
Model Checking: A Tutorial Overview

Stephan Merz

Institut für Informatik, Universität München
merz@informatik.uni-muenchen.de

Abstract. We survey principles of model checking techniques for the
automatic analysis of reactive systems. The use of model checking is
exemplified by an analysis of the Needham-Schroeder public key protocol.
We then formally define transition systems, temporal logic, ω-automata,
and their relationship. Basic model checking algorithms for linear- and
branching-time temporal logics are defined, followed by an introduction
to symbolic model checking and partial-order reduction techniques. The
paper ends with a list of references to some more advanced topics.

1 Introduction

Computerized systems pervade more and more our everyday lives. We rely on
digital controllers to supervise critical functions of cars, airplanes, and indus-
trial plants. Digital switching technology has replaced analog components in the
telecommunication industry, and security protocols enable e-commerce applica-
tions and privacy. Where important investments or even human lives are at risk,
quality assurance for the underlying hardware and software components becomes
paramount, and this requires formal models that describe the relevant part of
the systems at an adequate level of abstraction. The systems we are focussing
on are assumed to maintain an ongoing interaction with their environment (e.g.,
the controlled system or other components of a communication network) and
are therefore called reactive systems [60,94]. Traditional models that describe
computer programs as computing some result from given input values are inad-
equate for the description of reactive systems. Instead, the behavior of reactive
systems is usually modelled by transition systems.

The term model checking designates a collection of techniques for the auto-
matic analysis of reactive systems. Subtle errors in the design of safety-critical
systems that often elude conventional simulation and testing techniques can be
(and have been) found in this way. Because it has been proven cost-effective
and integrates well with conventional design methods, model checking is being
adopted as a standard procedure for the quality assurance of reactive systems.

The inputs to a model checker are a (usually finite-state) description of the
system to be analysed and a number of properties, often expressed as formulas
of temporal logic, that are expected to hold of the system. The model checker
either confirms that the properties hold or reports that they are violated. In the
latter case, it provides a counter-example: a run that violates the property. Such
a run can provide valuable feedback and points to design errors. In practice, this
view turns out to be somewhat idealized: quite frequently, available resources

F. Cassez et al. (Eds.): MOVEP 2000, LNCS 2067, pp. 3−38, 2001.
 Springer-Verlag Berlin Heidelberg 2001

only permit to analyse a rather coarse model of the system. A positive verdict
from the model checker is then of limited value because bugs may well be hidden
by the simplifications that had to be applied to the model. On the other hand,
counter-examples may be due to modelling artefacts and no longer correspond
to actual system runs. In any case, one should keep in mind that the object of
analysis is always an abstract model of the system. Standard procedures such as
code reviews are necessary to ensure that the abstract model adequately reflects
the behavior of the concrete system in order for the properties of interest to be
established or falsified. Model checkers can be of some help in this validation
task because it is possible to perform “sanity checks”, for example to ensure
that certain runs are indeed possible or that the model is free of deadlocks.

This paper is intended as a tutorial overview of some of the fundamental
principles of model checking, based on a necessarily subjective selection of the
large body of model checking literature. We begin with a case study in sec-
tion 2 where the application of model checking is considered from a user’s point
of view. Section 3 reviews transition systems, temporal logics, and automata-
theoretic techniques that underly some approaches to model checking. Section 4
introduces basic model checking algorithms for linear-time and branching-time
logics. Finally, section 5 collects some rather sketchy references to more advanced
topics. Much more material can be found in other contributions to this volume
and in the textbooks and survey papers [27,28,69,97,124] on the subject. The
paper contains many references to the relevant literature, in the hope that this
survey can also serve as an annotated bibliography.

2 Analysis of a Cryptographic Protocol

2.1 Description of the Protocol

Let us first consider, by way of example, the analysis of a public-key authen-
tication protocol suggested by Needham and Schroeder [104] using the model
checker Spin [65]. Two agents A(lice) and B(ob) try to establish a common se-
cret over an insecure channel in such a way that both are convinced of each
other’s presence and no intruder can get hold of the secret without breaking the
underlying encryption algorithm. This is one of the fundamental problems in
cryptography: for example, a shared secret could be used to generate a session
key for subsequent communication between the agents.

The protocol is pictorially represented in Fig. 1.1 It requires the exchange
of three messages between the participating agents. Notation such as 〈M 〉C
denotes that message M is encrypted using agent C ’s public key. Throughout,
we assume the underlying encryption algorithm to be secure and the private keys
of the honest agents to be uncompromised. Therefore, only agent C can decrypt
〈M 〉C to learn M .

1 The original protocol includes communication between the agents and a central
key server to distribute the public keys of the agents. We concentrate on the core
authentication protocol, assuming all public keys to be known to all agents.

4 S. Merz

✧✦
�✥

A ✧✦
�✥

B
�

1. 〈A,NA〉B

✛ 2. 〈NA,NB 〉A

✸

3. 〈NB 〉B

Fig. 1. Needham-Schroeder public-key protocol.

1. Alice initiates the protocol by generating a random number NA and send-
ing the message 〈A,NA〉B to Bob (numbers such as NA are called nonces
in cryptographic jargon, indicating that they should be used only once by
any honest agent). The first component of the message informs Bob of the
identity of the initiator. The second component represents “one half” of the
secret.

2. Bob similarly generates a nonce NB and responds with the message 〈NA,
NB 〉A. The presence of the nonce NA generated in the first step, which only
Bob could have decrypted, convinces Alice of the authenticity of the message.
She therefore accepts the pair 〈NA,NB 〉 as the common secret.

3. Finally, Alice responds with the message 〈NB 〉B . By the same argument
as above, Bob concludes that this message must originate with Alice, and
therefore also accepts 〈NA,NB 〉 as the common secret.

We assume all messages to be sent over an insecure medium. Attackers may
intercept messages, store them, and perhaps replay them later. They may also
participate in ordinary runs of the protocol, initiate runs or respond to runs
initiated by honest agents, who need not be aware of their partners’ true identity.
However, even an attacker can only decrypt messages that were encrypted with
his own public key.

The protocol contains a severe flaw, and the reader is invited to find it before
continuing. The error was discovered some 17 years after the protocol was first
published, using model checking technology [91].

2.2 A Promela Model

We represent the protocol in Promela (“protocol meta language”), the input
language for the Spin model checker.2 In order to make the analysis feasible, we
make a number of simplifying assumptions:

– We consider a network of only three agents: A, B, and I(ntruder).

2 The full code is available from the author.

5Model Checking: A Tutorial Overview

– The honest agents A and B can only participate in one protocol run each.
Agent A can only act as initiator, and agent B as responder. It follows that
A and B need to generate at most one nonce.

– The memory of agent I is limited to a single message.

Although the protocol is very small, our simplifications are quite typical of the
analysis of “real-world” systems via model checking: models are usually required
to be finite-state, and the complexity of analysis typically depends exponentially
on the size of those models. (Esparza’s contribution to this volume surveys the
state of the art concerning model checking techniques for infinite-state models.)
Of course, our assumptions imply that certain errors such as “confusion” that
could arise when multiple runs of the protocol interfere will go undetected in our
model. This explains why model checking is considered a debugging rather than
a verification technique. When no errors have been found on a small model, one
can consider somewhat less stringent restrictions, as far as available resources
permit. In any case, it is important to clearly identify the assumptions that
underly the system model in order to assess the coverage of the analysis.

With these caveats, it is quite straightforward to write a model for the hon-
est agents A and B from the informal description of section 2.1. Promela is a
guarded-command language with C-like syntax; it provides primitives for mes-
sage channels and operations for sending and receiving messages. We first declare
an enumeration type that contains symbolic constants to make the model more
readable. Because one nonce suffices for each agent, we simply assume that these
have been precomputed and refer to them by symbolic names.

mtype = { ok, err, msg1, msg2, msg3, keyA, keyB, keyI,
agentA, agentB, agentI, nonceA, nonceB, nonceI };

We represent encrypted messages as records that contain a key and two data
entries. Decryption can then be modelled as pattern-matching on the key entry.

typedef Crypt { mtype key, data1, data2 };

The network is modelled as a single message channel shared by all three
agents. For simplicity, we assume synchronous communication on the network,
indicated by a buffer length of 0; this does not affect the possible communication
patterns but helps to reduce the size of the model. A message on the network
is modelled as a triple consisting of an identification tag (the message number),
the intended receiver (which the intruder is free to ignore), and an “encrypted”
message body.

chan network = [0] of { mtype, /* msg# */
mtype, /* receiver */
Crypt };

Figure 2 contains the Promela code3 for agent A. Initially, a partner (either
B or I) is chosen nondeterministically for the subsequent run (the token :: in-
troduces the different alternatives of nondeterministic selection), and its public
3 In actual Promela, record formation is not available as a primitive operation, but
must be simulated by a series of assignments.

6 S. Merz

mtype partnerA;
mtype statusA = err;

active proctype Alice() {
mtype pkey, pnonce;
Crypt data;

if /* choose a partner for this run */
:: partnerA = agentB; pkey = keyB;
:: partnerA = agentI; pkey = keyI;
fi;
network ! (msg1, partnerA, Crypt{pkey, agentA, nonceA});

network ? (msg2, agentA, data);
(data.key == keyA) && (data.info1 == nonceA);
pnonce = data.info2;

network ! (msg3, partnerA, Crypt{pkey, pnonce, 0});
statusA = ok;

}

Fig. 2. Promela code for agent A.

key is looked up. A message of type 1 is then sent to the chosen partner, after
which agent A waits for a message of type 2 intended for her to arrive on the
network. She verifies that the message body is encrypted with her key and that
it contains the nonce sent in the first message. (Promela allows Boolean condi-
tions to appear as statements; such a statement blocks if the condition is found
to be false.) If so, she extracts the partner’s nonce, responds with a message of
type 3, and declares success. (The variable statusA will be used later to express
correctness statements about the model.)

The code for agent B is similar, exchanging sending and reception of mes-
sages.

In contrast, the intruder cannot be modelled using a fixed protocol—the
purpose of the analysis is to let Spin find the attack if one exists at all. Instead,
agent I is modelled highly nondeterministically: we describe the actions that
are possible at any given state and let Spin choose among them. The overall
structure of the code shown in Fig. 3 is an infinite loop that offers a choice
between receiving and sending of messages on the network.

The first alternative models the reception or interception of a message (the
“don’t care” variable “_” reflects the fact that the intruder need not respect
the intended recipient of a message). The message body may be stored in the
variable intercepted, even if it cannot be decrypted. If, moreover, the message
has been encrypted for agent I, it can be analyzed to extract nonces; since the
model is based on a fixed set of nonces, it is enough to set Boolean flags for
nonces that the intruder has learnt so far.

