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This is an invited tutorial-review paper on Petri nets-a graphical 
and mathematical modeling tool. Petri nets are a promising tool 
for describing and studying information processing systems that 
are characterized as being concurrent, asynchronous, distributed, 
parallel, nondeterministic, and/or stochastic. 

The paper starts with a brief review of the history and the appli- 
cation areas considered in the literature. It then proceeds with 
introductory modeling examples, behavioral and structural prop- 
erties, three methods of analysis, subclasses of Petri nets and their 
analysis. In particular, one section is devoted to marked graphs- 
the concurrent system model most amenable to analysis. In addi- 
tion, the paper presents introductory discussions on stochastic nets 
with their application to performance modeling, and on high-level 
nets with their application to logic programming. Also included 
are recent results on reachability criteria. Suggestions are provided 
for further reading on many subject areas of Petri nets. 

I. INTRODUCTION 

Petri netsareagraphical andmathematical modeling tool 
applicable to many systems. They are a promising tool for 
describing and studying information processing systems 
that are characterized as being concurrent, asynchronous, 
distributed, parallel, nondeterministic, and/or stochastic. 
As a graphical tool, Petri nets can be used as a visual-com- 
munication aid similar to flow charts, block diagrams, and 
networks. In addition, tokens are used in these nets to sim- 
ulate the dynamic and concurrent activities of systems. As 
a mathematical tool, it i s  possible to set up state equations, 
algebraic equations, and other mathematical models gov- 
erning the behavior of systems. Petri nets can be used by 
both practitioners and theoreticians. Thus, they provide a 
powerful medium of communication between them: prac- 
titioners can learn from theoreticians how to make their 
models more methodical, and theoreticians can learn from 
practitioners how to make their models more realistic. 

Historically speaking, the concept of the Petri net has its 
origin in Carl Adam Petri’s dissertation [I], submitted in 1962 
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to the faculty of Mathematics and Physics at the Technical 
University of Darmstadt, West Germany. The dissertation 
was prepared while C. A. Petri worked as a scientist at the 
Universityof Bonn. Petri’swork[l], [2]came totheattention 
of A. W. Holt, who later led the Information System Theory 
Project of Applied Data Research, Inc., in the United States. 
The early developments and applications of Petri nets (or 
their predecessor)arefound in the reports [3]-[8] associated 
with this project, and in the Record [9] of the 1970 Project 
MAC Conference on Concurrent Systems and Parallel 
Computation. From 1970 to 1975, the Computation Struc- 
ture Group at M I T  was most active in conducting Petri-net 
related research, and produced many reports and theses 
on Petri nets. In July 1975, there was a conference on Petri 
Nets and Related Methods at MIT, but no conference pro- 
ceedings were published. Most of the Petri-net related 
papers written in English before 1980 are listed in the anno- 
tated bibliography of the first book [IO] on Petri nets. More 
recent papers up until 1984 and those works done in Ger- 
many and other European countries are annotated in the 
appendix of another book [ I l l .  Three tutorial articles [12]- 
[I41 provide a complemental, easy-to-read introduction to 
Petri nets. 

Sincethe late-I970‘s, the Europeans have been veryactive 
in organizing workshops and publishing conference pro- 
ceedings on Petri nets. In October 1979, about 135 research- 
ers mostly from European countries assembled in Ham- 
burg, West Germany, for a two-week advanced course on 
General Net Theory of Processes and Systems. The 17 lec- 
turesgiven in thiscoursewere published in its proceedings 
[15], which i s  currently out of print. The second advanced 
course was held in Bad Honnef, West Germany, in Sep- 
tember 1986. The proceedings [16], [I7 of this course con- 
tain 34 articles, including two recent articles by C. A. Petri; 
one[l8] isconcerned with hisaxiomsof concurrencytheory 
and the other [I91 with his suggestions for further research. 
The first European Workshop on Applications and Theory 
of Petri Nets was held in 1980 at Strasbourg, France. Since 
then, this series of workshops has been held every year at 
different locations in Europe: 1981, Bad Honnef, West Ger- 
many; 1982, Varenna, Italy; 1983, Toulouse, France; 1984, 
Aarhus, Denmark; 1985, Espoo, Finland; 1986, Oxford, Great 

0018-9219/89/0400-0541$01.00 0 1989 IEEE 

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 4, APRIL 1989 541 



Britain; 1987, Zaragoza, Spain; 1988, Venice, Italy; and 1989, 
Bad Honnef, West Germany (planned). The distr ibut ion of 
the proceedings o f  theseworkshops is l imi ted t o  mostly the 
workshop participants. However, selected papers f rom 
these workshops and other articles have been publ ished 
by  Springer-Verlag as Advances in Petri Nets [20]-[25]. The 
1987 vo lume [24] contains the  most comprehensive bibl i -  
ographyof  Petri nets[26] l ist ing2074entr ies publ ished f rom 
1962 t o  early1987. The”recent publ icat ions” section of Petri 
Net  Newsletter [27l lists short abstracts o f  recent publ ica- 
t ions three t imes ayear, and i s  agood  sourceof  informat ion 
about the  most recent Petri net  l i terature. 

In Ju ly  1985, another series o f  international workshops 
was init iated. This series places emphasis o n  t imed and sto- 
chastic nets and their  appl icat ions to performance evalu- 
ation. The first internat ionl  workshop o n  t imed Petri nets 
was held i n  Torino, Italy, i n  July 1985; the  second was held 
in Madison, Wisconsin, i n  August 1987; the  th i rd  i s  t o  be 
held i n  Kyoto, Japan, in December 1989; and the four th  i s  
planned in  Australia in 1991. The proceedings of the first 
t w o  workshops [28], [29] are available f rom the  IEEE Com- 
puter Society Press. 

The above is a brief history o f  Petri nets. Now, w e  look 
at some application areas considered in  the  l iterature. Petri 
nets have been proposed for a very w ide  variety o f  appli- 
cations. This is due  to the  general i ty and permissiveness 
inherent i n  Petri nets. They can beapp l ied  in fo rmal ly to  any 
area or  system that can be  described graphical ly l ike f low 
charts and that needs some means o f  representing parallel 
o r  concurrent activities. However, careful attention must 
be  paid to a tradeoff between model ing general i tyand anal- 
ysis capability. That is, the  more  general the model, the  less 
amenable it is t o  analysis. In fact, a major weakness of Petri 
nets i s  the complexity problem, i.e., Petri-net-based models 
tend t o  become too large for analysis even for a modest-size 
system. In applying Petri nets, i t  is  of ten necessary t o  add 
special modif icat ions or restrictions suited t o  the  particular 
application. Two successful appl icat ion areas are perfor- 
mance evaluation [28]-[50] and communicat ion protocols 
[51]-[62]. Promising areas o f  appl icat ions include model ing 
and analysis of distr ibuted-software systems [63]-[71], dis- 
tributed-database systems [72]-[75], concurrent  and par- 
allel programs [76]-[92], f lexible manufacturing/industrial 
control  systems [93]-[IOO], discrete-event systems [ l o l l -  
[103], mult iprocessor memorysystems [30], [104], [105], data- 
f low compu t ing  systems [106]-[108], fault-tolerant systems 
[log]-[114], programmable logic and VLSl arrays [115]-[120], 
asynchronous circuits and structures [121]-[129], compi ler  
and operating systems [130], [131], off ice-information sys- 
tems [132]-[135], formal languages [136]-[142], and logic pro- 
grams [143]-[150]. O the r  interesting applications consid- 
ered i n  the  l iterature are local-area networks [151]-[153], 
legal systems [154], human factors [155], [156], neural net- 
works [157], [158], digital f i l ters [159]-[161], and decision 
models [162]. 

The use o f  computer-aided tools i s  a necessity for  prac- 
t ical appl icat ions o f  Petri nets. Most  Petri-net research 
groups have their  o w n  software packages and tools t o  assist 
the  drawing, analysis, and/or simulat ion of various appli- 
cations. A recent article [I631 provides a good overview o f  
typical Petri-net tools existing as o f  1986. Some of these tools 
and their  appl icat ions are discussed in details i n  references 
[I641 th rough [170]. 

The rest o f  this paper consists o f  the  fo l lowing topics. 
Section I I discusses informal ly the  transition enabl ing and 
f i r ing rule w i t h  and w i thout  capacity constraints. Several 
introductory model ing examples are given in  Section Ill to 
il lustrate model ing capabilities and concepts such as con-  
fl ict (choice o r  decision), concurrency, synchronization, etc. 
Section IV describes behavioral o r  marking-dependent 
propert ies that can be  studied using Petri nets. Section V 
presents three methods o f  analysis: the coverabil ity tree, 
matrix equations, and reduct ion techniques. Section VI i s  
concerned w i th  subclasses o f  Petri nets and their  analysis. 
In-depth analysis and synthesis methods are given in Sec- 
t ion  VI I for  one  o f  the  subclasses k n o w n  as marked graphs. 
Structural o r  marking-independent propert ies are dis- 
cussed in Section VIII. Section IX  presents an introduct ion 
t o  t imed nets, stochastic nets, and high-level nets, together 
w i th  their  applications. Conclud ing remarks are given in 
Section X. 

I I .  TRANSITION ENABLING AND FIRING 

In  this section,wegivetheonly ru leone hasto learn about 
Petri-net theory: the  rule fo r  transition enabling and fir ing. 
A l though this rule appears very simple, its impl icat ion i n  
Petri-net theory i s  very deep and complex. 

A Petr inet i s  a particular k i n d  o f  directed graph, together 
w i th  an init ial state called t h e  init ialmarking, MO. The under-  
ly ing graph N of  a Petri net  i s  a directed, weighted, bipart i te 
graph consist ing o f  t w o  kinds o f  nodes, called places and 
transitions, where arcs are either f rom a place t o a  transition 
or  f rom a transition to a place. In graphical representation, 
places are drawn as circles, transitions as bars o r  boxes. Arcs 
are labeled w i t h  their  weights (positive integers), where a 
k-weighted arc can be interpreted as the  set o f  k parallel 
arcs. Labels fo r  un i ty  weight  are usually omitted. A mark ing 
(state)assignstoeach placeanonnegative integer. I f  amark- 
ing  assigns t o  place p a nonnegative integer k, w e  say that 
p is  marked w i th  k tokens. Pictorially, w e  place k black dots 
(tokens) in placep. A mark ing i s  denoted b y  M, an m-vector, 
where m is the  total  number o f  places. T h e p t h  component  
o f  M, denoted by  M(p),  i s  the  number o f  tokens in placep. 

I n  modeling, using the  concept o f  condi t ions and events, 
places represent condit ions, and transitions represent 
events. A transition (an event) has acertain number o f  i n p u t  
and outputplaces representing the pre-condit ions and post- 
condi t ions o f  the  event, respectively. The presence o f  a 
token in a place i s  interpreted as ho ld ing  the t ru th  o f  the  
condi t ion associated w i t h  the  place. I n  another interpre- 
tation, k tokens are p u t  in a place to indicate that  k data 
items or  resources are available. Some typical interpreta- 
t ions o f  transitions and their  inpu t  places and ou tpu t  places 
are shown in Table 1. A formal def in i t ion o f  a Petri net  i s  
given in Table 2. 

Table 1 Some Typical Interpretations of Transitions and 
Places 

Input Places Transition Output Places 

Preconditions Event Postconditions 
Input data computation step Output data 
Input signals Signal processor Output signals 
Resources needed Task or job Resources released 
Conditions Clause in logic Conclusion(s) 
Buffers Processor Buffers 
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Table 2 Formal Definition of a Petri Net 

A Petri net is a 5-tuple, PN = (P, T, F, W ,  MO) where: 

P = { p,,  p2,  . . . , p,} is a finite set of places, 
T = { t , ,  tZ,  . . . , t , }  is a finite set of transitions, 
F c ( P  x T )  U (T x P )  is a set of arcs (flow relation), 
W: f --t (1, 2, 3, . . . }  is a weight function, 
MO: P + (0, 1, 2, 3, . . . }  is the initial marking, 
P n T =  0 a n d P  U T f  0 .  

A Petri net structure N = (P, T, F, W )  without any specific initial 
marking is denoted by N. 

A Petri net with the given initial marking is denoted by (N, MO). 

The behavior of many systems can be described in terms 
of system states and their changes. In order to simulate the 
dynamic behavior of a system, a state or marking in a Petri 
nets i s  changed according to the following transition (firing) 
rule: 

1) A transition t is said to be enabled if each input place 
p o f  tismarkedwithatleastw(p,t)tokens,wherew(p, 
t )  i s  the weight of the arc from p to t .  

2) An enabled transition mayor may not fire(depending 
on whether or not the event actually takes place). 

3) A firing of an enabled transition t removes w(p, t) 
tokens from each input place p of t ,  and adds w(t, p) 
tokens to each output placep of t ,  where w(t, p) i s  the 
weight of the arc from t to p. 

A transition without any input place i s  called a source 
transition, and one without any output place i s  called a sink 
transition. Note that a source transition i s  unconditionally 
enabled, and that the firing of a sink transition consumes 
tokens, but does not produce any. 

A pair of a place p and a transition t i s  called a self-loop 
if p i s  both an input and output place of t .  A Petri net i s  said 
to be pure if it has no self-loops. A Petri net i s  said to be 
ordinary i f  all of its arc weights are 1’s. 

€xample 7: The above transition rule i s  illustrated in Fig. 
1 using the well-known chemical reaction: 2H2 + 0, + 

2H20 .  Two tokens in each input place in Fig. l(a) show that 
two units of H2 and 0, are available, and the transition t is  
enabled. After firing t ,  the marking will change to the one 
shown in Fig. l(b), where the transition t i s  no longer 
enabled. 0 

O2 0‘ 

H2> O2 (b) 

Fig. 1. Example 1: An illustration of a transition (firing) rule: 
(a)The marking before firingtheenabled transition t .  (b)The 
marking after firing t ,  where t is disabled. 

For the above rule of transition enabling, it is assumed 
that each place can accommodate an unlimited number of 
tokens. Such a Petri net is referred to as an infinite capacity 
net. For modeling many physical systems, it i s  natural to 
consider an upper limit to the number of tokens that each 
place can hold. Such a Petri net is  referred to as a finite 
capacity net. For a finite capacity net (N, MO), each place p 
has an associated capacity K(p), the maximum number of 
tokens that p can hold at any time. For finite capacity nets, 
for a transition t to be enabled, there i s  an additional con- 
dition that the number of tokens in each output place p of 
t cannot exceed its capacity K(p) after firing t .  

This rule with the capacity constraint i s  called the strict 
transition rule, whereas the rule without the capacity con- 
straint i s  called the (weak) transition rule. Given a finite 
capacity net (N, MO), it i s  possible to apply either the strict 
transition rule to the given net (N, MO) or, equivalently, the 
weak transition rule to a transformed net (N’, M;), the net 
obtained from (N, MO) bythefollowingcomplementary-place 
transformation, where it i s  assumed that N is  pure. 

Step I: Add a complementary place p’ for each place p, 
where the initial marking of p’ i s  given by M@‘) 

Step2: Between each transition t and some comple- 
mentary places p’, draw new arcs ( t ,  p’)  or (p’,  
t )  where w(t, p’) = w(p, t )  and w(p’, t )  = w(t, p), 
so that the sum of tokens in place p and its com- 
plementary place p’ equals its capacity K(p) for 
each place p, before and after firing the tran- 
sition t .  

= K(p) - Mo(p). 

Example 2: Let us apply the strict transition rule to the 
finite-capacity net (N, MO) shown in Fig. 2(a). At the initial 
marking MO = (1 0), the only enabled transition i s  tl. After 
firing t,, we have M, = (2 0), where only t2 and t3 are 
enabled. M1 changes to M, = (0 0) after firing t2, or to M3 
= (0 1) after firing t3. Continuing this process, it i s  easy to 
drawthe(reachabi1ity)graph shown in Fig. 2(c), which shows 
all possible markings and all possible firings at each mark- 
ing. Now, let us see how the net (N, MO) shown in Fig. 2(a) 
is transformed by the complementary-place transformation 
into the net (N’, Mi)  shown in Fig. 2(b). The first step i s  to 
add the two complementary places p; and p; with their ini- 
tial markings Mi@;) = K(pl) - Mo(pl) = 2 - 1 = 1, and 
Mh(p;) = K(p,) - Mo(p2)  = 1 - 0 = 1. The next step i s  to 
add new arcs between each transition t and some comple- 
mentary places, so as to keep the sum of tokens in each pair 
of placespiandp;thesameandequal toK(pi),i = 1,2, before 
and after firing t .  For example, since w(tl, pl) = 1, we have 
w(p;, tl) = 1. Similarly, w(t,, p;) = w(pl, t3) = 2 and w(p;, t3) 
= w(t3, p2) = 1, since firing t3 removes two tokens from p1 
and adds one token in p2 (we draw the two-weight arc from 
t3 top; and the unit-weight arc from pi to t3). Likewise, two 
additional arcs ( t,, pi) and (t4, p;) are drawn to obtain the 
net (A”, M@ shown in Fig. 2(b). In a similar manner, as illus- 
trated for (N, MO), it i s  easy to draw the reachability graph 
forthe net(N‘,M& It isalsoeasytoverifythatthetwo reach- 
ability graphs are isomorphic, and that the two nets (N, MO) 
and (N’, Mi )  are equivalent with respect to the behavior of 

The above discussions may be summarized in the fol- 
all possible firing sequences. 0 

lowing theorem. 
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p1 ‘3 p2 ‘4 

( 0  
Fig. 2. Example 2: An illustration of the complementary- 
place transformation: (a) A finite-capacity net (N, MO). (b) The 
net (N’,  M’,,) after the transformation. (c) The reachability 
graph for the net (N, MO) shown in (a). 

Theorem I :  Let (N, MO) be a pure finite-capacity net, where 
the strict transition rule is to be applied. Let (N’, Mi )  be the 
net obtained from (N, MO) by the complementary-place 
transformation, where the weak transition rule i s  appli- 
cable to (N’, Mi). Then the two nets (N, MO) and (N’, M;) are 
equivalent in the sense that both have the same set of all 

In view of Theorem 1, every pure finite-capacity net (N, 
MO) can be transformed into an equivalent net (N’, Mi), 
where the weak transition rule i s  applicable, and thus we 
only need consider the weak-transition rule. Therefore, 
unless otherwise stated, we consider only infinite-capacity 
nets with the weak-transition rule in the rest of this paper. 
The reason i s  that all properties associated with a finite- 
capacity net can be discussed in terms of thosewith an infi- 
nite-capacity net using the complementary-place transfor- 
mation. 

