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Fact 14 : Let α be a trace.

• lin(canposet(α)) = cantotalposet(α).a
• word(lin(canposet(α))) = α.

aNote that in cantotalposet(α) the trace α is treated as a set of words.

All information on the dependencies between the occurrences in a trace is
represented in its uniquely associated poset.

5.3.1 Bibliographical Remarks

Main independent sources of trace theory are [7] (in the context of combi-
natorial problems) and [35, 29] (in the context of concurrency theory). An
extensive account of trace theory is provided by [11] which, in particular,
contains a chapter on dependence graphs [20]. For a bibliography on traces
see [15].

5.4 Elementary Net Systems

In this section we first briefly discuss Petri nets as a system model, or rather
as a framework for the modelling of concurrent systems. Then we introduce
in more detail Elementary Net systems, the most basic Petri net model. In
this model the key primitive notions underlying the operation of concurrent
systems are explicitly represented and as such it has been the inspiration
for the development of trace theory. In later sections, we will discuss more
expressive net classes and how they lead to generalizations of traces.

The description of a Petri net comes in two parts, giving its static and
dynamic aspects. The (static) structure of a Petri net is a graph specifying
the local states (called places) of the system being modelled and its possible
actions (called transitions). Global (system) states consist of combinations of
the local states and it is the role of transitions to change those states in accor-
dance with the given (dynamic) rules. Each transition has a neighbourhood of
places with which it is linked and there are specific rules when transitions can
occur (concurrently) and the effect of such occurrence. Both notions are fully
determined by the transition’s neighbourhood, i.e., every transition occur-
rence depends on neighbouring local states and also its effect when it occurs
is completely local. A net system is fully specified when also an initial state is
supplied from which possible behavioural scenarios are initiated. By varying
the kind and nature of the relationships between places and transitions, as
well as the precise notions of global state, and the enabling and occurrence
rules, one obtains different classes of Petri nets.

First we introduce the basic structure underlying every Petri net. The
definition below captures what presumably is the most fundamental class of
nets.
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Fig. 5.6. A net without and with configuration (an EN-system) for the running
example with a producer and a consumer subnet connected by a (buffer) place p4.

Definition 15 : nets
A net N is a relational tuple (P, T, F ) with P and T disjoint finite sets of
nodes, called respectively places and transitions, and F ⊆ (T×P )∪(P×T )
the flow relation.

In diagrams, places are drawn as circles, and transitions as rectangles. The
flow relation is represented by directed arcs between them. Hence nets are
drawn as bipartite graphs.

Figure 5.6 shows the net N = (P, T, F), where P = {p1, p2, p3, p4, p5, p6}
is the set of places, T = {a, g, m, r, u} is the set of transitions, and the flow
relation F comprises the following twelve arcs:

(r, p1) (p2, r) (p3, m) (m, p2) (p2, a) (a, p3)
(a, p4) (p4, g) (p5, g) (g, p6) (p6, u) (u, p5) .

Let (P, T, F ) be a net. The inputs and outputs of a node x ∈ P ∪ T are
the sets •x and x•, respectively comprising all y such that yFx and xFy,
and the neighbourhood •x• of x is the union of its inputs and outputs. The
dot-notations readily extend to sets of nodes, e.g., •X comprises all inputs of
the nodes in X. It is assumed here that each net is T-restricted which means
that every transition has at least one input (cause) and at least one output
(effect). For the net N in Figure 5.6, •g = {p4, p5} and p3• = {m}.

5.4.1 Configurations and Transition Occurrence

In this and the next section, the states of a net N df= (P, T, F ) are given
by subsets of places representing the conditions that hold at a given global
situation.

Definition 16 : configurations

A configuration of a net is a subset of its places.
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In diagrams, a configuration C is represented by drawing in each place p in C
a token (a small black dot). A possible configuration for the net in Figure 5.6
is C = {p2, p5}, as illustrated on the right of Figure 5.6.