7Model Checking: A Tutorial Overview

bool knows_nonceA, knows_nonceB;

active proctype Intruder() {
mtype msg, recpt;
Crypt data, intercepted;
do
:: network ? (msg, _, data) ->

if /* perhaps store the message */
:: intercepted = data;
:: skip;
fi;
if /* record newly learnt nonces */
:: (data.key == keyI) ->

if
:: (data.info1 == nonceA) || (data.info2 == nonceA)

-> knows_nonceA = true;
:: else -> skip;
fi;
/* similar for knows_nonceB */

:: else -> skip;
fi;

:: /* Replay or send a message */
if /* choose message type */
:: msg = msg1;
:: msg = msg2;
:: msg = msg3;
fi;
if /* choose recipient */
:: recpt = agentA;
:: recpt = agentB;
fi;
if /* replay intercepted message or assemble it */
:: data = intercepted;
:: if

:: data.info1 = agentA;
:: data.info1 = agentB;
:: data.info1 = agentI;
:: knows_nonceA -> data.info1 = nonceA;
:: knows_nonceB -> data.info1 = nonceB;
:: data.info1 = nonceI;
fi;
/* similar for data.info2 and data.key */

fi;
network ! (msg, recpt, data);

od;
}

Fig. 3. Promela code for agent I.

8 S. Merz

The second alternative represents agent I sending a message. There are two
subcases: either replay a previously intercepted message or construct a new mes-
sage from the information learnt so far. Note that we allow arbitrary (“type-
correct”) entries for the unencrypted fields of a message. Of course, most of the
resulting combinations can be immediately recognized as inappropriate by the
honest agents. Our model therefore contains many deadlocks, which we ignore
during the following analysis.

2.3 Model Checking the Protocol

The purpose of the protocol is to ensure mutual authentication (of honest agents)
while maintaining secrecy. In other words, whenever both A and B have success-
fully completed a run of the protocol, then A should believe her partner to be
B if and only if B believes to talk to A. Moreover, if A successfully completes
a run with B then the intruder should not have learnt A’s nonce, and similarly
for B. These properties are can be expressed in temporal logic (cf. section 3.2)
as follows:

G(statusA = ok ∧ statusB = ok =⇒
(partnerA = agentB ⇔ partnerB = agentA))

G(statusA = ok ∧ partnerA = agentB =⇒ ¬knows nonceA)
G(statusB = ok ∧ partnerB = agentA =⇒ ¬knows nonceB)

We present Spin with the model of the protocol and the first formula. In
a fraction of a second, Spin declares the property violated and outputs a run
that contains the attack. The run is visualized as a message sequence chart,
shown in Fig. 4: Alice initiates a protocol run with Intruder who in turn (but
masquerading as A) starts a run with Bob, using the nonce received in the first
message. Bob replies with a message of type 2 that contains both A’s and B’s
nonces, encrypted for A. Although agent I cannot decrypt that message itself,
it forwards it to A. Unsuspecting, Alice finds her nonce, returns the second
nonce to her partner I, and declares success. This time, agent I can decrypt the
message, extracts B’s nonce and sends it to B who is also satisfied. As a result,
we have reached a state where A correctly believes to have completed a run with
I, but B is fooled into believing to talk to A. The same counterexample will
be produced when analysing the third formula, whereas the second formula is
declared to hold of the model.

The counterexample produced by Spin makes it easy to trace the error in
the protocol to a lack of explicitness in the second message: the presence of the
expected nonce is not sufficient to prove the origin of the message. To avoid the
attack, the second message should therefore be replaced with 〈B ,NA,NB 〉. After
this modification, Spin confirms that all three formulas hold of the model—which
of course does not prove the correctness of the protocol (see, e.g., [106] for work
on the formal verification of cryptographic protocols using interactive theorem
proving).

9Model Checking: A Tutorial Overview

Alice:0

8

Intruder:2

9

1!msg1,intruder,keyI,alice,nonceA

23

Bob:1

24

1!msg1,bob,keyB,alice,nonceA

32

33

1!msg2,alice,keyA,nonceA,nonceB

39

40

1!msg2,alice,keyA,nonceA,nonceB

48

49

1!msg3,intruder,keyI,nonceB,0

63

64

1!msg3,bob,keyB,nonceB,0

80

80

80

Fig. 4. Message sequence chart visualizing the attack.

3 Systems and Properties

Reactive systems can be broadly classified as distributed systems whose sub-
components are spatially separated and concurrent systems that share resources
such as processors and memories. Distributed systems communicate by message
passing, whereas concurrent systems may use shared variables. Concurrent pro-
cesses may share a common clock and execute in lock-step (time-synchronous
systems, typical for hardware verification problems) or operate asynchronously,
sharing a common processor. In the latter case, one will typically assume fairness
conditions that ensure processes that could execute are eventually scheduled for
execution. A common framework for the representation of these different kinds
of systems is provided by the concept of transition systems. Properties of (runs
of) transition systems are conveniently expressed in temporal logic.

10 S. Merz

3.1 Transition Systems

Definition 1. A transition system T = (S , I ,A, δ) is given by a set S of states,
a non-empty subset I ⊆ S of initial states, a set A of actions, and a total
transition relation δ ⊆ S × A × S (that is, we require that for every state s ∈ S
there exist A ∈ A and t ∈ S such that (s,A, t) ∈ δ).

An action A ∈ A is called enabled at state s ∈ S iff (s,A, t) ∈ δ holds for
some t ∈ S.

A run of T is an infinite sequence ρ = s0s1 . . . of states si ∈ S such that
s0 ∈ I and for all i ∈ N, (si ,Ai , si+1) ∈ δ holds for some Ai ∈ A.

A transition system specifies the allowed evolutions of the system: starting
from some initial state, the system evolves by performing actions that take the
system to a new state. Slightly different definitions of transition systems abound
in the literature. For example, actions are sometimes not explicitly identified.
We have assumed the transition relation to be total in order to simplify some of
the definitions below. Totality can be ensured by including a stuttering action
that does not change the state; only the stuttering action is enabled in deadlock
or quiescent states. Definition 1 is often augmented by fairness conditions, see
section 4.2. Some papers use the term Kripke structure instead of transition
system, in honor of the logician Saul A. Kripke who used transition systems to
define the semantics of modal logics [78].

In practice, reactive systems are described using modelling languages, in-
cluding (pseudo) programming languages such as Promela, but also process
algebras or Petri nets. The operational semantics of these formalisms is conve-
niently defined in terms of transition systems. However, the transition system
that corresponds to such a description is typically of size exponential in the
length of the description. For example, the state space of a shared-variable pro-
gram is the product of the variable domains. Modelling languages and their
associated model checkers are usually optimized for particular kinds of systems
such as synchronous shared-variable programs or asynchronous communication
protocols. In particular, for systems composed of several processes it is advan-
tageous to exploit the process structure and avoid the explicit construction of
a single transition system that represents the joint behavior of processes. This
will be further explored in section 4.4.

3.2 Properties and Temporal Logic

Given a transition system T , we can ask questions such as the following:

– Are any “undesired” states reachable in T , such as states that represent a
deadlock, a violation of mutual exclusion etc.?

– Are there runs of T such that, from some point onwards, some “desired” state
is never reached or some action never executed? Such runs may represent
livelocks where, for example, some process is prevented from entering its
critical section, although other components of the system may still make
progress.

11Model Checking: A Tutorial Overview

– Is some initial system state of T reachable from every state? In other words,
can the system be reset?

Temporal logic [45,79,94,95,117] is a convenient language to formally express
such properties. Let us first consider temporal logic of linear time whose formulas
express properties of runs of transition systems. Assume given a denumerable
set V of atomic propositions, which represent properties of individual states.

Definition 2. Formulas of propositional temporal logic PTL of linear time are
inductively defined as follows:

– Every atomic proposition v ∈ V is a formula.
– Boolean combinations of formulas are formulas.
– If ϕ and ψ are formulas then so are Xϕ (“ next ϕ”) and ϕ U ψ (“ϕ until
ψ”).

PTL formulas are interpreted over behaviors, that is, ω-sequences of states.
We assume that atomic propositions v ∈ V can be evaluated at states s ∈ S
and write s(V) to denote the set of propositions true at state s. For a behavior
σ = s0s1 . . . , we let σi denote the state si and σ|i the suffix sisi+1 . . . of σ.

Definition 3. The relation σ |= ϕ (“ϕ holds of σ”) is inductively defined as
follows:

– σ |= v (for v ∈ V) iff v ∈ σ0(V).
– The semantics of boolean combinations is defined as usual.
– σ |= Xϕ iff σ|1 |= ϕ.
– σ |= ϕ U ψ iff for some k ≥ 0, σ|k |= ψ and σ|j |= ϕ holds for all 0 ≤ j < k.

Other useful PTL formulas can be introduced as abbreviations: Fϕ (“finally
ϕ”, “eventually ϕ”) is defined as true U ϕ; it asserts that ϕ holds of some suffix.
The dual formula Gϕ ≡ ¬F¬ϕ (“globally ϕ”, “always ϕ”) requires ϕ to hold
of all suffixes. The formula ϕ W ψ (“ϕ waits for ψ”, “ϕ unless ψ”) is defined
as (ϕ U ψ) ∨ Gϕ and requires ϕ to hold for as long as ψ does not hold; unlike
ϕ U ψ, it does not require ψ to become true eventually.

The following formulas are examples for typical correctness assertions about
a two-process resource manager. We assume reqi and ownsi to be atomic propo-
sitions true when process i has requested the resource or when it owns the
resource.

G¬(owns1 ∧ owns2) : It is never the case that both processes own the resource.
In general, properties of the form G p, for non-temporal formulas p, express
system invariants.

G(req1 =⇒ F owns1) : Whenever process 1 has requested the resource, it will
eventually obtain it. Formulas of this form are often called response proper-
ties [93].

GF(req1 ∧ ¬(owns1 ∨ owns2)) =⇒ GF owns1 : If it is infinitely often the case
that process 1 has requested the resource when the resource is free, then
process 1 infinitely often owns the resource. This formula expresses a (strong)
fairness condition for process 1.

12 S. Merz

✖✕
✗✔
p

s0

✖✕
✗✔

¬p
s1

✖✕
✗✔
p

s2
✲ ✲ ✲

☛ ☛

Fig. 5. A transition system T such that T |= FG p but T �|= AFAG p.

G(req1 ∧ req2 =⇒ (¬owns2 W (owns2 W (¬owns2 W owns1)))) :
Whenever both processes compete for the resource, process 2 will be granted
the resource at most once before it is granted to process 1. This property,
known as “1-bounded overtaking”, is an example for a precedence property.
It is best understood as asserting the existence of four, possibly empty or
right-open, intervals that satisfy the respective conditions.

PTL formulas assert properties of single behaviors, but we are interested in
system validity : we say that formula ϕ holds of T (written T |= ϕ) if ϕ holds
of all runs of T . In this sense, PTL formulas express correctness properties of a
system. The existence of a run satisfying a certain property cannot be expressed
in PTL. Such possibility properties are the domain of branching-time logics such
as the logic CTL (computation tree logic [25]).

Definition 4. Formulas of propositional CTL are inductively defined as fol-
lows:

– Every atomic proposition v ∈ V is a formula.
– Boolean combinations of formulas are formulas.
– If ϕ and ψ are formulas then EXϕ, EGϕ, and ϕ EU ψ are formulas.

