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Introduction

This report contains a guide and a European harmonised protocol prepared within the
framework of the Working Group 3 on source apportionment of the Forum for Air Quality
Modelling in Europe (FAIRMODE). It has been initiated as a JRC initiative for the harmonisation
of source apportionment with receptor models, in collaboration with FAIRMODE as well as with
the European networks in the field of air quality measurements (AQUILA), and then further with
the European COLOSSAL (Chemical On-Line cOmpoSition and Source Apportionment of fine
aerosol) COST action. The JRC initiative also included a review of the methodologies used in
Europe for source identification and intercomparison exercises for the quantitative assessment
of the performance of source apportionment models.

The document, drafted and then reviewed by a group of international experts, is the revision of
the version drafted by Belis et al. (2014). It is organised following the logical sequence of steps
to be carried out in a source apportionment study. Sections with increasing levels of complexity
make it accessible to readers with different degrees of familiarity with this topic, from air
quality managers to air pollution experts and modellers. It has been conceived as a reference
document that includes tutorials, technical recommendations and check lists.

EU policy context and importance of the issue

The abatement of pollution at its source is one of the overarching principles of the Thematic
Strategy on Air Pollution (TSAP; Dir. 2008/50/EC, preamble). Reliable and quantitative
information on pollution sources is essential for the implementation of the Air Quality Directives
(AQD: Dir. 2008/50/EC and Dir. 2004/107/EC). For instance, pollution source information is
required for identifying whether exceedances are due to natural sources or to road salting and
sanding (arts. 20 and 21), preparing air quality plans (Annex XV A), quantifying transboundary
pollution (Annex IV A), informing the public (Annex XVI) and, in the past, for demonstrating
eligibility for postponement of PM1o and NO: limit value attainment (COM/2008/403).

Source Apportionment (SA) is the identification of ambient air pollution sources and the
quantification of their contribution to pollution levels. This task can be accomplished using
different approaches: emission inventories, source-oriented models and receptor-oriented
models.

Goals/objectives of the report

The objective of this document is to disseminate and promote the best available methodologies
for source identification using receptor models, and to harmonise their application across
Europe.

In addition, it aims at making results of source apportionment studies more accessible to
experts involved in the development and assessment of pollution source abatement measures.

Methodology

Receptor models (RMs) apportion the measured mass of an atmospheric pollutant at a given
site to its emission sources by solving a mass balance equation. These models have the
advantage of providing information derived from real-world measurements, including
estimations of output uncertainty. However, their applicability to very reactive species is limited.
RMs are extensively used for source contribution quantification at local and regional scales all
over the world. In the past decade, the number of scientific publications and applications in this
field has been increasing steadily, and tools have been developed with constantly improving
capabilities in terms of source resolution and the accuracy of source contribution quantification
(Belis et al,, 2013).

The protocol presented in this document focuses on the most commonly used RMs: Chemical
Mass Balance (CMB) and Positive Matrix Factorization (PMF). The CMB model is a ‘least squares’



model which estimates source contributions on the basis of the emissions’ chemical
composition (fingerprints) and the concentration of pollutants. The PMF model is based on
uncertainty-weighted factor analysis which relies on pollutant measurements.

In addition, to promote the application of more specific methodologies under continuous
development, some of the last sections are dedicated to constrained and expanded models, air
mass trajectory- and wind-based models, as well as methodologies for the data treatment of
aerosol mass spectrometry, multi-wavelength aethalometer, radiocarbon, proton-nuclear
magnetic resonance spectroscopy, and Fourier transform infrared measurements.

Key results, deliverables, key messages

Due to the complexity of source apportionment studies, it is essential to support the final
results with an appropriate description of the methodological choices available and with
documentation of the objective qualitative or quantitative information that supports expert
decisions. In this way, reviewers and final users (e.g. air quality managers) are provided with the
elements they need to assess the relevance of the study, and other modellers have the
possibility to reproduce the same approach. It is essential that only methodologies fulfilling
quality standards that are in line with the objectives of the study are adopted. To that end, the
information about models’ performance collected in the above-mentioned intercomparison
exercises provides the necessary complement to the procedures described in this document.
These exercises have demonstrated that RMs provide quantitative estimations of contributions
by source category with at most 50% uncertainty (Karagulian et al., 2012). It follows that SA
studies that are consistent with the present protocol, in particular with regard to the quality
assurance steps, can claim state-of-the-art performance in line with that observed in
European-wide intercomparison exercises.

Real/potential impact and benefits to customers, users, and stakeholders

1. Quantitative estimations of pollution sources obtained with reliable and harmonised
methods across Europe constitute a fundamental input for the different actors involved in
the implementation of the Air Quality Directives at the local and regional scales. The
present document helps to streamline the technical criteria required for accomplishing such
a complex task according to the best available standards, with a view to improving the
transparency and comparability of results obtained by different practitioners in different
areas of Europe.

2. Expected benefits of the report for different target groups are listed hereafter:

- the report is intended to be a reference for practitioners, providing them with clear and
widely accepted criteria for model execution and the interpretation of results;

- final users of pollution source data, such as authorities involved in air quality
management, would have access to transparent and comparable information obtained with
known quality standards that can be used as input data in scenario- or cost-benefit
analyses;

- harmonisation would have a positive impact on the quality and comparability of data
reported by Member States to the Commission under the scheme for reciprocal exchange of
information and reporting on ambient air quality (Commission Implementing Decision
2011/850/EV);

- the report is an information dissemination tool for air quality managers and atmospheric
scientists that are not familiar with this methodology.

3. In addition, the synergy between the harmonised technical protocol and the intercomparison
exercises provides the basis for the continuous improvement of source identification
approaches in order to keep abreast of the scientific developments in this field.

4. All the methodologies for source identification have strengths and limitations. Considering
that RMs deliver independent estimates of source contributions at a given site, they can



also be used for the validation of other methodologies such as emission inventories and air
quality models.
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SUMMARY

Abatement of pollution at its source is one of the overarching principles of the Thematic
Strategy on Air Pollution (TSAP; Dir. 2008/50/EC, preamble). Reliable and quantitative
information on pollution sources is essential for the implementation of the Air Quality Directives
(AQD: Dir. 2015/1480/EC, Dir. 2008/50/EC and Dir. 2004/107/EC). For instance, pollution source
information is required for identifying whether exceedances are due to natural sources or to
road salting and sanding (arts. 20 and 21), preparing air quality plans (Annex XV A), quantifying
transboundary pollution (Annex IV A), informing the public (Annex XVI), and demonstrating
eligibility for the postponement of PM1o and NO: limit value attainment (COM/2008/403).

Source Apportionment (SA) is the practice of deriving information about pollution sources and
the amount they contribute to ambient air pollution levels. This task can be accomplished using
three main approaches: emission inventories, source-oriented models and receptor-oriented
models. The objective of this document is to present the receptor-oriented methodology,
explaining its role in the identification of sources with particular reference to particulate matter,
and to describe the best practices for the available and emerging methodologies with a view to
promoting their harmonisation across Europe.

Receptor-oriented models (also known as receptor models (RMs)) apportion the measured mass
of an atmospheric pollutant at a given site, called the receptor, to its emission sources by using
multivariate analysis to solve a mass balance equation. These tools have the advantage of
providing information derived from real-world measurements, including estimations of output
uncertainty. However, there are limitations in their application to very reactive species. RMs are
extensively used for the quantification of source contributions at local and regional scales all
over the world. In the past decade, the number of scientific publications and applications in this
field has been increasing steadily, and tools have been developed with improved capabilities in
terms of source resolution and the accuracy of source contribution quantification.

This report is the result of the work of a group of international experts carried out within the
framework of the JRC initiative for the harmonisation of source apportionment with receptor
models. This initiative was launched in collaboration with the European networks in the field of
air quality modelling (FAIRMODE) and measurements (AQUILA). The initiative also includes a
review of the methodologies used in Europe for source identification, and intercomparison

exercises for the quantitative assessment of the performance of SA models.

The structure of this document follows the logical sequence of steps to be carried out in a SA
study. The organisation of the report in sections of increasing levels of complexity makes it
accessible to readers with different degrees of familiarity with this topic: from air quality
managers to air pollution experts and modellers. The report has been conceived as a reference
document that includes tutorials, technical recommendations and check lists. However, it is not
intended to substitute practitioners’ experience and competence, which can only be acquired

through training and working under the supervision of experts.



The report focuses notably on the most commonly used RMs: Chemical Mass Balance (CMB)
and Positive Matrix Factorization (PMF) models. The CMB model is a ‘least squares’ model which
estimates source contributions on the basis of the chemical fingerprints of the source and the
concentration of pollutants. The PMF model is based on uncertainty-weighted factor analysis

which relies on pollutant measurements.

In addition, to promote the application of more specific methodologies under continuous
development, some sections are specifically dedicated to constrained and expanded models, air
mass trajectory- and wind-based models, as well as methodologies for the data treatment of
aerosol mass spectrometry, multi-wavelength aethalometer, radiocarbon, proton-nuclear

magnetic resonance spectroscopy, and Fourrier transform infrared measurements.

