.86

0.16 0.29 0.33 0.36 0.40 0.42 0.46 0.50 0.56 0.60 0.72 0.87

0.20 0.29 0.33 0.36 0.40 0.42 0.47 0.52 0.56 0.60 0.72 0.88

0.20 0.29 0.33 0.36 0.40 0.44 0.47 0.52 0.56 0.61 0.74 0.88

0.20 0.29 0.33 0.36 0.40 0.44 0.47 0.52 0.56 0.62 0.75 0.95

0.20 0.29 0.33 0.36 0.40 0.44 0.47 0.52 0.56 0.62 0.75 0.96

0.21 0.30 0.33 0.36 0.40 0.44 0.47 0.52 0.56 0.63 0.76 0.96

0.22 0.30 0.33 0.36 0.40 0.44 0.48 0.52 0.56 0.64 0.76 0.99

0.24 0.30 0.33 0.37 0.40 0.44 0.48 0.52 0.56 0.64 0.78 1.01

0.25 0.30 0.34 0.37 0.40 0.44 0.48 0.53 0.57 0.64 0.78 1.02

0.26 0.30 0.34 0.37 0.40 0.44 0.48 0.54 0.57 0.64 0.78 1.02

0.26 0.30 0.34 0.37 0.40 0.44 0.48 0.54 0.58 0.64 0.78 1.04

0.26 0.30 0.34 0.38 0.40 0.45 0.48 0.54 0.58 0.65 0.78 1.08

0.27 0.30 0.34 0.38 0.40 0.45 0.48 0.54 0.58 0.66 0.78 1.11

0.27 0.30 0.34 0.38 0.41 0.45 0.48 0.54 0.58 0.66 0.80 1.20

0.27 0.31 0.34 0.38 0.41 0.45 0.48 0.54 0.59 0.66 0.80 1.28

0.28 0.31 0.34 0.38 0.41 0.45 0.48 0.55 0.59 0.66 0.82 1.64

0.28 0.32 0.35 0.39 0.41 0.45 0.48 0.55 0.59 0.66 0.82 1.66

0.28 0.32 0.35 0.39 0.41 0.46 0.48 0.55 0.59 0.67 0.82

0.28 0.32 0.35 0.39 0.41 0.46 0.49 0.55 0.60 0.67 0.82

0.28 0.32 0.35 0.39 0.41 0.46 0.49 0.55 0.60 0.68 0.83

0.28 0.32 0.35 0.39 0.42 0.46 0.49 0.55 0.60 0.70 0.84

0.28 0.32 0.35 0.40 0.42 0.46 0.50 0.55 0.60 0.70 0.84

0.28 0.32 0.36 0.40 0.42 0.46 0.50 0.55 0.60 0.70 0.84

have people in intensive care, who are very sick. Some
have a condition which results in dangerously high pres-
sure, others a condition which results in dangerously
low pressure. We actually have multiple populations rep-
resented with some overlap between them. However,
almost all distributions encountered in medical statistics
are unimodal.

Figure 4.14 differs from Figure 4.3 in a different way
(Table 4.8). The distribution of serum triglyceride is
skewed, that is, the distance from the central value to
the extreme is much greater on one side than it is on
the other. The parts of the histogram near the extremes
are called the tails of the distribution. If the tails are
similar in length the distribution is symmetrical, as in
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Figure 4.15 Gestational age at birth for 1 749 deliveries at
St George’s Hospital (data supplied by Rebecca McNair,
personal communication).

Figure 4.3. If the tail on the right is longer than the tail on
the left as in Figure 4.14, the distribution is skewed to
the right or positively skewed. If the tail on the left is
longer, the distribution is skewed to the left or nega-
tively skewed. This is unusual, but Figure 4.15 shows an
example. The negative skewness comes about because
babies can be born alive at any gestational age from
about 20 weeks, but soon after 40 weeks the baby will
have to be born. Pregnancies will not be allowed to go on
for more than 44 weeks; the birth would be induced ar-
tificially. Most distributions encountered in medical work
are symmetrical or skewed to the right, for reasons we
shall discuss later (Section 7.4).