CTL formulas are interpreted at the states of a transition system. A path in
T is an ω-sequence σ = s0s1 . . . of states related by δ; it is an s-path if s = s0.

Definition 5. The relation T , s |= ϕ is inductively defined as follows:

– T , s |= v (for v ∈ V) iff v ∈ s(V).
– The semantics of boolean combinations is defined as usual.
– T , s |= EXϕ iff there exists an s-path s0s1 . . . such that T , s1 |= ϕ.
– T , s |= EGϕ iff there is an s-path s0s1 . . . such that T , si |= ϕ holds for all

i .
– T , s |= ϕ EU ψ iff there exist an s-path s0s1 . . . and k ≥ 0 such that

T , sk |= ψ and T , sj |= ϕ holds for all 0 ≤ j < k.

Derived CTL-formulas include EFϕ ≡ true EU ϕ, AXϕ ≡ ¬EX¬ϕ, and
AGϕ ≡ ¬EF¬ϕ. For example, the formula AG¬(owns1 ∧ owns2) expresses
mutual exclusion for the two-process resource manager, whereas AG(req1 =⇒
EF owns1) asserts that whenever process 1 requests the resource, it can even-
tually obtain the resource, although there may be executions that do not honor
the request. The formula AGEF init (for a suitable predicate init) asserts that
the system is resettable.

13Model Checking: A Tutorial Overview

System validity for CTL-formulas is defined by T |= ϕ if T , s |= ϕ holds
for all initial states s of T . The expressiveness of PTL and CTL can be com-
pared by analyzing which properties of transition systems can be formulated. It
turns out that neither logic subsumes the other one [84,41,43]: whereas PTL is
clearly incapable of expressing possibility properties, fairness properties cannot
be stated inCTL. More specifically, there is noCTL formula that is system valid
iff the PTL formula FGϕ is. In particular, it does not correspond to AFAGϕ,
as shown in Fig. 5: every run of the transition system T satisfies FG p (either
it stays in state s0 forever or it ends in state s2), but T , s0 �|= AFAG p (for the
run that stays in state s0 there is always the possibility to move to state s1).

Extensions and variations. The lack of expressiveness of CTL is due to the
requirement that path quantifiers (E, A) and temporal operators (X, G, U) al-
ternate. The logic CTL∗ [41,43] removes this restriction and (strictly) subsumes
both PTL and CTL. For example, the CTL∗ formula AFG p is system valid
iff the PTL formula FG p is.

The propositional µ-calculus [77], also known as µTL, allows properties to
be defined as smallest or greatest fixed points, generalizing recursive character-
izations of temporal operators such as

EGϕ ≡ ϕ ∧EXEGϕ

It strictly subsumes the logicCTL∗. For example, the formula νX .ϕ∧AXAXX
asserts that ϕ holds at every state with even distance from the current state.

Alternating-time temporal logic [6] refines the path quantifiers of branching
time temporal logics by allowing references to different processes (or agents) of
a reactive system. One can, for example, assert that the resource manager can
ensure mutual exclusion between the clients, or that the manager and client 1
can cooperate to prevent client 2 to access the resource.

3.3 ω-Automata

We have seen how to interpret temporal logic formulas over transition systems.
On the other hand, one can construct a finite automaton that represents the
models of a given PTL formula. This close connection between temporal logic
and automata is the basis for PTL decision procedures and model checking
algorithms because many properties of finite automata are decidable, even when
applied to ω-words. The theory of automata over infinite words and trees was
initiated by Büchi [19], Muller [101], and Rabin [110]. We present some of its basic
elements; for more comprehensive expositions see the excellent survey articles
by Thomas [120,121].

Definition 6. A Büchi automaton B = (Q , I , δ,F) over an alphabet Σ is given
by a finite set Q of locations4, a non-empty set I ⊆ Q of initial locations, a
transition relation δ ⊆ Q ×Σ × Q, and a set F ⊆ Q of accepting locations.
4 We use the term locations rather than the conventional states to avoid confusion
with the states of transition systems and temporal logic.

14 S. Merz

✲
✚✙
✛✘
q0 ✲b

✚✙
✛✘
✖✕
✗✔
q1

✌

a,b

✌

b

Fig. 6. A Büchi automaton.

A run of B over an ω-word w = a0a1 . . . ∈ Σω is an infinite sequence ρ =
q0q1 . . . of locations qi ∈ Q such that q0 ∈ I and (qi , ai , qi+1) ∈ δ holds for all
i ∈ N. The run ρ is accepting iff there exists some q ∈ F such that qi = q holds
for infinitely many i ∈ N.

The language L(B) ⊆ Σω is the set of ω-words for which there exists some
accepting run ρ of B. A language L ⊆ Σω is called ω-regular iff L = L(B) for
some Büchi automaton B.

Büchi automata are presented just as ordinary (non-deterministic) finite au-
tomata over finite words [68]. The notion of “final locations”, which obviously
does not apply to ω-words, is replaced by the requirement that a run passes in-
finitely often through an accepting location. Figure 6 shows a two-location Büchi
automaton with initial location q0 and accepting location q1 whose language is
the set of ω-words over {a, b} that contain only finitely many a’s.

Many properties of classical finite automata carry over to Büchi automata.
For example, the emptiness problem is decidable.

Theorem 1. For a Büchi automaton B with n locations, it is decidable in time
O(n) whether L(B) = ∅.

Proof. Because Q is finite, L(B) �= ∅ iff there exist locations q0 ∈ I , q ∈ F
and finite words x ∈ Σ∗ and y ∈ Σ+ such that q0

x⇒ q and q
y⇒ q (where

q w⇒ q ′ means that there is a path in B from location q to q ′ labelled with
w). The existence of such paths can be decided in linear time using the Tarjan-
Paige algorithm [119] that enumerates the strongly connected components of B
reachable from locations in I , and checking whether some SCC contains some
accepting location. ��

Observe that the construction used in the proof of theorem 1 implies that
an ω-regular language is non-empty iff it contains some word of the form xyω

where x ∈ Σ∗ and y ∈ Σ+.
Unlike the case of standard finite automata, deterministic Büchi automata

are strictly weaker than non-deterministic ones. For example, there is no deter-
ministic Büchi automaton that accepts the same language as the automaton B
of Fig. 6. Intuitively, the reason is that B uses unbounded non-determinism to
“guess” when it has seen the last input a (for a rigorous proof see e.g. [120]).
It is therefore impossible to prove closure of the class of ω-regular languages
under complement in the standard way (first construct a deterministic Büchi

15Model Checking: A Tutorial Overview

automaton equivalent to the initial one, then complement the set of accepting
locations). Nevertheless, Büchi [19] has shown that the complement of an ω-
regular language is again ω-regular. His proof relied on combinatorial arguments
(Ramsey’s theorem) and was non-constructive. A succession of papers has re-
placed this argument with explicit constructions, culminating in the following
result due to Safra [111] of essentially optimal complexity; Thomas [121,122]
explains different strategies for proving closure under complement.

Proposition 1. For a Büchi automaton B with n locations over alphabet Σ
there is a Büchi automaton B with 2O(n log n) locations such that L(B) = Σω \
L(B).

Other types of ω-automata have also been considered. Generalized Büchi
automata define the acceptance condition by a (finite) set F = {F1, . . . ,Fn}
of sets of locations [126]. A run is accepting if some location from every Fi is
visited infinitely often. Using a counter modulo n, it is not difficult to simulate
a generalized Büchi automaton by a standard one. The algorithm for checking
nonemptiness can be adapted by searching some strongly connected component
that contains some location from every Fi . Muller automata also specify the
acceptance condition as a set F of set of locations; a run is accepting if the set
of locations that appears infinitely often is an element of F . Rabin and Streett
automata use pairs of sets of locations to define even more elaborate acceptance
conditions, such as requiring that if locations in a set R ⊆ Q are visited infinitely
often then there are also infinitely many visits to locations in another set G ⊆ Q .
Streett automata can be exponentially more succinct than Büchi automata, and
deterministic Rabin and Streett automata are at the heart of Safra’s proof. It is
also possible to place acceptance conditions on the transitions rather than the
locations [7,36].

Alternating automata [102] present a more radical departure from the format
of Büchi automata and have attracted considerable interest in recent years. The
basic idea is to allow the automaton to make a transition from one location to
several successor locations that are simultaneously active. One way to define
such a relation is to let δ(q , a) be a positive Boolean formula with the locations
as atomic propositions. For example,

δ(q1, a) = (q2 ∧ q3) ∨ q4

specifies that whenever location q1 is active and input symbol a ∈ Σ is read, the
automaton moves to locations q2 and q3 in parallel, or to location q4. Runs of
alternating automata are no longer infinite sequences, but rather infinite trees
or dags of locations. Although they also define the class of ω-regular languages,
alternating automata can be exponentially more succinct than Büchi automata,
due to their inherent parallelism. On the other hand, checking for nonemptiness
is normally of exponential complexity.

3.4 Temporal Logic and Automata

We can consider a behavior as an ω-word over the alphabet 2V , identifying a
system state s and the set s(V) of atomic propositions that s satisfies. From

16 S. Merz

~(p U q),
~(~p U q),
~p, ~q, ~F

~(p U q),
~(~p U q),
p, ~q, ~F

p U q,
~p U q,
~p, q, F

p U q,
~(~p U q),

p, ~q, F

p U q,
~p U q,
p, q, F

~(p U q),
~p U q,

~p, ~q, F

q1 q2

q3 q4

q5 q6

Fig. 7. Büchi automaton for F ≡ (p U q) ∨ (¬p U q).

this perspective, PTL formulas and ω-automata are two different formalisms
to describe ω-words, and it is interesting to compare their expressiveness. For
example, the Büchi automaton of Fig. 6 can be identified with the PTL formula
FG b.

We outline a construction of a generalized Büchi automaton Bϕ for a given
PTL formula ϕ such that Bϕ accepts precisely those runs over which ϕ holds. In
view of the high complexity of complementation (cf. Prop. 1), the construction
is not defined by induction on the structure of ϕ but is based on a “global” con-
struction that considers all subformulas of ϕ simultaneously. The Fischer-Ladner
closure C(ϕ) of formula ϕ is the set of subformulas of ϕ and their complements,
identifying ¬¬ψ and ψ. The locations of Bϕ are subsets of C(ϕ), with the in-
tuition that an accepting run of Bϕ from location q satisfies the formulas in q .
More precisely, the locations q of Bϕ are all subsets of C(ϕ) that satisfy the
following healthiness conditions:

– For all ψ ∈ C(ϕ), either ψ ∈ q or ¬ψ ∈ q , but not both.
– If ψ1 ∨ ψ2 ∈ C(ϕ) then ψ1 ∨ ψ2 ∈ q iff ψ1 ∈ q or ψ2 ∈ q .
– Conditions for other boolean combinations are similar.
– If ψ1 U ψ2 ∈ q , then ψ2 ∈ q or ψ1 ∈ q .
– If ψ1 U ψ2 ∈ C(ϕ) \ q , then ψ2 /∈ q .