Due to the high number of variables to be considered, SA studies are complex. Therefore, it is
essential to support the final results with an appropriate description of the methodological
choices made and documentation of the qualitative or quantitative information that supports
expert decisions. In this way, reviewers and final users, such as local air quality managers, are
provided with the elements they need to assess the relevance of every study, and other

modellers have the possibility to reproduce the methodology.

Moreover, it is essential that only methodologies fulfilling quality standards that are in line with
the objectives of the study are adopted. To that end, the information about models’
performance collected in the above-mentioned intercomparison exercises provides the
necessary complement to the procedures described in this document. These exercises have
demonstrated that RMs provide quantitative estimations of contributions by source categories
that are consistent with a 50% standard uncertainty criterion. It follows that SA studies
consistent with the present protocol, especially with the steps concerning quality assurance, can
claim state-of-the-art performance when documenting European-wide intercomparison

exercises.



GLOSSARY

Chemical mass balance (CMB): models that solve the mass balance equation using effective
variance least square. These are applied when the number and composition of sources are
known.

Degrees of freedom: the number of independent observations minus the number of
parameters estimated using them.

Factor: an independent theoretical variable calculated by linearly combining many measured
dependent variables in order to describe their relationship patterns.

Factor analytical methods: multivariate techniques which do not require information on the
number and composition of sources in the model input. In this document, factor analysis (FA)
refers to techniques without intrinsic constraints.

Factor/source: the pollution-emitting entity identified in a SA study. Depending on the type of
model used, the output may be a factor (multivariate analysis type) or a source (CMB type).

Kronecker product (denoted by @): an operation performed on two matrices which, unlike the
classical matrix multiplication, does not impose limitations on the dimension of the matrices
being multiplied.

Multivariate analysis: methods used to deal with datasets consisting of several
measurements (variables) for each object (sample unit).

Positive matrix factorization (PMF): a specific type of factor analytical method which uses
experimental uncertainty for scaling matrix elements and constrains factor elements to be non-
negative.

PM;o, PM_s: particulate matter with aerodynamic diameter equal to or less than 10 and 2.5
micrometres, respectively.

Receptor models (RMs): methodology to apportion the measured mass of air pollutants in
one or more sites to their emission sources by solving a mass balance equation using
multivariate analysis.

Source: a source of air pollution is any human activity or natural process that causes pollutants
to be released into the atmosphere.

Source apportionment (SA): the practice of deriving information about pollution sources and
the amount they emit from ambient air pollution data.

Source category: a group of sources that emit pollutants with similar chemical composition
and time trends.

Source contribution estimate (SCE): quantitative output of an RM expressed as mass (ug m-
3) that represents the amount of a pollutant that can be attributed to a specific source or
source category.

Source profile or fingerprint: the average relative chemical composition of the particulate
matter deriving from a pollution source, commonly expressed as the ratio between the mass of
every species to the total PM mass.



GENERAL ACRONYMS

AMS:
ACSM:
APS:
BDL:
CEN:
cc
CTMs:
DL:

DRUM/RDI:

EC
EMEP:
EPA:
GC-MS:
GF-AAS:
HPLC:
IC
ICP-MS:
LS:
LOD:
oc:
OM:
OPC:
PAHs:
PBL:
PIXE:
PM:
POC:
RM:
SA:
SMPS:
SOC
TC
TOR:
TOT:
VOCs:
XRF:

Aerosol Mass Spectrometer

Aerosol Chemical Speciation Monitor
aerodynamic particle sizer

below the detection limit

European Committee for Standardisation
carbonatic carbon

chemical transport models

detection limit

Davis rotating-drum Universal-size-cut Monitoring impactor
elemental carbon

European Monitoring and Evaluation Programme
Environmental Protection Agency (US)

gas chromatography coupled with mass spectrometry
graphite furnace - atomic absorption spectrometry
high-performance liquid chromatography

ion chromatography

inductively coupled plasma- mass spectrometry
least squares

limit of detection

Organic carbon

organic matter

optical particle counter

polyaromatic hydrocarbons

planetary boundary layer

particle-induced X-ray emission

particulate matter

primary organic carbon

receptor model

source apportionment

scanning mobility particle sizer,

secondary organic carbon

total carbon

Thermo Optical Reflectance
Thermal Optical Transmission

volatile organic compounds

energy dispersive X-ray fluorescence



RECEPTOR MODEL ACRONYMS

APCFA:
APCA:
CMB:
COPREM:
CPF:
FA:
ME-2:
NWR:
PCA:
PMF:
PDRM:
PSCF:
SoFi:
SQTBA:
TSA:
TRMB
TMBR:

absolute principal components factor analysis
absolute principal component analysis
chemical mass balance

constrained physical receptor model
conditional probability function

factor analysis

multilinear engine version 2

non-parametric wind regression

principal components analysis

positive matrix factorization

pseudo deterministic receptor model
potential source contribution function

Source Finder

simplified quantitative transport bias analysis
trajectory sector analysis

trajectory mass balance

trajectory mass balance regression
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INTRODUCTION TO SOURCE APPORTIONMENT WITH RECEPTOR MODELS

European Guide and Harmonised Receptor Model Protocol: driving elements

This document is the result of the collaboration of leading European experts in the field of
atmospheric pollution (with the additional support of the P. K. Hopke of Clarkson University,
New York, United States). Its objective is to disseminate and promote the best available
operating procedures for source apportionment (SA) with receptor models (RMs) and to

harmonise their application across Europe. The target audiences are:

- practitioners involved in the model execution and in the interpretation of results,
- air quality managers interested in the output of RMs for the design of abatement measures,

- air quality experts and atmospheric scientists not familiar with this methodology.

The structure of this document follows a logical sequence of steps to be carried out in SA
studies, with different levels of complexity accessible to readers with different levels of
expertise.

This document has been conceived as a guide (including tutorials, technical recommendations
and check lists) that provides relevant references to the original information sources. However,
it is not meant to be comprehensive, nor intended to substitute experience and competence.
Although the guide aims to promote the highest quality standards, it is subject to the intrinsic
limitations of any SA methodology, which lie in the fact that the “true” contribution of sources

to atmospheric pollution at a given point cannot be measured directly.
Identification of pollution sources

Source Apportionment (SA) is the practice of deriving information about pollution sources and

the amount they contribute to ambient air pollution levels.

Information on pollution sources is essential to the design of air quality policies and, therefore,
SA is required explicitly or implicitly for the implementation of the Air Quality Directives (IPR

guidance). Activities for which identification of pollution sources is relevant include:

e Drawing up action plans
e Assessment of the effectiveness of abatement measures (before and after)
e Application for the postponement of attaining limit values (PM1o, NO3)
e Quantification of pollution arising from:
- Long-range transport
- transboundary transport

natural sources

winter sanding and salting
e |dentification of sources of pollutants that are of particular interest, e.qg. polycyclic aromatic

hydrocarbons (PAHs), ozone precursor hydrocarbons, elemental carbon (black carbon).

11



Figure I.1. Schematic representation of the different methods for source identification.

2. SOURCE-ORIENTED MODELS

1

PHYSICAL AND CHEMICAL PROCESSES

1.EMISSION | mg o0
INVENTORIES ’ M H

SOURCES CONCENTRATIONS AT THE RECEPTOR

METEOROLOGY

: 2

3.RECEPTOR-ORIENTED
MODELS

U —
PROFILES

Different approaches are used to determine and quantify the impacts of air pollution sources

on air quality. Commonly used SA techniques are:
e Explorative methods

e Emission inventories

e Inverse modelling

o Artificial neural networks

e |agrangian models

e Gaussian models

e FEulerian models

e Receptor models

Exploratory methods use simple mathematical relationships and several assumptions to

achieve a preliminary estimation of the source contribution.

Emission inventories are detailed compilations of the emissions from all source categories in a
certain geographical area and within a specific year. Emissions are estimated by multiplying the
intensity of each relevant activity (activity rate) by a pollutant-dependent proportionality

constant (emission factor).

12
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In inverse modelling, air quality model parameters are estimated by fitting the model to the
observations. The inverse technique consists of a least squares optimisation with an objective
function defined as the sum of squared deviations between modelled and observed
concentrations.

Artificial neural networks (ANN) are sets of interconnected simple processing elements (artificial
neurons) which can exhibit complex global behaviour. In order to produce a desired signal flow,

algorithms designed to modulate the weights of the connections in the network are applied.

Lagrangian models use a moving frame of reference to describe the trajectories of single or

multiple particles as they move in the atmosphere.

Gaussian plume models assume that turbulent dispersion can be described using a Gaussian
distribution profile. This type of model is often used to estimate emissions from industrial

sources.

Eulerian models encompass equations of motion, chemistry and other physical processes that

are solved at points arranged on a 3D grid.

Often, the terms ‘dispersion models’ or ‘source oriented models’ are used to refer to the latter
three categories. Nevertheless, there are relevant differences in how these models are applied
for source identification purposes.

Receptor models (RMs) focus on the properties of the ambient environment at the point of
impact, as opposed to the source-oriented dispersion models which account for transport,
dilution, and other processes that take place between the source and the sampling or receptor

site (Figure I.1).
What are receptor models (RMs)?