4.5 Medians and quantiles
We often want to summarize a frequency distribution in
a few numbers, for ease of reporting or comparison. The
most direct method is to use quantiles. The quantiles
are values which divide the distribution such that there
is a given proportion of observations below the quantile.
For example, the median is a quantile. The median is
the central value of the distribution, such that half the
observations are less than or equal to it and half are
greater than or equal to it. We can estimate any quan-
tiles easily from the cumulative frequency distribution or
a stem and leaf plot. For the FEV1 data the median is 4.1,
the 29th value in Table 4.4. If we have an even number

of points, we choose a value midway between the two
central values.
In general, we estimate the q quantile, the value such

that a proportion q will be below it, as follows. We have
n ordered observations which divide the scale into n + 1
parts: below the lowest observation, above the highest,
and between each adjacent pair. The proportion of
the distribution which lies below the ith observation is
estimated by i/(n + 1). We set this equal to q and get
i = q(n + 1). If i is an integer, the ith observation is the
required quantile estimate. If not, let j be the integer
part of i, the part before the decimal point. The quantile
will lie between the jth and j + 1th observations. We
estimate it by

xj + (xj+1 – xj) × (i – j)

For the median, for example, the 0.5 quantile, i = q(n + 1)
= 0.5 × (57 + 1) = 29, the 29th observation as before.
Other quantiles which are particularly useful are the

quartiles of the distribution. The quartiles divide the
distribution into four equal parts, called fourths or
quarters. The second quartile is the median. For the
FEV1 data the first and third quartiles are 3.54 and 4.53.
For the first quartile, i = 0.25 × 58 = 14.5. The quartile
is between the 14th and 15th observations, which are
both 3.54. For the third quartile, i = 0.75 × 58 = 43.5,
so the quartile lies between the 43rd and 44th observa-
tions, which are 4.50 and 4.56. The quantile is given by
4.50 + (4.56 – 4.50) × (43.5 – 43) = 4.53. We often divide
the distribution at 99 centiles or percentiles. The me-
dian is thus the 50th centile. For the 20th centile of FEV1,
i = 0.2 × 58 = 11.6, so the quantile is between the 11th
and 12th observations, 3.42 and 3.48, and can be esti-
mated by 3.42+ (3.48–3.42)× (11.6 –11) = 3.46. We can
estimate these easily from Figure 4.2 by finding the pos-
ition of the quantile on the vertical axis, e.g. 0.2 for the
20th centile or 0.5 for the median, drawing a horizon-
tal line to intersect the cumulative frequency polygon,
and reading the quantile off the horizontal axis. The term
‘quartile’ is often used incorrectly to mean the fourth or
quarter of the observations which fall between two quar-
tiles. The related words ‘quintile’ and ‘tertile’ often suffer
in the same way.
Tukey (1977) used the median, quartiles, maximum

and minimum as a convenient five figure summary of
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50 Chapter 4 Summarizing data

a distribution. He also suggested a neat graph, the box
and whisker plot, which represents this (Figure 4.16).
The box shows the distance between the quartiles, with
the median marked as a line, and the ‘whiskers’ show the
extremes. The different shapes of the FEV1 and serum
triglyceride distributions are clear from the graph. For
display purposes, an observation whose distance from
the edge of the box (i.e. the quartile) is more than 1.5
times the length of the box (i.e. the interquartile range,
Section 4.7) may be called an outlier. Outliers may be
shown as separate points, as for the serum triglyceride
measurements in Figure 4.16. The plot can be useful for
showing the comparison of several groups (Figure 4.17).
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Figure 4.16 Box and whisker plots for FEV1 and for serum
triglyceride (data from Physiology practical class, St George’s
Hospital Medical School/Tessi Hanid).
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Figure 4.17 Box plots showing a roughly symmetrical
variable in four groups, with an outlying point (data in
Table 10.7) (data supplied by Moses Kapembwa, personal
communication).

4.6 The mean
The median is not the only measure of central value
for a distribution. Another is the arithmetic mean or
average, usually referred to simply as the mean. This is
found by taking the sum of the observations and divid-
ing by their number. For example, consider the following
hypothetical data:

2 3 9 5 4 0 6 3 4

The sum is 36 and there are nine observations, so the
mean is 36/9 = 4.0. At this point we need to intro-
duce some algebraic notation, widely used in statistics.
We denote the observations by

x1, x2, . . . , xi, . . . , xn

There are n observations and the ith of these is xi. For the
example, x4 = 5 and n = 9. The sum of all the xi is

n∑
i=1

xi

The summation sign is an upper case Greek letter, sigma,
the Greek S. When it is obvious that we are adding the
values of xi for all values of i, which runs from 1 to n, we
may abbreviate this to