The initial locations of Bϕ are those locations containing ϕ. The transition
relation δ of Bϕ is defined such that (q , s, q ′) ∈ δ iff all of the following conditions
hold:

– s = q ∩ V is the set of atomic propositions that appear in V; these must
obviously be satisfied immediately by any run starting in q .

17Model Checking: A Tutorial Overview

– q ′ contains ψ (resp., does not contain ψ) if Xψ ∈ q (resp., Xψ ∈ C(ϕ) \ q).
– If ψ1 U ψ2 ∈ q and ψ2 /∈ q then ψ1 U ψ2 ∈ q ′.
– If ψ1 U ψ2 ∈ C(ϕ) \ q and ψ1 ∈ q then ψ1 U ψ2 /∈ q ′.

The healthiness and next-state conditions are justified by propositional con-
sistency and by the “recursion law”

ψ1 U ψ2 ≡ ψ2 ∨ (ψ1 ∧X(ψ1 U ψ2))

In particular, they ensure that whenever some location contains ψ1 U ψ2, sub-
sequent locations contain ψ1 for as long as they do not contain ψ2.

It remains to define the acceptance conditions of Bϕ, which must ensure
that every location containing some formula ψ1 U ψ2 will be followed by some
location containing ψ2. Let ψ1

1 U ψ1
2 , . . . , ψ

k
1 U ψk

2 be all subformulas of this
form in C(ϕ). Then Bϕ has the acceptance condition F = {F1, . . . ,Fk} where
Fi is the set of locations that do not contain ψi

1 U ψi
2 or that contain ψi

2.
As an example, Fig. 7 shows the automaton BF for the formula F ≡ (p U
q) ∨ (¬p U q). For clarity, we have omitted the edge labels, which are simply
the set of atomic propositions contained in the source location. The acceptance
sets corresponding to the subformulas p U q and ¬p U q are {q1, q3, q4, q5, q6}
and {q1, q2, q3, q5, q6}. For example, they ensure that no accepting run remains
forever in location q2.

This construction, which is very similar to a tableau construction [128], im-
plies the existence of a Büchi automaton that accepts precisely the models of
any given PTL formula. The following proposition is due to [87,126].

Proposition 2. For every PTL formula ϕ of length n there exists a Büchi
automaton Bϕ with 2O(n) locations that accepts precisely the behaviors of which
ϕ holds.

Combining proposition 2 and theorem 1, it follows that the satisfiability
problem for PTL is solvable in exponential time by checking whether L(Bϕ) = ∅;
in fact, Sistla and Clarke [114] have shown that the PTL satisfiability problem
is PSPACE-complete. Note that the above construction invariably produces a
Büchi automaton Bϕ whose size is exponential in the length of the formula ϕ.
Constructions that try to avoid this exponential blow-up [56,38,36] are the basis
for actual implementations.

On the other hand, it is not the case that every ω-regular language can be
defined by a PTL formula: Kamp [74] has shown that PTL formulas can define
exactly the same behaviors as first-order logic formulas of the monadic theory
of linear orders, that is, formulas built from =, <, and unary predicates Pv (x),
for v ∈ V, interpreted over the natural numbers, see also [54]. This fragment
of first-order logic is known to define the set of star-free ω-regular languages, a
result due to McNaughton and Papert [98,121]. For example, the set of behaviors
such that proposition p is true at the even positions (and may be true or false
elsewhere) is not PTL-definable [128]. To attain the level of expressiveness of
ω-regular languages (which, by Büchi’s theorem, is that of the monadic second
order theory of linear orders), PTL can be augmented by so-called “automaton
operators” [128], by fixed-point formulas [117] or by quantification over atomic

18 S. Merz

propositions. Unfortunately, the satisfiability problem for some of these logics
is of non-elementary complexity; moreover, few applications seem to require the
added expressiveness. Nevertheless, such a decision procedure has been imple-
mented in Mona [76] and performs surprisingly well on practical examples.

Automata for other temporal logics. Automata-theoretic characterizations of
branching-time logics [80] are based on tree automata [120,121], which again de-
fine a notion of regular tree languages. Alternating automata allow for a rather
uniform presentation of decision procedures for linear-time, branching-time, and
alternating-time temporal logics [103,125,82], based on different restrictions on
the automaton format. An essentially equivalent approach that does not men-
tion automata can be formulated in terms of logical games [118]. In particular,
winning strategies replace the traditional presentation of counter-examples; this
can give better feedback to the user who can then explore different scenarios
that violate a property. The model checkers Truth [85] and CWB-NC [31] are
based on these concepts.

4 Algorithms for Model Checking

Given a transition system T and a formula ϕ, the model checking problem is to
decide whether T |= ϕ holds or not. If not, the model checker should provide an
explanation why, in the form of a counterexample (i.e., a run of T that violates
ϕ). For this to be feasible, T is usually required to be finite-state.

In accordance with the two parameters of the model checking problem (T
and ϕ), there are two basic strategies when designing a model checking algo-
rithm: “global” algorithms recurse on the structure of ϕ and evaluate each of
its subformulas over all of T . “Local” algorithms, in contrast, explore only parts
of the state space of T , but check all subformulas of ϕ in the process. The
choice between global and local model checking algorithms does not affect the
worst-case complexity of model checking algorithms, but the average behavior
on practical examples can differ greatly. Observe that local algorithms may even
be able to find errors of infinite-state systems; this is also true for global algo-
rithms that represent the state space of T in an implicit form, as considered
in section 4.3. Traditionally, PTL model checking has been based on the local
approach, while model checkers for CTL and other branching-time logics have
used global algorithms.

4.1 Local PTL Model Checking

The model checking problem for PTL can be restated as follows: given T and
ϕ, does there exist a run of T that does not satisfy ϕ? This is a refinement of
the satisfiability problem considered in section 3.4: instead of asking whether
L(B¬ϕ) = ∅, we now ask whether the language defined by the product of T and
B¬ϕ is empty or not.

Formally, assume given a finite transition system T = (S , I ,A, δT) and a
Büchi automaton B¬ϕ = (Q , J , δB,F) that accepts precisely those behaviors

19Model Checking: A Tutorial Overview

dfs(boolean search_cycle) {
p = top(stack);
foreach (q in successors(p)) {

if (search_cycle and (q == seed))
report acceptance cycle and exit;

if ((q, search_cycle) not in visited) {
push q onto stack;
enter (q, search_cycle) into visited;
dfs(search_cycle);
if (not search_cycle and (q is accepting)) {

seed = q; dfs(true);
} } }
pop(stack);

}
// initialization
stack = emptystack(); visited = emptyset(); seed = nil;
foreach initial pair p {

push p onto stack;
enter (p, false) into visited;
dfs(false)

}

Fig. 8. On-the-fly PTL model checking algorithm.

that do not satisfy ϕ. The model checking algorithm operates on pairs (s, q)
of system states and automaton locations. A pair (s0, q0) is initial if s0 ∈ I
and q0 ∈ J are initial for T and B¬ϕ, respectively. A pair (s ′, q ′) is a successor
of (s, q) if both (s,A, s ′) ∈ δT (for some A ∈ A) and (q , s(V), q ′) ∈ δB hold:
T and B¬ϕ make joint transitions, the input for B¬ϕ being determined by the
values of the atomic propositions at the current system state. A pair (s, q) is
accepting if q ∈ F is an accepting automaton location; recall that T does not
define an accepting condition. In particular, we assume any fairness conditions
to be expressed as part of the formula ϕ.

As in the proof of theorem 1, T and B¬ϕ admit a joint execution iff there
is some accepting pair that is reachable from some initial pair and from itself.
The model checking algorithm shown in Fig. 8 is due to Courcoubetis et al [34].
It is called an “on-the-fly” algorithm because the exploration of reachable pairs
is interleaved with the search for acceptance cycles. The algorithm maintains a
stack of pairs whose successors need to be explored (resulting in a depth-first
search) and a set of pairs that have already been visited. Starting from the initial
pairs, the procedure dfs generates reachable pairs until some accepting pair is
found. At this point, the search switches to cycle search mode (indicated by
the boolean parameter search cycle) and tries to find a path that leads back
to the accepting pair. Pairs that have already been encountered in the current
search mode are not explored further. Courcoubetis et al. [34] have shown that
the algorithm will find some acceptance cycle if one exists, although it is not
guaranteed to find all cycles (even if the search were continued instead of exiting).

20 S. Merz

When an acceptance cycle is found, the sequence of system states contained
in the stack represents a run of T that violates formula ϕ and can be displayed
to the user as a counter-example. Observe that the algorithm of Fig. 8 needs
to store only the path back from the current pair back to the initial pair that
it started from, and the set of visited pairs. In particular, it does not have to
construct the entire product automaton. Of course, when no acceptance cycle
is found (and the system is declared error-free), all reachable pairs will have to
be explored eventually. However, state exploration stops as soon as an error has
been detected. This can be an important practical advantage: the state space of
a correct system is constrained by its invariants, which are usually broken when
errors are introduced. It is therefore quite common for buggy systems to have
many more reachable states, and resources could easily be exhausted if all of
them had to be explored.

For large models, storing the set of visited pairs may become a problem. If
one is willing to trade complete coverage for the ability to analyze systems that
would otherwise be unmanageable, one can instead maintain a set of hash codes
of visited pairs, possibly using several hashing functions [66].

The model checking algorithm of Fig. 8 has time complexity linear in the
product of the sizes of T and of B¬ϕ; by proposition 2 the latter can be expo-
nential in the size of ϕ. However, correctness assertions are often rather short,
and as we mentioned in section 3.1, the size of T can be exponential in the size of
the description input to the model checker. Therefore, in practice the size of the
transition system is the limiting factor. Given current technology, the analysis
of systems on the order of 106–107 reachable states is feasible. Techniques that
try to overcome this limit are described in section 4.4.

4.2 Global CTL Model Checking

Let us now consider global model checking algorithms for the logic CTL. By
[[ψ]]T (for a CTL formula ψ) we denote the set of states s of T such that T , s |=
ψ. The model checking problem can then be rephrased as deciding whether
I ⊆ [[ϕ]]T holds. The satisfaction sets [[ψ]]T can be computed by induction on
the structure of ψ, as follows:

[[v]]T = {s : v ∈ s(V)} (for v ∈ V)
[[¬ψ]]T = S \ [[ψ]]T

[[ψ1 ∨ ψ2]]T = [[ψ1]]T ∪ [[ψ2]]T
[[EXψ]]T = δ−1([[ψ]]T) = {s : t ∈ [[ψ]]T for some A, t s.t. (s,A, t) ∈ δ}
[[EGψ]]T = gfp(λX .[[ψ]]T ∩ δ−1(X))

[[ψ1 EU ψ2]]T = lfp(λX .[[ψ2]]T ∪ ([[ψ1]]T ∩ δ−1(X)))

where lfp(f) and gfp(f), for a function f : 2S → 2S , denote the least and greatest
fixed points of f . (These fixed points exist and can be computed effectively
because S is finite.) The clauses for the EG and EU connectives are justified
from the recursive characterizations

EGψ ≡ ψ ∧EXEGψ

ψ1 EU ψ2 ≡ ψ2 ∨ (ψ1 ∧EX(ψ1 EU ψ2))

21Model Checking: A Tutorial Overview

The clause for EU calls for the computation of a least fixed point. Intu-
itively, this is because ψ2 has to become true eventually, and thus the unfolding
of the fixed point must eventually terminate. On the other hand, the greatest
fixed point is required in the computation of [[EGψ]] because ψ has to hold ar-
bitrarily far down the path. Observe that the least fixed point of the function
corresponding to EGψ is the empty set, whereas the greatest fixed point in the
case of EU computes [[ψ1 EW ψ2]].