The fundamental principle of receptor modelling is that mass conservation between the
emission source and the study site can be assumed, and a mass balance analysis can be used
to identify and apportion sources of atmospheric pollutants. Table 1.1 summarises the main

characteristics of RMs.

RMs identify sources by solving the following mass balance equation:

P
Xij = Z Girfrj + €ij (1)
k=1
where Xijis the concentration of the % species in the i sample, Jik the contribution of

source to /" sample, fi the concentration of the j% species in the k" source, and€iiis the

residual (i.e. the difference between the measured and fitted value) term.

13



Table I.1. Main characteristics of RMs.

Use measured concentrations at the receptor (sampling site)

Make reference to the chemical mass balance principle

Are based on the solution of multilinear equations

At the first step do not consider physical and chemical processes, but evolved
hybrid models can process additional information to constrain rotational
uncertainty

Do not depend on emission inventories; source profiles (fingerprints) are
required by certain kinds of RMs

Do not require complex meteorological and chemical processors

Require low computational intensity

Their application with reactive species requires correcting terms

Mainly used on particulate matter (PM) and seldom on hydrocarbons and
inorganic gases

Appropriate for urban and regional scales

In order to find the solution, a dataset with a rather large amount of data consisting of
chemical constituents (such as elemental concentrations) gathered from a number of
observations (samples) is required. The larger the data matrix, the higher the chances that the
model will identify distinct factors that can be identified as sources. Note that the number of
required samples can vary upon a priori knowledge of the sources and RM’'s methodology
chosen accordingly (e.g., CMB vs. PMF).

If the number and nature (composition profiles/fingerprints) of the sources in the study area are

known ( f ), then the only unknown term of equation (l.1) is the mass contribution of each
source to each sample, (k. Solving the mass balance equation in this way was first

independently suggested by Winchester and Nifong (1971) and by Miller et al. (1972). The
problem is typically solved using an effective-variance least-squares approach that is now
generally referred to as the chemical mass balance (CMB) model (Watson, 1979, 1984). Since
then, many models and methodologies have been developed and are still under continuous
evolution. RMs have been traditionally classified into those which explicitly use information
about the emission fingerprints (described above) and those which do not use any a priori

information on source chemical profiles (factor analysis methods).
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Figure I.2. Approaches to estimate pollution sources with RMs (from Viana et al,, 2008)
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The main types of RMs are presented in Figure |.2 and Table 1.2. A more detailed description and
discussion of the most common RMs can be found in Watson et al. (2008), Viana et al. (2008),
Hopke (2010), and Belis et al. (2013).

Table I.2. Types of RM (adapted from Belis et al,, 2013).

Type Examples

Exploratory methods Enrichment factor, tracer method, incremental
approach

Chemical Mass Balance EPA CMB 8.2

Eigenvector-based models PCA, UNMIX

Factor analysis without constraints | FA, APCFA

Positive matrix factorization PMF2, EPA PMF v3, EPA PMF v5

Hybrid trajectory-based models CPF, PSCF
Hybrid expanded models PMF solved with ME-2 using constraints, COPREM

Legend: CMB, chemical mass balance; PCA, principal components analysis; FA, factor analysis; APCFA, absolute
principal component factor analysis; PMF, positive matrix factorization; ME, multilinear engine; CPF, conditional
probability function; PSCF, potential source contribution function; COPREM: Constrained physical receptor model.

In the US, RMs are officially recognised and promoted as tools for air quality management (US-
EPA SCRAM), notably in the frame of dedicated monitoring networks, and a number of tools
have been developed and are freely distributed by the US-EPA. RMs are also used extensively in
Europe, although the lack of a common approach and documented performance limits their
application to air quality policy.

The role of RMs in the identification of pollution sources

Within the activities of the Forum for Air Quality Modelling in Europe (FAIRMODE) group on
“Contribution of natural sources and source apportionment”, two surveys were carried out on
the type and frequency of modelling tools that are used in Europe for source apportionment
(Fragkou et al,, 2012). The most recent of these surveys collected information on the use of
models for the source apportionment of requlated pollutants and on the procedures used to

evaluate the applied methodologies. The use of the different tools for source identification
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ranged from less than 20% for Gaussian models to almost 60% for receptor models (Figure
[.3). Lagrangian (e.g. Lagrangian particle dispersion models) and Trajectory models were less
frequently used and always complementary to other models. The use of CFD models was only
reported in one case.

A study by Viana and co-authors carried out an overview of source apportionment studies in
Europe from 1987 to 2007 by compiling meta-data on 71 studies (see Table 1 page 831 of
Viana et al., 2008) based on a questionnaire and existing publications.

According to this study, PCA was the most frequently used model up to 2005 (30% of the
studies), followed by the ‘Lenschow approach’ or incremental concentrations approach (11%)
and back-trajectory analysis (11%). An increase in the use of PMF (13%) and the mass balance

analysis of chemical components (19%) was observed from 2006 onwards.

Figure 1.3: Percentage of model types used for SA by different EU countries (from Fragkou et al.,
2012).
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PMio was the preferred target metric (46%) followed by PM2s (33%) and coarse fraction (PMzs-
10; 9%).The majority of the studies were carried out in urban background locations (53% of the
studies) while industrial or kerbside sites represented 11% and 20% of the studies,

respectively.

Overall, a generally good spatial coverage of SA studies over Europe, especially regarding the

northern, south-eastern and south-western dimensions, was observed.

In this review, four main source categories across Europe were identified:
o Traffic sources, characterised by Carbon/Fe/Ba/Zn/Cu, often including road dust;
o Mineral/crustal matter sources with Al/Si/Ca/Fe as distinctive components;

e Sea-salt, sea-spray and marine sources associated with high Na/Cl/Mg concentrations;
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e Regional-scale pollution and long-range transboundary anthropogenic pollution sources rich in

either vanadium/nickel/sulphate or sulphate/nitrate/ammonium.

Figure 1.4. Time trend of RM studies in Europe between 2001 and 2010/11 (from Karagulian &
Belis, 2012).
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A survey on the use of receptor models (RMs) for particulate matter (PM) source apportionment
in Europe between 2001 and 2010, including 79 studies and 243 reported records (Karagulian
and Belis, 2012), found evidence of a dramatic increase in the number of scientific publications
on this topic during the past decade and an increasing number of ready-to-use tools (Figure 1.4).
The highest rate of increase in the number of studies coincides with the entry into force of the
limit value for PM1o (1999/30/EC) and the target value for PM2s. About 60% of the studies were
carried out in urban background sites, 16% in source-oriented sites (sites mainly affected by a

single source), and 15% in rural sites.

In contrast with the tendency observed between 1987 and 2005, the majority of the studies
were performed using Positive Matrix Factorization and Chemical Mass Balance models in the
period 2001-2010 (Figure 1.4).

Most of the studies were conducted in Spain, Italy and the UK. Many recent studies completed

or in progress were also carried out in France.

A detailed meta-analysis of data available from previous studies is presented in the most
recent review of source identification studies, which covers the period until 2012 (Belis et al,,
2013). In order to compare all the SA results and to attain useful conclusions, sources have
been pooled into six major categories covering those most frequently observed in the individual
studies: Sea/Road Salt, Crustal/Mineral Dust, Secondary Inorganic Aerosol (SIA), Traffic, Point

Sources and Biomass Burning. In addition, residential heating by coal (or coal substitutes)
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combustion proved to be a major PM pollution source in many areas of the new EU Member
States. Residential coal combustion in small stoves and boilers has also been found to be a

main source of PMio and benzo(a)pyrene in certain areas of Europe (Junninen et al,, 2009).

The main results of the above-mentioned review show that the field of receptor models is
developing swiftly, with Positive Matrix Factorization and Chemical Mass Balance (which are the

most used models) evolving towards tools with refined uncertainty treatment.

The review demonstrates that, aside from mineral dust and sea/road salt, PMio and PM2s derive
from the same sources. Secondary pollution deriving from gas-to-particle conversion is the
main PM mass and particulate organic carbon source. Therefore, in order to reduce the
concentration of these pollutants it is necessary to abate the sources of secondary inorganic
aerosol deriving mainly from traffic emissions and agriculture. Primary emissions from traffic
and biomass burning have also been identified as causes of exceedances, especially during the
cold seasons.

The review stresses the need for long-term speciated PM datasets and the characterisation of
source fingerprints to further improve source identification studies. In addition, harmonisation
of the different approaches would facilitate the interpretation and comparison of the results
and their application in the design of abatement measures.

When to use receptor models (RMs)?

The application of RMs requires quantitative data on air pollutant concentrations, good
knowledge about atmospheric processes, good command of the chemical nature of the source

emissions, and competence in the use of computational tools.

RMs have mainly been used to apportion airborne particulate matter sources. Therefore, the
protocol presented in this report will mostly deal with this type of pollutant. However, it is also
possible to use this methodology on volatile organic compounds (VOCs), polyaromatic

hydrocarbons (PAHs), inorganic gaseous pollutants and particle size distribution.