∑
xi or simply to

∑
x. The mean

of the xi is denoted by x̄ (‘x bar’), and

x̄ =
1
n

∑
xi =

∑
xi

n

The sum of the 57 FEV1s is 231.51 and hence the mean
is 231.51/57 = 4.06. This is very close to the median, 4.1,
so the median is within 1% of the mean. This is not so for
the triglyceride data. The median triglyceride (Table 4.8)
is 0.46 but the mean is 0.51, which is higher. The median
is 10% away from the mean. If the distribution is sym-
metrical, the sample mean and median will be about the
same, but in a skewed distribution they will usually not. If
the distribution is skewed to the right, as for serum trigly-
ceride, the mean will usually be greater, if it is skewed to
the left the median will usually be greater. This is because
the values in the tails affect the mean but not the median.
The sample mean has much nicer mathematical prop-

erties than the median and is thus more useful for the
comparison methods described later. The median is a
very useful descriptive statistic, but not much used for
other purposes.
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4.7 Variance, range, and interquartile range 51

4.7 Variance, range,
and interquartile range

The mean and median are measures of the position of
the middle of the distribution, which we call the cen-
tral tendency. We also need a measure of the spread
or variability of the distribution, called the dispersion.
One obvious measure is the range, the difference be-

tween the highest and lowest values. For the data of
Table 4.4, the range is 5.43 – 2.85 = 2.58 litres. The range
is often presented as the two extremes, 2.85–5.43 litres,
rather than their difference. The range is a useful de-
scriptive measure, but has two disadvantages. Firstly, it
depends only on the extreme values and so can vary a
lot from sample to sample. Secondly, it depends on the
sample size. The larger the sample is, the further apart
the extremes are likely to be. We can see this if we con-
sider a sample of size 2. If we add a third member to the
sample, the range will only remain the same if the new
observation falls between the other two, otherwise the
range will increase. We can get round the second of these
problems by using the interquartile range, the differ-
ence between the first and third quartiles. For the data
of Table 4.4, the interquartile range is 4.53 – 3.54 = 0.99
litres. The interquartile range, too, is often presented as
the two extremes, 3.54–4.53 litres. However, the inter-
quartile range is quite variable from sample to sample
and is also mathematically intractable. Although a use-
ful descriptive measure, it is not the one preferred for
purposes of comparison.
The most frequently used measures of dispersion are

the variance and standard deviation. We start by calcu-
lating the difference between each observation and the
sample mean, called the deviations from the mean
(Table 4.9). If the data are widely scattered, many of the
observations xi will be far from the mean x̄ and so many
deviations xi – x̄ will be large. If the data are narrowly scat-
tered, very few observations will be far from the mean
and so few deviations xi – x̄ will be large. We need some
kind of average deviation to measure the scatter. If we
add all the deviations together, we get zero, because∑

(xi – x̄) =
∑

xi –
∑

x̄ =
∑

xi – nx̄ and nx̄ =
∑

xi.
Instead we square the deviations and then add them,
as shown in Table 4.9. This removes the effect of sign;

Table 4.9 Deviations from the mean of nine observations

Observations Deviations from Squared
the mean deviations

xi xi – x̄ (xi – x̄)2

2 –2 4

3 –1 1

9 5 25

5 1 1

4 0 0

0 –4 16

6 2 4

3 –1 1

4 0 0

36 0 52

we are only measuring the size of the deviation, not the
direction. This gives us

∑
(xi – x̄)2, in the example equal to

52, called the sumof squares about themean, usually
abbreviated to sum of squares.
Clearly, the sum of squares will depend on the num-

ber of observations as well as the scatter. We want to
find some kind of average squared deviation. This leads
to a difficulty. Although we want an average squared de-
viation, we divide the sum of squares by n–1, not n. This is
not the obvious thing to do and puzzles many students of
statistical methods. The reason is that we are interested in
estimating the scatter of the population, rather than the
sample, and the sum of squares about the sample mean
is proportional to n – 1 (Appendix 4A, Appendix 6B). Div-
iding by n would lead to small samples producing lower
estimates of variability than large samples. The minimum
number of observations from which the variability can be
estimated is two, a single observation cannot tell us how
variable the data are. If we used n as our divisor, for n = 1
the sum of squares would be zero, giving a variance of
zero. With the correct divisor of n – 1, n = 1 gives the
meaningless ratio 0/0, reflecting the impossibility of esti-
mating variability from a single observation. The estimate
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of variability is called the variance, defined by

variance =
1

n – 1

∑
(xi – x̄)