In Theorem 1, it is assumed that a Petri net be pure to 
avoid confusion since there are many different interpre- 
tations of the enabling condition for a self-loop in a finite 
capacity net [171]. But this i s  not a real restriction, because 
a self-loop can be “refined” or transformed into a loop by 
introducing a dummy pair of a transition and a place, as is 
illustrated in Fig. 3. 

possible firing sequences. 0 

Ill. INTRODUCTORY MODELING EXAMPLES 

In this section, several simpleexamplesaregivento intro- 
duce the reader to some basic concepts of Petri nets that 
are useful in modeling. 

Fig. 3. Transformation of a self-loop to a loop. 

A. Finite-State Machines 

Finite-state machines or their state diagrams can be 
equivalently represented by a subclass of Petri nets. As an 
example of a finite-state machine, consider a vending 
machinewhich acceptseither nickelsordimesand sells156 
or 206 candy bars. For simplicity, suppose the vending 
machine can hold up to 206. Then, the state diagram of the 
machine can be represented by the Petri net shown in Fig. 
4, where the five states are represented by the five places 

G e ~ 1 5  candy 

I l o g  Deposit 
10 ct 

Get 20 Q candy 

Fig. 4. A Petri net (a state machine) representing the state 
diagram of a vending machine, where coin return transi- 
tions are omitted. 

labeled with OF, 56, IOC, 156, and 206, and transformations 
from one state to another state are shown by transitions 
labeled with input conditions, such as “deposit 56.’’ The 
initial state is indicated by initially putting a token in the 
placep,, with a06 label in this example. Note that each tran- 
sition in this net has exactly one incoming arc and exactly 
one outgoing arc. The subclass of Petri nets with this prop- 
erty i s  known as state machines. Any finite-state machine 
(or its state diagram) can be modeled with a state machine. 
The structure of the place p, having two (or more) output 
transitions t, and t2, as shown in Fig. 5, i s  referred to as a 
conflict, decision, or choice, depending on applications. 
State machines allow the representation of decisions, but 
not the synchronization of parallel activities. 

B. Parallel Activities 

Parallel activities or concurrency can be easily expressed 
in terms of Petri nets. For example, in the Petri net shown 
in Fig. 6, the parallel or concurrent activities represented 
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n 

‘1 ‘3 ‘2 
(a) 

Fig. 5. A Petri-net structure called a conflict, choice, or 
decision. It is a structure exhibiting nondeterminism. 

by transitions t2 and t3 begin at the firing of transition tl and 
end with the firing of transition t4. In general, two transi- 
tions are said to be concurrent i f  they are causally inde- 
pendent, i.e., one transition may fire before or after or in 
parallel with the other, as in the case of t2 and t3 in Fig. 6.  

Fig. 6. A Petri net (a marked graph) representing deter- 
ministic parallel activities. 

It has been pointed out [I721 that concurrency can be 
regarded as a binary relation (denoted by CO on the set of 
eventsA = {el,e2,. . . ~ j w h i c h i s l j ~ ~ i e x i v e @ ,  CO e,jard 
2) symmetric (e, CO e2 implies e, CO e,), 3) but not tran- 
sitive (e, CO e2 and e2 CO e3 do not necessarily imply 
e, CO e& For example, one may drive a car (event e,) or 
walk(event e3)whilesinging(event e2), but onecannot drive 
and walk concurrently. 

Note that each place in the net shown in Fig. 6 has exactly 
one incoming arc and exactly one outgoing arc. The sub- 
class of Petri nets with this property i s  known as marked 
graphs. Marked graphs allow representation of concur- 
rency but not decisions (conflicts). 

Two events e, and e2 are in conflict if either e, or e2 can 
occur but not both, and they are concurrent if both events 
can occur in any order without conflicts. A situation where 
conflict and concurrency are mixed i s  called a confusion. 
Two types of confusion are shown in Fig. 7. Fig. 7(a) shows 
a symmetric confusion, since two events t, and t, are con- 
current while each of tl and t2 i s  in conflict with event t3. 
Fig. 7(b) shows an asymmetric confusion, where tl i s  con- 
current with t2 but will be in conflict with t3 if t2 fires first. 

C. Dataflow Computation 

Petri nets call be used to represent not only the flow of 
control but also the flow of data. The net shown in Fig. 8 
i s  a Petri-net representation of a dataflow computation. A 
dataflow computer i s  one in which instructions are enabled 
for execution by the arrival of their operands, and may be 

g/&$ ‘3 

Fig. 7. Two types of a confusion. (a) Symmetric confusion: 
t, and t, are concurrent as well as in conflict with t3. (b) Asym- 
metric confusion: t, is concurrent with t2 but will be in con- 
flict with t3, if t, fires before t,. 

executed concurrently. In the Petri-net representation of 
a dataflow computation, tokens denote the values of cur- 
rent data as well as the availability of data. In the net shown 
in Fig. 8, the instructions represented by transitions tl and 

U 
a + b  

Divide - a - b  

? 

v b - w 
If a - b = 0 x is undefined 

/ Subtract a -  b \ 

Fig. 8. A Petri net showing a dataflow computation for x = 
(a + b)/(a - b). 

t2 can be executed concurrently and deposit the resulting 
data (a + b) or (a - b) in the respective output places. 

D. Communication Protocols 

Communication protocols are another area where Petri 
nets can be used to represent and specify essential features 
of a system. The liveness and safeness properties (see Sec- 
tion V) of a Petri net are often used as correctness criteria 
in communication protocols. The Petri net shown in Fig. 9 
is a very simple model of a communication protocol 
between two processes. Figure 10 shows the Petri-net rep- 
resentation of a nondeterministic wait process where t r l ,  
tr2, or tout fires if response 1, response 2, or no response is  
received before a specified time (tout ), respectively. 

E. Synchronization Control 

In a multiprocessor or distributed-processing system, 
resources and information are shared among several pro- 
cessors. This sharing must be controlled or synchronized 
to insure the correct operation of the overall system. Petri 
nets have been used to model a variety of synchronization 

MURATA: PETRI NETS 545 



ib Ready send to 0 to receive 

Message received 0 +Process 

Receive 

received 

sent 

Fig. 9. A simplified model of a communication protocol. 

‘send 
Send message 

Fig. 10. A Petri-net representation of a nondeterministic 
wait process. 

mechanisms, including the mutual exclusion, readers-writ- 
ers, and producers-consumers problems. The Petri net 
shown in Fig. 11 represents a readers-writers synchroniz- 
ation, where the k tokens in place p, represent k processes 
(programs) which may read and write in a shared memory 
represented by placep3. Up to k processes may be reading 

Fig. 11. A Petri-net representation of a readers-writers sys- 
tem. 

concurrently, but when one process i s  writing, no other 
process can be reading or writing. I t  i s  easily verified that 
up to k tokens (processes) may be in place p2 (reading) if 
no token i s  in place p4, and that only one token (process) 
can be in placep4 (writing) since all k tokens in placep3 will 
be removed through the k-weight arc when t2 fires once. 
This Petri netwil l beanalyzed in Example 21 in Section VIII. 

F. Producers-Consumers System with Priority 

The net shown in Fig. 12 represents a producers-con- 
sumers system with priority, i.e., consumer A has priority 
over consumer B in the sense that A can consume as long 

Producer A C E u m e r  A n 

\ 
Producer B 

W 

Fig. 12. An extended Petri-net representation of a produc- 
ers-consumers system with priority. 

as buffer A has items (tokens), but B can consume only if 
bufferA i s  empty and buffer B has items (tokens). It has been 
shown [I731 that this system cannot be modeled without 
introducing a new kind of arc called an inhibitor arc. An 
inhibitor arc connects a place to a transition and i s  rep- 
resented by a dashed line terminating with a small circle 
instead of an arrowhead at the transition, like the arc from 
p3 to t, in Fig. 12. The inhibitor arc disables the transition 
when the input place has a token and enables the transition 
when the input place has no token and other (normal) input 
places have at least one token per arc weight. No tokens 
are movedthrough an inhibitorarcwhen thetransition fires. 
A class of Petri nets with inhibitor arcs is referred to as 
extended Petrinets. The introduction of inhibitor arcs adds 
the ability to test “zero” (i.e., absence of tokens in a place) 
and increases the modeling power of Petri nets to the level 
of Turing machines [IO]. 

G. Formal Languages 

When the transitions in a Petri net are labeled with a set 
of not necessarilydistinct symbols, a sequenceof transition 
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firings generates a string of symbols. The set of strings gen- 
erated by all possible firing sequences defines aformal lan- 
guage called a Petri-net language. For example, consider all 
possible sequences of transition firings in the labeled Petri 
netshown in Fig.l3[10]. It iseasytoseethath(nul1 symbol), 

h h Final 

a b C 

Fig. 13. Acontext-sensitive language L(M,) = {anbncn 1 n 2 
0) i s  generated by this labeled Petri net. 

abc, aabbcc, aaabbbccc, . . . are strings of symbols gen- 
erated by all of the possible firing sequences starting from 
the initial marking with one token in the "start place" and 
terminating when all the transitions are disabled. From this, 
it can be seen that the language generated by this net is 
given by L(Mo) = { anb"c" I n L 0 }  (a  context-sensitive Petri- 
net language). Since every finite-state machine can be mod- 
eled bya Petri net, every regular language is a Petri-net lan- 
guage. It has been shown that all Petri-net languages are 
context-sensitive languages [IO]. 

H. Multiprocessor Systems 

The Petri net shown in Fig. 14 i s  a model for a multipro- 
cessor system with five processors, three common mem- 
ories and two buses [30], [31]. Place p1 contains tokens rep- 

'2 f4 

I I 

Fig. 14. A Petri-net model of a multiprocessor system, 
where tokens in p ,  represent active processors, p 2  available 
buses, p3,  p.,, and p s  processors waiting for, having access 
to, queued for common memories, respectively. 

resenting processors executing in their private memory, 
and p2 contains tokens representing free buses. Transition 
tl represents the issuing of access requests, and p3 contains 
requests that have not yet been served. Tokens in p4 rep- 
resent processors having access to common memories. 
Tokens in ps represent processors requesting the same 
common memory that has been accessed by a token (pro- 
cessor) in p4. Firing ts represents the end of the access to 
the memory for which processors in ps are queued. Firing 

t4 represents the end of the access to a memory for which 
there is no outstanding request (i.e., t4 i s  enabled when 
M(p3 - U[M(ps)] > 0, where U[x] = 1 for x > 0 and U[x] 
= 0 otherwise.)The two transitions t2and t3 model the mem- 
ory choice: firing t3 corresponds to choosing the memory 
that i s  being accessed by the processor in p4. The choice 
of any other memory corresponds to the firing of t2. 

Actually, the net model shown in Fig. 14 can represent 
a two-bus multiprocessor system with any number of pro- 
cessors and memories. A generalized stochastic net version 
of this and more detailed models has been used for per- 
formance study of multiprocessor architectures [30], [31]. 

IV. BEHAVIORAL PROPERTIES 

After modeling systems with Petri nets, an obvious ques- 
tion i s  "What can we do with the models?" A major strength 
of Petri nets i s  their support for analysis of many properties 
and problems associated with concurrent systems. Two 
types of properties can be studied with a Petri-net model: 
thosewhich depend on the initial marking, and thosewhich 
are independent of the initial marking. The former type of 
properties i s  referred to as marking-dependent or behav- 
ioral properties, whereas the latter type of properties is 
called structural properties. In this section, we discuss only 
basic behavioral properties and their analysis problems. 
Structural properties and their analysis will be considered 
in Section VIII. 

A. Reachability 

Reachability i s  a fundamental basis for studying the 
dynamic properties of any system. The firing of an enabled 
transition will change the token distribution (marking) in 
a net according to the transition rule described in Section 
I I .  A sequence of firings will result in a sequence of mark- 
ings. A marking M, i s  said to be reachable from a marking 
MO if there exists a sequence of firings that transforms MO 
to M,. A firing or occurrence sequence is  denoted by a = 
MO t, M, t 2  M2 . . .  t, M, or simply U = tl t2 
. . .  t,. In this case, M, i s  reachable from MO by a and we 
write MO [a > M,. The set of all possible markings reachable 
from MO in a net (N, MO) i s  denoted by R(N, MO) or simply 
R(Mo). The set of all possible firing sequences from MO in 
a net (N, MO) i s  denoted by L(N, MO) or simply L(Mo). 

Now, the reachabilityproblem for Petri nets is the prob- 
lem of finding if M, E R(Mo) for a given marking M, in a net 
(N, MO). In some applications, one may be interested in the 
markings of a subset of places and not care about the rest 
of places in a net. This leads to a submarking reachability 
problemwhich is  the problem of finding if MA E R(Mo),where 
MA i s  any marking whose restriction to a given subset of 
places agrees with that of a given marking M,. It has been 
shown thatthe reachabilityproblem isdecidable[174], [I751 
although it takes at least exponential space (and time) to 
verify in the general case [275]. However, the equality prob- 
lem [138], 11761, [ I73  is undecidable, i.e., there is no algo- 
rithm for determining if L(N, MO) = L(N', Mh)foranytwo Petri 
nets N and N'. 

B. Boundedness 

A Petri net (N, MO) i s  said to be k-bounded or simply 
bounded if the number of tokens in each place does not 
exceed a finite number k for any marking reachable from 
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MO, i.e., M(p) 5 k for  every place p and every mark ing M 
E R(Mo). A Petri net  (N, MO) i s  said t o  be safe if i t  is  I -bounded.  
For example, the  nets shown i n  Figs. 2(b), 4,6, and 9 are all 
bounded; in  particular, the  net in  Fig. 2(b) isZbounded,  and 
the rest of the  nets are safe. Places in  a Petri net are of ten 
used to  represent buffers and registers for  storing inter- 
mediate data. By verifying that the net i s  bounded o r  safe, 
i t  isguaranteed tha t therewi l l  be noover f lows in  the  buffers 
or registers, no  matter what f i r ing sequence is taken. 

C. Liveness 

The concept of liveness i s  closely related t o  the  complete 
absence of  deadlocks in  operating systems. A Petri net (N, 
MO) is  said t o  be live (or equivalently MO is  said t o  be a live 

Fig. 16. Transitions to, t,, t2, and t, are dead (LO-live), L1-live, 
L2-livet and L3-1ivet 

mark ingfor  N )  if, no  matter what mark ing has been reached 
f rom MO, it is possible t o  ult imately f ire any transition of the  

This means that a live Petri net  guarantees deadlock-free 
operation, no  matter what f i r ing sequence is chosen. Exam- 
ples of live Petri nets are shown in  Figs. 4,6, and 9. O n  the  

Example3:The Petri net shown in Fig. 15 is strictly L74ive 
Since each transition can be fired exactly Once in the order 

16 are L@live (dead), L7-live, LZ-live, and L3-live, respec- 
0 tively, all strictly. 

net by progressing through Some further firing sequence* of  f 2 ,  t4, f 5 ,  t,, and f 3 ,  The transitions to, t,, f2 ,  and f 3  i n  Fig. 

other hand, the  Petri nets shown in  Figs. 15 and 16 are no t  
D. Reversibility a n d  H o m e  State 

p2 

Fig. 15. A safe, nonlive Petri net. But it i s  strictly L1-live. 

live. These nets are no t  live since n o  transitions can fire if 
tl fires first in  bo th  cases. 

Liveness i s  an ideal property for  many systems. However, 
it i s  impractical and too  costly t o  verify this strong property 
for  some systems such as the  operating system of a large 
computer. Thus, we relax the  liveness cond i t ion  and def ine 
different levels of  liveness as fo l lows [8], [178]. A transition 
t i n  a Petri net (N, MO) i s  said to  be: 

0) dead (LO-live) if t can never be f ired in  any f i r ing 
sequence in  L(Mo). 

1) L7-/ive(potential/yfirab/e) i f  t can  be f ired at least once 
in  some f i r ing sequence in  ,!(MO). 

2) L2-live if, given any positive integer k, t can be f ired 
at least k t imes in  some f i r ing sequence in  L(Mo). 

3) L I l i v e  if t appears infinitely, of ten i n  some f i r ing 
sequence in  L(Mo). 

4) L4- l iveor l ivei f  tisL7-IiveforeverymarkingMin R(Mo). 

A Petri net (N, MO) i s  said to  be Lk-live if every transition 
in  the net i s  Lk-live, k = 0,1,2,3,4. L4-liveness i s  the  strong- 
est and corresponds t o t h e  liveness def ined earlier. I t  i s  easy 
t o  see the  fol lowing implications: L4-liveness = L3-liveness 
* LZ-liveness L7-liveness, where * means ”implies.” W e  
say that a transition i s  strictly Lk-live if it i s  Lk-l ive bu t  not 
L(k + 1)-live, k = 1, 2, 3. 

A Petri net  (N, MO) i s  said to  be reversible if, for each mark- 
ing M i n  R(Mo), MO i s  reachable f rom M. Thus, in  a reversible 
net one can always get back t o  the  init ial  mark ing or state. 
In  many applications, it i s  no t  necessary to  get back to  the  
initial stateas long asonecanget  backtosome(home)state.  
Therefore, w e  relax the reversibil i ty cond i t ion  and def ine 
a home state. A mark ing M’ i s  said t o  be a home state if, for  
each mark ing M i n  R(Mo), M’ is  reachable f rom M. 

Example4: Note that the  above three properties (bound- 
edness, liveness, and reversibil i ty) are independent of  each 
other. For example, a reversible net can be live or not live 
and bounded o r  not bounded.  Fig. 17[179] shows examples 
of eight Petri nets for  all possiblecombination of  these three 
properties, where E, i, and denote the negations of  
boundedness (B), liveness (L), and reversibil i ty (R). 

E. Coverability 

A mark ing M i n  a Petri net (N, MO) is  said t o  be coverable 
if there exists a mark ing M’ i n  R(Mo) such that M’(p) L M(p) 
for each p in the  net. Coverabil ity i s  closely related to  L7- 
liveness (potential firability). Let M be the  m in imum mark- 
ing needed t o  enable a transition t. Then t is  dead (not L7- 
live) if and on ly  if M i s  no t  coverable. That is, t i s  L7-live if 
and only if M is  coverable. 