If very little information is available on the study area or if skilled staff are not available for
running the standard applications, exploratory methods can be used to obtain a preliminary
picture of the most relevant sources. Nevertheless, in order to achieve more accurate
estimations of the source contributions and their uncertainties, a well-designed study is
necessary, including field work, laboratory analyses for the chemical characterisation and data

processing with standard tools.

Hybrid trajectory-based methods provide information about the geographical origin of
pollutants. Advanced tools such as hybrid expanded models introduce a priori physical
constraints in the model or combine different types of data (e.g. chemical and physical
parameters, meteorology), making it possible to identify sources with small contributions and to

better resolve similar or collinear ones.
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Moreover, RMs can be used in combination with independent methodologies (e.g. emission
inventories, chemical transport models (CTMs)) to achieve more robust estimations by mutual

validation of the outputs.
Harmonisation of receptor models

Different methodologies for identifying sources are available. However, it is difficult to
establish to what extent a methodology is appropriate for a specific purpose and to
guantitatively express the reliability of the results. This is mainly because the actual source
contributions at a specific point are unknown. In addition, the techniques used by experts with
different backgrounds need to be harmonised so as to make the results of the different studies
comparable. In order to address the challenges related to the use of modelling techniques in
estimating pollution sources, the JRC launched an initiative - starting from 2010 - for the
harmonisation of RMs used to identify pollution sources in Europe (Figure 1.5) (Belis et al.,
2015a). This initiative, which involved experts from many European countries, consisted of two

main activities:

- organising European-wide intercomparsion exercises for RMs and,

- developing a European harmonised technical protocol for RMs.

Figure A.5. JRC initiative on Source Apportionment.
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The information about model performances collected in the above-mentioned intercomparison

exercises provides the necessary complement to the procedures described in this document.
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These exercises have demonstrated that RMs provide quantitative estimations of the
contributions of source categories with 50% or lower standard uncertainty (Karagulian et al,
2012; Belis et al., 2015b, Belis et al., 2019).
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1. PRELIMINARY EVALUATION OF THE STUDY AREA

Collection of available data on atmospheric pollution

A sound source apportionment study requires careful preparation. The most important task in
this step is the collection of all the relevant existing information about atmospheric pollution in
the area under examination or in areas with similar characteristics. Bibliographic research
should concentrate on both scientific publications and reports issued or sponsored by official

bodies in charge of environmental monitoring that concern:

* emission inventories with a level of detail appropriate to the study (at least municipality or
town level),

* local source profiles,

» time series at different time resolutions (daily, yearly averages) and daily profiles of

pollutant levels and exceedances of legal thresholds,
» spatial distribution of pollutants, hotspots,
* meteorology at local and synoptic scale,
*  previous source apportionment studies.

This step is essential to understand the nature and number of sources and the factors
influencing pollutant dispersion (e.g. advection) and transformation (e.g. gas-to-particle

processes). Examples of commonly-assessed sources and factors are given in Table 1.1.

The preliminary evaluation will be of great help in defining the objectives of the project and in
planning the experimental work. To that end, it is also recommended that the local authorities
be interviewed to understand the kind of information on pollution sources for air quality
assessment and planning they are interested in, gather information on the measures that have
been proposed or implemented, and understand the limitations they have encountered in their
enforcement.
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Table 1.1. Common source categories of particulate matter (PM) in ambient air.

marine salt industrial emissions

crustal material secondary ammonium sulphate
road dust secondary ammonium nitrate
gasoline vehicle exhaust biomass burning / wood burning
diesel vehicle exhaust maritime transport

power plants secondary organic aerosol

More details on the most common sources of PM in Europe can be found in Viana et al. (2008) and Belis et al. (2013)

Description of the physical system

In addition to having a good conceptual understanding of the sources in the study area, it is
important to understand the physical nature of the system. The topography, natural or artificial,
has a significant influence on the local source-receptor relationships (e.g. Chow et al,, 2007;
Belis et al,, 2008), and a lack of understanding of the physical system can lead to problems in
interpreting and understanding the source apportionment results. A number of aspects of the
physical system should be identified and incorporated into the planning and execution of a

project as well as in the analysis of the subsequently generated data, in particular:
* mountain / valley terrain,

+ tall buildings,

e water bodies,

* local source complexes (grouped sources),

e isolated local sources,

* major transportation information,

» prevailing wind directions,

» distant sources.

Obstructions interfere with the direction of wind flows. People generally live in low-lying areas
and thus often occupy valleys surrounded by obstructions (hills or mountains) that limit the
wind directions to those found within the valley. Mountains can give rise to day-time upslope
winds and night-time downslope winds. Tall buildings produce urban street canyons or block
specific wind directions so that local meteorological measurements can be biased away from

the actual wind directions. Water bodies also affect air flow locally (e.g. the influence of land-
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sea breezes). Thus, understanding the geography as well as the natural and anthropogenic

topography will be important in understanding source/receptor relationships for a given site.

Sources can be contained in an industrial area that is well-delimited and/or isolated from other
major sources. In the case of complex sources, the emitted pollutants come from roughly the
same location and, if the temporal patterns of emissions are similar from multiple sources,
methods that use the covariation of measured chemical species to identify specific source
types will be confused by the simultaneous variation of the receptor-site impacts of emissions
from disparate sources. Isolated sources can provide the opportunity to carry out some local
sampling in areas known to be highly affected by that specific source and thereby get an
indication of the nature of that source. For any source, it is important to understand the nature
of the activities being conducted at the site and thus, what materials are likely to be released to

the environment.

Transportation systems are sources of particles and other pollutants. Vehicles with combustion
engines clearly produce significant tailpipe emissions along with emissions from tyre and brake
wear, re-suspension of road dust, and other related materials. Electrified systems such as
trams, trains and electric buses also produce particulate emissions from the ablation of the
runners that pick up the electricity from the wires and transfer it to the moving vehicle. There
may also be ablation from the steel wheels rolling and stopping on the steel rails. The location
of highways and other transportation systems, the nature of the vehicles operating in the
vicinity of the sampler, their operating pattern (highway speed, stop-and-go, etc.) and the

prevailing wind directions may all influence the measurements at the receptor site.

Prevailing wind directions determine the probability of emitted materials being transported to
the measurement site. Sources with low probability wind directions are unlikely to make a large
impact on a site (on the long-term average) even if they are significant emitters of the

measured pollutant(s).

Although primary emissions are diluted over time and distance, secondary pollutants, e.q.
produced by gas-to-particle conversion processes, can increase the concentrations over
relatively long distances, particularly for species such as secondary sulphate and secondary

organic aerosols that take time to form in the atmosphere.
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2. DEFINING A METHODOLOGICAL FRAMEWORK

Source apportionment studies should be planned in advance according to:
o the preliminary evaluation (section 1),

e the objectives of the study,

e the available resources (funds, staff skills, time),

e the model and software to be used,

o the input data source (already available or data collection is needed),

e the required qualification of the operator and training needs.

Appropriate study planning prevents or reduces the risk of collecting useless information,
missing relevant information for model execution or data interpretation, using resources
inefficiently and/or building up a delay with respect to the scheduled deadlines. Useful advice
for the definition of the methodological framework is available from Kim Oanh et al. (2009),
Johnson et al. (2011), Watson et al. (2002) and Watson et al. (2008). The adoption of a quality
management system (QMS) for the project could be useful to identify and document
procedures, deliverables, responsibilities and deadlines (e.g. ISO 9001:2008).

The preliminary evaluation achieved in the previous step provides the basis for defining the
objectives of the study.

At this point, the expert shall define the main questions he/she intends to answer. Subsequently,
the main questions are translated into operational hypotheses and how the experimental work
will contribute to test those hypotheses is clearly explained.

The objectives of the study must be in line with the available resources in terms of equipment,
staff, and software. It is important to evaluate whether the required technical skills are present
in the team, to make sure there is access to the technical and methodological information and,
if possible, to collaborate with experts in institutions with demonstrated expertise in the field of
source apportionment that can provide professional advice.

Selecting the type of model early in the planning process is also important as the kind of

information to be collected depends on the model input variables:
- a chemical mass balance (CMB) model requires local source profiles as input;

- principal components analysis (PCA) and factor analysis do not require source profiles as
input, but do require a very good knowledge of the study area in order to be able to

interpret the output factors in terms of source categories;

- positive matrix factorization (PMF) and CMB models need an uncertainty estimation for

each data entry;
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- advanced models also process other types of data: e.g. meteorological variables,

trajectories, day of the week, size distribution.

The choice of the model should take into account the fact that running more than one model on
the same dataset can mutually validate their outputs and lead to more robust results. This may

require additional time and skills.