2

We have already said that
∑

(xi – x̄)2 is called the sum
of squares. The quantity n – 1 is called the degrees
of freedom of the variance estimate (Appendix 7A).
We have:

variance =
sum of squares

degrees of freedom

We shall usually denote the variance by s2. In the ex-
ample, the sum of squares is 52 and there are nine
observations, giving 8 degrees of freedom. Hence s2 =
52/8 = 6.5.
The formula

∑
(xi – x̄)2 gives us a rather tedious calcu-

lation. There is another formula for the sum of squares,
which makes the calculation easier to carry out. This
is simply an algebraic manipulation of the first form
and gives exactly the same answers. We thus have two
formulae for variance:

s2 =
1

n – 1

∑(
xi – x̄

2
)

s2 =
1

n – 1

(∑
x2i –

(
∑

xi)
2

n

)

The algebra is quite simple and is given in Appendix 4B.
For example, using the second formula for the nine
observations, we have:∑

x2i = 22 + 32 + 92 + 52 + 42 + 02 + 62 + 32 + 42

= 4 + 9 + 81 + 25 + 16 + 0 + 36 + 9 + 16

= 196∑
xi = 36

s2 =
1

n – 1

(∑
x2i –

(
∑

xi)2

n

)

=
1

9 – 1

(
196 –

362

9

)

=
1
8
(196 – 144)

= 52/8

= 6.5

as before. On a calculator this is a much easier formula
than the first, as the numbers need only be put in once.

It can be inaccurate, because we may subtract one large
number from another to get a small one. For this reason
the first formula would be used in a computer program.

4.8 Standard deviation
The variance is calculated from the squares of the obser-
vations. This means that it is not in the same units as the
observations, which limits its use as a descriptive statis-
tic. The obvious answer to this is to take the square root,
which will then have the same units as the observations
and the mean. The square root of the variance is called
the standard deviation, usually denoted by s. Thus,

s =

√
1

n – 1

∑
(xi – x̄)2

=

√√√√ 1
n – 1

(∑
x2i –

(
∑

xi)
2

n

)

Returning to the FEV data, we calculate the variance and
standard deviation as follows. We have n = 57,

∑
xi =

231.51,
∑

x2i = 965.45.

Sum of squares =
∑

x2i –
(
∑

xi)2

n

= 965.45 –
231.512

57
= 965.45 – 940.296

= 25.154

s2 =
sum of squares

n – 1

=
25.154
57 – 1

= 0.449

The standard deviation is s =
√
s2 =

√
0.449 = 0.67 litres.

Figures 4.18 and 4.19 show the relationship between
mean, standard deviation, and frequency distribution.
For FEV1, we see that the majority of observations are
within one standard deviation of the mean, and nearly all
within two standard deviations of the mean (Figure 4.18).
There is a small part of the histogram outside the x̄ – 2s
to x̄ + 2s interval, on either side of this symmetrical histo-
gram. Figure 4.19 shows the same thing for the highly
skewed triglyceride data. In this case, however, the outly-
ing observations are all in one tail of the distribution. In
general, we expect roughly two-thirds of observations to
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Figure 4.18 Histogram of FEV1 with mean and standard
deviation (data from Physiology practical class, St George’s
Hospital Medical School).
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Figure 4.19 Histogram of triglyceride with mean and
standard deviation (data supplied by Tessi Hanid, personal
communication).

lie within one standard deviation of the mean and 95% to
lie within two standard deviations of the mean, but where
the outlying observations are will depend on symmetry
or skewness.

4.9 Multiple choice questions:
Summarizing data

(Each branch is either true or false.)

4.1 Which of the following are qualitative variables:

(a) sex;

(b) parity;

(c) diastolic blood pressure;

(d) diagnosis;

(e) height.

4.2 Which of the following are continuous variables:

(a) blood glucose;

(b) peak expiratory flow rate;

(c) age last birthday;

(d) exact age;

(e) family size.

4.3 When a distribution is skewed to the right:

(a) the median is greater than the mean;

(b) the distribution is unimodal;

(c) the tail on the left is shorter than the tail on the right;

(d) the standard deviation is less than the variance;

(e) the majority of observations are less than the mean.