F. Persistence 

A Petri net (N, MO) i s  said to  be persistent if, for  any two  
enabled transitions, the  f i r ing of  one transi t ion wi l l  not  dis- 
able the  other. A transition in  a persistent net, once it i s  
enabled, wi l l  stay enabled unt i l  it fires. The no t ion  of  per- 
sistence i s  useful i n  the  context of  parallel program sche- 
mata [82] and speed-independent asynchronous circuits 
[122], [126]. Persistency i s  closely related t o  conflict-free nets 
[180], and a safe persistent net can be transformed in to a 
marked graph by dupl icat ing some transitions and places 
[45]. Note that all marked graphs are persistent, b u t  no t  all 
persistent nets are marked graphs. For example, the  net 
shown in  Fig. 17(c) is persistent, bu t  i t  i s  n o t a  marked graph. 
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I 

p 2  

B L R  B L R  

(g) (h) 

Fig. 17. Examples of Petri nets having all possible combinations of B (bounded), E 
_ -  (unbounded), L (live), 1 (nonlive), R (reversible), and R (nonrever?blg properties. (a) B 
L R (tl  dead, p1 unbounded). (b) B 1 R (tl dead, p, unbounded). (c) B L R (pz unbounded). 
(d) B 1 fi (t,, t2, t3, t4 not L4-live). (e) E L R (pl unbounded). ( f )  B R (tl dead). (g) B L fi. (h) 
B L R. 

G. Synchronic Distance 

The notion of synchronic distances i s  a fundamental con- 
cept introduced by C. A. Petri [181]. I t  i s  a metric closely 
related to a degree of mutual dependence between two 
events in a conditionlevent system. We define the syn- 
chronic distance between two transitions tl and t2 in a Petri 

net (N, MO) by 

(1) dt2 = max lZ(tl) - Z ( t J (  

where U i s  a firing sequence starting at any marking M in 
R(Mo) and Z(t,) is the number of times that transition ti, i = 
1,2 fires in U. For example, in the net shown in Fig. 17(d) dv 

0 
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= 1, d3, = 1, d73 = 00, etc. In the net shown in Fig. 6 tran- 
sitions t2 and t3 represent two parallel events, and d,, = 2 
because after firing t3 there is  a firing sequence U = 
t2 t4 tl t2 in which Z(t2) = 2 and Z(t3) = 0. 

The synchronic distance given by (1) represents a well- 
defined metric for conditionlevent nets [I841 and marked 
graphs. However, there are some difficulties when it i s  
applied to more general class of Petri nets [182]. For further 
information on synchronic distances, the reader i s  referred 
to [IOS], [181]-[1861. 

H. Fairness 

Many different notions of fairness have been proposed 
in the literature on Petri nets. We present here two basic 
fairness concepts: bounded-fairness and unconditional 
(global) fairness. Two transitions tl and t2 are said to be in 
a bounded-fair (or B-fair) relation if the maximum number 
of times that either one can fire while the other i s  not firing 
is bounded. A Petri net (N, MO) i s  said to be a B-fair net if 
every pair of transitions in the net are in a B-fair relation. 
A firing sequence U is  said to be unconditionally (globally) 
fair i f  it is  finite or every transition in the net appears infi- 
nitely often in U.  A Petri net (N, MO) i s  said to be an uncon- 
ditionallyfairnet i f  every firing sequence U from M in &MO) 
i s  unconditionally fair. 

There are some relationships between these two types 
of fairness. For example, every B-fair net is an uncondi- 
tionally-fair net and every bounded unconditionally-fair net 
i s  a 6-fair net [187]. The net shown in Fig. 17(h) i s  a 6-fair net 
as well as an unconditionally fair net. The net shown in Fig. 
17(d) is neither a B-fair net nor an unconditionally fair net 
since f3 and t, will not appear in an infinite firing sequence 
U = t2 t, t2 t, . . . . The unbounded net shown in Fig. 
17(c) is an unconditionally fair net but not a 6-fair net since 
there is no bound on the number of times that t2 can fire 
without firing the others when the number of tokens in p2 
is  unbounded. For further information on fairness, the 
reader is referred to [187]-[197], [211]. 

V. ANALYSIS METHODS 

Methods of analysis for Petri nets may be classified into 
the following threegroups: I) thecoverability (reachability) 
tree method, 2) the matrix-equation approach, and 3) reduc- 
tion or decomposition techniques. The first method 
involves essentially the enumeration of all reachable mark- 
ings or their coverable markings. It should be able to apply 
to all classes of nets, but i s  limited to ”small” nets due to 
the complexity of the state-space explosion. On the other 
hand, matrix equations and reduction techniques are pow- 
erful but in many cases they are applicable only to special 
subclasses of Petri nets or special situations. 

A. The Coverability Tree 

Given a Petri net (N, MO), from the initial marking MO, we 
can obtain as many “new” markings as the number of the 
enabled transitions. From each new marking, we can again 
reach more markings. This process results in a tree rep- 
resentation of the markings. Nodes represent markings 
generated from MO (the root) and its successors, and each 
arc represents a transition firing, which transforms one 
marking to another. 

The above tree representation, however, will grow infi- 
nitely large if the net i s  unbounded. To keep the tree finite, 
we introduce a special symbol w, which can be thought of 
as ”infinity.” I t  has the properties that for each integer n, 
w > n , w k n = w a n d w z w .  

The coverability tree for a Petri net (N, MO) i s  constructed 
by the following algorithm. 

Step 7) Label the initial marking MO as the root and tag 

Step 2) While “new” markings exist, do the following: 
it “new.“ 

Step 2.7) Select a new marking M. 
Step2.2) If M i s  identical to a marking on the path from 

the root to M ,  then tag M “old“ and go to 
another new marking. 

Step2.3) If no transitions are enabled at M, tagM”dead- 
end.” 

Step2.4) While there exist enabled transitions at M, do 
the following for each enabled transition tat 
M: 

Step 2.4.7) Obtain the marking M’ that results from 
firing ta t  M. 

Step 2.4.2) On the path from the root to M if there 
exists a marking M” such that M’(p) 2 
M”(p)  for each placep and M’ # M”,  i.e., 
M” i s  coverable, then replace M’(p) by w 
for each p such that M’(p) > M”(p) .  

Step 2.4.3) lntroduce M’ as a node, draw an arc with 
label t from M to M’, and tag M’ “new.“ 

€xarnple:Consider the net shown in Fig. 16. For the initial 
marking MO = (1 0 0), the two transitions t, and t3 are 
enabled. Firing t, transforms MO to M, = (0 0 I), which i s  
a “dead-end“ node, since no transitions are enabled at M1. 
Now, firing t3 at MO results in Mj = (1 1 0), which covers 
MO = (1 0 O).Therefore, the new marking is M, = (1 w O), 
where two transitions tl and t3 are again enabled. Firing tl 
transforms M3 to M, = (0 w I), from which t2 can be fired, 
resulting in an “old” node M5 = M,. Firing t3 at M3 results 
in an “old” node M, = M3. Thus, we have the coverability 

U 
Some of the properties that can be studied by using the 

coverability tree T f o r  a Petri Met (14, MO) arethefutiowing: 

1) A net (N, MO) i s  bounded and thus R(Mo) is  finite iff (if 
and only i f )  w does not appear in any node labels in 
T. 

2) A net (N, MO) i s  safe iff only 0’s and 1’s appear in node 
labels in T. 

3 )  A transition t i s  dead i f f  it does not appear as an arc 
label in T. 

4) If M i s  reachable from Mor then there exists a node 
labeled M’ such that M I M’. 

For a bounded Petri net, the coverability tree i s  called the 
reachability tree since it contains all possible reachable 
markings. In this case, all the analysis problems discussed 
in Section IV can be solved by the reachability tree. The dis- 
advantage is  that this is an exhaustive method. However, 
in general, because of the information lost by the use of the 
symbol (which may represent only even or odd numbers, 
increasing or decreasing numbers, etc.), the reachability 
and liveness problems cannot be solved bythe coverability- 
tree method alone. For example, the two different Petri nets 
shown in Fig. 19(a) and (b) [IO] have the same coverability 

tree shown in Fig. 18(a). 
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M = ( l o o )  0 M 0 = ( 1 0 0 )  

I 
M1 = ( 0 0  1 ) Mg = ( 1 0 0 ) 

"dead-end //\ 
M5 = ( 0 w 1 ) 

"old 
(a) 

'2 (y 
W 

(b) 
Fig. 18. (a) The coverability tree of the net shown in Fig. 16. 
(b) The coverability graph of the net shown in Fig. 16. 

tree shown in Fig. 20(a). Yet, the net shown in Fig. 19(a) is 
a live Petri net, while the net shown in Fig. 19(b) i s  not live, 
since no transitions are enabled after firing t,, t2, and t3. 

The coverability graph of a Petri net (N, MO) i s  a labeled 
directed graph G = (V, E). Its node set V i s  the set of all dis- 

p1 2 p2 

(b) 

Fig. 19. Two Petri nets having the same converability tree. 
(a) A live Petri net. (b) A nonlive Petri net. 

M, = ( 1 0  w )  

M - ( 0 1 0 )  M - ( l o o )  
-"old 1 

(a) 

n 

(b) 
Fig. 20. (a) The coverability tree for both Petri nets shown 
in Fig. 19(a) and 19(b). (b) The coverability graph for the two 
nets shown in Fig. 19(a) and 19(b). 

tinct labeled nodes in the coverability tree, and the arc set 
E i s  the set of arcs labeled with single transition tk repre- 
senting all possible single transition firings such that Mi[tk 
> Mi, where Mi and Mi are in V. For example, the cover- 
ability graph for the nets shown in Fig. 19 i s  shown in Fig. 
20(b). For a bounded Petri net, the coverability graph is 
referred to as the reachabilitygraph, because the vertex set 
V becomes the same as the reachability set R(M,). An appli- 
cation of reachability graphs will be discussed in Section 
IX-B. 

B. Incidence Matrix and State Equation 

The dynamic behavior of many systems studied in engi- 
neering can be described by differential equations or alge- 
braic equations. It would be nice if we could describe and 
analyze completely the dynamic behavior of Petri nets by 
some equations. In this spirit, we present matrix equations 
that govern the dynamic behavior of concurrent systems 
modeled by Petri nets. However, the solvability of these 
equations is somewhat limited, partly because of the non- 
deterministic nature inherent in Petri-net models and 
because of the constraint that solutions must be found as 
non-negative integers. Whenever matrix equations are dis- 
cussed in this paper, it i s  assumed that a Petri net i s  pure 
or i s  made pure by adding adummy pair of a transition and 
a place as i s  discussed in Section I I  (Fig. 3). 

Incidence Matrix: For a Petri net N with n transitions and 
m places, the incidence matrix A = [aii] i s  an n x m matrix 
of integers and its typical entry is given by 

where a; = w(i, j )  i s  the weight of the arc from transition 
i to its output placej and a': = w(j ,  i )  i s  the weight of the 
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arc to transition i from its input place j .  We use A as the 
incidence matrix instead of its tranpose A T  because A 
reduces to the well-known incidence matrix of a directed 
graph for marked graphs, a subclass of Petri nets. 

I t  i s  easy to see from the transition rule described in Sec- 
tion II that a] ; ,  a ; ,  and a , ,  respectively, represent the num- 
ber of tokens removed, added, and changed in place jwhen 
transition i fires once. Transition i i s  enabled at a marking 
M iff 

(3) 

State Equation: In writing matrix equations, we write a 
marking Mk as an m X 1 column vector. The j th  entry of Mk 
denotes the number of tokens in placej immediately after 
the kth firing in some firing sequence. The kth firingor con- 
trol vector uk i s  an n x 1 column vector of n - 1 0's and 
one nonzero entry, a 1 in the i th position indicating that 
transition i fires at the kth firing. Since the i th row of the 
incidence matrix A denotes the change of the marking as 
the result of firing transition i ,  we can write the following 
state equation for a Petri net [198]: 

(4) 

Necessary Reachability Condition: Suppose that a desti- 
nation marking Md i s  reachable from MO through a firing 
sequence {U,, u2, . * , u d } .  Writing the state equation (4) 
for i = 1 , 2 ,  . . . , d and summing them, we obtain 

ai; 5 M(j) ,  j = 1, 2 . * .  I m. 

Mk = Mk-1 -k A'Uk, k = 1, 2, ' ' * . 

d 

M,j= MO + A T  C uk (5)  
k = l  

which can be rewritten as 

A'x = AM (6) 

where AM = Md - MO and x = E:=,uk. Here x i s  an n X 1 
column vector of nonnegative integers and is called the fir- 
ing count vector. The i th entry of x denotes the number of 
times that transition i must fire to transform MO to Md. It i s  
well known [I991 that a set of linear algebraic equations (6) 
has a solution x i f f  AM is  orthogonal to every solution y of 
i ts homogeneous system, 

Ay = 0. (7) 

Let r be the rank of A ,  and partition A in the following form: 

m - r  r 
H H  

A,, A12 I 
A =  (8) 

where A,, is  a nonsingular square matrix of order r. A set 
of (m - r )  linearly independent solutions y for (7) can be 
given as the (m - r) rows of the following (m - r) x m matrix 
Bf: 

L,, A J  I n - r 

Thus, if Md i s  reachable from MO, then the corresponding 
firing count vector x must exist and (IO) must hold. There- 
fore, we have the following necessary condition for reach- 
ability in an unrestricted Petri net [198]. 

Theorem 2: If Md i s  reachable from MO in a Petri net (N, 
MO), then BfAM = 0, where AM = Md - MO and Bf is  given 

The contrapositive of Theorem 2 provides the following 
sufficient condition for nonreachability. 

Corollary 7: In a Petri net (N, MO), a marking Md i s  not 
reachable from MO ( f  Md) if their difference i s  a linear com- 
bination of the row vectors of Bf, that is, 

by (9). 0 

AM = B:z (11) 

where z is a nonzero p x 1 column vector. 
Proof: If (11) holds, then BfAM = BfB:z # 0, sincez # 

0 and BfB: is  a p x p nonsingular matrix (because the rank 
of Bfisp = m - r). Therefore, byTheorem 2, Md i s  not reach- 

Example 5: For the Petri net shown in Fig. 21, the state 
equation (4) is illustrated below, where the transition t3 fires 

able from MO. 0 

Fig. 21. Example 5: A Petri net. 

to result in the marking M1 = (3 0 0 2)' from MO = 
(2 0 1 O ) 5  

-1 $1. 2 

The incidence matrix A i s  of rank 2 and can be partitioned 
in the form of (8), where 

A,, = [ -2 '1 and A,, = [' '1. 1 -1 0 -2 

Thw, the matrix Bf can be found by (9): 

where I, i s  the identity matrix of order p = m - r. Note that 
AB: = 0. That is, the vector space spanned by the row vec- 
tors of A i s  orthogonal to the vector space spanned by the 
row vectors of Bf. The matrix Bf corresponds to the fun- 
damental circuit matrix [I31 in the case of a marked graph. 

It is easy to verify that &AM = 0 holds for AM = M1 - MO 
0 

An integer solution xof the homogeneous equation (AM 
= (1 0 -1 2IT. 

= 0 in (6)) 

Now, the condition that AM is  orthogonal to every solution ATx = 0 (12) 
for Ay = 0 i s  equivalent to the following condition: 

i s  called a T-invariant, and an integer solution yof the trans- 
posed homogeneous equation Ay = 0 i s  called an S-in- BfAM = 0. (IO) 
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variant. These invariants which we will discuss in Section 
Vlll provide powerful tools for studying structural prop- 
erties of Petri nets. 

C. Simple Reduction Rules for Analysis 

To facilitate the analysis of a large system, we often reduce 
the system model to a simpler one, while preserving the 
system properties to be analyzed. Conversely, techniques 
to transform an abstracted model into a more refined model 
in a hierarchical manner can be used for synthesis. There 
exist many transformation techniques for Petri nets. In this 
section, we present only the simplest transformations, 
which can be used for analyzing liveness, safeness, and 
boundedness. Several transformation rules for marked 
graphs will be discussed in Section Vll-B2. 

It is not difficult to see that the following six operations 
[179], [203] preserve the properties of liveness, safeness, and 
boundedness. That is, let (N, MO) and (N’, MA) be the Petri 
nets before and after one of the following transformations. 
Then (N’, MA) is  live, safe, or bounded i f f  (N, MO) i s  live, safe, 
or bounded, respectively. 

1) Fusion of Series Places (FSP) as depicted in Fig. 22(a). 
2) Fusion of Series Transitions (FST) as depicted in Fig. 

3) Fusion of Parallel Places (FPP) as depicted in Fig. 22(c). 
4) Fusion of Parallel Transitions (FPT) as depicted in Fig. 

5) Elimination ofself-loop Places (ESP) as depicted in Fig. 

6) Elimination of Self-loop Transitions (EST) as depicted 

22(b). 

22(d). 

22(e). 

in Fig. 22(f). 

w 

c3 ;I.i x 

Fig. 22. Six transformations preserving liveness, safeness, 
and boundedness. 

Example 6:The net shown in Fig. 17(d) can be reduced to 
theoneshown in Fig.23(a)afterfiringt2to removethetoken 
in p1 and then fusing tl and f2 into t12, and t3 and t,,into tS4. 
The net in Fig. 23(a) can then be reduced to the one shown 
in Fig. 23(b)aftereliminating self-looptransition t12and place 
p3. It i s  easy to see that both nets shown in Fig. 17(d) and 
Fig. 23(b) are bounded and non-live (and nonreversible). 

0 

(a) (b) 
Fig. 23. Example 6: Illustration of reduction rules. The net 
shown in Fig. 17(d) is reduced to the two nets shown, where 
all the three nets are bounded, nonlive, and nonreversible. 

As pointed out in the introduction, a major weakness of 
Petri nets i s  the complexity problem. Thus, it is very impor- 
tant to develop methods of transformations which allow 
hierarchical or stepwise reductions and preserve the sys- 
tem properties to be analyzed. Such an approach is  dis- 
cussed in [204], where subnets are reduced to single 
transitions or places while keeping liveness and/or bound- 
edness properties. However, much work remains to be 
done in this area of research. For example, given a property 
or a set of properties, it i s  desired to develop a complete 
set of transformations which allows transformation 
between any two nets having the given properties. For fur- 
ther information on this subject, the reader i s  referred to 
[200]-[205], [245], [246], and [256]. 