Transitions represent actions which may occur at a given configuration
and then lead to a new configuration.

Definition 17 : transition occurrences
A transition t can occur (or is enabled) at a configuration C if •t ⊆ C and
t• ∩C = ∅. Its occurrence then leads to a new configuration (C \ •t)∪ t•.

Thus a (potential) occurrence of a transition depends only on its neighbours. If
t can occur at C then we write C[t〉, and if its occurrence leads to C ′ we write
C[t〉C ′. Note that through such an occurrence, all inputs of t cease to hold,
and all outputs start to hold. Hence the change caused by the occurrence of a
transition is always the same and does not depend on the current global state.
For the configuration C shown in Figure 5.6, the enabled transitions are r and
a. Moreover, we have C[a〉{p3, p4, p5} and C[r〉{p1, p5}. Figure 5.7 provides
further intuition about the enabling and occurrence rules for net transitions.

We now lift the execution of transitions to a concurrent context by allowing
the simultaneous occurrence of transitions provided that they do not interfere
with one another, i.e., their neighbourhoods are mutually disjoint.

Definition 18 : steps

A step of a net is a subset of its transitions. A step can occur (or is
enabled) at a configuration C if the neighbourhoods of its transitions do
not overlap, and each transition is enabled. The effect of its occurrence is
the cumulative effect of the occurrences of the transitions it comprises.

In other words, a step U is enabled at C if •t• ∩ •t′• = ∅ for all distinct
transitions t and t′ in U , and C[t〉 for each transition t in U . We denote this
by C[U〉. The occurrence of an enabled step leads to a new configuration C ′

given by (C \ •U) ∪ U•, and we denote this by C[U〉C ′. Note that C[U〉C iff
the step U is empty �. For the configuration C shown in Figure 5.6, we have
C[{a}〉C′ where C′ = {p3, p4, p5}; moreover, we further have:

C′[{m, g}〉{p2, p6} C′[{m}〉{p2, p4, p5} C′[{g}〉{p3, p6} .

We are now ready to introduce sequences of transitions and step occurrences.

Definition 19 : step sequences

A step sequence of a net is a finite sequence of non-empty steps occurring
one after another from a given configuration.
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Fig. 5.7. Local change-of-state produced by the occurrence of a transition.

In other words, a step sequence from a configuration C to a configuration
C ′ is a possibly empty sequence σ = U1 . . . Un of non-empty steps Ui such
that C[U1〉C1, . . . , Cn−1[Un〉C ′, for some configurations C1, . . . , Cn−1. We also
write C[σ〉C ′ or C[σ〉, and say that C ′ is a configuration reachable from C.
The set of all configurations reachable from C will be denoted by [C〉. Note
that we always have C ∈ [C〉. If n = 0, thus σ = λ the empty (step) sequence,
then C = C ′. The converse implication however does not hold �. For the
configuration C shown in Figure 5.6, C[{a}{m, g}{u, r}〉{p1, p5}, and, as we
will see later on, the set [C〉 comprises twelve reachable configurations.

To improve the readability of the notations when discussing examples, we
will often drop the curly brackets when writing a singleton step, e.g., we can
write a{m, g}ur instead of {a}{m, g}{u}{r}.

A special kind of step sequences are those that consist of singleton steps
only. Such sequences (of transitions) are referred to as firing sequences. For
example, amgur is a firing sequence from C to {p1, p5}. Reachability of con-
figurations does not depend on whether one uses step sequences or firing
sequences. If, however, the structure of a net is enriched with inhibitor arcs
as we will do it in the next section, then reachability may be affected by the
restriction to firing sequences.

5.4.2 Concurrency and Causality

The definition of concurrent behaviour on basis of non-interference, as in-
troduced above, allows one to investigate some intricate relationships in the
way transitions can occur. As a first observation we have that transitions
which can be executed simultaneously (at some configuration) do not have to
occur together. They can still occur one after another. Moreover, whenever
transitions can occur in any order, they must be concurrently enabled and
non-interfering.