For an implementation, we need to be able to efficiently calculate the in-
verse image function δ−1. Sets [[ψ]]T that have already been computed can be
memorized in order to avoid recomputation of common subformulas. In order to
assess the complexity of the algorithm, first note that computation of the fixed
points is at most cubic in |S | (if the computation has not stabilized, at least one
state is added to or removed from the current approximation per iteration, and
every iteration may need to search the entire set of transitions, which may be
quadratic in |S |). Second, there are as many recursive calls as ϕ has subformulas,
so the overall complexity is linear in the length of ϕ and cubic in |S |.

Clarke, Emerson, and Sistla [29] have proposed a less naive algorithm whose
complexity is linear in the product of the sizes of the formula and the model.
For formulas ψ1 EU ψ2, the idea is to apply backward breadth-first search. For
EGψ, first the model is restricted to states satisfying ψ (which have already been
computed recursively), and the strongly connected components of this restricted
graph are enumerated. The set [[EGψ]]T consists of all states of the restricted
model from which some SCC can be reached; these states are again found using
breadth-first search.

Because fairness assumptions can not be formulated in CTL, they must
be specified as part of the model, and the model checking algorithm needs to
be adapted accordingly. For example, the SMV model checker [97] allows to
specify fairness constraints via CTL formulas. We define fair variants EGf and
EUf of the CTL operators whose semantics is as in definition 5, except that
quantifiers are restricted to fair paths, i.e., paths that contain infinitely many
states satisfying the constraints. Let us call a state s fair iff there is some fair s-
path; this is the case iff T , s |= EGf true holds. It is easy to see that ψ1 EUf ψ2
is equivalent to ψ1 EU (ψ2 ∧EGf true), hence we need only define an algorithm
to compute [[EGf ψ]]T . The algorithm of Clarke, Emerson, and Sistla can be
modified by restricting to those SCCs that for each fairness constraint ζi contain
some state satisfying ζi . The complexity of fair CTL model checking is thus
still linear in the sizes of the formula and the model. For more information
on different kinds of fairness constraints and their associated model checking
algorithms see [42,44,81].

A global model checking algorithm for the branching-time fixed point logic
µTL can be defined along the same lines. The complexity is then of the order
|ϕ|·|S |qd(ϕ) where qd(ϕ) denotes the nesting depth of the fixed point operators in
the formula ϕ. However, Emerson and Lei [44] observed that the computation of
fixed points can be optimized for blocks of fixed point operators of the same type,
resulting in a complexity of order |ϕ| · |S |ad(ϕ) where ad(ϕ) is the alternation
depth of fixed point operators of different type in ϕ. In particular, the complexity
of model checking alternation-free µTL is the same as for CTL [42,32].

22 S. Merz

4.3 Symbolic Model Checking

The ability to analyze systems of relevant size using model checking requires
efficient data structures to represent objects such as transition systems and sets
of system states. Any finite-state system can be encoded using a set {b1, . . . , bn}
of binary variables, just as ordinary data types of programming languages are
represented in binary form on a digital computer. Sets of states, for exam-
ple the set of initial states, can then be represented as propositional formu-
las over {b1, . . . , bn}, and sets of pairs of states, such as the pairs (s, t) re-
lated by δ (for some action) can be represented as propositional formulas over
{b1, . . . , bn , b′

1, . . . , b
′
n} where the unprimed variables represent the pre-state s

and the primed variables represent the post-state t . The size of the representing
formula depends on the structure of the represented set rather than on its size:
for example, the empty set and the set of all states are represented by false
and true, both of size 1. For this reason, such representations are often called
symbolic, and model checking algorithms that work on symbolic representations
are called symbolic model checking techniques [20,97].

Binary decision diagrams [16,18] (more precisely, reduced ordered BDDs) are
a data structure for the symbolic representation of sets that have become very
popular for model checking because they offer the following features:

– Every boolean function has a unique, canonical BDD representation. If shar-
ing of BDD nodes is enforced, equality of two functions can be decided in
constant time by checking for pointer equality.

– Boolean operations such as negation, conjunction, implication etc. can be
implemented with complexity proportional to the product of the inputs.

– Projection (quantification over one or several boolean variables) is easily
implemented; its complexity is exponential in the worst case but tends to be
well behaved in practice.

BDDs can be understood as compact representations of ordered decision
trees. For example, Fig. 9 shows a decision tree for the formula

(x1 ∧ y1) ∨ ((x1 ∨ y1) ∧ (x0 ∧ y0))

which is the characteristic function for the carry bit produced by an addition of
the two-bit numbers x1x0 and y1y0. To find the result for a given input, follow
the path labelled with the bit values for each of the inputs. The label of the
leaf indicates the value of the function. The tree is ordered because the variables
appear in the same order along every branch.

The decision tree of Fig. 9 contains many redundancies. For example, the
values of y0 and y1 are irrelevant if x0 and x1 are both 0. Similarly, y0 is irrele-
vant in case x0 is 0 and x1 is 1. The redundancies can be removed by combining
isomorphic subtrees (producing a directed acyclic graph from the tree) and elim-
inating nodes with identical subtrees. In our example, we obtain the BDD shown
on the left-hand side of Fig. 10, where the leaf labelled 0 and all edges leading
into it have been deleted for clarity. In an actual implementation, all BDD nodes
that have been allocated are kept in a hash table indexed by the top variable
and the two sub-BDDs, in order to avoid identical BDDs to be created twice.

23Model Checking: A Tutorial Overview

y1 y1 y1 y1 y1 y1 y1 y1

x0

x1

y0 y0 y0

x1

y0

0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1

0 1

0 1

0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

0 1 0 01 1

Fig. 9. Ordered decision tree for 2-bit carry.

x0

x1 x1

y0 y0

y1

1

0 1

1 0 1

0
1

1

1

x0

y0

x1 x1

y1

1

0 1

0 1

1

1

0 1

Fig. 10. BDDs for carry from 2-bit adder.

24 S. Merz

This ensures that two BDDs are functionally equivalent if and only if they are
identical.

For a fixed variable ordering the BDD representing any given propositional
formula is uniquely determined (and equivalent formulas are represented by the
same BDD), but BDD sizes can vary greatly for different variable orderings. For
example, the right-hand side of Fig. 10 shows a BDD for the same formula as be-
fore, but with the variable ordering x0, y0, x1, y1. When considering the carry for
n-bit addition, the BDD sizes for the variable ordering x0, . . . , xn−1, y0, . . . , yn−1
grow exponentially with n, whereas they grow only linearly for the ordering
x0, y0, . . . , xn−1, yn−1. It is usually a good heuristic to group “dependent” vari-
ables closely together [53,47]. In general, however, the problem of finding an
optimal variable ordering is NP-hard [17], and existing BDD libraries offer auto-
matic reordering strategies based on steepest-ascent heuristics [51,10]. There are
also functions (such as multiplication) for which no variable ordering can avoid
exponential growth. This is also a problem when representing queues, frequently
necessary for the analysis of communication protocols, and special-purpose data
structures have been suggested [13,57].

Given two BDDs f and g (w.r.t. some fixed variable ordering) the BDD that
corresponds to Boolean combinations such as f ∧g , f ∨g etc. can be constructed
as follows:

– If f and g are both terminal BDDs (0 or 1), return the terminal BDD for
the result of applying the operation.

– Otherwise, let v be the smaller of the variables at the root of f and g .
Recursively apply the operation to the sub-BDDs that correspond to v being
0 and 1 (often called the “co-factors” of f and g for variable v). The results
l and r correspond to the left- and right-hand branches of the result BDD.
If l = r , return l , otherwise return a BDD with top variable v and children
l and r .

When recursive calls to this “apply” function are memorized in a hash table,
the number of subproblems to be solved is at most the number of pairs of nodes
in f and g . Assuming perfect hashing, the complexity is therefore linear in the
product of the sizes of f and g .

Observing that existential quantification over propositional variables can be
computed as

(∃v : f) ≡ f |v=0 ∨ f |v=1

the computation of a BDD corresponding to the quantified formula can be re-
duced to calculating co-factors and disjunction, and in fact quantification over
a set of variables can be performed in a single pass over the BDD.

Symbolic CTL model checking. The naive CTL model checking algorithm of
section 4.2 is straightforward to implement based on a BDD representation of
the transition system T . It computes BDDs for the sets [[ψ]]T ; in particular, the
inverse image δ−1(X) of a set X that is represented as a BDD is computed as
the BDD

∃b′
1, . . . , b

′
n : δ ∧ X ′

25Model Checking: A Tutorial Overview

where X ′ is a copy of X in which all variables have been primed, and b′
1, . . . , b

′
n

are all the primed variables. Naive computation of fixed points is also very simple
using BDDs because equality of BDDs can be decided in constant time.

It is interesting to compare the complexity of this BDD-based algorithm
with that of explicit-state CTL model checking: Because the representation of
the transition relation using BDDs can be exponentially more succinct than an
explicit enumeration, the symbolic algorithm has exponential worst-case com-
plexity in terms of the BDD sizes for the transition relation. First, the number of
iterations required for the calculation of the fixed points may be exponential in
the number of the input variables, and secondly, the computation of the inverse
image may produce BDDs exponential in the size of their inputs. In practice,
however, the number of iterations required for stabilization is often quite small,
and the inverse image operation is well-behaved. This holds especially for hard-
ware verification problems of “regular” structure and with short data paths. (A
precise definition of “regular” is, however, very difficult.) For this class of prob-
lems, symbolic model checking has been successfully applied to the analysis of
systems with 10100 states and more [30]. The main problem is then to find a
variable ordering that yields a small representation of the transition system.

Symbolic model checking for other logics. The approach used for symbolic CTL
model checking extends basically unchanged for propositional µTL. An extension
for the richer relational µ-calculus [105] has been described by Burch et al. [20]
and implemented in the model checker µcke [12].

Symbolic model checking for PTL has been considered in [24,112]. The basic
idea is to represent each formula in C(ϕ) by a boolean variable and to define the
transition relation and acceptance condition of B¬ϕ in terms of these variables
rather than constructing the automaton explicitly.