VI. CHARACTERIZATIONS OF LIVENESS, SAFENESS, AND 

REACHABILITY 

In this section, we first discuss some subclasses and then 
liveness, safeness, and reachabilitycriteriawithin each sub- 
class of Petri nets. 

A. Subclass of Petri Nets 

Recall that a Petri net i s  called ordinarywhen all of its arc 
weights are 1’s. All Petri nets considered in this section are 
ordinary. Note that both ordinary and nonordinary Petri 
nets have the same modeling power. The only difference 
is  modeling efficiency or convenience. 

We use the following symbols for a pre-set and a post-set 
(where F is  the set of all arcs defined in Table 2): 

*t  = { pJ(p, t )  E f } = the set of input places of t 

t* = {pJ(t,  p) E F }  = the set of output places of t 

*p = {tJ(t, p) E F }  = the set of input transitions of p 

p* = {tl(p, t) E F }  = the set of output transitions of p. 

The above symbols are illustrated in Fig. 24. This notation 
can be extended to a subset. For example, let S1 E P, then 
*S1 i s  the union of all *p such that p E S1. With the above 
notation, we can now define subclasses of Petri nets by 
imposing some restrictions on their underlying structures 
[8], [206], [207l. Unless otherwise stated, it i s  assumed 
throughout this paper that a net N has no isolated places 
and transitions, i.e., no p or t such that *p = p* = 0 or *t  
= t. = 0. 
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Input 
transitions 

of P 
.P 

output 
placcs 
o f t  

1 .  

output 

O f P  

transitions 

P. 

(b) 

Fig. 24. The symbols for (a) the sets of input and output 
places of t ,  and (b) the sets of input and output transitions 
of p. 

1) A state machine (SM) is an ordinary Petri net such that 
each transition t hasexactlyone input place and exactlyone 
output place, i.e., 

lot1 = (t.1 = 1 for all t E T. 

2) A markedgraph (MG) i s  an ordinary Petri net such that 
each place p has exactly one input transition and exactly 
one output transition, i.e., 

1 . ~ 1  = Jp.1 = 1 for all p E P. 

3) A free-choice net (FC) i s  an ordinary Petri net such that 
every arc from a place i s  either a unique outgoing arc or a 
unique incoming arc to a transition, i.e., 

for all p E P, I p.1 I 1 or = { p}; equivalently, 

for all pl, p2 E P, pl* n p2. f 0 = > Ipl*l = lp2*l 

= 1. 

4) An extended free-choice net (EFC) i s  an ordinary Petri 
net such that 

pl* fl p p  # 0 = > p1* = p2* for all pl, p2 E P. 

5) An asymmetricchoice net (AC) (also known as a simple 
net) i s  an ordinary Petri net such that 

1. 2 P2* pl* r l  p2* # 0 = > pl* E p2* or p 

for all pl, p2 E P. 

The Petri net structures shown in Fig. 25 are the key struc- 
tures that characterize these subclasses. I t  i s  easy to rec- 
ognize the key structures of S M s  and MGs shown in Fig. 
25(a) and (b), respectively. FCs are a generalization of the 
structures common to both S M s  and MGs. They allow the 
conflict structure of SM shown in Fig. 25(a) and the syn- 
chronization structure of MG shown in Fig. 25(b), but 
exclude the structure shown in Fig. 25(c), where pl* = p2* 
= {tl ,  f 2 } .  Extended free choice nets (EFC) allow the struc- 
ture shown in Fig. 25(c) but not the one shown in Fig. 25(d), 
where p1* = { t , }  E p2* = { t , ,  t 2 } .  Both FCs and EFCs have 
the behavioral property that if tl and t2 share a common 
input place, then there are no markings for which one i s  

( f )  
Fig. 25. Key structures characterizingubclasses of Petri 
nets and their Venn diagram, where MC,  m, etc., denote 
nonMC, nonSM, etc. 

enabled and the other i s  disabled. Thus, we have “free- 
choice”aboutwhich transition to fire. In this sense, the EFC 
structure shown in Fig.25(c)can betransformed to itsequiv- 
alent FC structure as is illustrated in Fig. 26 [207]. Asym- 
metric choice nets (AC) allow the structure shown in Fig. 
25(d) but not the structureof aconfusion shown in Fig. 25(e), 
wherepp = {tl, t2 }  andp2. = { t2 ,  t 3 } .  Unlikethe behavioral 
property of FCs and EFCs, ACs can have a marking at which 
tl i s  enabled but t2 i s  disabled. 

In summary, SMs admit no synchronization, MGs admit 
no conflicts, FCs admit no confusion, and ACs allow asym- 
metric confusion (Fig. 7(b) but disallow symmetric confu- 
sion (Fig. 7(a)). Their Venn diagram relation i s  shown in Fig. 
25(f). 

Example 7: We apply the above classification of sub- 
classes to classify the nets shown in Fig. 17. The net shown 

t ‘2 

t 
‘2 

Fig. 26. Transformation of EFC structure to FC structure. 
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in Fig. 17(a) is not an AC because p3* = { t l ,  t 2 } ,  p4* = { t , ,  
t 4 } ,  p3* f3 p4* # 0, but one is  not a subset of the other. 
The net in Fig. 17(c) i s  FC since each place has a unique out- 
going arc. The nets in Fig. 17(d) and (g) are ACs since p3* 
= { t3} C p2* = { t , ,  f3} in Fig. 17(d) p3* = { t2}  C p2* = { t2, 
t4 }  and ps* = I t 4 }  C p2* = { t2 ,  f4} in Fig. 17(g). The net in 
Fig. 17(f) i s  not an AC because p2* = { tl ,  t 4 }  and p3* = { t , ,  
t5} .  The net in Fig. 17(h) i s  both an MC and an SM. The net 
in Fig. 17(e) i s  an MG. 

B. Liveness and Safeness Criteria 

7) Existence of Live-Safe Markings: Live and safe Petri nets 
(LSPNs) are fundamental to both the applications and the- 
oretical developments of Petri nets. In this section, we pre- 
sent liveness and safeness conditions for subclasses of Petri 
nets. 

First, we discuss necessary conditions for existence of an 
LS marking MO for a Petri net structure PN. A place p (tran- 
sition t )  i s  said to be a source place (source transition) if *p 
= 0 ( e t =  @).Aplacep(transition t)issaidtobeasinkplace 
(sink transition) if p* = 0 ( t *  = 0). It i s  not difficult to see 
the following theorem [208] from Table 3. 

Table 3 Explanation as to Why a Live and Safe Petri Net 
Cannot Have Source or Sink Places and Transitions 

Case If such as then 

1 * p = 0  /T: t is not live. 
(source place) P O+n t . 

\ 
2 p * = 0  -\ p is not safe for live t. 

(sink place) Y-" 
P 

3 * t = 0  t 0-G p p is not safe. 

4 t * = 0  .\ t i s  not live for safe p. 

(source transition) L 

(sink transition) 

Theorem 3: If a Petri net (N, MO) i s  live and safe, then 
there are no source or sink places and source or sink tran- 
sitions, i.e., for all x E P U T, *X # 0 # X* 0 

This theorem can be generalized and we can state that 
if a connected Petri net (N, MO) i s  live and safe, then N i s  
strongly connected, i.e., there exists a directed path from 
every node to every other node in P U T. However, not all 
strongly connected nets have a live and safe marking. For 
example, the nets shown in Fig. 27(a) and (b) are strongly 
connected, but the net in Fig. 27(a) has no live markings and 
the net in Fig. 27(b) has no nonzero safe markings [208]. In 
the case of marked graphs and state machines, strongly- 
connectedness becomes a necessary and sufficient con- 
dition for existence of a live and safe marking (see Theorem 
I O ) .  

We now provide conditions for liveness andlor safeness 
for subclasses of Petri nets. Since adead net (a net in which 
every transition i s  dead) is trivially safe, we are normally 
interested in safeness for live nets. 

2) Liveness and Safeness in SM and MG: Since a transi- 
tion firing in a state machine moves only one token from 
a place to another place, it i s  easy to verify the following 
theorem. 

4p 
I Y  
W 

(a) (b) 
Fig. 27. (a) Strongly connected net that has no live mark- 
ings. (b) Strongly connected net that has no nonzero safe 
markings. 

Theorem 4: A state machine (N, MO) i s  live i f f  N i s  strongly 
0 

Theorem 5: A state machine (N, MO) i s  safe iff Ma has at 
most one token. A live state machine (N, MO) i s  safe iff MO 

For marked graphs, each place has exactly one incoming 
arc and exactly one outgoing arc with unit weight. Thus, a 
marked graph (N, MO) can be drawn as a marked directed 
graph (G, MO), where arcs correspond to places, nodes to 
transitions, and tokens are placed on arcs. For example, the 
Petri net of a communication protocol shown in Fig. 9 can 
be redrawn as the marked directed graph shown in Fig. 28. 

connected and MO has at least one token. 

has exactly one token. 0 

Fig. 28. The marked graph representation of a communi- 
cation protocol shown in Fig. 9 and used for Example 14. 

The firing of a node (transition) in a marked graph consists 
of removing one token from each incoming arc (input place) 
and adding one token to each outgoing arc (output place). 
If a node is on a directed circuit (or loop), then exactly one 
of i t s  incoming arcs and one of its outgoing arcs belong to 
the directed circuit. If a node does not lie on the directed 
circuit in question, none of the arcs incident to that node 
will belong to  the directed circuit. Thus, we have the fol- 
lowing token invariance property [q. 

Theorem 6: For a marked graph, the token count in a 
directed circuit i s  invariant under any firing, i.e., M(C) = 
Mo(C) for each directed circuit C and for any M in /?(Ma), 
where M(C) denotes the total number of tokens on C. 0 

By Theorem 6,  if there are no tokens on a directed circuit 
at the initial marking, then this directed circuit remains 
token-free. Thus, the nodes on this directed circuit will 
never be enabled. On the other hand, if a node is  never 
enabled by any firing sequence, then by back-tracking 
token-free arcs, one can find a token-free directed circuit. 
Therefore, we have the following theorem. 

Theorem 7: A marked graph (G, MO) is  live iff MO places at 
least one token on each directed circuit in G. U 
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The following theorem is  a special case of more general 
theoremswhich will be proved in Section VI1 (weighted sum 
of tokens) and Section VI11 (S-invariants). 

Theorem 8: The maximum number of tokens that an arc 
can have in a marked graph (G,  MO) is equal to the minimum 
number of tokens placed by MO on a directed circuit con- 

The following consideration i s  helpful in understanding 
the above mini-max theorem. Consider all directed circuits 
C,, C,, . . . , C, passing through the arc e. Bring as many 
tokens as possible on the incoming arcs of the initial node 
x of e = (x, y), and fire the nodex as many times as possible 
without firing the node y. It can be seen that Min {Mo(C1), 
Mo(C2), . . . , Mo(Cm)} is  the maximum possible tokens that 
can be brought on the arc e. In particular, if Min {M&C!), 
Mo(C2), . . . , Mo(C,)} = 1, then M(e) 5 1 for all M in /?(MO). 
Thus, we have the following theorem. 

Theorem 9: A live marked graph (G, MO) i s  safe i f f  every 
arc (place) belongs to a directed circuit C with Mo(C) = 1. 

Theorem 70: There exists a live and safe marking in a 
directed graph G iff C i s  stongly connected. 

Proof: The necessity i s  due to Theorem 3. The suffi- 
ciency can be proved as follows. Suppose G is strongly con- 
nected. Choose a marking MO which places at least one 
token in each directed circuit in G. Then this marked 
directed graph, (G, MO) is live. If (G,  MO) i s  not safe, then there 
i s  an arc e and a marking M in /?(MO) such that M(e) 2 2. 
Reduce the number of tokens on e to one by removing 
tokensfrome;callthenewmarkingM’, i.e.,M‘(e) = 1. Repeat 
the above token removal which will not destroythe liveness 
property, until (G,  M,”) i s  safe for a new marking M;. U 

A subset of arcs E‘ in a directed graph G = (V, E )  i s  said 
to be a feedback arc set (FAS) if G’ = (V,  E - E’)  i s  acyclic, 
i.e., has no directed circuits. A FAS is  said to be minimal if 
no proper subset of the FAS is  a FAS, and minimum if no 
other FAS contains a smaller number of arcs. It is easy to 
see that the subset of marked arcs in a live marked graph 
is a FAS. Conversely, if each arc in a FAS of a directed graph 
is  marked, we have a live marked graph. Furthermore, the 
following theorem [209] holds. 

Theorem 11: A strongly-connected live marked graph G 
i s  safe iff for every marking M in /?(MO), the set of marked 
arcs i s  a minimal FAS. 

A minimum FAS is  more important than a minimal FAS 
in applications. It is obvious that a subset E’ in a directed 
graph G is  a minimum FAS iff the marking M such that M(e) 
= 1 for all e in E’ is  a live marking for G with the minimum 
number of tokens. However, a minimum FAS does not nec- 
essarily yield a safe marking. For example, the marking MO 
shown in Fig. 29 is a live markingwith the minimum number 
of tokens and corresponds to a minimum FAS (G becomes 
acyclic if the two marked arcs a and b are removed), How- 
ever,thismarking isnotsafesincearcsdand fdonotbelong 

taining this arc. 0 

Fig. 29. The set of marked arcs a and b i s  a minimum feed- 
back arc set, and this marking i s  minimally live but not safe. 

to a directed circuit with token count one. In fact, the firing 
sequence U = (1 3 4 1) brings two tokens on arc d. 

3) Liveness and Safeness in FC and AC Nets: 
Siphon and trap: A nonempty subset of places S in an 

ordinary net N i s  called a siphon (also known as a deadlock) 
if *S s So, i.e., every transition having an output place in 
Shasan inputplaceinS.(Weuseasiphon insteadofadead- 
lock since the latter i s  used for a circular waiting condition 
or behavior in computer science). A nonempty subset of 
places Q in an ordinary net N is  called a trap if  Qa E *Q, 
i.e., every transition having an input place in Q has an out- 
put place in Q. A siphon is illustrated in Fig. 30(a), where 

P 

a s = { [ , }  Q‘ = I l l  } 

S . = { I  I } *Q=It,,t,} 
1’ 2 

. S E S .  Q- c -Q 
(a) (b) 

Fig. 30. Illustration of (a) a siphon and (b) a trap. 

the token count in the siphon remains the same by firing 
t ,  but decreases by firing t2. Thus, a siphon has a behavioral 
property that if it is token-free under some marking, then 
it remains token-free under each successor marking. A trap 
is  illustrated in Fig. 30(b), where the token count in the trap 
remains the same by firing t, but increases by firing f 2 .  Thus, 
a trap has a behavioral property that if it i s  marked (i.e., it 
has at least one token) under some marking, then it remains 
marked under each successor marking. It i s  easy to verify 
that the union of two siphons (traps) i s  again a siphon (trap). 
A siphon (trap) is called a basic siphon (basic trap) if it can- 
not be represented as a union of other siphons (traps). All 
siphons (traps) in a Petri net can be generated by the union 
of some basis siphons (traps) [210]. A siphon (trap) i s  said 
to be minimal i f  it does not contain any other siphon (trap). 
A minimal siphons (traps) are basis siphons (traps), but not 
all basis siphons (traps) are minimal. 

Example8: In the Petri net shown in Fig. 31, let SI = { p,, 

and S5 = { p2, p3, p4} .  Then, we have *S1 = { tl ,  f 2 ,  t4}  E S,* 
= {t,,  f 2 ,  f 3 ,  t4} .  Thus, SI is  a siphon. Since S4. = {t,,  t4}  E 
*S4 = { t , ,  f 2 ,  f4}, S4 i s  a trap. Similarly, it i s  easy to verify that 
S2 is  a siphon, S3 i s  both a siphon and a trap, and S5 i s  a trap. 
In fact, both S1 and S2 are minimal and basis siphons. S3, S4, 
and S5 are basis traps, S3 and S5 are not minimal traps. 

Siphons and traps can be found from a set of logic equa- 
tions or linear inequalities describing their behavioral 
properties [179]. For example, in the Petri net shown in Fig. 

p2, p3) I s2 = { PI, p2, p4} I s3 = { p1, p2, p3r p4) I s4 = { p2, p31 
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Fig. 31. The net used in Examples 8 and 9. 

31, we see that 

P1 => p2 

p2 => p3 V p4 

p3 => p1 A p2 

P4 => P1 

(if p1 i s  in a siphon S, then p2 i s  in S )  

(if p2 is  in S, then p3 or p4 i s  in S )  

(if p3 is  in S, then p1 and p2 are in S) 

(if p4 i s  in S, then p1 i s  in S). 

The above set of “if-then” rules is equivalent to the fol- 
lowing set of clauses: 

{ T P l  v P2r 7 P 2  v p3 v p4, -7p3 v p1, 

7 P 3  v P2r 7p4 v P l ) .  

Thus, siphons can be found as (0,l)-solutions of the fol- 
lowing set of inequalities, where p, = 1 if p, E S, and p, = 
0 if p, $ S: 

-p1 + p2 5 0 

-pz + p3 + p4 1 0 

-p3 + p1 1 0.  

-P3 + p2 2 0 

-p4 + p1 1 0 

U 
For example, pl = p2 = p3 = 1, p4 = 0 satisfy the above in- 
equalities. Therefore, { pl ,  p2, p3 }  is  a siphon. 

The following theorems are well known in the literature 
[207l, [211]. However, since their proofs are beyond the 
scope of this paper, they are omitted. Examples are given 
to illustrate the theorems. 

Theorem 12: A free-choice net (N, MO) i s  live iff every 

Theorem 13: A live free-choice net (N, MO) i s  safe iff N i s  
covered by strongly-connected SM components each of 

0 
Theorem 74: Let (N, MO) be a live and safe free-choice net. 

Then, N i s  covered by strongly-connected MG compo- 
nents. Moreover, there i s  a marking MeR(M0) such that each 
component (NI, M1) is  a live and safe MG, where M1 i s  M 
restricted to N1. 0 

Theorem 75: An asymmetric choice net (N, MO) i s  live if 
(but not only i f)  every siphon in N contains a marked trap. 