Fact 20 : Let C,C ′ be configurations and U,U ′ be steps of a net.

• C[U ∪ U ′〉C ′ and U ∩ U ′ = ∅ implies C[UU ′〉C ′.
• C[UU ′〉C ′ and C[U ′〉 implies U ∩ U ′ = ∅ and C[U ∪ U ′〉C ′.

This fact is often referred to as a ‘diamond property’. The reason is that if
we have, say, C[{a, b}〉C ′, it then follows that we also have C[{a}〉C ′′[{b}〉C ′
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and C[{b}〉C ′′′[{a}〉C ′ where C ′′ and C ′′′ are distinct configurations �. In
drawing this yields a diamond shape. Note that the two statements together
show that for the dynamics of nets defined sofar, diamonds imply concurrency
and vice versa. For the configurations C′ = {p3, p4, p5} and C′′ = {p2, p6} of
the net shown in Figure 5.6, we have C′[{m, g}〉C′′ as well as C′[mg〉C′′ and
C′[gm〉C′′, and the resulting ‘diamond’ can be seen with a little bit of effort at
the centre of the upper state graph in Figure 5.8.

The first part of Fact 20 implies that every step of simultaneously occurring
transitions can be split into any partition of subsets occurring in sequence,
with the same effect as the original step. As a consequence, every step sequence
eventually gives rise to a valid (but not necessarily unique) firing sequence.
And so the configurations reachable from a given one are the same for step
sequences and firing sequences.

Fundamental relationships between transitions can be classified in a way
which reflects their causal dependence (occurrence of one enables the other),
competition for shared resources (both can occur, but they cannot occur to-
gether), or concurrency (they can occur together).

Definition 21 : fundamental situations - behavioural
Let t and t′ be distinct transitions, and C be a configuration of a net.

• t causally depends on t′ at C if ¬C[t〉 and C[t′t〉.
• t and t′ are in conflict at C if C[t〉, C[t′〉 and ¬C[{t, t′}〉.
• t and t′ are concurrent at C if C[{t, t′}〉.

For the configuration C shown in Figure 5.6, we have that g causally depends
on a, and the latter is in conflict with r. Moreover, m and g are concurrent at
the configuration C′ = {p3, p4, p5}.

It is interesting to note the difference between conflict and concurrency
in terms of firing sequences: in case of conflict at a configuration, both are
enabled to occur, but the occurrence of one disables the other, whereas in case
of concurrency, the two transitions can occur in either order.

Fact 22 : Let t and t′ be transitions, and C be a configuration of a net.

• If t causally depends on t′ at C then ¬C[tt′〉 and C[t′t〉.
• If t and t′ are in conflict at C then ¬C[tt′〉 and ¬C[t′t〉.
• If t and t′ are concurrent at C then C[tt′〉 and C[t′t〉.

These fundamental relationships between transitions are defined dynam-
ically by referring to a global state. However, if two transitions are in one
of these three relationships at some configuration, then none of the other re-
lationships will ever hold for them (at whatever configuration) �. In fact,
the (potential) relationships between transitions are determined by the graph
structure.
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Definition 23 : fundamental situations - structural
Let t and t′ be two distinct transitions of a net N .

• t and t′ are structurally causally related if •t∩ t′• �= ∅ or t• ∩ •t′ �= ∅.
• t and t′ are in structural backward conflict if •t ∩ •t′ �= ∅.
• t and t′ are in structural forward conflict if t• ∩ t′• �= ∅.
• t and t′ are structurally independent if •t• ∩ •t′• = ∅.

For the net shown in Figure 5.6, a and g are structurally causally related, a and
r are in structural forward conflict, and r and u are structurally independent.

5.4.3 EN-Systems and Their State Spaces

Having defined nets with states and dynamics, it is now time to study them
as systems which start their operation from an initial state.

Definition 24 : EN-systems

An elementary net system (or EN-system) consists of an underlying net
and an initial configuration. Its state space consists of all configurations
reachable from the initial configuration.