If the input data for the selected model is not available (as is almost always the case) it is
necessary to plan field activity in order to collect information on the ambient concentration of
the pollutants of interest and the chemical profiles of local sources (see section 3). You may
also need to collect meteorological data if this kind of information is not available close to your

study site.
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3. EXPERIMENT DESIGN - CRITERIA FOR SITE AND SPECIES SELECTION AND
ESTIMATION OF MINIMUM NUMBER OF SAMPLES

Site Selection

For source apportionment, sites representative of the mixture of sources in a given area are
preferable to sites influenced by specific sources. To establish the number and location of
sources, it is necessary to study emission source distribution, wind roses and typical dispersion
patterns (upwind, downwind of major sources). According to Kim Oanh et al. (2009), several
sites are required to represent the different sub airsheds in a city. Furthermore, a combination
of multiple sites with different characteristics is often used to obtain estimations of source
contributions in an area. Using the incremental or ‘Lenschow’ approach, the differences in
contributions from traffic, urban background and rural or regional backgrounds might be used
to estimate sources in appropriate conditions (i.e., flat terrain, insignificant influence of the
urban heat island effect on boundary layer height, ...; Lenschow et al.,, 2001). A more complex
option is the combination of independent source contribution estimations for different sites (e.q.
Larsen et al, 2012). The orientation of sites according to the main wind directions makes it
possible to assess the contributions from medium- to long-range transport (e.g. AIRPARIF and
LSCE, 2012).

Representativeness of monitoring sites and heterogeneity of the study areas can be tested
using geostatistical methods. These techniques assess the relationship between the difference
of concentrations in and distance between different sites by fitting functions known as
“variograms” (Clark & Harper, 2002; Kim et al., 2005, Hwang et al.,, 2008, Lagudu et al.; 2011,
Kumar et al,, 2012).

For point sources, stack height, temperature, mechanical buoyancy, and temporal variation of
emissions are important pieces of information. Additional knowledge to evaluate the
distribution of pollutants can be obtained from basic meteorological parameters and the levels
of primary gaseous pollutants (Kim Oanh et al., 2009).

Species selection

The chemical species to include in the analysis should be selected according to the study
objectives, the site characteristics and expected sources, considerin the available human,
technical, and financial resources. Since RMs have mainly been used to apportion sources of
airborne particulate matter, this document focuses on this type of pollutant (Table 3.1).
Nevertheless, this methodology has also been used on datasets containing volatile organic
compounds (VOCs; e.g. Elbir et al.,, 2007; Niedojadlo et al,, 2007; Lanz et al., 2003; Baudic et al,
2016), polycyclic aromatic hydrocarbons (PAHs; e.g. Mari et al., 2010; Okuda et al, 2010;
Hanedar et al,, 2011; Belis et al,, 2012; Tomaz et al,, 2017) and inorganic gaseous pollutants
(e.g. Ogulei et al., 2006; Alleman et al., 2010).
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Table 3.1 Examples of input data for source apportionment with RMs

lons sulphate, nitrate, ammonium, chloride, Na+, Mg**, K*, Ca**
Carbonaceous Total carbon (TC), elemental carbon (EC)/organic carbon (OC) total or
fractions fractions obtained in every analytical step

Elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge,

As, Se, Br, Rb, Sr, Zr, Mo, Rh, Pd, Ag, Cd, Sn, Sb, Te, |, Cs, Ba, La, W, Au,
Hg, Pb

Organic markers

n-alkanes, alkanoic (carboxylic) acids (especially fatty acids), aromatic
carboxilic acids, levoglucosan/mannosan, PAHs, hopanes, resin acids,

syringols, cholesterol

Aerosol size
distribution

scanning mobility particle sizer (SMPS), optical particle counter (OPC),
aerodynamic particle sizer (APS), cascade impactors, streakers, Davis
rotating-drum Universal-size-cut Monitoring impactor (DRUM/RDI)

Mass fragments
(m/z)

concentrations

obtained with aerosol mass spectrometer (AMS) or aerosol chemical
speciation monitor (ACSM) techniques and used to apportion the

organic fraction (see section 13).

Optical properties

absorption coefficients to apportion Cr * and Cub ¥, light scattering at

multiple wavelengths (see section 14).

Isotopic ratios

14C/12C ratios to apportion fossil and modern C fractions (see section
15)

Radon

indicator of planetary boundary layer (PBL) mixing and long-range
pollution transport

* Cs: carbonaceous fraction deriving from fossil fuel and Cyp: carbonaceous fraction deriving from wood burning.

Chemical species that are difficult to analyse or that yield anomalous values (commonly

referred to as “weak constituents” in PMF) tend to result in physically meaningless factors

(Huang et al, 1999). For that reason, certain authors recommend that species considered

unsuitable as source tracers be excluded. According to Ito et al. (2004), species that are not

indicative of any source, or that are indicative of sources which are not relevant to the

objectives of the study, can be discarded. However, the exclusion of species may lead to a loss

of relevant information if we consider that the concomitant variation of a set of species could

be indicative of a source even though none of them is exclusively emitted by that source. Quite

often, analytical protocols such as those of X-ray fluorescence (XRF) or gas chromatography

coupled with mass spectrometry (GC-MS) are able to provide multiple species output at little or
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no additional cost. The opportunity to take advantage of these “additional” species should not

be ignored.

Using a reduced number of species could limit the number of sources that can be identified.
Many multivariate methods like PMF and CMB are sensitive to collinearity. Increasing the
number of species may help to reduce the collinearity between different source or factor

profiles, thereby increasing the number of sources that can potentially be resolved.

In order to prevent double mass counting, redundant species should be avoided. This could be
the case with sulphur (S) and sulphate, between elements and their corresponding cations or
between organic carbon / elemental carbon (OC/EC) and total carbon (TC). However, soluble
potassium (K) can sometimes be a useful indicator of biomass burning and thus, soluble and
insoluble K can both be included in the model where insoluble K = total K — soluble K. More
generally, if the two species are proportional to each other throughout the dataset, then it does
not matter which one is used. However, if they do not track each other, a better separation of
sources could be achieved by keeping both species in the dataset during the analysis. Double
mass counting should be corrected at a later stage by retaining only one of the species in the

computed factor profiles.

The traditional approach in receptor models relies on a basic set of chemical species that
represents most of the particulate mass such as major ions (sulphate, nitrate, and ammonium)
and the carbonaceous fraction (total organic carbon (TOC), OC/EC) plus a number of elements
whose absolute and relative concentrations or specific ratios are used to identify sources (Miller
et al,, 1972). Although organic matter constitutes a considerable share of PM and has relevant
influence on the physical and chemical properties and effects of the aerosol on health, the
analytical techniques used in the past were not suitable for describing this fraction in full. The
development of mass spectrometry made it possible to determine and identify organic

compounds that are characteristic of certain sources called molecular markers, such as:

- levoglucosan (and isomers), syringol and metoxyphenols are markers for biomass burning
(Simoneit, 2002),

- hopanes and steranes for vehicle emissions (Cass, 1998; Schauer et al., 2002),

- cholesterol and fatty acids for cooking emissions (Chow et al,, 2007; Zhao et al., 2007,
Schauer et al.,, 1999),

- benzene, di-, tri and tetra carboxylic acids, phthalates, branched ketones for secondary

organic aerosols (Jaeckels et al, 2007; Subramanian et al., 2007).

The inclusion of molecular markers in the set of species is often desirable but requires specific
sampling and analytical techniques (Wang et al., 2012; Waked et al,, 2014; Srivastava et al,,
2018a & 2018b). Moreover, the development and availability of instruments to measure the
optical properties of the aerosol (light scattering, light absorption) and its size distribution has

led to studies in which this information is combined with the chemical composition in order to
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better constrain the sources on the basis of their properties and the processes that pollutants

undergo in the atmosphere.

Mass concentration or number concentrations in particle size bins can be used as species
together with chemical species (e.g. Gu et al. 2011, Pere-Trepat et al, 2007; Pey et al,, 2009;
Zhou et al., 2005). For example, Ogulei et al. (2006) reported NOs™ associated with particles
larger than those associated with S04%", and ultra-fine particles (UFP) associated with gasoline

and diesel exhausts but not with the burning of vegetation.
Number and frequency of samples

From the mathematical point of view, CMB can be executed with just one sample. In practice,
many samples are required to obtain results that are representative of the variety of conditions
in the study area, including the variability of sources over time. By contrast, multivariate
techniques only work properly with large numbers of samples as input. According to the EPA
PMF v3 User Guide (Norris et al., 2008), this method is often used on speciated PMzs datasets
with over 100 samples. At least 100 samples of 24-hour data of at least 20 species are
recommended by Brown & Hafner (2005). Johnson et al. (2001) claim that at least 50
chemically characterised ambient samples are required for running multivariate models.
According to Henry et al. (1984), the minimum number of samples (N) is the one that yields a
ratio between degrees of freedom (D) and number of variables (V) that is higher than 60, while
the optimal is one that leads to values above 100, according to the following equation:

D/V = N-(V/2-1.5) (3.1)

On the other hand, Thurston and Spengler (1985) propose that the number of samples should
exceed the number of variables by at least a factor of three.

In practice, the minimum number of samples required to detect the latent variables cannot be
established a priori as it depends on the amount of information contained in the dataset. If the
relative contribution of sources were the same in all samples, analysing new samples would not
add any new information to the model. Therefore, there should be enough samples to catch the
variability of the sources, including samples where some sources are absent or negligible.