4.4 The shape of a frequency distribution can be described

using:

(a) a box and whisker plot;

(b) a histogram;

(c) a stem and leaf plot;

(d) mean and variance;

(e) a table of frequencies.

4.5 For the sample 3, 1, 7, 2, 2:

(a) the mean is 3;

(b) the median is 7;

(c) the mode is 2;

(d) the range is 1;

(e) the standard deviation is 6.0.

4.6 Diastolic blood pressure has a distribution which is

slightly skewed to the right. If the mean and standard

deviation were calculated for the diastolic pressures of a

random sample of men:

(a) there would be fewer observations below the mean

than above it;

(b) the standard deviation would be approximately equal

to the mean;

(c) the majority of observations would be more than one

standard deviation from the mean;

(d) the standard deviation would estimate the accuracy of

blood pressure measurement;

(e) about 95% of observations would be expected to be

within two standard deviations of the mean.
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54 Chapter 4 Summarizing data

4.10 Exercise: Student measurements
and a graph of study numbers

There are two sets of data in this exercise. The first, obser-

vations made during a student anatomy practical, provide

practice in reading histograms and standard deviations. The

second, from a publication on the numbers of participants in

studies, presents a challenging graphical interpretation.

Figure 4.20 shows the distribution of the mid upper arm

circumferences of 120 female biomedical sciences, medical,

nursing, physiotherapy, and radiography students.
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Figure 4.20 Distribution of the mid upper arm
circumferences of 120 female students (data from Anatomy
practical class, St George’s Hospital Medical School).

4.1 What kind of variable is arm circumference?

4.2 What kind of graph is Figure 4.20?

4.3 On the graph, where are the mode, the lower tail, and

the upper tail of this distribution?

4.4 From the graph, how would you describe the shape of

the distribution of arm circumference and why?

4.5 From the graph, approximately what would you esti-

mate the median and the first and third quartiles to be?

Where would they appear along the horizontal axis?

4.6 From the graph, approximately what would you esti-

mate the mean and the standard deviation to be? Where

would they appear along the horizontal axis?

Table 4.10 shows eye colour, as recorded by another stu-

dent, for male and female students.

Table 4.10 Recorded eye colour by sex for 183 students

Eye
colour

Sex

Female Male Total

Black 6 4 10

Brown 47 32 79

Blue 27 16 43

Grey 10 1 11

Hazel 9 5 14

Green 16 4 20

Other 4 1 5

Missing 1 0 1

Total 120 63 183

4.7 What kind of variable is eye colour? What kind of

variable is sex?

My friend and colleague Doug Altman sent me this interest-

ing graph. Shiraishi et al. (2009) analysed studies of diagnostic

tests reported in the journal Radiology between 1997 and

2006. They looked at all the studies of diagnostic methods

which used a numerical variable with a particular cut-off

value to decide the diagnosis. Such studies are analysed and

presented using a ROC curve, or Receiver Operating Charac-

teristic curve (Section 20.6). Shiraishi et al. looked at the total

number of people, both with and without the condition un-

der investigation, who were included in each of these studies.

They gave a graph similar to Figure 4.21 for the distribution of

the number of participants included.

4.8 How would you describe the shape of this distribution?

4.9 What feature of the intervals makes it difficult to draw a

histogram for these data?

4.10 If we were to present this distribution as a histogram,

what would the horizontal scale show?

4.11 If we were to present this distribution as a histogram,

what would the vertical scale show?

4.12 Think about how this might appear as a valid histo-

gram. How would you describe the shape of this

distribution?
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Figure 4.21 Numbers of participants for each study in a
sample of 233 diagnostic studies (reproduced from Shiraishi J
et al. Experimental design and data analysis in receiver
operating characteristic studies: lessons learned from reports
in Radiology from 1997 to 2006. Radiology 2009 253:(3)
822–830, with permission from the Radiological Society of
North America).