In other words, an elementary net system EN is a relational tuple (P, T, F,Cinit )
such that the first three components form its underlying net and Cinit ⊆ P
is the initial configuration. Figure 5.6 shows on the right an EN-system EN =
(P, T, F, Cinit), where Cinit = C = {p2, p5}, modelling our running example.
Its state space consists of twelve configurations:

[Cinit〉 = {{pi, pj} | i = 1, 2, 3 ∧ j = 5, 6} ∪ {{pi, p4, pj} | i = 1, 2, 3 ∧ j = 5, 6} .

The state graph ofEN is a relational tuple stategr(EN ) df= ([Cinit〉, LA,Cinit )
with node set [Cinit〉, set of labelled arcs LA

df= {(C,U,C′) | C ∈ [Cinit〉 ∧
C[U〉C ′}, and initial node Cinit . Restricting the arcs of the state graph to those
labelled by singletons steps yields the sequential state graph of EN , denoted
by seqstategr(EN ). Figure 5.8 gives examples of each kind of state graph for
the EN-system ENsimple in Figure 5.9.

Since every configuration reachable from the initial configuration by a step
sequence is also reachable by a firing sequence, all nodes in seqstategr(EN )
are reachable from the initial node. Interestingly, also stategr(EN ) can be re-
covered from the sequential state graph seqstategr(EN ) by saturating the
latter with non-singleton step labelled edges using the diamond property
(Fact 20) �.

To illustrate the above idea, let us consider the state graphs in Figure 5.8,
and two nodes, C = {p3, p4, p6} and C′ = {p2, p4, p5}. Looking at the sequen-
tial state graph, we can deduce that C[{m}{u}〉C′ and C[{u}〉. Hence, by the



5 Formal Languages and Concurrent Behaviours 143

stategr(ENsimple)
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Fig. 5.8. The state graph of ENsimple from Figure 5.9 and its sequential state graph.
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second part of Fact 20, we have C[{m, u}〉C′ and so the concurrent step {m, u}
from C to C′ in the state graph has been deduced from purely sequential in-
formation.

For a behavioural comparison of EN-systems, isomorphism is too discrim-
inating, because then there would be essentially only one structure defining
the behaviour under consideration. Therefore, in EN-system theory it is the
state graph which provides the main reference point for any behaviour related
analysis. However, all information on (the relevant, active, part of) the net un-
derlying the EN-system can still be recovered from its state graph; the places
belonging to reachable configurations, transitions which actually occur and
thus appear in the steps labelling the arcs, and their neighbourhood relations,
are all explicitly represented in the state graph. Using the state graph itself
would thus lead to a similar identification of net structure and behaviour. To
abstract from the concrete information on places and transitions, state graph
isomorphism is used as an equivalence notion for the comparison of concur-
rent behaviours. Already the structure of its state graph provides a complete
and faithful representation of the behaviour of an EN-system. In particu-
lar, causality, conflict, and concurrency among (possibly renamed) transitions
can be determined from it. Note that two EN-systems have isomorphic state
graphs iff also their sequential state graphs are isomorphic �. After isomor-
phism of EN-systems, state graph isomorphism is the second strongest notion
of equivalence employed in the behavioural analysis of EN-systems. With this
equivalence it is possible to transform EN-systems in order to realise a de-
sired property or feature (a normal form) without affecting their dynamic
properties in an essential way, i.e., the state graph remains the same up to
isomorphism and the resulting system is considered behaviourally equivalent.
An important application of this idea is the following.
The enabling relation for transitions checks explicitly for the emptiness of their
output places. This may be regarded as somewhat unsatisfactory. It would be
more efficient and intuitively more appealing if it would be sufficient to check
only whether all input conditions are fulfilled.

Definition 25 : contact-freeness
An EN-system is contact-free if for every reachable configuration C and
every transition t, it is the case that •t ⊆ C implies t• ∩ C = ∅.