Small datasets simultaneously obtained for several sites may be made usable for PMF analysis
by pooling them into one matrix. This can be done, for example, for several urban background
sites within a city (Xie et al., 2012), a larger region with a homogeneous aerosol climate (Belis
et al, 2011; Larsen et al, 2012; Mooibroek et al., 2009) or even for different site types to

assess contributions of common sources (natural sources, Beuck et al., 2011).

In filter-based systems, the most common configuration is the collection of 24-hour samples.
This is in part due to the requirements of reference gravimetric methods for the determination
of the PM mass. In addition, a 24-hour period is considered to be representative of all the
sources occurring in one day-to-night cycle and hence an appropriate unit for data elaboration.

A practical reason for selecting 24-hour sampling also derives from the need to collect enough
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PM for chemical analysis. This limitation is especially true for low-volume samplers when PM
levels are low such as in areas that are located far from the sources or in seasons during which
the main sources are not active. In urban areas, four- to six-hour sampling times usually allow
for the collection of enough material for major component analyses (e.g. Vecchi et al, 200S;
Bernardoni et al., 2011). This configuration provides the opportunity to detect the daily trend of
most sources, making their identification with receptor modelling more feasible. With high-

volume samplers, two- to four-hour samples can be sufficient.

Higher time resolutions can be achieved using semi-continuous systems for chemical analysis:
particle-into-liquid samplers (PILS), semi-continuous elements in aerosol systems (SEAS),
monitoring instrument for aerosols and gasses (MARGA), semicontinuous OC/EC, with
resolutions ranging from a few minutes to one hour (see section 4). Streakers or DRUM/RDI
samplers also provide the opportunity to select the time resolution of the analysis on size-
resolved samples. Physical parameters associated with particle size or optical properties

(scattering, absorption) can be obtained with time resolutions close to a minute or less.

Time resolutions in the order of seconds and minutes can be obtained with online aerosol mass
spectrometers (Pratt and Prather, 2011; Drewnick, 2012).
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4. DATA COLLECTION / FIELD WORK / CHEMICAL ANALYSIS

The analytical techniques are selected on the basis of particulate matter (PM) concentrations,
required detection limits (DLs) and uncertainties, costs, access to laboratory facilities, and time

resolution of the processes under study.
Sampling systems

Offline chemical analysis of PM is commonly performed using filter-based methods. Different
size fractions and sampling flow rates are available. Since PMio and PMzs are regulated under
Directive 2008/50/EC, a reference method exists (EN 12341) and most experience and types of
instruments are available in Europe (Lagler et al.,, 2011). The advantage of using these methods
is that data can be compared with those in a wide number of sites. On the other hand, the
current European legislation focuses more on total PM mass concentration than on the analysis
of its chemical composition (analysis of major carbon fractions and ions are requested only for
few rural/remote sites). Therefore, reference methods are not always the most appropriate for
source apportionment. In the US there are samplers that are specially designed for PM
speciation: "RAAS" (Andersen), "MASS" (URG), "SASS" (Met One), "Partisol 2300" (Thermo), among
others (Solomon et al., 2000).

The high-volume polyurethane foam (PUF) sampler, which has a large volumetric flow
(hundreds L min™t), may be used in parallel with low-volume PM samplers to collect samples of
semi-volatile organic compounds (SVOCs) in both PM and gaseous phases (Kim Oanh et al,,
2009).

Filter choice

The selection of filters is guided by the following criteria: limited artefacts, compatibility with
the analytical techniques, no interactions with the sample, low level of impurities, and high

efficiency.

Commonly used filter matrices are pure quartz, coated quartz and Teflon, nylon, polycarbonate,

glass fibre and cellulose esters. For a detailed discussion, see Chow (1995).

Significant differences are possible between sampling systems for organic carbon and nitrates
due to loss of nitrate or either deposition or loss of organic carbon. In order to test the influence
of deposition and loss of semi-volatile compounds in filter-based methods, relatively complex
sampling systems equipped with denuders and double filters (front filter and backup filter) are
required (e.g. Subramanian et al., 2004: Vecchi et al, 2009). Unlike CEN standards, the EMEP
protocols recommend the application of these methodologies for the limitation and/or the

estimation of positive and negative sampling artefacts.

It is worth mentioning that quartz fibre filters are suitable for the determination of ions, and
carbonaceous fractions (organic, elemental) on the same sampling support, as carbonaceous

aerosols have to be analysed at elevated temperatures. For elemental composition quartz-fibre
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filters may present variability in filter blanks and other issues depending on the specific
analytical technique used. PTFE/polycarbonate filters are the most convenient option to assess

elements with a proper accuracy
Most common analytical techniques

Organic carbon and elemental carbon (OC, EC), either total or by single temperature steps, are
commonly measured using thermal-optical methods. These methods take advantage of the
different behaviour of the various carbonaceous fractions (i.e. OC, EC, and carbonate carbon)
when exposed to elevated temperatures and to light. OC evolves at lower temperatures than
EC, while the latter absorbs light more importantly than the former. The main differences
between the existing thermal-optical methods (e.g. "NIOSH", "IMPROVE" and "EUSAAR") rely
mainly on the temperature programs and on the devices used for optical measurements:
Thermal Optical Transmission (TOT) or Thermo Optical Reflectance (TOR). More information can
be found in Chow et al. (2004), Cavalli et al. (2010), and the European standard EN 16909.

The methods most used for anions and cations are ion chromatography (IC) or automated
colorimetric analysis (EN 16913).

For inorganic elements, inductively coupled plasma - mass spectrometry (ICP-MS) and graphite
furnace - atomic absorption spectrometry (GF-AAS) which are the reference methods for the
determination of metals (As, Cd, Ni and Pb) in PMio (Standard EN 14902). Although some
alteration cannot be excluded due to vacuum and slight heating (Yatkin and Gerboles, 2012),
energy dispersive X-ray fluorescence (XRF) is commonly used in source apportionment because
it covers many elements (from Na to U), does not require sample pre-treatment and does not
destroy the samples. It also has good accuracy and repeatability, and automatisation of the
analysis makes it possible to treat high numbers of samples with reduced costs. A similar
technique, particle-induced X-ray emission (PIXE) is also suitable. Differences in detection limits
(DL), when compared to XRF, are due to intrinsic features of the two techniques, such as
different ionisation cross-sections for photons or protons and differences in the intensities of
the continuous background (Calzolai et al., 2008). PIXE is more powerful than XRF in analysing
very small samples (i.e. size-segregated samples, high time-resolution samples or those
collected in remote areas). The main limitation is due to the availability of beam time at the

accelerator facility where PIXE analysis can be carried out.
Organic compounds

PAH levels in PM1o are regulated under Directive 2004/107/EC. The application of 1SO standard
12884 is recommended but there is no reference method in this case. Either GC-MS or high-
performance liquid chromatography (HPLC) methods are used for these compounds. Offline GC-
MS is used to characterise a wide range of organic compounds (see table 3.1). More recently,

the sensitivity of thermal desorption GC-MS methods has improved and, when combined with in
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situ derivation, enables the identification of polar and non-polar components (Laskin et al,,
2012).

There is a variety of techniques for the determination of anhydrosugars (e.g. levoglucosan). GC-
MS-based methods have been extensively used, but different types of HPLC and IC techniques
have also been proposed (Schkolnik and Rudich, 2006).

Advanced User Box
Online monitoring techniques for PM mass concentration and chemical composition

In online systems, sampling and analysis are integrated into a single instrument.

The automated determination of PM mass concentrations (EN 16450) relies mostly on three
operating principles: Tapered Element Oscillating Microbalance equipped with Filter Dynamics

Measurement System (TEOM-FDMS), beta gauges, and optical methods.
Examples of online analytical instrumentation for ions are:

a) Particle-Into-Liquid Sampler (PILS) developed by the Georgia Institute of Technology (Weber
et al., 2001) coupled with ion chromatography.

b) Monitoring instrument for aerosols and gasses (MARGA; Khylstov et al., 1995).

For the analysis of elements, the following methods are available: a) Semi-continuous elements
in aerosol system (SEAS), developed by University of Maryland (Kidwell and Ondov, 2001), and
b) a modified version "SEAS II" and "KSEAS" (Lee et al., 2011). Field-deployable systems also
exist to collect airborne particles and apply semi-continuous XRF analysis to the samples (e.qg.,

Xact 620, Cooper Environmental Services).

For carbonaceous fractions, a semi-continuous OC/EC analyser is available from Sunset (Bauer
et al,, 2009), although the measurements are not always fully comparable with those obtained
with the offline method (Belz et al, 2012). A Total Carbon Analyzer system (TCA) is also

currently developed by Magee Scientific.

Optical techniques for monitoring the aerosol light absorbance, such as the Multi-Angle
Absorption Photometer (Petzold and Schénlinner, 2004) or the Aethalometers (Hansen et al.
1984), are commonly used to estimate equivalent carbon, i.e. the main absorber of visible light

among aerosol components.

Finally, as described in section 13, organic mass spectra can be obtained routinely using

Aerosol Mass Spectrometers (AMS) or Aeroscl Chemical Speciation Monitors (ACSM).