Bounded model checking. Although symbolic model checking has traditionally
been associated with BDDs, other representations of boolean functions have also
attracted interest. A recent example is the bounded model checking technique
described in [11]. It relies on the observation that state sequences of fixed length,
say k , can be represented using k copies of the variables used to represent a single
state. The set of fixed-length sequences that represent terminating or looping
runs of a given finite-state transition system T can therefore be encoded by
formulas of (non-temporal) propositional logic, as well as the semantics of PTL
formulas ϕ over such sequences. For any given length k , the existence of a state
sequence of length k that represents a run of T satisfying ϕ can thus be reduced
to the satisfiability of a certain propositional formula, which can be decided using
efficient algorithms such as St̊almarck’s algorithm [115] or SATO [130]. On the
other hand, the small model property of PTL (which follows from the tableau-
based decision procedure discussed in section 3.4) implies that there is a run of
T satisfying ϕ if and only if there is some such run that can be represented by
a sequence of length at most |S | · 2|ϕ|. A model checking algorithm is therefore
obtained by enumerating all finite executions up to this bound.

26 S. Merz

✍✌
✎�
s0 ✍✌

✎�
s1

✍✌
✎�
s2

✲ ✲A

◗
◗

◗
◗◗�

C

✠
B

✠
B

�
B

✍✌
✎�
t0 ✍✌

✎�
t1 ✍✌

✎�
t2✲ ✲B ✲C

✠
D

✠
D

✠
D

Fig. 11. Transition systems for two processes.

4.4 Partial-Order Reductions

Whereas symbolic model checking derives its power from efficient data structures
for the representation and manipulation of large sets of sufficiently regular struc-
ture, algorithms based on explicit state enumeration can be improved if only a
fraction of the reachable pairs need to be explored. This idea has been applied
most successfully in the case of asynchronous systems that are composed of con-
current processes with relatively little interaction. The full transition system has
as its runs all possible interleavings of the actions of the individual processes.
For many properties, however, the relative order of concurrent actions is irrele-
vant, and it suffices to consider only a few sequentializations. More sophisticated
models than simple interleaving-based representations have been considered in
concurrency theory. In particular, Mazurkiewicz traces model runs as partial or-
ders of events. Reduction techniques that take advantage of the commutativity of
actions are therefore often called partial-order reductions, although the analogy
to Mazurkiewicz traces is usually rather superficial.

The main problem in the design of a practical algorithm is to detect when
two actions commute, given only the “local” knowledge available at a given
system state. For example, consider the transition systems for two processes
represented in Fig. 11. The left-hand process has a choice between executing
actions A and C , whereas the right-hand process must perform action B before
action C . Assuming that processes synchronize on common actions, action C is
disabled at the global state (s0, t0), whereas A, B , and D could be performed.
Moreover, all these actions commute at state (s0, t0). In particular, A and B
can be executed in either order, resulting in the global state (s1, t1). However,
it would be an error to conclude that only the successors of state (s0, t0) with
respect to action A need be considered, because action C can then never be
taken. The lesson is that actions that are currently disabled must nevertheless
be taken into account when constructing a reduced state space.

There is also a danger of prematurely stopping the state exploration because
actions are delayed forever along a loop. For an extreme example, consider again
the transition systems of Fig. 11 at the global state (s0, t0). The local action D
of the right-hand process is certainly independent of all other actions. The only
successor with respect to that action is again state (s0, t0). A naive modification

27Model Checking: A Tutorial Overview

of the model checking algorithm of Fig. 8 would stop generating further states
at that point, which is obviously inadequate.

Partial-order reduction algorithms [123,58,67,48,108] differ in how these prob-
lems are dealt with in order to arrive at a reasonably efficient algorithm that
is adequate for the given task. The general idea is to approximate the semantic
notion of commutativity of actions using syntactic criteria. For example, for a
language based on shared variables, two actions of different processes are cer-
tainly independent if they do not update the same variable. For message passing
communication, send and receive operations over the same channel are indepen-
dent at those states where the channel is neither empty nor full. Second, the
formula ϕ being analysed must be taken into account: call an action A visible
for ϕ if A may change the value of a variable that occurs in ϕ. Holzmann and
Peled [67] define an action to be safe if it is not visible and if it is provably inde-
pendent (with the help of syntactic criteria) of all actions of different processes,
even if these actions are currently disabled. The depth-first search algorithm
shown in figure 8 can then be modified so that only successor states are consid-
ered for some process that can only perform safe actions at the current state.
Consideration of the actions of other processes is thus delayed. However, the de-
layed actions must be considered before a loop is completed. This rather simple
heuristic can already lead to substantial savings and carries almost no overhead
because the set of safe actions can be determined statically.

More elaborate reduction techniques are considered, for example, in [58,107,
124]. There is always a tradeoff between the potential effectiveness of a reduc-
tion method and the overhead involved in computing a sufficient set of actions
that must be explored at a given state. Moreover, the effectiveness of partial-
order reductions in general depends on the structure of the system: while they
are useless for tightly synchronized systems, they may dramatically reduce the
numbers of states and transitions explored during model checking for loosely
coupled, asynchronous systems.

5 Further Topics

We conclude this survey with brief references to some more advanced topics in
the context of model checking. Several of these issues are addressed in detail in
other contributions to this volume.

Abstraction. Although techniques such as symbolic model checking and partial-
order reduction attempt to battle the infamous state explosion problem, the size
of systems that can be analysed using model checking remains relatively limited:
even astronomical numbers such as 10100 states are generated by systems with
a few hundred bits, which is a far cry from realistic hardware or software sys-
tems. Model checking must therefore be performed on rather abstract models.
It is often advocated that model checking be applied to high-level designs dur-
ing the early stages of system development because the payoff of finding bugs
at that level is high whereas the costs are low. For example, Lilius and Pal-
tor [88] describe a tool for model checking UML state machine diagrams [14],

28 S. Merz

and model checking of system specifications of similar degrees of abstraction has
been considered in [5,52].

When the analysis of big models cannot be avoided, it is rarely necessary to
consider them in full detail in order to verify or falsify some given property. This
idea can be formalized as an abstraction function (or relation) that induces some
abstract system model such that the property holds of the original, “concrete”
model if it can be proven for the abstract model. (Dually, abstractions can be
set up such that failure of the property in the abstract model implies failure in
the concrete model.) In general, the appropriate abstraction relation depends on
the application and has to be defined by the user. Abstraction-based approaches
are therefore not entirely automatic “push-button” methods in the same way
that standard model checking is. Given a concrete model and an abstraction
relation, one can either attempt to construct the abstract model using techniques
of abstract interpretation [35] or verify the correctness of a proposed abstract
model using theorem proving. There is a large body of literature on abstraction
techniques, including [26,37,89,90,99].

A particularly attractive way of presenting abstractions is in the form of pred-
icate abstractions where predicates of interest at the concrete level are mapped
to Boolean variables at the abstract level. The abstract models can then be
presented as verification diagrams, which are intuitively meaningful to system
designers and can be used to (interactively) verify systems of arbitrary complex-
ity [39,92,113,75,22].

For restricted classes of systems, it may be possible to apply fixed abstrac-
tion mappings (an example is provided by parameterized systems with simple
communication patterns [9]) and thus obtain completely automatic methods.
Valmari, in his contribution to this volume, also considers a fixed notion of ab-
straction that is amenable to full automation.

Symmetry reductions. Informal correctness arguments are often simplified by
appealing to some form of symmetry in the system. For examples, components
may be replicated in a regular manner, or data may be processed such that
permuting individual values does not affect the overall behavior. More formally,
a transition system T is said to be invariant under a permutation π of its states
and actions if (s,A, t) ∈ δ iff (π(s), π(A), π(t)) ∈ δ and s ∈ I iff π(s) ∈ I holds for
all states s, t and all actions A. T is invariant under a group G of permutations
if it is invariant under every permutation in the group. Such a group G induces
an equivalence relation on the set of states defined by s ∼ t iff t = π(s) for some
π ∈ G . Provided the properties are also insensitive to the permutations in G ,
one can check the quotient of T under ∼ and obtain a system that can be much
smaller [116,23,70,71].

Infinite-state systems. The extension of model checking techniques to infinite-
state systems with sufficiently regular state spaces has been an area of active
research in recent years [21,49,50,100]. See Esparza’s contribution to this volume
for more details.

Parameterized systems. One is often interested in the properties of a family of
finite-state systems that differ in some parameter such as the number of pro-

29Model Checking: A Tutorial Overview

cesses. Although individual members of the family can be analyzed using stan-
dard model checking techniques, the verification of the entire family requires
additional considerations. A natural idea is to perform standard model checking
for fixed parameter values and then establish correctness for arbitrary parame-
ter values by induction. In some cases, even the induction step can be justified
by model checking. For example, Browne et al. [15] suggest to model check a
two-process system, and to establish a bisimulation relation between two-process
and n-process systems, ensuring that formulas expressed in a suitable logic can-
not distinguish between them. This approach has been extended in [83,127] by
using a finite-state process I that acts as an invariant in that the composition
of I with another process is again bisimilar to I . Because both I and the indi-
vidual processes are finite-state, this can be accomplished using (a variation of)
standard model checking. Related techniques are described in [46,55].

Compositional verification. The effects of state explosion can be mitigated when
the overall verification effort can be subdivided by considering the components of
a complex system one at a time. As in the case of abstraction, compositional rea-
soning normally requires additional input from the user who must specify appro-
priate properties to be verified of the individual components. The main problem
is that components cannot necessarily be expected to function correctly in arbi-
trary environments, because their design relies on properties of the system the
components are expected to be part of. Thus, corresponding assumptions have
to be introduced in the statement of the components’ correctness properties.
Early work on compositional verification [8,109] required components to form a
hierarchy with respect to their dependency. In general, however, every compo-
nent is part of every other component’s environment, and circular dependencies
among components are to be expected. More recently, different formulations of
assumption-commitment specifications have been studied [1,33,96] that can ac-
comodate circular dependencies, based on a form of computational induction.
A collection of papers on compositional methods for specification and verifica-
tion is contained in [40]. Model checking algorithms for modular verification are
described, among others, in [59,73,72].

Real-time systems. Whereas temporal logics such as PTL and CTL only for-
malize the relative ordering of states and events, many systems require assertions
about quantitative aspects of time, and adequate formal models such as timed
automata [2] or timed transition systems [62] and logics [4] have been proposed.
Algorithms for the reachability and model checking problems for such models
include [3,63,64]. In general, the complexity for the verification of real-time and
hybrid systems is much higher than for untimed systems, and tools such as
Kronos [129], Uppaal [86] or HyTech [61] are restricted to relatively small
systems. See the contribution by Larsen and Pettersson to this volume for a more
comprehensive presentation of the state of the art in model checking techniques
for real-time systems.

30 S. Merz

References

1. Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions
on Programming Languages and Systems, 17(3):507–534, May 1995.

2. R. Alur. Timed automata. In Verification of Digital and Hybrid Systems, NATO
ASI Series. Springer-Verlag, 1998.

3. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.
In 5th Ann. IEEE Symp. on Logics in Computer Science, pages 414–425. IEEE
Press, 1990.