Appendix 4A: The divisor
for the variance
The variance is found by dividing the sum of squares
about the sample mean by n – 1, not by n. This is be-
cause we want the scatter about the population mean,
and the scatter about the sample mean is always less.
The sample mean is ‘closer’ to the data points than is the
population mean. We shall try a little sampling experi-
ment to show this. Table 4.11 shows a set of 100 random
digits which we shall take as the population to be sam-
pled. They have mean 4.74 and the sum of squares about

the mean is 811.24. Hence the average squared differ-
ence from the mean is 8.1124. We can take samples of
size two at random from this population using a pair of
decimal dice, which will enable us to choose any digit
numbered from 00 to 99. The first pair chosen was 5
and 6 which has mean 5.5. The sum of squares about
the population mean 4.74 is (5 – 4.74)2 + (6 – 4.74)2 =
1.655. The sum of squares about the sample mean is
(5 – 5.5)2 + (6 – 5.5)2 = 0.5.
The sum of squares about the population mean is

greater than the sum of squares about the sample mean,
and this will always be so. Table 4.12 shows this for 20
such samples of size two. The average sum of squares
about the populationmean is 13.6, and about the sample
mean it is 5.7. Hence dividing by the sample size (n = 2),
we have mean square differences of 6.8 about the popu-
lation mean and 2.9 about the sample mean. Compare
this with 8.1 for the population as a whole. We see that
the sum of squares about the population mean is quite
close to 8.1, while the sum of squares about the sam-
ple mean is much less. However, if we divide the sum of
squares about the sample mean by n – 1, i.e. 1, instead of
n we have 5.7, which is not much different from the 6.8
from the sum of squares about the population mean.
Table 4.13 shows the results of a similar experiment

with more samples being taken. The table shows the two
average variance estimates using n and n – 1 as the div-
isor of the sum of squares, for sample sizes 2, 3, 4, 5,
and 10. We see that the sum of squares about the sam-
ple mean divided by n increases steadily with sample
size, but if we divide it by n – 1 instead of n, the esti-
mate does not change as the sample size increases. The
sum of squares about the sample mean is proportional
to n – 1.

Table 4.11 Population of 100 random digits for a sampling experiment

9 1 0 7 5 6 9 5 8 8 1 0 5 7 6 5 0 2 2 2

1 8 8 8 5 2 4 8 3 1 6 5 5 7 4 1 7 3 3 3

2 8 1 8 5 8 4 0 1 9 2 1 6 9 4 4 7 6 1 7

1 9 7 9 7 2 7 7 0 8 1 6 3 8 0 5 7 4 8 6

7 0 2 8 8 7 2 5 4 1 8 6 8 3 5 8 2 7 2 4
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Table 4.12 Sampling pairs from Table 4.11

Sample
∑

(xi – μ)2
∑

(xi – x̄)2 Sample
∑

(xi – μ)2
∑

(xi – x̄)2

5 6 1.655 0.5 8 3 13.655 12.5

8 8 21.255 0.0 5 7 5.175 2.0

6 1 15.575 12.5 5 2 5.575 4.5

9 3 21.175 18.0 5 7 5.175 2.0

5 5 0.135 0.0 8 8 21.255 0.0

7 7 10.215 0.0 3 2 10.535 0.5

1 7 19.095 18.0 0 4 23.015 8.0

9 8 28.775 0.5 9 3 21.175 18.0

3 3 6.055 0.0 5 2 7.575 4.5

5 1 14.055 8.0 6 9 19.735 4.5

Mean 13.6432 5.7

Table 4.13 Mean sums of squares about the sample mean
for sets of 100 random samples from Table 4.12

Number in
sample, n

Mean variance estimates

1
n

∑
(xi – x̄)2 1

n–1

∑
(xi – x̄)2

2 4.5 9.1

3 5.4 8.1

4 5.9 7.9

5 6.2 7.7

10 7.2 8.0

Appendix 4B: Formulae for the
sum of squares
The different formulae for sums of squares are derived as
follows:

sum of squares =
∑

(xi – x̄)
2

=
∑

(x2i – 2xix̄ + x̄
2)

=
∑

x2i –
∑

2xix̄ +
∑

x̄2

=
∑

x2i – 2x̄
∑

xi + nx̄
2

because x̄ has the same value for each of the n observa-
tions. Now,

∑
xi = nx̄, so

sum of squares =
∑

x2i – 2x̄nx̄ + nx̄
2

=
∑

x2i – 2nx̄
2 + nx̄2

=
∑

x2i – nx̄
2

and putting x̄ = 1
n

∑
xi

sum of squares =
∑

x2i – n
(
1
n

∑
xi

)2

=
∑

x2i –
(
∑

xi)
2

n

We thus have three formulae for variance:

s2 =
1

n – 1

∑
(xi – x)

2

=
1

n – 1

(∑
x2i – nx̄

2
)

=
1

n – 1

(∑
x2i –

(
∑

xi)2

n

)
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