Local source profiles (fingerprints)

Chemical fingerprints of local sources are of utmost importance in SA studies. The
characterisation of the most relevant sources in the study area should be included in the work

programme. Considering that local source characterisation is resource consuming, it is possible
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to adopt fingerprints available from previous work in similar areas or obtained from source
profile repositories (such as SPECIATE/US-EPA: http://www.epa.gov/ttnchiel/software/speciate/
and SPECIEUROPE/JRC:  http://source-apportionment.jrc.ec.europa.eu/specieurope/index.aspx,
Pernigotti et al, 2016). The sample collection varies from source to source. For pollutants
deriving from combustion processes, samples collected directly from the stack or exhaust at
temperatures much higher than that of ambient air may lead to biases due to the absence of
the condensed fraction in the particulate phase. To overcome this pitfall, it is possible to dilute
the emissions with a known volume of clean air. An alternative is to sample the plume at a

distance that allows the effluent to dilute and cool down to near ambient temperatures.

Source-oriented monitoring stations can be used to characterise the source emissions if periods
in which other sources influence the sample are excluded from the analysis. Characterisation of
mobile sources can be obtained with samples collected in the lab (e.g. Montero et al, 2010;
Adam et al, 2011), on the road (e.g. Georgios et al.,, 2012) or in tunnel experiments (e.g. El
Haddad et al., 2009).

Re-suspension of road dust and contributions deriving from industrial dust can be estimated by
sampling deposits directly from the ground (Ashbaugh et al.,2003; Amato et al., 2009; Colombi
et al, 2010). Samples of vehicle parts’ wear (tyres, brakes, clutch) can also be obtained directly
by abrasion in the laboratory (e.g. Sjédim et al., 2010).
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5. KNOWING YOUR DATASET: BASIC STATISTICS

Before starting any kind of data treatment, it is good practice to make some summary plots
and run some simple tests to gain an overview of the relationships between variables and how
they change from sample to sample. Many commercial and free software applications are

available that can carry out routine statistic tests (e.q. Statistica, Matlab, R, SPSS).
Central and dispersion statistics

Box and whisker plots are useful to visualise central values of your variables (mean, median)
and the dispersion of your data around the central values (quartiles, minimum and maximum

values).
Check the statistical distribution that best describes your data

Quite often the air pollution data can be better described using a log-normal distribution rather
than a normal one. Many statistical tests assume that data is normally distributed even though
small deviations from normality are acceptable. In order to better assess the results of
standard statistical tests, knowing the statistical distribution of your data could be useful. Box
and whisker plots give a visual overview of the data spread that enables a preliminary
assessment of the distribution. Visual tests of normality such as histograms, probability plots
and normal probability plots are also useful. For an in-depth evaluation, normality tests such as
Kolmogorov-Smirnov (Massey, 1951) or Shapiro-Wilk W (Shapiro and Wilk, 1965; Royston,
1982) can be applied.

Correlation matrices

The correlation between variables can be visually assessed using scatter plots. This is
particularly useful to identify anomalous data points (suspected outliers) that may affect the
correlation. However, when many variables are involved the use of correlation matrices
reporting the Pearson correlation coefficient (r) and related statistics for every possible pair of
variables is a useful exploratory technique, provided the influence of outliers has been

evaluated (see below).
Linear regression

Ordinary Least Squares regression is the simplest and quickest technique to more in-depth
exploration of the association between two variables. The evaluation of the curve parameters
(intercept and slope and the determination coefficient (r?)) provides useful preliminary
information to describe the (linear) relationship between the variables considered. Precaution

should also be taken concerning outliers.
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Figure 5.1 Linear regression to test ion balance in PM (B. Larsen, unpublished).
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Time trends

Plotting time trends of the variables makes it possible to identify regular patterns in data (e.q.
seasonality, influence of the day of the week) or extraordinary events that probably indicate the
influence of specific sources influencing the study area for short periods (e.g. Saharan events,
wild fires). In addition, when hourly data are available, characteristic daily profiles of certain
species can be used to identify specific sources (e.g. a peak of traffic markers during rush
hours).

Figure 5.2 Seasonal time trends in sulphates at Saint Louis supersite (Lee et al., 2006).
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Outliers

Values that do not follow the distribution of data with similar characteristics are referred to as
outliers. They may reflect genuine properties of the studied system or derive from
measurement errors or anomalies that are not relevant for the model. Outliers can be extreme
values or values with unusual relationships with other variables (e.g. ratio).

In some statistics software applications, values above or below the quartiles at a distance of
15 - 2 times the interquartile range (height of the box) are labelled as outliers. Of the
analytical tests to identify outliers (in normal distributions), the most commonly used is the
Grubbs test. This is based on the difference between the mean of the sample and the most
extreme or the two most extreme data values, considering the standard deviation (Grubbs,
1950, 1969). These tests help the practitioner to decide whether these data provide useful
information on sources or whether they only introduce noise into the model. It is good practice

to report the outliers excluded from the analysis and the reason for their exclusion.
Identify samples of special interest

In source apportionment (SA), it is important to distinguish between a one-off event with a
unigue profile and an episode that occurs due to the increased contribution from a source with
a known profile that is already present in other samples. The analysis of ancillary data is useful
to investigate the possible causes of anomalous samples identified with the previous
techniques. Meteorological variables such as wind direction, precipitation, or extraordinary
events such as forest fires, fireworks, of volcano eruptions may influence the levels of the
studied pollutant for short periods.

Spatial distribution

Spatial patterns can be only assessed when many sites are available. At this stage of the study,
it can be checked whether the spatial variations of the chemical and physical properties of the
aerosol are coherent with geographical gradients in variables that influence the emission of
concentrations of atmospheric pollutants (e.g. NaCl is expected to be higher in sites close to the

coast; e.q. Schaap et al,, 2010).
Ratio-ratio scatter plotting

By representing the concentration (in ambient PM) of two receptor species in a scatter plot,
descriptive information can be obtained for a SA dataset in which only one or two sources (or
source types) contribute to these species. The data points in the plot will be distributed in an
ordered manner between edges, delimited by the emission factors of these pairs of species for
each source (type). The advantage of visualising concentrations of receptor compounds in PM
that are normalised to concentrations of reference compounds (e.g. EC) in two-dimensional

scatter plots was first demonstrated by Robinson et al. (2006).
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Figure 5.3. Ratio-ratio plots using data on B(ghi)P, Ind(123)P and EC to visualise the potential

contribution of three source scenarios for ambient PM.
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6. PRELIMINARY DATA QUALITY CHECKS

Missing values

In order to run a multivariate analysis, the entries in the dataset must comply with minimum
requirements. This applies in particular for factor analysis. It is a common misconception that
negative or zero concentrations are harmful for factor analyses. If a true value is zero or near
zero, then there is a probability that the corresponding measured value will be negative. Such
negative values should be kept in the dataset. They may be rejected only if their confidence
interval does not include zero, which would obviously indicate a measurement error. If negative
values are truncated to zero, then a modelling error is caused, and the data becomes biased.
‘Least squares’ (LS) methods are not appropriate for such kind of data. Unfortunately, some
measurement techniques are not able to produce unbiased near-zero values. How to deal with
such biased values is still an open question. The most promising approach in Multilinear Engine
2 (ME-2) seems to be to use error model code -16 (see box below).

Zero or negative uncertainties have no physical meaning and therefore should be excluded from
the input file or replaced by reasonable values. Since it is not possible to perform the analysis
when empty cells are present in the input data matrix, missing values should be handled in
advance by the operator. The simplest choice is to cancel the row (sample) or the column
(species) from the input matrix. However, this may cause the loss of important information. An
alternative approach is to substitute missing values with estimated values, such as the mean,
the median or the geometric mean of the measured concentrations of the species, in all the
samples of that particular study site (Polissar et al, 1998). The procedure by Polissar et al.
(1998) is often used without testing its validity for any given dataset. In the EPA Unmix 6.0
receptor model, for instance, there is an automated subroutine that substitutes missing values
using the maximum and minimum ratios of the variable for which the value is missing (EPA
Unmix 6.0 user manual). More sophisticated methods - such as multiple imputation, using
statistical relations between data (Rubin, 1976 & 1977) - can also be used to substitute
missing values (Hopke et al., 2001; Bacarelli et al,, 2005, Ibrahim et al,, 2005; Yang et al., 2005;
Mooibroek et al., 2016).

It should be noted that for any receptor model, the more missing values are reconstituted, the
greater the uncertainty of the source contribution estimates. As a rule of thumb, missing values
substituted for a given species should not be more than half of the samples (Brown & Hafner,
2005). Scientists should find, for every dataset, the most suitable uncertainties of the

substituted values to avoid distorting the model.
Values below the detection Limit

Values below the detection limit (BDL) of the analytical method should be used if they are
available. If values are not provided by the laboratory they can be substituted either by zero (or

by a value sufficiently close to zero), by the detection limit itself or by a fraction of the
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detection limit. The most common practice is to substitute BDL values with half of the detection
limit (Polissar et al., 1998). Substitution of BDL values only makes sense if the number of
values above the detection limit of that species in the dataset is sufficient to provide
information about sources. It has been suggested that it is only worth including species that
present more than 50% of BDL values in the data treatment if the signal-to-noise ratio is

reasonable (see below) or the species is a tracer (Brown & Hafner, 2005).