In other words, a contact-free system is one where the test for transition
enabledness can simply be •t ⊆ C without changing anything. The EN-system
shown in Figure 5.6 is not contact-free �. Not all EN-systems are contact-
free, but the simple transformation described next turns any EN-system into
a behaviourally equivalent contact-free version.

Two places, p and q, are complements of one another if •p = q•, p• =
•q and exactly one of them belongs to the initial configuration Cinit . The
complementation ẼN of EN is obtained by adding, for each place p without a
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ẼNsimple

p2

p3

p4

p̃4

p5

p6

m a g u

Fig. 5.9. A simplified version of the EN-system from Figure 5.6 and its comple-
mentation.

complement, a fresh complement place p̃; moreover, if the initial configuration
does not contain p then p̃ is added there as well. The result is clearly an EN-
system and the two systems have isomorphic state spaces. In fact, only the
reachable configurations have to be renamed in the case that new complement
places have been added; the arc labels between corresponding states however
are the same �.

Fact 26 : ẼN is contact-free and its state space is isomorphic to that
of EN .

The construction is illustrated by the non-contact-free EN-system ENsimple in
Figure 5.9 and its contact-free complementation ˜ENsimple. The state spaces of
the two EN-systems are respectively:

Conf ∪ {{pi, pj} | i = 2, 3 ∧ j = 5, 6} (left)
Conf ∪ {{pi, p̃4, pj} | i = 2, 3 ∧ j = 5, 6} (right)

where Conf = {{pi, p4, pj} | i = 2, 3 ∧ j = 5, 6}. It is can be seen that a
suitable isomorphism for their state graphs maps each {pi, pj} to {pi, p̃4, pj},
and is the identity for the configurations in Conf.

Fact 26 assumes that one adds complements for all non-complemented
places. But it is also possible to add complementation selectively and, in
general, we have that any EN-system with an arbitrary, added set of new
complement places has a state space which is isomorphic to that of the orig-
inal EN-system �. For the EN-system EN modelling the running example
we can add a complement of the buffer place which results in the equivalent
EN-system shown in Figure 5.10. In this case already the selective comple-
mentation yields a contact-free EN-system �.

Since it is always possible to ensure contact-freeness without changing the
behaviour represented in the state-graph, we now make a simplifying assump-
tion.

In the rest of this tutorial all EN-systems are contact-free.
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Fig. 5.10. A contact-free version of the EN-system from Figure 5.6 where the place
p4 has been complemented, i.e., p7 = p̃4.

5.4.4 Behaviour of EN-Systems

Let EN = (P, T, F,Cinit ) be a fixed EN-system for the rest of this
section.

In addition to the state graph, we can also associate firing sequences and
step sequences as behavioural notions to EN-systems. The set of all firing
sequences firseq(EN ) of EN consists of those sequences u ∈ T ∗ such that
Cinit [u〉 and, similarly, the set of all step sequences stepseq(EN ) of EN com-
prises all step sequences of EN from Cinit . Each firing sequence corresponds to
a finite labelled path through the sequential state graph from the initial node.
Since the set of reachable configurations of an EN-system is finite, the sequen-
tial state graph is a finite state machine. Hence the set of firing sequences of an
EN-system is a prefix-closed regular language. However, it consists of purely
sequential observations of the EN-system’s behaviour without any reference
to the possible independence of transitions. Yet such causality information is
often of high importance for system analysis and design.

Let us first demonstrate how the theory of traces can be applied to extract
partial orders from firing sequences as representations of the necessary causal
ordering of transition occurrences within these sequences.

Definition 27 : concurrency alphabets of EN-systems

The concurrency alphabet of EN is CAEN
df= (T, IndEN ) where the struc-

tural independence relation IndEN comprises all pairs of distinct transi-
tions with disjoint neighbourhoods.