0 
In Theorem 13 (Theorem 14), an SM-component (MG- 

component) N1 of a net N is  defined as a subnet generated 
by places (transitions) in NI having the following two prop- 
erties: i) each transition (place) in NI has at most one incom- 

r 
siphon in N contains a marked trap. 

which has exactly one token at MO. 

n 

ing arc and at most one outgoing arc; and ii) a subnet gen- 
erated by places (transitions) i s  the net consisting of these 
places (transitions), all of their input and output transitions 
(places), and their connecting arcs. Theorem 13 (Theorem 
14) leads to the observation [211] that a live and safe free- 
choice net can be viewed as an interconnection of live and 
safe state machines (marked graphs). This observation i s  
useful for many applications including decompositions and 
abstraction of Petri nets [205]. 

Example 9: The FC net shown in Fig. 31 i s  not live since 
the siphon { pl ,  p2, p4 }  contains no traps (thus no marked 
traps). The AC net shown in Fig. 32 i s  live since the minimal 

Fig. 32. A 

3 

I 

live AC net. 

siphon { pl, p3, p4} contains a marked trap { pl ,  p3, p4}  and 
the siphon { pl, p2, p3, p4) contains marked traps { pl ,  p2}  
and { pl ,  p3, p4 } .  The live FC net shown in Fig. 33(a) i s  not 
safe and the safe FC net shown in Fig. 33(b) i s  not live since 

h 

(b) 
Fig. 33. (a) A live, nonsafe FC net. (b) A safe, nonlive FC net. 

these nets are not covered by strongly connected MG com- 
ponents (nor by strongly connected SM components). The 
net shown in Fig. 34 i s  live and safe but is not covered by 
strongly-connected MG components since it i s  not FC. The 
AC net shown in Fig. 34 i s  live since every siphon contains 
a marked trap. However, the AC net shown in Fig. 35 i s  live 
even though the siphon { p1,p2,p3,p4} contains no marked 
traps (see Theorem 15). The live and safe FC net shown in 
Fig. 36(a) i s  covered by the two strongly-connected MG 
components shown in Fig. 36(b). It i s  also covered by the 
two strongly-connected SM components shown in Fig. 
36(c). 0 
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‘3 

Fig. 34. A live and safe AC net. 

p4 

Fig. 35. A live AC net. 

It i s  known that an asymmetric choice net (N, MO) i s  live 
if7 it is place-live, i.e., for each M, in R(Mo) and for each place 
p in N, there exists a marking M in R(Ml) such that M(p) > 
0. The Petri net shown in Fig. 17(a) i s  place-live, but it i s  not 
live since tl is  dead. Another useful property of asymmetric 
choice nets is that the conflict relation i s  transitive. For 
example, in the asymmetric choice net shown in Fig. 37(a), 
any pair of transitions among tl, t2, and t3 are in a conflict 
relation. However, in the net shown in Fig. 37(b), which i s  
not an asymmetric choice net, the pair (tl, t2) is  in conflict 
and the pair (t2, r3) i s  in conflict but (tl, t3) i s  not in conflict. 

References [ I l l ,  [206]-[208], [211], and [2141 are suggested 
for further reading on free-choice nets and other topics dis- 
cussed in this section. 

C. Reachability Criteria 

a nonnegative integer solution x satisfying (6) or 
In Section V-B, it has been shown that the existence of 

Md = MO -t A J x  (1 3) 

i s  a necessary condition for Md to be reachable from MO. A 
Petri net having no directed circuits i s  called an acyclic Petri 
net. For this subclass, it can be shown [212] that this con- 
dition is necessaryand sufficient. Given a nonnegative inte- 
ger solution x satisfying (13), let N, denote the (firing count) 
subnet of N consisting of transitions t such that x( t )  > 0, 
together with their input and output places and their con- 
necting arcs. MO, denotes the subvector of MO for places in 
N X .  

Theorem 76: In an acyclic Petri net, Md i s  reachable from 
M,iffthereexistsa nonnegative integer solutionx satisfying 
(13). 

Proof: Only sufficiency remains to be shown. Suppose 
there exists such a solution x. Consider the subnet (N,, MO,), 

U 

‘2 

f \ 

(C) 
Fig. 36. (a) A live and safe FC net. (b) Its two strongly-con- 
nected MG-components generated by the two sets of tran- 
sitions {tl, t3, t,, r,} and { t2,  rs, r6, t , } ,  respectively. (c) Its two 
strongly-connected SM-components generated by the two 
setsof places {p1,pz,p4,p61 and {p1,p3,p5,p7J, respectively. 

which is acyclic. There i s  at least one transition t that i s  fir- 
able at MO,. (If not, back-tracing token-free input places of 
nonfirable transitions would end at a token-free source 
place p. This contradicts the fact that Md 2 0.) Now, fire t. 
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of the incidence matrix of N. Applying Theorem 17 to 
reversed nets yields the following corollary [ lol l ,  [212]. 

Corollary2: In a siphon-circuit net, Md i s  reachable from 
Moiff  there exists a nonnegative integer solution x such that 
i) eq. (13) holds and ii) (N,, Mdx) has no token-free traps where 

(a) (b) Example 70: Consider the (non-asymmetric choice) net 
shown in Fig. 38(a). There are two directed circuitspl t 2pz  

t r '2 '3 Mdx i s  the subvector of Md restricted to places in N,. 0 ' 2  [3 

Fig. 37. The conflict relation is transitive in the AC net 
shown in (a), but not in the nonAC net shown in (b). 

Then, Let the Md resulting = M' + marking A'x', x' be L 0, M' and = MO the + subnet A'u,, x' (N,,, = x Mi.) - ut. i s  at4 ', 0 
acyclic. Repeat the above process until x' reduces to a zero f 

vector. 17 
A Petri net in which the set of places in every directed 

circuit i s  a trap (siphon) i s  called a trap-circuit net or TCnet 
(a siphon-circuit net or SC net). Note that TC nets and SC 
nets are not necessarilv free-choice or asvmmetric-choice. 

'1 

p2 p2 

(a) (b) 

The following theorem and corollaryare recent results [IOI], 
[212] and generalize the reachability criteria for MGs (Theo- 
rem 20). The proof given below is  based on [213]. (The casual 
readersmaywish toskipthe proofforthe first reading since 
it i s  quite technical.) 

Theorem 77: In a trap-circuit net, Md is  reachable from MO 
iff there exists nonnegative integer solution x such that i) 
e.g., (13) holds and ii) (N,, MO,) has no token-free siphons. 

Proof: (=>) i) is obvious. ii) If (N,, MO,) has a token-free 
siphon S, then it i s  not possible to fire any transition t €9. 
This contradicts the fact that every transition in N, fires in 
a firing sequence transforming MO into Md. 

(<=) Since there are no token-free siphons in (N,, MO,), 
there i s  at least one transition t firable at MO,. Fire t and let 
M' = MO + A'u,, X' = x - ut. Then Md = M' + A'x', X' L 
0. We claim that (N,,, M;.) has no token-free siphons. First, 
we know that (N,,, Mi,) has no token-free source places (this 
would contradict Md L 0). Next,consideran arbitrarysiphon 
S in N,.. There are two cases to consider: 1) S was not a 
siphon in N,; 2) S was a siphon in N,. In Case I), S becomes 
a siphon in N,. after firing t .  This i s  possible only if t E *S 
in N,, and t i s  removed in N,,. In this case, S i s  not token- 
free in (Nx,, Mi,) since a firing o f t  brings some token(s) into 
S. Next, consider Case 2) when S was a siphon in N,. Sup- 
pose S becomes token-free in (N,,, Mi,). This means that a 
firing of t has removed all tokens from S and has brought 
no tokens into S. That is, t E So, t $ *S. Also, if p E S and p 
i s  an input place of t ,  then p cannot belong to any directed 
circuit consisting of places in S, since every directed circuit 
in N, i s  a trap which will not become token-free, when it 
has a token. Now, S i s  token-free in (N,., M;.) and no tran- 
sitions in S* are firable. By back-tracing token-free input 
places of nonfirable transitions in So, we can find a token- 
free siphon s' c S such that for each p E *t  n S, p $ s'. This 
means that S' was a token-free siphon in (Nx, MO,) as well. 
Butthiscontradicts thecondition ii).Thus,Scannot become 
token-free after firing t in Case 2). Therefore, (N,,, Mi,) has 
no token-free siphons. Furthermore, N,. is a TC net. Repeat 
the above process of firings until x' becomes a zero 
vector . 17 

The reversednet N -' of a Petri net N is the net obtained 
by reversing the direction of each arc in N. Note that a sub- 
set of places is a trap (siphon) in N -' iff it i s  a siphon (trap) 
in N, and that the incidence matrix of N -' is the negative 

Fig. 38. Illustration of Theorem 17. (a) A given TC net (N, 
MO) and (b) the subnet ( N x ,  Max). 

tl p1 and p1 t3 p2 tl pl. The set of places in each of these 
directed circuits i s  a trap { pl, p2} .  Thus, this is a TC net. 
Suppose Md = (1 0 0)'. Then it i s  easy to verify that (13) 
has a solution x = (1 0 0 I)'. Fig. 38(b) shows the subnet 
(Nx, MO,), where all three siphons { p3} ,  { p2, p3} and { pl, 
p 2 ,  p3} have a token. Thus, the condition of Theorem 17 
holds. It i s  easy to see that Md i s  reachable from MO by firing 
t4 and then t , .  17 

A Petri net in which the set of places in every directed 
circuit contains a trap (siphon) i s  called a TCCnet(SCCnet). 
For this generalized TC net (generalized SC net), a sufficient 
condition for reachability is  known [ IO11 and is stated as 
follows. 

Theorem 78: In a TCC net, Md is  reachable from Moifthere 
exists a nonnegative integer solution x such that i) eq. (13) 
holds and ii) every siphon in (N,, MO,) has a marked trap. 

Corollary3: In an SCC net, Md i s  reachable from MO if there 
exists a nonnegative integer solution x such that i) eq. (13) 

0 
A forward- (backward-) conflict-free net [FCF (BCF) net] i s  

a subclass of Petri nets such that each place has at most one 
outgoing (incoming) arc. A nondecreasing- (non- 
increasing-) circuit net [NDC (NIC) net] is a subclass of Petri 
nets such that the token content in any directed circuit i s  
never decreased (increased) by any transition firing. It 
should be noted that TC nets (SC nets) contain these nets 
as their subclasses. Thus, Theorem 17 (Corollary 2) i s  appli- 
cable to these subclasses. 

Furthermore, for these subclasses only a minimal non- 
negative integer solution x of (13) needs to be tested [212]. 
(A solution x is said to be minimal if x 5 yfor any other solu- 
tion y.) This is not the case for TC (SC) nets because there 
may exist a firing sequence for a non-minimum solution 
even though there may not for a minimal solution. For 
example, consider the TC net shown in Fig. 39. Let MO = 
(0 0 0)'and Md = (0 0 l)T.Then,anon-minimalsolution 
y = (2 1 1 1 1)'has the corresponding firing sequence 
ts t3 tl t2 tl t4, but a minimal solution x = (1 1 1 0 0)' 
does not, since (Nx, MO,) has a token-free siphon. 

Fig. 40 depicts the relationship among the subclasses of 
Petri nets discussed in this subsection. Note that marked 

holds and ii) (N,, Mdx) has no token-free traps. 
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or 

Fig. 39. A TC net which is not a FCF net. 

Ordinary Petri Nets 

Fig. 40. Relationship among subclasses of Petri nets for 
which reachability criteria are known. 

graphs are contained in the intersection of all these sub- 
classes. 

VII. ANALYSIS AND SYNTHESIS OF MARKED GRAPHS 

Among models that can represent concurrent activities, 
marked graphs are the most amenable to analysis. Marked 
graphs basically model decision-free (or deterministic) con- 
current systems. A marked graph representation of a sys- 
tem with decisions i s  possible only if each decision can be 
embedded in a single-entry-and-single-exit subsystem 
because this subsystem can then be represented by a place 
having exactly one incoming and one outgoing arc. This 
section presents detailed discussions on analysis and syn- 
thesis techniques for marked graphs. 

A. Reachability in MGs 

As stated in Section V-B, the incidence matrix A of a 
marked graph (G, MO) corresponds to the node-to-arc inci- 
dence matrix of its underlying directed graph or digraph 
G. The matrix Bf of a marked graph (G, MO), which i s  defined 
by (9), corresponds to the fundamental circuit matrix Bf of 
G [131. It i s  well known that the two matrices are orthogonal 
to each other, i.e., 

BfA' = 0. (1 4) 

If a marking Md is  reachable from MO through a firing 
sequence U in a marked graph (G, MO), we can write (6) or 

A'x = AM (1 5) 

where AM = Md - MO and x = 3 = the firing count vector 
of the firing sequence U. From (14) and (15), we have 

Equation (17) states that the algebraic sum of tokens placed 
by MO on a fundamental circuit i s  equal to that placed by 
Md. Equation (17) is ageneralization of the token invariance 
on a directed circuit (Theorem 6). Equation (16) has an inter- 
pretation like Kirchhoff'svoltage law (KVL) in circuittheory. 
It has been shown [215] that this generalized token invari- 
ance expressed by (17) i s  not only necessary but also suf- 
ficient for a live marking MO to reach another marking M+ 
In other words, we have the following theorem. 

Theorem 79: In a live marked graph (C, MO), Md i s  reach- 
0 

Note that if G i s  strongly connected, then condition (17) 
is equivalent to saying that the token count on each directed 
circuit under MO i s  the same as that under Md, i.e., Mo(C) = 
Md(C) for each directed circuit C in G. 

The above theorem can be extended to nonlive marked 
graphs if one imposes the additional condition that the 
nodes (transitions) that are to fire should not lie on a token- 
free directed circuit. In other words, we have the following 
theorem [215]. 

Theorem 20: In a marked graph (G, MO), Md i s  reachable 
from Moiff  (17) holds and for the minimal nonnegative solu- 
tion x for A'x = AM, no nodes t such that x(t) > 0 are on 

0 
The above theorem has been further generalized to sub- 

marking reachability [216], [217]. Since every marked graph 
is a TC net as well as an SC net, both Theorem 17 and Cor- 
ollary 2 reduce to Theorem 20. 

Example 77: Consider the marked graph (C, MO) shown in 
Fig. 41, where C i s  not strongly connected and MO is  not a 

able from MO iff (17) holds. 

any token-free directed circuit in (G, MO). 

M O  Md 

Fig.41. The marked graph for Example 11 to illustrate 
reachability conditions. 

safe marking. The fundamental circuit matrix Bfwith respect 
to a spanning tree {d,  e, f }  for C is  given by 

a b c  d e f 

For the two markings MO = (0 0 0 2 1 1)'and M d  = 
(0 0 1 0 0 O)', i t  i s  easy to verify that (17) holds. Now, 
(15) for this marked graph can be written as 
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1 2 3 4  

1 0  0 - 1  

- 1 0 0 1  

0 1 - 1  0 

1 - 1  0 0 

0 - 1  1 0  

0 0 - 1  1 

0 

0 

1 

-2 

-1 

-1 

Since the rank of the above coefficient matrix is three (the 
number of nodes minus one), we only need to solve a set 
of three independent equations. Thus, by settingx, = 0 and 
solving the following set of three equations (corresponding 
to the spanning tree {d, e, f }): 

wehavexl =0,x~=2,andx3=1.Therefore,x=(0 2 1 0)' 
i s  the minimal nonnegative solution for A'x = AM. Note 
that x' = (k k + 2 k + 1 k)' for any positive integer k is 
also a nonnegative solution, but it i s  not minimal. Since 
nodes 2 and 3 corresponding to nonzero entries in x are not 
on the token-free directed circuit {a, b}, all the conditions 
of Theorem 20 are satisfied. Therefore, Md is  reachable from 

0 
Consider a firing sequence uwhich starts and ends at MO. 

In this case, A M  = 0 and the firing count vector ij i s  a solu- 
tion x of the homogeneous equation 

A'x = 0. (1 8) 

For a connected marked graph with n nodes, the rank of 
A is n - 1 and (18) has only one independent solution x = 
(k k . k)'. This corresponds to afiring sequencewhich 
fires every node k times. The following theorem i s  easily 
shown [215]. 

Theorem 21: For a connected marked graph (G, MO), a fir- 
ing sequence leads back to the initial marking &i f f  it fires 

0 
Now, suppose the underlying graph G,of a marked graph 

i s  atree. Any marking on G'is livesinceatree has no directed 
circuits. For any two markings MO and Md for GT, (17) holds 
since GT has no circuits. Therefore, we have the following 
therorem [2151. 

Theorem 22:Any two markings on a directed graph G are 
mutually reachable i f f  the underlying graph of G i s  a tree. 

0 
(The two vectors x and A M  in (15) can be interpreted as 

the node voltage vector and branch voltage vector, respec- 
tively, in an electrical network. Then, Theorem 21 can be 
seen from the fact that all the branch voltages are zero i f f  
all the nodevoltages arethe same.Theorem 22 isequivalent 
to saying that the branch voltage vector A M  can be chosen 
arbitrarily i f f  the network i s  a tree.) 

From (14) and (16), it i s  easy to see that (16) holds if A M  
is  a row of the incidence matrix A. Also,from the well-known 
relationship BfC: = 0, where Cf i s  the fundamental cutset 
matrix, it can be seen that (16) holds if A M  i s  a row of the 
cutset matrix Cf. In fact, the following theorem can be shown 
[215]. 

MO (by firing nodes 2, 3 and again 2). 

every node an equal number of times. 

Theorem 23: Two markings MO and Md in a live marked 
graph (GI MO) are mutually reachable iff their difference A M  
= Md - MO i s  a linear combination of a set of fundamental 
cutsets of G. 0 

In system design, we are often given a set of states that 
are mutually reachable. If a state i s  coded with an m-tuple 
of 0's and Ifs, then the given set of states can be regarded 
as a set of (possibly safe) markings in a marked graph with 
m arcs. A synthesis problem i s  to find a marked graph from 
given sets of mutually reachable markings. Theorem 23 has 
been used as a basis for converting this synthesis problem 
to that of realizing cutset matrices of directed graphs [215]. 
This synthesis method produces live (but not necessarily 
safe) marked graphs. 