4. R. Alur and T. A. Henzinger. Logics and models of real time: a survey. In Real
Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science,
pages 74–106. Springer-Verlag, 1992.

5. R. Alur, G. J. Holzmann, and D. Peled. An analyzer for message sequence charts.
In B. Steffen and T. Margaria, editors, Tools and Constructions for the Analysis
of Systems (TACAS’96), volume 1055 of Lecture Notes in Computer Science,
pages 35–48, Passau, Germany, 1996. Springer-Verlag. See also http://cm.bell-
labs.com/cm/cs/what/ubet/index.html.

6. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time
temporal logic. In 38th IEEE Symposium on Foundations of Computer Science,
pages 100–109. IEEE Press, October 1997.

7. A. Anuchitanukul. Synthesis of Reactive Programs. PhD thesis, Stanford Univer-
sity, 1995.

8. H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose temporal logic
specifications. In 16th ACM Symp. on Theory of Computing, pages 51–63. ACM
Press, 1984.

9. K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Abstracting WS1S systems
to verify parameterized networks. In S. Graf and M. Schwartzbach, editors, Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2000),
volume 1785 of Lecture Notes in Computer Science, pages 188–203. Springer-
Verlag, 2000.

10. J. Bern, C. Meinel, and A. Slobodová. Global rebuilding of BDDs – avoiding the
memory requirement maxima. In P. Wolper, editor, 7th Workshop on Computer
Aided Verification (CAV’95), volume 939 of Lecture Notes in Computer Science,
pages 4–15. Springer-Verlag, 1995.

11. A. Biere, A. Cimatti, M. Fujita, and Y. Zhu. Symbolic model checking using SAT
procedures instead of BDDs. In 36th ACM/IEEE Design Automation Conference
(DAC’99), 1999.

12. Armin Biere. Effiziente Modellprüfung des µ-Kalküls mit binären Entscheidungs-
diagrammen. PhD thesis, Univ. Karlsruhe, Germany, 1997.

13. B. Boigelot and P. Godefroid. Symbolic verification of communication protocols
with infinite state spaces using QDDs. In R. Alur and T. Henzinger, editors,
8th Workshop on Computer-Aided Verification (CAV’96), volume 1102 of Lecture
Notes in Computer Science, pages 1–12. Springer-Verlag, 1996.

14. G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modelling Language: User
Guide. Addison Wesley, 1999.

15. M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning about networks with
many identical finite-state processes. Information and Computation, 81:13–31,
1989.

16. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

31Model Checking: A Tutorial Overview

17. R. E. Bryant. On the complexity of VLSI implementations and graph representa-
tions of boolean functions with application to integer multiplication. IEEE Trans.
on Computers, 40(2):205–213, 1991.

18. R. E. Bryant. Symbolic boolean manipulations with ordered binary decision
diagrams. ACM Computing Surveys, 24(3):293–317, 1992.

19. J. R. Büchi. On a decision method in restricted second-order arithmetics. In
International Congress on Logic, Method and Philosophy of Science, pages 1–12.
Stanford University Press, 1962.

20. J. R. Burch, E. M. Clarke, K. L. McMillan, D. Dill, and L. J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computation,
98(2):142–170, 1992.

21. O. Burkart and J. Esparza. More infinite results. Electronic Notes in Theoretical
Computer Science, 6, 1997. http://www.elsevier.nl/locate/entcs/volume6.html.

22. Dominique Cansell, Dominique Méry, and Stephan Merz. Predicate diagrams
for the verification of reactive systems. In 2nd Intl. Conf. on Integrated Formal
Methods (IFM 2000), Lecture Notes in Computer Science, Dagstuhl, Germany,
November 2000. Springer-Verlag. To appear.

23. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model
checking. In C. Courcoubetis, editor, 5th Workshop on Computer-Aided Verifi-
cation (CAV’93), volume 697 of Lecture Notes in Computer Science, Elounda,
Crete, 1993. Springer-Verlag.

24. E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model
checking. Formal Methods in System Design, 10:47–71, 1997.

25. Edmund M. Clarke and E. Allen Emerson. Synthesis of synchronization skeletons
for branching time temporal logic. InWorkshop on Logic of Programs, volume 131
of Lecture Notes in Computer Science, Yorktown Heights, N.Y., 1981. Springer-
Verlag.

26. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, September 1994.

27. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, MA, 1999.

28. Edmund M. Clarke and Holger Schlingloff. Model checking. In A. Voronkov,
editor, Handbook of Automated Deduction. Elsevier, 2000. To appear.

29. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986.

30. E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan, and
L.A. Ness. Verification of the Futurebus+ cache coherence protocol. In D. Agnew,
L. Claesen, and R. Camposano, editors, IFIP Conference on Computer Hardware
Description Languages and their Applications, pages 5–20, Ottawa, Canada, 1993.
Elsevier Science Publishers B.V.

31. R. Cleaveland and S. Sims. Generic tools for verifying concurrent systems. Science
of Computer Programming, 2000. See also http://www.cs.sunysb.edu/˜cwb/.

32. R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal µ-calculus. Formal Methods in System Design, 2:121–147,
1993.

33. P. Collette. An explanatory presentation of composition rules for assumption-
commitment specifications. Information Processing Letters, 50(1):31–35, 1994.

32 S. Merz

34. C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal methods in system
design, 1:275–288, 1992.

35. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In 4th ACM Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, California, 1977. ACM Press.

36. J.-M. Couvreur. On-the-fly verification of linear temporal logic. In J.M. Wing,
J. Woodcock, and J. Davies, editors, FM’99 – Formal Methods, volume 1708
of Lecture Notes in Computer Science, pages 253–271, Toulouse, France, 1999.
Springer-Verlag.

37. Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation of re-
active systems: Abstractions preserving ∀CTL∗, ∃CTL∗ and CTL∗. In Ernst-
Rüdiger Olderog, editor, Programming Concepts, Methods, and Calculi (PRO-
COMET ’94), pages 561–581, Amsterdam, 1994. North Holland/Elsevier.

38. M. Daniele, F. Giunchiglia, and M. Vardi. Improved automata generation for
linear temporal logic. In Computer Aided Verification (CAV’99), volume 1633 of
Lecture Notes in Computer Science, pages 249–260, Trento, Italy, 1999. Springer-
Verlag.

39. Luca de Alfaro, Zohar Manna, Henny B. Sipma, and Tomás Uribe. Visual ver-
ification of reactive systems. In Ed Brinksma, editor, Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’97), volume 1217 of Lecture
Notes in Computer Science, pages 334–350. Springer-Verlag, 1997.

40. W.-P. de Roever, H. Langmaack, and A. Pnueli, editors. Compositionality:
The Significant Difference, volume 1536 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

41. E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: on
branching time vs. linear time. Journal of the ACM, 33:151–178, 1986.

42. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for fragments of
µ-calculus. In C. Courcoubetis, editor, 5th Workshop on Computer-Aided Veri-
fication (CAV’93), volume 697 of Lecture Notes in Computer Science. Springer-
Verlag, 1993.

43. E. A. Emerson and C. L. Lei. Modalities for model checking: Branching time
strikes back. In 12th Symp. on Principles of Programming Languages (POPL’85),
New Orleans, 1985. ACM Press.

44. E. A. Emerson and C. L. Lei. Efficient model checking in fragments of the propo-
sitional µ-calculus. In 1st Symp. on Logic in Computer Science, Boston, Mass.,
1986. IEEE Press.

45. E. Allen Emerson. Handbook of theoretical computer science, chapter Temporal
and modal logic, pages 997–1071. Elsevier Science Publishers B.V., 1990.

46. E. Allen Emerson and Kedar S. Namjoshi. Automatic verification of parameter-
ized synchronous systems. In R. Alur and T. Henzinger, editors, 8th Interna-
tional Conference on Computer Aided Verification (CAV’96), Lecture Notes in
Computer Science. Springer-Verlag, 1996.

47. R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic model
checking. Distributed Computing, 6:155–164, 1993.

48. J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming, 23:151–195, 1994.

49. J. Esparza. Decidability of model-checking for infinite-state concurrent systems.
Acta Informatica, 34:85–107, 1997.

33Model Checking: A Tutorial Overview

50. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols.
In 14th IEEE Symposium on Logic in Computer Science, pages 352–359, Trento,
Italy, 1999. IEEE Press.

51. E. Felt, G. York, R. Brayton, and A. S. Vincentelli. Dynamic variable reordering
for BDD minimization. In European Design Automation Conference, pages 130–
135, 1993.

52. T. Firley, U. Goltz, M. Huhn, K. Diethers, and T. Gehrke. Timed sequence dia-
grams and tool-based analysis – a case study. In R. France and B. Rumpe, editors,
2nd Intl. Conference on the Unified Modelling Language (UML’99), volume 1723
of Lecture Notes in Computer Science, pages 645–660. Springer-Verlag, 1999.

53. H. Fuji, G. Oomoto, and C. Hori. Interleaving based variable ordering methods for
binary decision diagrams. In Intl. Conf. on Computer Aided Design (ICCAD’93).
IEEE Press, 1993.

54. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foun-
dations and Computational Aspects, volume 1. Clarendon Press, Oxford, UK,
1994.

55. S. M. German and A. P. Sistla. Reasoning about systems with many processes.
Journal of the ACM, 39:675–735, 1992.

56. R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Protocol Specification, Testing, and Verification,
pages 3–18, Warsaw, Poland, 1995. Chapman & Hall.

57. P. Godefroid and D. E. Long. Symbolic protocol verification with queue BDDs. In
11th Ann. IEEE Symp. on Logic in Computer Science (LICS’96), New Brunswick,
NJ, 1996. IEEE Press.

58. P. Godefroid and P. Wolper. A partial approach to model checking. Information
and Computation, 110(2):305–326, 1994.

59. Orna Grumberg and David E. Long. Model checking and modular verification.
ACM Transactions on Programming Languages and Systems, 16(3):843–871, May
1994.

60. David Harel and Amir Pnueli. On the development of reactive systems. In K. R.
Apt, editor, Logics and Models of Concurrent Systems, volume F13 of NATO ASI
Series, pages 477–498. Springer-Verlag, 1985.

61. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110–122, 1997.

62. T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for
timed transition systems. Information and Computation, 112:273–337, 1994.

63. Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. A space-efficient
on-the-fly algorithm for real-time model checking. In 7th International Confer-
ence on Concurrency Theory (CONCUR 1996), volume 1119 of Lecture Notes in
Computer Science, pages 514–529. Springer-Verlag, 1996.

64. Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovin. Symbolic
model checking for real-time systems. Information and Computation, 111:193–
244, 1994.

65. Gerard Holzmann. The Spin model checker. IEEE Trans. on Software Engineer-
ing, 23(5):279–295, may 1997.

66. Gerard Holzmann. An analysis of bitstate hashing. Formal Methods in System
Design, November 1998.

67. Gerard Holzmann and Doron Peled. An improvement in formal verification.
In IFIP WG 6.1 Conference on Formal Description Techniques, pages 197–214,
Bern, Switzerland, 1994. Chapman & Hall.