Defined in this way, IndEN = {(t, t′) | t, t′ ∈ T ∧•t•∩•t′• = ∅} is a symmetric
and irreflexive relation and so it is indeed an independence relation. For the
EN-system ENcfree in Figure 5.10, IndENcfree = Ind where Ind was defined at
the beginning of Section 5.3. An important observation is now that in a firing
sequence adjacent occurrences of independent transitions could have occurred
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also in the other order (see the diamond property, Fact 20). Hence, for every
firing sequence of EN , all its trace equivalent words from T ∗ are also firing
sequences of EN .

Fact 28 : firseq(EN ) =
⋃

u∈firseq(EN ) [u].

Taking, for example, ENcfree in Figure 5.10, we have agm ∈ firseq(ENcfree) and
[agm] = {agm, amg}. Clearly, amg is also a firing sequence of ENcfree.

The step sequences of an EN-system obviously provide important insights
into concurrency aspects of its behaviour. They are nevertheless still sequen-
tial rather than concurrent in nature in the sense that the sequential ordering
of the steps obscures the true causal dependencies between the occurrences of
transitions. Petri net models can however easily support a formal approach
where this information is readily available by unfolding behaviours into struc-
tures allowing an explicit representation of causality and concurrency.

5.4.5 Non-Sequential Observations

Rather than describing the behaviour of the system in terms of sequential
observations, like firing sequences and step sequences, we now present a se-
mantics based on a class of acyclic Petri nets, called occurrence nets. What one
essentially tries to achieve here is to record the changes of configurations due to
transitions being executed along some legal behaviour of the EN-system, and
in doing so record which places were emptied (served as inputs) and which
filled (as outputs). The resulting occurrence nets may be viewed as partial
net unfoldings, with each transition representing an occurrence of a transition
in the original net (thus occurrence nets are acyclic), and each place corre-
sponding to the occurrence of a token on a place of the original net. Conflicts
between transitions are resolved and thus the places in an occurrence net do
not branch.

Definition 29 : occurrence nets

An occurrence net is a relational tuple ON df= (B,E,R, �) such that
(B,E,R) is an underlying net,a � is a labelling for B ∪E, R is an acyclic
flow relation, and |•b| ≤ 1 and |b•| ≤ 1, for every b ∈ B.

aThe dot-notations, configurations, firing rule, etc, for ON are as those de-
fined for the underlying net.

The places of an occurrence net are usually called conditions (‘Bedingungen’
in German) and its transitions events (‘Ereignisse’ in German). The default
initial configuration of ON consists of all conditions without incoming arcs,
i.e., CON

init comprises all conditions b ∈ B such that •b = ∅, and the default
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Fig. 5.11. An occurrence net ON with nodes labelled by places and transitions
of the EN-system ENcfree in Figure 5.10 (top), and the same occurrence net with
identities of the nodes omitted (bottom).

final configuration CON
fin consists of all conditions without outgoing arcs. The

default initial configuration of the occurrence net in Figure 5.11 is CON
init =

{b1, b5, b10} and the default final configuration is CON
fin = {b4, b9, b13}.

The sets of firing and step sequences of ON are defined w.r.t. the default
initial configuration. However, since an occurrence net is meant to represent
a record of a concurrent run of an EN-system, what really counts is not the
identities of its events, but their labels which are linked to the occurrences of
transitions in the EN-system. The language of ON is the set language(ON )
of all sequences �(u) such that u is a firing sequence from the default initial
configuration of ON to the default final configuration.

By abstracting from the conditions we associate with the occurrence net
ON = (B,E,R, �) a directed acyclic graph with E as its set of nodes. This
dag dag(ON ) df= (E,R ◦R|E×E , �|E) represents the direct causal relationships
between the events. Its transitive closure dag(ON )+, see Figure 5.12, then
gives all, direct and indirect, causal dependencies. For example, e4 directly
causes e5, but there is only an indirect causal link from e4 to e6.

ON with its default initial configuration is basically a contact-free EN-
system �. Interestingly, all the sets occurring in any step sequence σ from
the initial configuration to another configuration C, are mutually disjoint �.
Moreover, C is the default final configuration iff the steps in σ use all the
events of the occurrence net �.