B. Synthesis o f  Live-Safe MG 

1) Live-Safe Equivalence Classes: Define a relation - on 
the set of live markings of a digraph G to be MO - Md if Md 
i s  reachable from MO. Then it is easy to see that - i s  reflex- 
ive, symmetric, transitive, and thus an equivalence relation. 
The relation - partitions the set of live markings intoequiv- 
alence classes. Let p ( G )  be the number of equivalence 
classes of live-safe (LS) markings for a strongly connected 
graph G. Findingp(G) for a general case i s  a major unsolved 
problem on marked graphs. However, for some specific 
types of digraphs, simple formulas for p(G) are available. 
For example, it i s  known [218] that 

(19) 

(20) 

where Nk is  the necklace of k nodes shown in Fig. 42, and 
K,, i s  the complete digraph of n nodes. 

p(Nk) = k - I 

p(KJ = (n - I)! 

/ 

4' 
Fig. 42. Nk, the necklace of k nodes. 

Example 12: NZ, N3, and N4 are shown in Fig. 43(a), (b), 
and (c), respectively, where a representative marking for 
each equivalence class in each of Nk, k = 2, 3, 4, are also 
shown. 0 

The following two theorems [203], [218] provide neces- 
sary and sufficient conditions for p ( G )  = 1. 

Theorem 24: For a strongly connected graph G, p ( G )  = 
1 iff there do not exist three distinct nodes x, y, z which 
appear in two distinct directed circuits in the orders of (x, 

0 
Theorem 25: For a strongly connected graph G, p(G) = 

1 iff there i s  a marking of G which places exactly one token 
0 

y, z) and (x, z, y). 

on every directed circuit in G. 
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L 

N2 

(a) 00 0 

3 
N 3  

3 

(b) 

d 

C c 

N4 

(d 
Fig. 43. (a) An example of p ( G )  = 1, G = N,. (b) An example of p ( G )  = 2, G = N, 
(c )  An example of p ( G )  = 3, G = N+ 

Example 73: In the marked graphs shown in Fig. 43(c), 
p(N4) # 1 since there are three distinct nodes 1, 2, 3 such 
that the sequence (1 2 3) i s  in the outer directed circuit, 
{a, b, c, d } ,  and the sequence (1 3 2) is in the inner 
directed circuit {e, f, g, h }  (Theorem 24). Also, it can be seen 
that there is  no marking M such that M(C) = 1 for every 
directed circuit in N4. In the marked graph (G, MO) shown 
in Fig. 44, it can be verified that p ( G )  = 1 since MO places 

h 

3 

1 e 

4 

G3 

Fig. 44. A marked graph (G, MO) with p ( G )  = 1. 

exactlyone token on each of the following possibledirected 
circuits in G: {a, b, c}, {b,  d, e, f } ,  { f, g, e}, {a, g, i } ,  {a, 
b,d, i } ,  {b,  d,i, h, f } ,  {c, h, f,b}, and {h, f,g,i} (Theorem 
25). 0 

= KS. 

2) Expansion Rules for LSMG Synthesis: 
It has been shown [202], [203] that p(G)  i s  invariant under 

the following operations on a digraph C. 

a) Series Expansion (SE)-addition of an arc e and node 
x in series with an existing arc e' (see Fig. 45(a)). 

b) ParallelExpansion (PE)-addition of an arc e in parallel 
with an existing arc e' (see Fig. 45(b)). 

c) Unique-Circuit Expansion WE)-addition of an arc e 
= (vl ,  v2) to a unique directed path P21 from v2 to v1 
(see Fig. 45(c)). 

d) V-Y Expansion (VYE)-addition of a node x and an arc 
e = (x, y) to a pair of existing arcs el = ( y, z) and e2 
= ( y, w) (also applicable if (CY, /3) is  replaced by (/3, C Y )  

everywhere) (see Fig. 45(d)). 
e) Separable Graph Expansion (SCE)-joining two 

graphs G1 and G2 at exactly one node x to produce 
a separable graph G (see Fig. 45(e)). In this expansion, 
we have p(G)  = p(G1) p(G2). Thus, p(G)  = 1 is invariant 
iff p(G1) = P(G2) = 1. 

Theabovestepwiseexpansion operationscan be used for 
synthesizing LSMCs (G, MO). In this synthesis, the following 
properties of decision-free concurrent systems can be pre- 
scribed: liveness (absence of deadlocks), safeness (absence 
of overflows), p(G)  = 1 (all LS markings or states are mutually 
reachable), minimum cycle time, and resource require- 
ments [219]. Note that, in order to maintain the liveness and 
safeness properties, the newly added arc e must be token- 
free in the series and V-Y expansions, M(e) = M(e') in the 
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0 -  E3 
1 e’ 2 

0 -  m 
1 e’ 2 

p21 ,.---. 
\ 

8’ b e  
1 2 

or 

Fig. 45. Illustration of the five expansion rules (a) series 
expansion, (b) parallel expansion, (c) unique circuit expan- 
sion, (d) V-Y expansion, and (e) separate graph expansion 

parallel expansion, and M(e) = 1 after making the unique 
path P21 token-free by appropriate firings. 

Example 74: The LSMG model (Cl, MO) of a communica- 
tion protocol shown in Fig. 28 can be synthesized from N 2  
by applying the above expansion rules six times. This is 
illustrated in Fig. 46, where PE(.), SE(-), and UE(-) denote 

L 

0 UE (B) a:-pq:D; SE (F) 

R R 

G1 

Fig. 46. Illustration of the use of expansion rules for LSMG 
synthesis. 

parallel, series, and unique circuit expansions, respec- 
tively, and the labels inside the parentheses indicate the 
arcs added by the expansions. Thus, we have p(Cl)  = p(N2) 
= 1. By applying the SGE rule to n necklaces of 2 nodes (N2) ,  

0 

0 0 

G2 

Fig. 47. A LS marked graph model of an n-stage pipeline 
operation. 

we know that p(G2) = 1 for the marked graph (G2, MO) of an 
n-stage pipeline operation shown in Fig. 47. The reverse 
operations of the above expansions are the reduction rules 
that can be used to find p(G)  for a given digraph G. For exam- 
ple, it is easy to verify that the marked graph (G3, MO) shown 
in Fig. 44 can be reduced to N2 after applying a V-Y reduc- 
tion first, and then series, parallel, and unique-circuit 

0 reductions. Thus, p(G3) = p(N2) = 1. 

C. Weighted Sum of Tokens 

vector (S-invariant) satisfying 
Given a marked graph (G, MO), let / be an m x 1 column 

A/ = 0 (21 ) 

whereA i s  then x m incidence matrix of G. For any marking 
M reachable from MO, we have from (15) and (21) 

(AM)’/ = (x’A)/ = x’(A/) = 0 (22) 

or 

MTI = M i / .  (23) 

Equation (23) states that the weighted sum of tokens 
ET=, M(ej)/(ei) i s  invariant for all markings M reachable from 
MO. In electrical network terminology, / corresponds to the 
branch current vector, (21) to Kirchhoff‘s current law, and 
(22) to Tellegen’s theorem [921. 

Let W be an m x 1 column vector whose i th entry is W(e;), 
a nonnegative integer weight of arc ei. W(e;) may represent 
the storage space or cost to accommodate a token on arc 
e;. Then, M’W denotes the weighted sum of tokens for a 
marking M. Given a bounded live marked graph (G, MO), we 
are often interested in finding the maximum or minimum 
valueof MTWforall markings reachable from Mo.Thisvalue 
can be found from MO and a certain S-invariant / by the fol- 
lowing theorem [92]. 

Theorem 26: For a strongly connected live marked graph 
(G, MO), we have 

max {M‘WIM E /?(MO)} = min {ML/(/ 2 W, A/ = 0) 

(24) 

min {M’WIM E /?(MO)} = max { M i / [ /  5 W, A/ = 0). 

(25) 

Proof- Since MO i s  live, M E /?(MO) if f  M = MO + ATx, 
where x i s  an n x 1 vector of nonnegative integers. Thus, 
the left-hand side of (24) can be written as the following lin- 
ear programming problem: 

max U = CTz subject to Dz = MO and z 2 0 (26) 
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where D. Token Distance and Maximum Concurrency 

I )  Token Distance Matrix for MG: The token distance t, 
between two nodes i and j in a marked graph (G, MO) is  
defined as the minimum token content among all possible 
directed paths PI, from node i to node j in G, i.e., 

and I,,, is  the identity matrix of order m. The dual problem 
of (26) can be stated as 

min V = M l y  subject to Dry 2 C (27) 

where y = I i s  unrestricted. Dry 2 C i s  equivalent to I 2 
Wand A/  5 0. However, A/ 5 0 i s  equivalent to A/  = 0 since 
thesumofthenrowsinAisalwayszero,i.e.,[l 1 . . . 1]Al 
= 0 /  = O.Thus,(24)isequivalenttotheproblemon theright- 
hand side of (27). It i s  well known in linear programming 
that the optimal solution of (26) or (27) i s  an extreme point 
of the corresponding constraint set. Note that all the 
extreme points of the constraint set have only integral coor- 
dinates since D is  totally unimodular, i.e., every square sub- 
matrix of D has determinant 0,1, or -1. Therefore, the opti- 
mal values of (26) and (27) are attained at integral values, and 
(24) follows from the theory of duality. Equation (25) can be 

Example 15: Consider the marked graph shown in Fig. 
proved similarly. 0 

48, where MO = (1 0 1 0 0)'and W = (1 2 1 2 

C O  1 

(a) 

"- 
C O  I 

(b) 
Fig. 48. Illustration of finding the maximum and minimum 
weighted sums of tokens in Example 15. 

The "loop-current" distribution shown by the dotted lines 
in Fig. 48(a) yields an S-invariant I, = [2 2 2 2 4I'such 
that I ,  2 W. Thus, by (24), max MrW = Mil, = 4, which is  
attained at the marking M = (0 1 0 1 0)'reachablefrom 
MO. The "loop-current" distribution shown by the dotted 
lines in Fig. 48(b) gives an S-invariant /2 = (0 1 1 0 1)' 
such that I2 5 W. By (25), we have min MrW = MlI, = 1, 
which is  attained at M = (0 0 0 0 1)'reachabIe from MO. 

min MOPii), 

OD, if no directed path PI, exists. 
(28) t, = 

Given a marked graph with n nodes, the token distance 
matrix defined by T = [ti,] is an n x n matrix having the 
following properties: 

1) ti, = 0 for i = 1, 2, * 

2) tfl 5 t lk  + tk/ for all 1 5 i, j ,  k I n. 
3) tfl is  a nonnegative integer or OD. 

It has been shown [220], [221] that the token distance 
matrix T = [tii] has the following useful applications. 

Firability: A node j i s  firable (enabled) at a marking M iff 
all the off-diagonal entries of the jth column in Tare pos- 
itive. 

Necessity o f  Firing: A node i must fire in order to enable 
another node j iff t ,  = 0, i.e., there exists a token-free 
directed path from i to j .  

Synchronic Distance:The synchronic distance d,, defined 
by (I), between two nodes i and j in a marked graph is  given 

Maximum Firing Deviation: Let ti, + tj, = k in a marked 
graph (G, MO). Then in any marking reachable from MO, k is 
the maximum number of times that one node i or j can fire 
without firing the other node. 

Liveness: A marked graph i s  live i f f  t, + t,, = djj # 0 for 
all i # j .  

Shortest Firing Sequence: The following algorithm yields 
a shortest firing sequence to enable a node j in a live marked 
graph (G, MO). (The length of a firing sequence i s  defined 
as the number of transitions (nodes) fired in the sequence.) 

Step 1) If t, > 0 for i = 1, 2, . . . , n ( i  # j ) ,  then node 
j is  enabled. If not, go to Step 2. 

Step 2) Find a node i such that t, = 0 (i # j )  and t k i  > 
Ofork = 1,2, . . . ,n(k # i), i.e., nodeiisenabled. 

Step 3) Fire the node i found in Step 2 and update the 
token distance matrix T = [t,] (by subtracting 1 
from each entry of the ith column, and adding 
1 to each entry of the ith row in T ) .  Go to Step 
1. 

. , n. 

by 4, = tl/ + t/f. 

The firing sequence obtained in the above algorithm is  
shortest since every node firing in Step 3 is necessary in 
order to enable node j .  

Example 16: For the marked graph (G, MO) shown in Fig. 
49(a), the token distance matrix is given by 
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(a) 
Fig. 49. MC in Example 16. 

The nodes 1 and 2 are enabled since all the entries in the 
first and second columns in Tare positive, except for the 
diagonal entries. There are token-free directed paths from 
node 1 to nodes 3, 4, and 5, since t,3 = t,, = tT5 = 0. The 
synchronic distance between nodes 1 and 2 i s  given by d12 
= tI2 + t2, = 1 + 1 = 2. Fire node 2 once. Then node 1 can 
be fired twice without firing node 2. The shortest firing 
sequence to enable node 5 i s  found from the zero entries 
in the fifth column in T. Since tI5 = 0 i s  the onlyoff-diagonal 
zero entry, it i s  necessary to fire only node 1 to enable node 
5. Node 1 is firable and when it i s  fired, the updated token 
distance matrix T' is  obtained from T by subtracting 1 from 
each entry of the first column and adding 1 to each entry 
of the first row. That is, 

p 2 I I 11 

T'= I O o o 1  1 1 0 1 2  I 
which is the token distance matrix of the MG shown in Fig. 
49(b). 

2) Maximum Concurrency in MG: A set of nodes which 
are enabled at the initial marking MO in a live marked graph 
(G, MO) can be found from the token distance matrix T = 
[t,,]. They are nodes corresponding to columns whose off- 
diagonal entries are all positive. For example, the first and 
second columns in Tin Example 16 are such columns, and 
thus nodes 1 and 2 are concurrently enabled at MO. A more 
important problem is  to find a maximum set of nodes that 
can be fired at a marking M reachable from MO. The fol- 
lowing theorem proved in [221], [222] can be used to find 
such a set of concurrently firable nodes. 

Theorem 27: A k-node set v k  in a live marked graph (G, 
MO) is  a k-node concurrent set iff i) every (k - 1)-node subset 
of v k  i s  a (k - 1)-node concurrent set, and ii) v k  i s  not con- 
tained in any directed circuit with token count less than 
k. 0 

The necessity of conditions i) and ii) is obvious because: 
i) if all k nodes areconcurrentlyenabled, then nodes in each 
proper subset are also concurrently enabled; and ii) at most 
k nodes in a directed circuit with k tokens can be concur- 
rently enabled. Theorem 27 is  used in [221] to state an algo- 
rithm for finding a maximum set of nodeswhich can be fired 
concurrently at some marking in R(Mo). Alternatively, the 
problem of finding a maximum set of concurrentlyenabled 
nodes in a live marked graph (G, MO) can be transformed 

into the following (0, 1)-integer programming problem: 
n 

max C x(i) 
,=1 

subject to: 

A'x 5 M (Firability) 

BfM = BfMo (Reachability) 

where 

x(i) = 
1 if node i is  enabled 

0 otherwise. 

E. MG Synthesis o f  Synchronic Distance Matrix 

The synchronic distance matrix of a marked graph is  an 
n x n symmetric matrix D = [d,], where d,, i s  the synchronic 
distance between nodes i and j .  It i s  easy to verify the fol- 
lowing necessary conditions for D. 

Property I: Let D = [d,,] be the synchronic distance matrix 
of a marked graph (G, MO). Then 

i) d,, = 0 for all i. 

ii) d,, 5 d,k + dk, for all i, j ,  k. 

iii) d,, i s  a nonnegative integer or W. 

iv) d,, = d,, for all i ,  j .  0 
A matrix satisfying i) and ii) i s  called a distance matrix. It 

D * D = D  (29) 

where * denotes the matrix multiplication in Carre's alge- 
bra, that is, addition x + y i s  replaced by min {x, y} and 
multiplication x . y i s  replaced by addition x + y. If D i s  a 
synchronic distance matrix, then (29) holds. 

CivenamatrixD,weareinterested in theproblemoffind- 
ing a marked graph whose synchronic distance matrix is D. 
The following procedure [220] gives a method for finding 
a marked graph when D is  realizable as the distance matrix 
of a tree (undirected-graph) with positive integer arc 
weights. 

Procedure for Finding a Marked Graph from a Given 
Matrix D: 

Step I. Test the necessary condition (29). 
Step 2. Find a tree (a weighted undirected graph) by the 

following procedure: 

is well known that a matrix D i s  a distance matrix iff 

Step 2. I. 

Step 2.2. 

Step 2.3. 

Step 2.4. 

Find a maximum entry d,,, in D. List 
all rows io in which d,,, i s  located. 
(Then node io is  a pendant node of a 
tree.) 
For each row io, find a unique mini- 
mum off-diagonal entry d,,,. List the 
column j ,  in which d,,, i s  located. 
Draw an arc between nodes io and j r  
with arc weight d,,,. (If d,,, is  not 
unique, D is  not realizable as an 
n-node tree.) 
Delete all the rows and columns in 
which d,,, is located. 
Repeat Steps 2.1 through 2.3 until 
(n - 1) arcs of a tree are drawn. 
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Step 3. Replace each arc e = (v,, v2) in the tree by a pair 
of oppositely directed arcs, e, = (v,, v2) and e2 
= (v2, v,). Assign initial tokens on e, and e2 such 
that the sum of tokens on e, and e2 equals the 

0 

Example 77: Find a marked graph whose synchronic 

weight of the arc e. 

distance matrix i s  given by 

1 

2 

3 

D = 4  

5 

6 

7 

1 2 3 4 5 6 7  

0 1 3 6 6 5 6  

I 0 2 5 5 4 5  

3 2 0 3 3 2 3  

6 5 3 0 6 5 6  

6 5 3 6 0 1 2  

5 4 2 5 1 0 1  

6 5 3 6 2 1 0  

The maximum entryd,,, = 6isfoundforthefollowing rows 
io = 1, 4, 5, 7. Thus, nodes 1,4, 5, 7 are pendant nodes, as 
shown in Fig. 50(a). For each row io = 1, 4, 5, 7, the unique 
minimum entry dmi, i s  located at column j r  = 2,3,6,6, with 
dmi, = 1, 3, 1, 1, respectively. Thus, we know that arcs (1, 
2), (4, 3), (5, 6), (7, 6 )  have weights 1, 3, 1, 1, respectively, as 
is shown in Fig. 50(b). Now, deleting the four rows and four 
columns for io = io = 1, 4, 5, 7, we have 

2 3 6  

D, =: [' '1' 
For D,, d,,, = 4 is found in rows io = 2 and 6. dmi, = 2 is 
found at (2,3) and (6, 3), respectively. Thus, D1 can be real- 
ized as the tree shown in Fig. 50(c). Therefore, from Fig. 50(b) 
and (c), we have the tree realization of the matrix D shown 
in Fig. 50(d), from which we find the marked graph shown 
in Fig. 5O(e). It i s  easy to verify that the given matrix D i s  
indeed the synchronic distance matrix of the MG shown in 

Note that given a matrix D satisfying Property 1, we can 
always find an undirected graph G whose distance matrix 
is D. For example, we can draw a complete graph G where 
thearc between nodesiandj hasweightd,,. However,appli- 
cationof Step3toGdoesnotalways result inamarkedgraph 
whose synchronic distance is  D if G is  not a tree. A necessary 
and sufficient condition for D to be the synchronic distance 
matrix of a marked graph (or a Petri net) is an open problem. 