34 S. Merz

68. John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, lan-
guages, and computation. Addison-Wesley, Reading, Mass., 1979.

69. Michael Huth and Mark D. Ryan. Logic in Computer Science. Cambridge Uni-
versity Press, Cambridge, U.K., 2000.

70. C. N. Ip and D. Dill. Better verification through symmetry. In 11th Intl. Symp. on
Computer Hardware Description Languages and their Applications, pages 87–100.
North Holland, 1993.

71. C. N. Ip and D. Dill. Verifying systems with replicated components in Murphi.
In Intl. Conference on Computer-Aided Verification (CAV’96), Lecture Notes in
Computer Science. Springer-Verlag, 1996.

72. Bernhard Josko. Verifying the correctness of AADL modules using model check-
ing. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Stepwise
Refinement of Distributed Systems: Models, Formalisms, Correctness, volume 430
of Lecture Notes in Computer Science, pages 386–400. Springer-Verlag, Berlin,
1989.

73. Bernhard Josko. Modular Specification and Verification of Reactive Systems. PhD
thesis, Univ. Oldenburg, Fachbereich Informatik, April 1993.

74. H. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Univ. of
California at Los Angeles, 1968.

75. Yonit Kesten and Amir Pnueli. Verifying liveness by augmented abstraction.
In Annual Conference of the European Association for Computer Science Logic
(CSL’99), Lecture Notes in Computer Science, Madrid, 1999. Springer-Verlag.

76. Nils Klarlund. Mona & Fido: The logic-automaton connection in practice. In
Computer Science Logic, CSL ’97, volume 1414 of LNCS, pages 311–326, Aarhus,
Denmark, 1998.

77. Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, 1983.

78. Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica
Fennica, 16:83–94, 1963.

79. Fred Kröger. Temporal Logic of Programs, volume 8 of EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, Berlin, 1987.

80. O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. In 6th Intl. Conf. on Computer-Aided Verification
(CAV’94), Lecture Notes in Computer Science. Springer-Verlag, 1994. Full version
(1999) available at http://www.cs.rice.edu/˜vardi/papers/.

81. O. Kupferman and M. Y. Vardi. Verification of fair transition systems. In
R. Alur and T. Henzinger, editors, 8th Workshop on Computer-Aided Verification
(CAV’96), volume 1102 of Lecture Notes in Computer Science, pages 372–382.
Springer-Verlag, 1996.

82. Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not so
weak. In 5th Israeli Symposium on Theory of Computing and Systems, pages
147–158. IEEE Press, 1997.

83. R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes.
In 8th Ann. ACM Symp. on Principles of Distributed Computing. ACM Press,
1989.

84. Leslie Lamport. ‘sometime’ is sometimes ‘not never’. In Proc. 7th Ann. Symp.
on Princ. of Prog. Lang. (POPL’80), pages 174–185. ACM SIGACT-SIGPLAN,
January 1980.

35Model Checking: A Tutorial Overview

85. M. Lange, M. Leucker, T. Noll, and S. Tobies. Truth – a verification platform for
concurrent systems. In Tool Support for System Specification, Development, and
Verification, Advances in Computing Science. Springer-Verlag Wien New York,
1999.

86. K. Larsen, P. Petterson, and W. Yi. Uppaal in a nutshell. Software Tools for
Technology Transfer, 1, 1997.

87. Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past. In Rohit
Parikh, editor, Logics of Programs, volume 193 of Lecture Notes in Computer
Science, pages 196–218, Berlin, June 1985. Springer-Verlag.

88. J. Lilius and I. P. Paltor. Formalising UML state machines for model checking. In
R. France and B. Rumpe, editors, UML’99 – Beyond the Standard, volume 1723
of Lecture Notes in Computer Science. Springer-Verlag, 1999.

89. Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Saddek
Bensalem. Property preserving abstractions for the verification of concurrent
systems. Formal Methods in System Design, 6:11–44, 1995. A preliminary version
appeared as Spectre technical report RTC40, Grenoble, France, 1993.

90. D. E. Long. Model checking, Abstraction and Compositional Verification. PhD
thesis, CMU School of Computer Science, 1993. CMU-CS-93-178.

91. Gavin Lowe. Breaking and fixing the Needham-Schroeder public key protocol
using FDR. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’96), volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer-Verlag, 1996.

92. Z. Manna, A. Browne, H.B. Sipma, and T.E. Uribe. Visual abstractions for
temporal verification. In A. Haeberer, editor, AMAST’98, volume 1548 of Lecture
Notes in Computer Science, pages 28–41. Springer-Verlag, 1998.

93. Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In 9th. ACM
Symposium on Principles of Distributed Computing, pages 377–408. ACM, 1990.

94. Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems—Specification. Springer-Verlag, New York, 1992.

95. Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems—Safety properties. Springer-Verlag, New York, 1995.

96. Kenneth L. McMillan. A compositional rule for hardware design refinement. In
O. Grumberg, editor, 9th International Conference on Computer Aided Verifica-
tion (CAV’97), volume 1254 of Lecture Notes in Computer Science, pages 24–35,
Haifa, Israel, 1997. Springer-Verlag.

97. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
98. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, Cambridge,

Mass., 1971.
99. Stephan Merz. Rules for abstraction. In R. K. Shyamasundar and K. Ueda, edi-

tors, Advances in Computing Science—ASIAN’97, volume 1345 of Lecture Notes
in Computer Science, pages 32–45, Kathmandu, Nepal, December 1997. Springer-
Verlag.

100. Faron Moller. Infinite results. In U. Montanari and V. Sassone, editors, 7th
International Conference on Concurrency Theory (CONCUR’96), volume 1119
of Lecture Notes in Computer Science, pages 195–216, Pisa, Italy, 1996. Springer-
Verlag.

101. D. E. Muller. Infinite sequences and finite machines. In Switching Circuit Theory
and Logical Design: Fourth Annual Symposium, pages 3–16, New York, 1963.
IEEE Press.

36 S. Merz

102. D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak
monadic theory of the tree and its complexity. In 13th ICALP, volume 226 of
Lecture Notes in Computer Science, pages 275–283. Springer-Verlag, 1986.

103. D.E. Muller, A. Saoudi, and P.E. Schupp. Weak alternating automata give a
simple explanation of why most temporal and dynamic logics are decidable in
exponential time. In 3rd IEEE Symposium on Logic in Computer Science, pages
422–427. IEEE Press, 1988.

104. Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12):993–999, 1978.

105. D. M. Park. Finiteness is mu-ineffable. Theory of Computation Report 3, Uni-
versity of Warwick, 1974.

106. Lawrence C. Paulson. Proving security protocols correct. In 14th IEEE Sym-
posium on Logic in Computer Science, pages 370–383, Trento, Italy, 1999. IEEE
Press.

107. D. Peled. Combining partial order reductions with on-the-fly model-checking.
Formal Methods in System Design, 8(1):39–64, 1996.

108. W. Penczek, R. Gerth, and R. Kuiper. Partial order reductions preserving simu-
lations. Submitted for publication, 1999.

109. Amir Pnueli. In transition from global to modular temporal reasoning about
programs. In K. R. Apt, editor, Logics and Models of Concurrent Systems, volume
F 13 of ASI, pages 123–144. Springer-Verlag, Berlin, 1985.

110. M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, 1969.

111. Shmuel Safra. On the complexity of ω-automata. In 29th IEEE Symposium on
Foundations of Computer Science, pages 319–327. IEEE Press, 1988.

112. Klaus Schneider. Yet another look at LTL model checking. In IFIP Advanced Re-
search Working Conference on Correct Hardware Design and Verification Methods
(CHARME’99), Lecture Notes in Computer Science, Bad Herrenalb, Germany,
1999.

113. H.B. Sipma, T.E. Uribe, and Z. Manna. Deductive model checking. In 8th In-
ternational Conference on Computer-Aided Verification, volume 1102 of Lecture
Notes in Computer Science, pages 208–219, New Brunswick, N.J., 1996. Springer-
Verlag.

114. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal
logic. Journal of the ACM, 32:733–749, 1985.

115. G. St̊almarck. A system for determining propositional logic theorems by applying
values and rules to triplets that are generated from a formula. Swedish Patent
No. 467076 (1992), US Patent No. 5 276 897 (1994), European Patent No. 0404
454 (1995).

116. P. H. Starke. Reachability analysis of Petri nets using symmetries. Syst. Anal.
Model. Simul., 8:293–303, 1991.

117. Colin Stirling. Handbook of Logic in Computer Science, volume 2, chapter Modal
and temporal logics, pages 477–563. Oxford Science Publications, Clarendon
Press, Oxford, 1992.

118. Colin Stirling. Bisimulation, model checking, and other games. Mathfit instruc-
tional meeting on games and computation, 1997. Available at http://www.dcs.
ed.ac.uk/home/cps/.

119. R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of
Computing, 1:146–160, 1972.

37Model Checking: A Tutorial Overview

120. Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models and Se-
mantics, pages 133–194. Elsevier, Amsterdam, 1990.

121. Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Language Theory, volume III, pages 389–455.
Springer-Verlag, New York, 1997.

122. Wolfgang Thomas. Complementation of Büchi automata revisited. In
J. Karhumäki, editor, Jewels are Forever, Contributions on Theoretical Computer
Science in Honor of Arto Salomaa, pages 109–122. Springer-Verlag, 2000.

123. A. Valmari. A stubborn attack on state explosion. In 2nd International Work-
shop on Computer Aided Verification, volume 531 of Lecture Notes in Computer
Science, pages 156–165, Rutgers, June 1990. Springer-Verlag.

124. A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Ba-
sic Models, volume 1491 of Lecture Notes in Computer Science, pages 429–528.
Springer-Verlag, 1998.

125. Moshe Y. Vardi. Alternating automata and program verification. In Computer
Science Today, volume 1000 of Lecture Notes in Computer Science, pages 471–485.
Springer-Verlag, 1995.

126. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, 1994.

127. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with
network invariants. In J. Sifakis, editor, Intl. Workshop on Automatic Verifica-
tion Methods for Finite State Systems, volume 407 of Lecture Notes in Computer
Science. Springer-Verlag, 1989.

128. Pierre Wolper. Temporal logic can be more expressive. Information and Control,
56:72–93, 1983.

129. S. Yovine. Kronos: A verification tool for real-time systems. Software Tools for
Technology Transfer, 1, 1997.

130. H. Zhang. Sato: An efficient propositional prover. In Intl. Conf. on Automated
Deduction (CADE’97), number 1249 in Lecture Notes in Computer Science, pages
272–275. Springer-Verlag, 1997.

38 S. Merz

	Introduction
	Analysis of a Cryptographic Protocol
	Description of the Protocol
	A Promela Model
	Model Checki g the Protocol

	Systems and Properties
	Transition Systems
	Properties and Temporal Logic
	omega-Automata
	Temporal Logic and Automata

	Algorithms for Model Checking
	Local PTL Model Checki g
	Global CTL Model Checki g
	Symbolic Model Checking
	Partial-Order Reductions

	Further Topics
	References