A slice of ON is a maximal (w.r.t. set inclusion) subset S of events from
ON which are causally unrelated, i.e., (S×S)∩R+ = ∅. The set of all slices of
ON is denoted by slices(ON ). Clearly, both default configurations are slices
and, in general, [CON

init 〉 = slices(ON ), i.e., slices are exactly those configu-
rations which are reachable from the initial configuration �. Moreover, the
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Fig. 5.12. Direct causality among the events in the occurrence net in Figure 5.11,
and full causality (node identities omitted).

final configuration of ON is always reachable from any configuration reach-
able from the initial one �. Essentially, this means that ON is deadlock-free
until its final configuration has been reached.

The processes of an EN-system are occurrence nets reflecting its structure
and possible behaviour through their labelling and initial configuration.

Definition 30 : processes of EN-systems

A process of EN is an occurrence net ON = (B,E,R, �) such that:

• � labels conditions with places and events with transitions.
• � is injective on the default initial configuration of ON , as well as on

the sets of input and output conditions of each event.
• �(CON

init ) = Cinit and, for every e ∈ E, �(•e) = •�(e) and �(e•) = �(e)•.

The occurrence net ON in Figure 5.11 is a process of the EN-system in Fig-
ure 5.10.

Processes can be used to investigate the behaviours of EN-systems. Due to
the second and third conditions in Definition 30, we can relate the firing se-
quences, step sequences and configurations of EN to their labelled versions in
ON . More precisely, if we take a step sequence CON

init [σ〉C then Cinit [�(σ)〉�(C)
holds. This can be proved by an inductive argument from which it also follows
that labelling of ON is injective on all its slices and hence also on the sets
occurring in any step sequence of ON �. If σ is a step sequence from the
default initial configuration of ON , then �(σ) is referred to as a labelled step
sequence of ON . Similar to the language of ON , the step language of ON is
defined as the set steplanguage(ON ) of all sequences �(σ) such that σ is a
step sequence from the default initial configuration of ON to the default final
configuration.

In general, it follows that all firing and step sequences of EN-systems can
be derived from their processes.
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Fact 31 : Let ON be the set of all processes of EN .

• firseq(EN ) =
⋃

ON∈ON language(ON ).
• stepseq(EN ) =

⋃
ON∈ON steplanguage(ON ).

Definition 30 does not provide any clues as to how to derive a process
of an EN-system. This is rectified in the next definition which shows how to
construct a process corresponding to a given step sequence.

Definition 32 : processes construction

The occurrence net ON σ generated by a step sequence σ = U1 . . . Un of
EN is the last element in the sequence N0, . . . , Nn where each Nk is an
occurrence net (Bk, Ek, Rk, �k) constructed thus.
Step 0: B0

df= {p1 | p ∈ Cinit} and E0 = R0
df= ∅.

Step k: Given Nk−1 we extend the sets of nodes and arcs as follows:

Bk
df= Bk−1 ∪ {p1+�p | p ∈ U•

k}
Ek

df= Ek−1 ∪ {t1+�t | t ∈ Uk}
Rk

df= Rk−1 ∪ {(p�p, t1+�t) | t ∈ Uk ∧ p ∈ •t}
∪ {(t1+�t, p1+�p) | t ∈ Uk ∧ p ∈ t•} .

In the above, the label of each node xi is set to be x, and #x denotes the
number of nodes of Nk−1 labelled by x.

The construction is illustrated in Figure 5.13 for the ENcfree in Figure 5.10
and its step sequence σ = a{m, g}{a, u}g. The resulting occurrence net is
isomorphic to the occurrence net ON in Figure 5.11 which is a process of
ENcfree.

Fact 33 : Each occurrence net constructed as in Definition 32 is a process
of EN and, for each process of EN , there is a run of the construction from
Definition 32 generating an isomorphic occurrence net.