References [A, [218], [223] are suggested for further read- 
ing on the subject of marked graphs and their applications. 

6 4 2 0  

Fig. 50(e). 0 

VIII. STRUCTURAL PROPERTIES 

Structural properties are those that depend on the topo- 
logical structures of Petri nets. They are independent of the 
initial marking MO in the sense that these properties hold 
for any initial marking or are concerned with the existence 
of certain firing sequences from some initial marking. Thus, 
these properties can often be characterized in terms of the 
incidence matrix A and its associated homogeneous equa- 

dm 

f o r i  = 1, 4, 5, 7 0 

2 

4j--u--37 

I 

(e) 
Fig. 50. Example 17: Synthesis of a synchronic distance 
matrix. 

tions or inequalities. It is assumed that all nets considered 
inthissection arepure.Theith entryofavectorxisdenoted 
by x ( i ) .  For two vectors x and y, x > y means that x ( i )  > y(i) 
for each i ,  x 2 y means that x ( i )  2 y(i) for each i ,  and x 2 
y means that x z y and x ( i )  # y(i) for some i. 

Structural Liveness: A Petri net N i s  said to be structurally 
live if there exists a live initial marking for N. It i s  easy to 
see from Theorem 7 that every marked graph is structurally 
live. Also from Theorem 12 we can see that a free-choice net 
is structurally live i f f  every siphon has a trap. A complete 
characterization of structural liveness for ageneral Petri net 
is unknown. 

Controllabi1ity:A Petri net N i s  said to be cornpletelycon- 
trollable if any marking is  reachable from any other mark- 
ing. 

Theorem 28: If a Petri net N with rn places i s  completely 
controllable, then we have 

RankA = m. (30) 

Proof: If a Petri net is completely controllable, then (6) 
must have a solution x for any AM. Thus, from solvability 
of linear equations [I991 we must have for any AM 

Rank AT = Rank [ A T : A M ]  

which implies that the rank of an m x n matrix AT must be 
0 

Note that (30) is only a necessary condition for complete 
controllability of Petri nets. However, the same condition 
(30) i s  sufficient as well as necessaryfor marked graphs. That 
is, a connected marked graph G is  completely controllable 
iff (30) holds or G is a tree [198]. Because for a connected 

of i t s  full rank equal to m. 

566 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 4, APRIL 1989 



marked graph G with n nodes, it i s  known that 

RankA = n - 1. (31) 

From (30) and (31), we have m = n - 1.  That is, G has only 
(n - 1) arcs to connect n nodes. This means that G i s  a cir- 
cuitless connected graph, i.e., a tree. The controllability fol- 
lows from Theorem 22. 

Structural Boundedness: A Petri net N i s  said to be struc- 
turallybounded if it i s  bounded for any finite initial marking 
M,. 

Tbeorem29:A Petri net N is structurally bounded iffthere 
exists an m-vector y of positive integers such that Ay 5 0. 

3 y > 0, Ay I 0. (32) 

Let M E R(Mo). Then from (5), we have 

Proof: (<=) Suppose 

M = MO + ATx, x 2 0. 

MTy = M i y  + xTAy. 

(33) 

Consider the inner product of M and y 

(34) 

Since Ay 5 0 and x 2 0, we have 

MTy 5 Miy. (35) 

Thus, M(p), the number of tokens in each place p, i s  
bounded by 

(36) 

where y(p) i s  the pth entry of y. 
(=>) Suppose (32) does not hold. Then by Minkowski- 

Farkas' lemma [247] or Case 4 in Table 4, there exists an 

Table 4 One of Two Alternatives: Either System (Y or 
System 0 Has a Solution ("exclusive-or"). Case 1 and Case 
2 (Minkowski-Farkas Lemma) are Well Known in the 
Theory of Linear Inequalities [247], [249]. Case 3 (Stiemke 
Theorem) and Case 4 are Special Cases (for b P 0 and y > 
0) of Cases 1 and 2, Respectively 

Case Svstern a Svstem 6 

1 A'x 2 b, x unrestricted Ay = 0 ,  y 2 0, y'b > 0 
(M-F) 

Conservativeness: A Petri net N i s  said to be (partially) 
conservative if there exists a positive integer y(p) for every 
(some) place p such that the weighted sum of tokens, MTy 
= M iy  = a constant, for every M E R(M$ and for any fixed 
initial marking MO. It is easy to see from (34) that: 

Theorem 30: A Petri net N is (partially) conservative iff 
there exists an m-vector yof positive (nonnegative) integers 
such that Ay = 0, y # 0. 

Repetitiveness: A Petri net N i s  said to be (partially) repet- 
itive if there exists a marking MO and a firing sequence U 
from MO such that every (some) transition occurs infinitely 
often in U. 

Tbeorem37:A Petri net N i s  (partially) repetitive iffthere 
exists an n-vector x of positive (nonnegative) integers such 
that A'x 2 0, x # 0. 

Proof: Suppose that there exists x > 0 such that ATx L 
0. Then there exist two markings MO and M such that M - 
MO = ATx L 0 or M 2 MO. Choose MO (and thus M) large 
enough that a firing sequence U, such that 3 = x, can be 
repeated indefinitely. Then every transition will occur infi- 
nitely often in this firing sequence. The converse is  also 
true. U 

Consistency: A Petri net N i s  said to be (partially) con- 
sistent if there exists a marking MO and a firing sequence 
ofrom MO backto M,suchthatevery(some)transitionoccurs 
at least once in U. 

Theorem 32: A Petri net N is (partially) consistent iffthere 
exists an n-vector x of positive (nonnegative) integers such 
that A'x = 0, x # 0. 

Proof: Suppose a Petri net i s  consistent. Then from (5) 
there exists an x > 0 such that MO = MO + ATx or A'x = 0. 
Conversely, supposex > 0, A'x = 0. Choose MO and M large 
enough that M - MO = ATx = 0, so that a firing sequence 

0 
It i s  obvious that conservativeness i s  a special case of 

structural boundedness and that consistency is a special 
case of repetitiveness. Partial conservativeness, consis- 
tency, and repetitiveness are the relaxation of positive vec- 
tors x or y to nonnegative vectors x or y. The complete char- 
acterizations (necessary and sufficient conditions) of these 
structural properties are summarized in Table 5. Table 6 

U, such that 7i = x, can be repeated. 

2 
(M-F) Table 5 Necessary and Sufficient Conditions for Some 

A'x 2 b, x 2 0 Ay 5 0 ,  y 2 0 ,  y'b > 0 

3 Ay = 0 ,  y > 0 
(Stiemke) (not conservative) (conservative) 

A'x 2 0, x unrestricted 
Structural ProDerties 

Necessarv and Sufficient 
4 A'x P 0, x 2 0 Ay 5 0 , y  > 0 Symbols Properties Cdnditions 

(Farkas) (not structurally bounded) (structurally bounded) SB Structurally Bounded 3 y > 0, Ay 5 0 

3 y > 0, Ay = 0 
(or il x > 0 ,  A'x 2 0) 

CN CoNservative 

n-vector x L 0 such that A'x 2 0. Then there exist two mark- 
ingsMandM,,suchthatM - Mo=ATx~OorM~Mo.Choose  
MO (and thus M) large enough so that a firing sequence U, 
such that 3 = x, can be repeated indefinitely. The net will 
be unbounded. 0 

A placep in a Petri net i s  said to be structurallyunbounded 
if there exists a marking MO and a firing sequence U from 
MO such that p is unbounded. It i s  easy to  see that the fol- 
lowing corollary holds. 

Corollary: A place p in a Petri net N i s  structurally 
unbounded i f f  there exists an n-vector x of nonnegative 
integers such that ATx = AM 2 0, where thepth entry of AM 
> 0 (i.e., AM(p) > 0). 

?or 3 x, A'x 3 0) 
PCN Partially 3 y P 0 ,Ay  = 0 

RP Repetitive 3 x > 0 , A r x 2 0  
PRP Partially Repetitive 3 x P 0 , A ' x Z O  
cs Consistent 3 x > 0, A'x = 0 

(or j y ,  A y  2 O! 
PCS Partially Consistent 3 x P 0, A'x = 0 

CoNservative 

presents a l i s t  of corollaries that can be derived from the 
properties in Tables 4 and 5 using equations (33) and (34). 
It is helpful to understand the inequality conditions in 
Tables 4 and 5 if we interpret the expression A'x as the dif- 
ference of markings in each place, and the expression Ay 
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Table 6 Additional Structural Properties 

Case If  Then 

1 N is structurally N is both conservative and consistent. 
boundedand 
structurally live 
3 y 2 0, Ay S 0 3 no live MO for N. N i s  not consistent. 
3 y 2 0, Ay E 0 (N, MO) i s  not bounded for a live MO. 

N i s  not consistent. 
3 x 2 0, AJx S 0 3 no live MO for structurally bounded N. 

N i s  not conservative. 
3 x 2 0,  AJx 2 0 N i s  not structurally bounded. 

N i s  not conservative. 

2 
3 

4 

5 

as the change in a weighted sum of tokens for each tran- 
sition firing. 

Example 18: From the definitions of structural properties, 
it i s  easy to analyze structural properties for each net shown 
in Fig.51.The resultsareshown inTable7,whereeachentry 

d 

U 

Fig. 51. Illustration of structural properties in  Example 18. 

Table 7 Structural Properties of the 10 Nets Shown in  
Fig. 51, Where + and - In Each Row Indicate Holding or 
Not Holding the Structural Property in  the Row for Each 
Net Indicated in  the Column 

a b c d e f n h i i  

Structurally bounded + - - + - + - + + - 

Conservative - _ - - -  + - - - -  

Partially conservative - - - - - + + + - -  
Repetive - + + - -  + + - - +  
Partially repetitive - + + - + + + - + +  
Consistent - -  + - -  + - - - -  

+ - -  + - -  + +  Partially consistent - -  

Completely controllable - - + - - - - - - - 

Structually live - + + - -  + + - - +  
Structually B-fair + + - + - + + + c -  

+ or - in the table indicates whether or not the property 
in the corresponding row holds for the net indicated in the 
corresponding column, respectively. The matrix inequality 
conditions inTable5can be used toverifythe resultsshown 
in Table 7 (except for structural 6-fairness, which i s  dis- 
cussed later in this section). 0 

Example: For the Petri net shown in Fig. 15, there exists 
y = ( l  1 0 0 1 I)'zOsuchthatAy=(O 0 -1 0 0)' 

0. Therefore, by Case 2 in Table 6,  this net i s  not live for 

S- and T-invariants: An m-vector y (n-vector x) of integers 
i s  called an S-invariant (T-invariant) if Ay = 0 (A'x = 0). The 
following two theorems are obvious from the preceding 
discussion. 

Theorem 33: An m-vector y i s  an S-invariant i f f  M'y = 
Miy for any fixed initial marking MO and any M in /?(MO). 

0 
Theorem 34: An n-vector x 2 0 is a T-invariant i f f  there 

exists a marking MO and a firing sequence U from MO back 
0 

The set of places (transitions) corresponding to nonzero 
entries in an S-invariant y 2 0 (T-invariant x 2 0) is called 
the support of an invariant and is denoted by 11 ylI (llxll). A 
support is said to be minimal if no proper nonempty subset 
of the support i s  also a support. An invariant (vector) y i s  
said to be minimal i f  there i s  no other invariant y1 such that 
yl(p) 5 y(p) for all p. Given a minimal support of an in- 
variant, there i s  a unique minimal invariant corresponding 
totheminimal support. Wecall such an invariantaminimal- 
support invariant. The set of all possible minimal-support 
invariants can serve as agenerator of invariants. That is, any 
invariant can be written as a linear combination of minimal- 
support invariants [224]. 

Example 19: For the Petri net shown in Fig. 52, x1 = 
(1 0 1)'and x2 = (0 1 1)'are all possible minimal-sup- 

any initial marking. 0 

to MO with its firing count vector ti equal to x. 

'3 

Fig. 52. Illustration of minimal-support T-invariants 
(1 0 and (0 1 in Example 19. 

port T-invariants, where llxlII = {tl, t3}  and llx211 = { t 2 ,  t3}  
are corresponding minimal wpports. All other T-invariants 
such as x3 = (1 1 2)'and x4 = (2 1 3)'can be expressed 
as linear combinations of x1 and x2. That is, x3 = x1 + x2 and 
x4 = 2x, + x2. Note that there are many (non-unique) T-in- 
variants such as x3, x4, etc., corresponding to a nonminimal 
support { t , ,  t2, t 3 } .  (One easy way to find T-invariants in an 
example likethis istosimulateall "firingsequences"which 
would reproduceamarking, usingtheconceptof "negative 
or borrowed" tokens, i f  necessary.) 

Example 20: For the Petri net shown in Fig. 53(a), x1 = 
(1 1 1 I)', xp = (2  0 1 1)'and x3 = (0 2 1 1)'are 
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f2 3 p 2  p 2  p3 '2 

(a) (b) 
Fig. 53. Example20: the net shown in (a) i s  the reverse-dual 
of the net shown in (b), and vice-versa. One i s  obtained from 
the other by transposing the incidence matrix. 

three minimal T-invariants. However,onlyx,and x3are min- 
imal-support T-invariants. The support of xl, {tl, t2, t3, t4} 
is  not minimal since i t s  proper subset {t , ,  t3, t4} i s  the sup- 
port of another T-invariant x2. In other words, the support 
of a minimal T-invariant i s  not necessarily a minimal sup- 
port, although there i s  a unique minimal T-invariant cor- 
responding to each minimal support [224]. x1 can be 
expressed as a linear combination of x2 and x3, namely x, 
= (x, +x3)/2.ThePetri netshown in Fig.53(b)isthe"reverse- 
dual" of the net shown in Fig. 53(a), i.e., the net obtained 
by transposing the incidence matrix. Therefore, all the 
above statements can apply to the net shown in Fig. 53(b) 
if T-invariants are replaced by S-invariants and t, by p,, i = 

Equation (36) gives an upper bound on the number of 
tokens that place p can ever have. This upper bound can 
be improved if we apply (36) for all minimal-support S-in- 
variants. That is, 

1, 2, 3, 4. 0 

M(p) 5 Min [M~y,Iy,(p)I (37) 

where the minimum is  taken over all nonnegative minimal- 
support S-invariant y,such thaty,(p) # 0. (It i s  shown in [I791 
that this upper bound can not be improved by using any 
other invariants.) For a marked graph, the set of arcs in a 
directed circuit i s  a minimal support S-invariant, and (37) 
reduces to Theorem 8. 

Example 27: Consider the Petri net model of a readers- 
writers system shown in Fig. 11. Its incidence matrix A is  
given by 

tl 

f2 

t3 

(4 

PI P2 P3 P4 

-1 1 -1 0 

-1 0 - k  1 

1 - 1  1 0  

1 0  k - 1  - 

It i s  easy to verify the following. 

1) Ay, = 0 and Ay2 = 0 for y1 = (1 1 0 1)'and y2 = 
(0 1 1 k)'. y1 and y2 are minimal-support S-in- 
variants. Consider (37) for place p4 and MO = 
( k  0 k 0)'. 

= Min [ k l l ,  k /k ]  = 1. 

Thus, at most, one process can be in the state of writ- 
ing as required in the readers-writers system. 

2) The net is not completely controllable since Rank A 
= 2 # rn = 4. 

3) The net i s  SB, CN, PCN, RP, PRP, CS and PCS. 0 

Structural B-Fairness: The concept of B-fairness discussed 
in Section IV-H can be extended to  the following structural 
properties. Two transitions are said to be in a structural 
B-fair relation if they are in a B-fair relation for any initial 
marking. A Petri net i s  said to be structurally B-fair if it i s  a 
B-fair net for any initial marking. It is known [I931 that: 

1) A structural B-fair relation (as well as a B-fair relation) 
on the set of transitions Tis an equivalence relation, 
and thus partitions T into equivalence classes. 

2) Structural B-fairness implies B-fairness but the con- 
verse is not true. For example, the net (N, MO) shown 
in Fig. 54(a) i s  a B-fair net. But N i s  not structurally 
B-fair since there i s  an initial marking Ml such that (N, 
M,) i s  not a B-fair net as i s  shown in Fig. 54(b), where 

(b) 
Fig. 54. An example of a live asymmetric choice net which 
i s  not structurally B-fair: (a) (N, MO) is live and B-fair; (b) (N, 
M , )  is live but not B-fair, i.e., N i s  not structurally B-fair. 

the firing sequence tl t3 ts can be repeated infi- 
nitely often without firing tZ,  t4, or t6. 

3) A structurally bounded net i s  structurally B-fair iff 
either a) it i s  consistent and there i s  only one repro- 
duction vector (minimal nonnegative T-invariant x # 
0), or b) it i s  not consistent and there is no repro- 
duction vector. 

4) Every strongly-connected marked graph is  structur- 
ally B-fair. 

References [185], [193], [224]-[226], [250]-[252] are sug- 
gested for further reading on structural properties. 
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IX. MODIFIED PETRI NETS AND THEIR APPLICATIONS 

In this section, we discuss some modifications and exten- 
sions made on Petri nets that are useful for applications. 