Thus the operationally defined processes and the axiomatically defined
processes of an EN-system are essentially the same.

Finally, we return to the trace semantics of EN-systems in relation to
processes. First note that each trace gives rise to only one process, since
interchanging adjacent occurrences of independent transitions has no effect
on the construction of a process. So, ON u = ON w whenever u and w are
trace equivalent firing sequences �. Hence ON [u] the process associated to a
trace is a well-defined notion. Conversely, the language of a process is identical
to its defining trace �. Thus we have a one-to-one correspondence between
traces and the processes of an EN-system. Moreover, even though the dag
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Fig. 5.13. The occurrence net ONa{m,g}{a,u}g generated for the EN-system in Fig-
ure 5.10: node-oriented view (top), and label-oriented view (bottom).

defined by a process is not necessarily isomorphic to the dependence graph
of its trace �, they always define the same partial order on their transition
occurrences.

Fact 34 : Let u be a firing sequence of EN .

• [u] = language(ON u).
• canposet([u]) = dag(ON u)+.

To conclude, the trace semantics and the process semantics of EN-systems
lead to one partial order semantics by providing for each EN-system the same
(isomorphic) partial orders modelling the causalities in its concurrent execu-
tions. This provides a strong argument in favour of the view that both these
approaches capture the essence of causality in the behaviours of EN-systems.

5.4.6 Bibliographical Remarks

Over the past 40 or so years different classes of Petri nets have been intro-
duced by varying the kind of underlying net, notion of local state, or transition
relation. An early systematic treatment of basic notions in net theory and EN-
systems can be found in [48]. Other extensions of the EN-systems approach
adopt notions like priorities, real-time behaviour, or object-orientation. (In
fact, we consider two such extensions later in this tutorial.) The general ques-
tion of the intrinsic or common properties of nets is discussed in [8]. The
problem of associating non-sequential semantics with Petri nets is dealt with,
in particular, in [35, 40, 36, 37, 41, 42, 19, 47]. There is a systematic way of
dealing with process semantics of various classes of Petri nets proposed in [31]
which makes it possible to separately discuss behaviour, processes, causality,
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Fig. 5.14. Two ENI-systems modelling two variations of the running example.

and their mutually consistency. General Petri net related resources can be
found in the web pages at [26].

5.5 Adding Inhibitor Arcs

This section extends the treatment of concurrency considered so far in EN-
systems in order to accommodate the practically relevant case of nets with
inhibitor arcs. In particular, we will demonstrate how the original definition
of traces may be extended to describe in an adequate way also the additional
features of the resulting new kind of concurrent behaviours.

To see why inhibitor arcs can be a convenient modelling device, let us
imagine that a designer would like to modify the running example so that
the producer cannot retire if the customer is waiting for an item. Such a
modification is easily achieved by taking the EN-system of Figure 5.10 and
adding to it an inhibitor arc linking the place p5 and transition r. This yields
the net system ENI shown on the left of Figure 5.14. (Inhibitor arcs are drawn
with small open circles as arrowheads.) Adding this arc means that r cannot be
enabled if p5 contains a token, and so the producer indeed cannot retire if the
consumer is waiting for an item. Elementary net systems with inhibitor arcs,
or simply ENI-systems, thus extend EN-systems. The usefulness of inhibitor
arcs stems from their ability to detect a lack rather than the presence of
specific resources, i.e., tokens in specific places. That such an addition to the
EN-system syntax is a true extension of their modelling power follows from
the observation that there is no EN-system with exactly the same set of firing
sequences as ENI. This can be shown by considering two firing sequences of
ENI, amgru and amgu. If there was an EN-system generating the same firing
sequences as ENI, then, due to the second statement in Fact 20, it would also
have to generate the firing sequence amgur. But such a firing sequence is not
generated by ENI as executing the last transition would contradict the defining
characteristic of the inhibitor arc between r and p5. We will return to this
example after introducing ENI-systems more formally.