A. Timed Nets and Minimum Cycle Time 

The concept of time is  not explicitly given in the original 
definitionof Petri nets. (SeeC.A. Petri'sviews[19] regarding 
the concepts of time and probability for Petri nets.) How- 
ever, for performance evaluation and scheduling problems 
of dynamic systems, it i s  (at present) necessary and useful 
to introduce time delays associated with transitions andlor 
places in their net models. Such a Petri net model is known 
as a (deterministic) timed net if the delays are determin- 
istically given, or as a stochastic net if the delays are prob- 
abilistically specified. The former i s  discussed in this sub- 
section and the latter in the next subsection. 

We are interested in finding how fast each transition can 
initiate firing in a periodically operated timed Petri net, 
where a period r i s  defined as the time to complete a firing 
sequence leading back to the starting marking after firing 
each transition at least once. r is  called a cycle time. Thus, 
it i s  assumed that the net is consistent, i.e., 

3 x > 0, A'x = 0. (38) 

Suppose there is a delay of at least d, sec associated with 
transition t,, i = 1,2 . . . n.This meansthatwhen t, isenabled, 
a,; tokenswill be reserved in placep,forat leastd,sec before 
their removal by firing t,, where a,; i s  the weight of the arc 
from p, to t,. We define the resource-time product (RTP) as 
the product of the number of tokens (resources) and the 
length of time that these tokens reside in a place. Thus, the 
RTP is  given by a,;d,x,, which can be written in matrix form 

(A-)'Dx (39) 

where A -  = [a,;],, . , and D is  the diagonal matrix of d,, i = 
1, 2 . . . n. (A-)'Dx represents the vector of m RTP's for m 
places, and each RTP considers only reserved tokens. Now, 
suppose there are on the average M(p,) tokens in place pl 
- during one cycle r. Then, the RTP in the vector is given by 
Mr. Since the RTP obtained by this way of measuring 
includes both reserved and nonreserved tokens, we have 
the following inequality: 

Mr 2 (A-)'Dx. (40) 

Taking the inner product of (40) with a nonnegative S-in- 
variant y and using the invariance, yLM = ylMo, we have 

- 

y;Mor 2 yl(A-)'Dx 

and 
r 2 y:(A-)'Dx/ylMo. (41 ) 

Therefore, a lower bound of the cycle r or the minimum 
cycle time is given by 

r,,, = m y  { y:(A-)'Dx/y:Mo} (42) 

where the maximum is taken over all independent minimal- 
support S-invariants, Y k  > 0. 

If we model a timed Petri net by assigning delay d, to each 
placep, instead of the transitions, then it can be shown that 
r,,, is  given by 

(43) rmln = max { Y:D(A+)'X/Y:M~} 
k 

where D i s  the diagonal matrix of d,, j = 1, 2, . . . , m and 
A +  = [a;],,., with a: being the weight of the arc from t, to 

Pl * 

For timed marked graphs, each directed circuit Ck yields 
a minimal-support S-invariant yk. Thus, both (42) and (43) 
reduce to 

r,,, = max {the total delay in Ck/MO(C&)) 

where MO(Ck) denotes the number of tokens in Ck at MO. Ref- 
erences [38], [44], [45], [46], [*], [49] are suggested for further 
reading on deterministic timed nets. 

Example 22: Consider the Petri net shown in Fig. 11, and 
let the delay of transition t, be d,, i = 1,2,3,4. From Example 
21, we know that y1 = (1 1 0 1)'and y2 = (0 1 1 k)' 
are two minimal-support S-invariants and that x = 
(1 1 1 1)' > 0 i s  a minimal positive T-invariant. Appli- 
cation of (42) yields 

r,,, = rnax {(d, + d2 + d3 + dJk, d2 + d4 

k 

+ (dl + dJ/k} 

= d2 + d4 + (dl + d3)/k. 0 

B. Stochastic Nets and Performance Modeling 

Suppose the delay d, associated with transition t, is  a non- 
negative continuous random variable X with the exponen- 
tial distribution function 

(44) Fx(x) = Pr [X cc x] = 1 - e-"" 

(or the probability density function, fx(x) = X,e-""). 
Then, the average delay i s  given by 

- 1 
d, = iom [ I  - Fx(x)ldx = s dx = - (45) 

X I  

where X, i s  the firing rate of transition t,. 
A stochastic Petri net (SPN) i s  a Petri net where each tran- 

sition i s  associated with an exponentially distributed ran- 
dom variable that expresses the delay from the enabling to 
the firing of the transition. In a case where several transi- 
tions are simultaneouslyenabled, thetransition that has the 
shortest delay will fire first. Due to the memoryless prop- 
erty of the exponential distribution of firing delays, it has 
been shown [40] that the reachability graph of a bounded 
SPN is isomorphic to a finite Markov Chain. The Markov 
Chain (MC) of a SPN can be obtained from the reachability 
graph of the Petri net (N, MO) underlying the SPN as follows. 
The MC state space is the reachability set R(Mo), and the 
transition rate from state M, to state M, i s  given by 9;, = 
A,!, the (possibly marking-dependent) firing rate of transi- 
tion t, transforming M, into M, (911 = X;, + A,', + . . . , if there 
are two or more transitions tit t,> . * . transforming M, into 
Mi); 91, = 0 if  no transitions transforming MI into M,, i # j ;  
and 9,, is  determined so as to satisfy Ci 9,, = 0. The square 
matrix Q = [qii] of order s = (R(Mo)( i s  known as the tran- 
sition rate matrix [30]. 

Let SPN (N, MO) be reversible, i.e., MO E R(Mi) for every Mi 
E /?(MO). Then, the SPN generates an ergodic continuous- 
timeMCand it i s  possibletocomputethesteady-state prob- 
ability distribution II by solving the linear system 

s 

IIQ = 0,  a, = 1 
,=I 
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where n, i s  the probability of being in state MI and lI = (nl, 
x2 * . xJ. From thesteady-statedistributionll, it i s  possible 
to find various performance estimates of a system modeled 
by the SPN. For example, 

1) The probability of a particular condition: Let B be the 
subset of R(Mo) satisfying a particular condition. Then, the 
required probability i s  given by 

P{BI = 2 T I .  (47) 
(a) 

2) The expected value of the number o f  tokens: Let B(i, 
n)  be the subset of /?(MO) for which the number of tokens 
in a k-bounded place p, i s  n. Then, the expected value of 
the number of tokens in place p, i s  given by 

k 

E[m,] = c [nP{B(i, n)}]. (48) 

3) The mean number o f  firings in unit time: Let B, be the 
subsetof R(M,)inwhichagiven transition t/isenabled.Then, 
the mean number of firings of t, in unit time is given by 

n = l  

(b) 
Fig. 56. (a) The reachability graph and (b) Markov chain of 
the SPN shown in Fig. 55. 

f, = M~EB,  c n, ( - ' i l )  (49) 

where A,! is  the firing rate of t, and -qil i s  the sum of firing 
rates of transitions enabled at Mi, i.e., the transition rate 
leaving state M,. 

Example 23: Consider the SPN shown in Fig. 55. Tran- 
sition t2 fires at a marking-dependent rate given by m2X2, 

h2 

Fig. 55. The stochastic Petri net used in Example 23. 

where m2 is the number of tokens in p2. Transitions tl, t3, 
t4 have (marking-independent) firing rates X1, X3, X4, respec- 
tively. The reachability graph and the MC of the SPN are 
shown in Fig. 56(a) and (b), respectively. The transition rate 
matrix Q is given by 

token at M, and M5, and 2 tokens at M2, we have 

E[m,] = xl + x5 + 2x2 = 6/11. 

Also, the mean number of firings of t3 i s  given by 

A3 
A1 + A3 1 3  f3 = ~ 

A,, + X3 

1 1 1  7 
3 33 

+ X15 + h2 + A3 A15 + X3 + h4 x3 

= 2 To + 3 x1+ - x3 = - 

since t3 i s  enabled at MO, M1, M3, and no other states. 0 
SPNs have been extended to a class of generalized sto- 

chastic Petri nets (GSPN) [31] in order to copewith the state- 
space explosion problem. A GSPN has two types of tran- 
sitions (timed and immediate). A timed transition has an 
exponentially distributed firing rate, and an immediate 
transition has no firing delay and is used to represent a log- 
ical control or an activity whose delay i s  negligible com- 
pared with those associated with timed transitions. Reduc- 
tion of the state space i s  achieved by discarding vanishing 
markings that correspond to some intermediate states in 
which thesystem spendszeroor negligibleamountoftime. 
When twoor more immediate transitionsare in conflict and 
enabled at the same time, the conflict must be resolved by 
specifying marking-dependent or independent branching 

where X15 = hl + As. 
Let hl = X5 = 112 and X2 = X3 = X4 = 1. Then, we can solve 

(46) numerically for ll and find x2 = 1/11, xo = x1 = x3 = 
n4 = ' K ~  = 2/11. Thus, for example, we can find the average 
number of tokens in place p2 as follows: since p2 has one 

probabilities. Useful resultsconcerning stochastic Petri nets 
with generally distributed transition delays have been given 
in [34] and their model i s  called an extended stochastic Petri 
net (ESPN). They partition transitions into three classes: 
exclusive, competitive, and concurrent. ESPN can be 
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mapped onto semi-Markov processes, under the condi- 
tions that the firing delay of all concurrent transitions i s  
exponentially distributed, and that competitive transitions 
resample a new firing delay whenever they are enabled. 
Using a similar approach, an embedded Markovchain tech- 
nique has been presented for the analysis of DSPN (deter- 
ministic and stochastic Petri nets) containing both deter- 
ministic and stochastic transition firing delays [32]. Papers 
in two Proceedings [28], [29] and their references are sug- 
gested for further reading on these and other types of sto- 
chastic nets and their applications. 

C. High-Level Nets and Logic Programs 

High-level nets, in a broad sense, include predicatekran- 
sition nets [2271, colored Petri nets [229], and nets with indi- 
vidual tokens [248]. A detailed discussion of these nets i s  
beyond thescopeof this paper. Here,weinformallydiscuss 
only elementary aspects of high-level nets and their appli- 
cations to modeling and analysis of logic programs. 

We illustrate the transition firing rule of high-level nets 
using the simple predicatekransition net shown in Fig. 57. 

W 
(C) 

Fig. 57. Illustration of transition firing rule in a high-level 
net: (a) before firing, (b) after firing with substitution {a l x ,  
b(y ,c lz} ,  and (c )  after firingwith substitution {d lx ,  aly,blz}. 

The net consists of one transition t and four places (two 
input placesp, andp2and twooutput placesp,andp,). Note 
that the four arcs are labeled with 2x, ( x ,  y )  + ( y ,  z), ( x ,  
z )  and e. The arc label dictates how many and which kinds 
of ”colored” tokens will be removed from or added to the 
places. For example, when the transition t in Fig. 57 fires, 
the following will occur: 

p, loses two tokens of the same color, x ;  
p2 loses two tokens of different colors, ( x ,  y )  and ( y ,  
Z); 
p3 gets one token of the color, ( x ,  z ) ;  and 
p4 gets one token of the color, e (a constant). 

The initial marking of the net consists of the following: 

p1 has four colored tokens, two a’s and two d’s; 
p2 has three colored tokens (ordered pairs), ( a ,  b) ,  (b ,  
c) and ( d ,  a ) ;  
p3 and p4 have no tokens initially. 

In the above, variables are denoted by x ,  y ,  z, . . . and 
constants are by a,  b, c, d, . . . . For each transition, a 
variable of the same symbol appearing on incoming and 
outgoing arcs denotes the same variable. A constant of the 
same symbol i s  the same throughout the entire net. A tran- 
sition t i s  said to  be enabled if there are enough tokens of 
the “right”co1ors in each input placeof t. Here, the “right” 
colors mean the existence of consistent substitutions of 
constants into variables, which are consistent with the arc 
labelings and possibly additional constraints. For example, 
the transition t i n  Fig. 57(a) i s  enabled since there are enough 
tokens in i t s  input places and there are two consistent sub- 
stitutions { a l x ,  bly, c l z }  and { d (x ,  a ( y ,  b iz } .  Thus, there 
are two different (colored) ways of firing t with these two 
different substitutions. The nets shown in Fig. 57(b) and (c) 
show the markings after firing twith the substitutions { a i x ,  
bly, clz} and {dlx, a l y ,  biz}, respectively. 

A high-level net can beconsidered asastructurallyfolded 
version of a regular Petri net if the numberof colors is finite. 
Thus, a high-level net can be unfolded into a regular Petri 
net by unfolding each place p into a set of places, one for 
each color of tokens which p may hold, and by unfolding 
each transition t into a set of transitions, one for each way 
that t may fire. For example, the high-level net shown in Fig. 
57(a) can be unfolded into the regular Petri net shown in 
Fig. 58. 

a 

d 

<a, b> 

c h .  c> 

cd. a> 

<a, c> 

e 

cd. b> 

Fig. 58. The unfoleded net of the high-level net shown in 
Fig. 57. 

We now consider a high-level net representation of logic 
programs. A logic program consists of a set of Horn clauses 
written as 

B +- AT, A,, . . . , A,,, n 2 0. (50) 

All theA,’s and B are atomic formulae having the form P(tl, 
t2, . . . , tk), where P i s  a predicate symbol with k-ary argu- 
ment, and the t,‘s are terms. A term can be a variable or a 
constant. Clause (50) states that B holds if AI, A,, . . . and 
A,, are true. It can be represented as a transition having n 
input places, A,, A,, . . . ,A,,, and one output place B. When 
n = 0, eq. (50) represents the assertion of’a fact, B +,which 
corresponds to  a source transition without input places. 
Anotherspecialformof(50)is +-Al,A2,. . . ,A,,,n 2 1,which 
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is  a goal statement and corresponds to a sink transition 
without output places. 

Consider a simple logic program consisting of the fol- 
lowing five clauses: 

1) Parent (David, Mary) + 

2) Parent (Mary, Tom) + 

3) Ancestor (x, y) + Parent (x, y) 
4) Ancestor (x, z) + Parent (x, y), Ancestor (y, z) 
5) + Ancestor (x, Tom) 

Clauses 1) and 2) state “David is a parent of Mary”and “Mary 
i s  a parent of Tom,” respectively, and are assertions of facts. 
Clause 3) states, “x is an ancestor of y if x i s  a parent of y,” 
and 4) states ”x is an ancestor of z if x i s  a parent of y and 
y is an ancestor of z.” Clause 5) is a goal statement saying 
“Who is  an ancestor of Tom?” 

A formal procedure for transforming a given logic pro- 
gram into a high-level net i s  described in [148]. Presented 
below is an informal method for converting a logic program 
into the incidence matrix of i t s  high-level net. 

Given a logic program consisting of n clauses and m dis- 
tinct predicate symbols, the n x rn incidence matrix A = 
[a;,] of a high-level net corresponding to the logic program 
can be found by the following procedure. 

Step 7) Each clause in the program will be one row of 
the matrix (one transition in the net). 

Step 2) Each distinct predicate symbol in the program 
will be one column of the matrix (one place of 
the net). 

Step 3) The(i,j)entrya;,istheargument intheithclause 
and in the j t h  predicate symbol, where an argu- 
ment to the right of the + i s  prefixed with a neg- 
ative sign. If the jth predicate symbol appears 
more than once in the i t h  clause, then a;,will be 
the formal sum of all those arguments in the i t h  

This procedure converts the above logic program exam- 

Parent (p,) Ancestor (p2) 

row and j t h  column. 0 

ple into the following incidence matrix: 

where D, M, T denotes David, Mary, and Tom, respectively. 
From this incidence matrix, it iseasytodrawthe high-level 

net of the logic program shown in Fig. 59. There are two 
firing sequences U, and u2which start from the empty mark- 
ing,firethegoal transition t5, and end attheempty marking. 
The first one u1 i s  as follows: fire t2 to produce a token (M, 
T) in P,; then fire t3 to move the token (M, T) from p1 to 
p2; finally fire ts with substitution {Mix},  i.e., x = Mary is 
an ancestor of Tom. The second firing sequence u2 i s  as fol- 
lows: fire tl and t2 to produce the two tokens 
(D, M), (M, T) in pl; fire t3 with substitution { M  Ix, T (y }  
to move (M, T) from p1 to p2; then fire t4 with substitution 
{Dlx, MJy,  Tlz} resulting a token (D, T) in p2; finally fire 
t5 with {Dlx}, i.e., x = David is another ancestor of Tom. 

It should be noted that the above two firing sequences 

I ‘3 

Parent ( ) Ancestor( )- 

/<M, T> \ 

<*, L> 
Fig. 59. A high-level net representation of a logic program. 

u1 and U, have the following substitution vectors XI and X2: 

t l  

f2 

x, = t3 

t4 

f 5  

and 

tl 

f2  

x2 = t3  

t4 

f 5  

where 0 denotes no firings and { } denotes a firing with 
no substitutions. The above vectors can be interpreted as 
“T-invariants” of the high-level net since they satisfy 
AToXl = OandAToX2 = 0,whereodenotes”matrix-product 
with substitutions” [148]. 

In general, the following theorem has been proved in 
[149]. 

Theorem 35: Let N be a high-level net representation of 
a Horn clause logic program (i.e., every transition in N has 
at most one output place). Let N be finitely colored and ts 
be a goal transition. There exists a firing sequence which 
reproduces the empty marking and fires the goal transition 
tg in N if and only if N has a nonnegative T-invariant X such 

References [227]-[238], [253], [254], and [315] are sug- 
gested for further reading on high-level netsand theirappli- 
cations. 

Several other modifications and extensions of Petri nets 
have been proposed. Examples of such nets are continuous 
Petri nets [239], FIFO nets [240], [255], placeltransactor 
(pta) nets [241], self-modifying nets [242], [243], and a hier- 
archy of nets [244]. Due to the space limitation, we have to 
refer the interested readers to the above references. 

that X(t,) # 0. 0 

X. CONCLUDING REMARKS 

What has been presented in this tutorial paper i s  a brief 
review of a rich body of knowledge in the field of Petri nets. 
It i s  not possible to discuss all aspects of the field in a single 
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paper.Thus, emphasis is placed on thearea known as place1 
transition systems, as well as on applied Petri-net theory. 
Timed, stochastic, and high-level nets and their application 
examples deserve more space, since there i s  growing inter- 
est in these areas. However, a separate paper i s  necessary 
for a more comprehensive presentation of these subjects. 
The field i s  still young and much work remains to  be done. 
We hopethatthis paperwill helpstimulate further research 
and developments in the emerging field of Petri nets. 
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