Note: the official nomenclature (IJUPAC, 1997-2006) defines detection limit (DL) as the
minimum value that can be distinguished from the blanks, and limit of detection (LOD) as the
blank value plus a multiple of the standard deviation of this measurement. In analytical
chemistry, LOD is commonly considered to be the lowest analyte concentration at which

detection is feasible; measurements below that value are reported as “<L0OD”.

Advanced User Box

There are cases in which the substitution of many values below the detection limit in several
trace species creates an artificial factor containing trace species with a characteristic pattern.
This “ghost factor” is generated by the model to fit the substituted values in all those species in
which they occur simultaneously. When using ME-2-based analysis tools, it is possible to avoid
such distortions by using the special error model code -16 (Paatero, 2000) for all substituted
data points. This code stipulates that all fitted values below the detection limit are to be
considered a perfect fit, with Q contribution (see section 9) equal to zero. This alternative is not
yet implemented in version 3.0 of the US - EPA Positive Matrix Factorization (PMF), but it may
be used when controlling ME-2 using home-made scripts.

Signal-to-noise

The signal-to-noise ratio (S/N) is defined as the power ratio between a desired signal (S,

meaningful information) and the background noise (N, unwanted signal).

In receptor model analysis this can be interpreted as the relationship between concentrations
(x) and uncertainties (s) (Paatero and Hopke, 2003):

(%)J - /2?{_1::], (6.1)

In the EPA PMF v3, the equation is even stricter and considers only the portion of the

concentration that exceeds the uncertainty (EPA-PMF 3.0 User Guide):

(ﬁ)j _ [Ealymsy)” (6.2)

i=15ij

During the European RM intercomparison (Karagulian et al., 2012), it was discovered that both

of the above-mentioned equations for S/N fail totally if a species contains strongly
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downweighted values or if different matrix rows contain different scaling factors, e.g. some in
mg and others in pg. EPA PMF v5 contains an improved expression that should work well for all
kinds of data, even those where different rows have different scaling factors or when values
were downweighted (e.g. missing values). To determine the S/N, two calculations are performed
where concentrations below uncertainty are determined to have no signal, and for
concentrations above uncertainty, the difference between concentration (x;) and uncertainty (si)
is used as the signal (EPA-PMF 5.0 User Guide):

_ (XUTSUY ey s e
dij = ( 5 ) leu > Sjj
dij = 0 if xjj < sj; (6.3)
The S/N is then calculated using:
s
(}),= VnZiady (64)

In this case species with concentrations always below their uncertainty have a S/N of O. Species
with concentrations twice their uncertainty have a S/N value of 1. When the S/N is greater than
1 this may indicate a species with a “good” signal, tough this still depends on the determination
of the uncertainties. Using this approach will eliminate the contribution of negative
concentration values to the S/N, as well as limiting the S/N for species with a handful of high
concentration events. When using this new expression, the numerical limits for weak/bad/good

discrimination must be changed from the customary values shown below.

The signal-to-noise ratio is useful for classifying variables according to the information they
supply for the source identification analysis. According to Paatero and Hopke (2003), variables
with signal-to-noise ratios below 0.2 (bad) are to be excluded from the analysis, while variables
where the ratio falls between 0.2 and 2.0 (weak) are suitable for the analysis. However, it is
recommended that such variables be downweighted by a factor of 1/2 or 1/3 by increasing the

uncertainties outside the EPA-PMF programs.
Mass closure and ion balance

Preliminary tests exist to match the masses or the electric charges of species. In the first case,
mass closure is accomplished by comparing the mass of particulate matter (PM) to the sum of
the masses of the major chemical components. For this calculation, organic carbon (OC) is to be
converted into organic matter (OM) using an empirical coefficient that normally ranges from 1.4
to 2.1 (e.g. Turpin and Lim, 2001). The mass of crustal fraction must also be estimated from
elements, as these are frequently present as oxides or carbonates. Therefore, the mass of the
missing oxygen and carbon atoms should be added. The following empirical equations have
been proposed to estimate these kinds of materials, by accounting for unmeasured oxides in
minerals (Watson et al., 2002; Malm & Hand, 2007):

Geological = 1.89Al + 2.14Si + 1.4Ca +1.43Fe (6.5)
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Soil = 2.2Al + 2.49Si +1.94Ti + 1.63Ca + 2.42Fe (6.6)

As Fe can be emitted by multiple sources, Marcazzan et al. (2001) proposed an equation which

considers only the natural contribution of Fe in the soil making use of enrichment factors.

Commonly, the mass of PM, determined with the gravimetric method, is higher than the sum of
the chemical components. This can be explained in different ways: a) not all the relevant
chemical components have been determined; b) the mass measurement includes water
adsorbed to particles that is not quantified in the chemical analyses; c) the selected coefficient
for converting OC to OM is not optimal for the study area; d) the elements that have been

assumed to be present as oxides and carbonate have not been taken into consideration.

By comparing the sum of anion equivalents with the sum of cation equivalents, it is possible to
assess departure from neutrality, and plotting values in a graph helps to identify samples with
an atypical ionic composition. The most common ionic species in PM are inorganic cations
(ammonium, sodium, potassium, calcium, and magnesium) and inorganic anions (sulphate,
nitrate, chloride, and carbonate). Among the organic acids, the most relevant anions are those

deriving from oxalic, malonic, succinic, formic, and acetic acids (Chebbi & Carlier, 1996).

It is also possible to develop simplified mass closure models which provide an excellent check
on the consistency of data from individual samples. An example is the Pragmatic Mass Closure
Model (Harrison et al., 2003) which uses simple empirical parameterisations to account for the
measured mass of particles in terms of a small number of analytical variables. Although such a
model might be expected to be site-specific, it has proved to be transferable between sites,
years and particle size fractions (Yin and Harrison, 2008). However, caution should be exercised
in the application of the model to sites with entirely different pollution traits. Simple empirical

corrections should be feasible in such cases.
Analysis of consistency in time and space

In order to populate a dataset with an appropriate number of samples it may be necessary to
collect data for more than one year. However, species and other variables collected during
different years may show different relationships. In order to check these patterns before
running the analysis, scatter plots to look for edges (Henry, 2003) or time trend plots are
useful. Changes in sampling methodologies or analytical techniques may create disruption in
time series that must be duly taken into account during data elaboration. Comparing time
series from different sites is helpful to detect anomalous patterns. Nevertheless, it must be
considered that different monitoring networks may have different instrumentation (e.q.

different inlets, different operation principles) or different data treatment protocols.

If several receptor sites have been operated near each other, e.g. within one city area, then it
may be useful to soft-constrain regional factors (more details on constrained models in section
12), such as secondary sulphate, in order to have similar factors at all sites. In this way, a

significant part of rotational uncertainty may be avoided. It should be kept in mind that the
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secondary sulphate G factor often has no rotation-limiting zero values and hence is prone to

rotations if no constraints are applied.
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7. INPUT DATA UNCERTAINTY CALCULATION

Uncertainty is the quantitative estimation of the quality of a measurement that makes it
possible to compare results among themselves and with reference values (Joint Committee for
Guides in Metrology (JCGM) 100:2008). Estimating the uncertainty of measurements is a
common practice in analytical chemistry and physics that is performed routinely according to
international criteria laid down in standards and implemented in reference methods. In
analytical chemistry, uncertainty is evaluated both as the standard deviation of repeated

observations and by comparison with reference materials.

In source apportionment, analytical uncertainty is important since the most commonly used
models, like PMF and CMB, require the uncertainty of the species concentrations as input data

in order to find the solution and the uncertainty of the output.

In PMF analysis, uncertainty estimation is particularly critical because every entry is weighted
according to its uncertainty. Although analytical uncertainty estimation is an important step of
receptor modelling, it must be noted that it is only one component of the overall input data
uncertainty required by receptor models (Polissar et al, 1998). Other contributions to the
overall uncertainty include flow rate uncertainty, between-sampler uncertainty and other
unidentified noise.

Moreover, not all components of overall uncertainty behave equally. In PMF input, only the
components of uncertainty that are capable of generating residuals, i.e. components that will
increase the Q value of the fit (see section 9), should be included. Flow rate uncertainty is a
prime example: flow rate variations influence all values on a matrix row by the same multiplier,
hence causing no increase of residuals e; (equation I.1). Flow rate uncertainty, and other similar
uncertainties, should bypass the PMF stage and be attached directly to the computed G factor
elements (equation I.1). In addition to analytic uncertainty, modelling errors (e.g. variation of
source profiles with time, chemical transformations during transport from source to receptor)
also cause residuals in PMF modelling. Expected contributions from modelling errors must also
be accounted for in the PMF input data uncertainties. There is no fixed rule for such
contributions. To begin with, it is reasonable to include 10% of each data value as a provision
for modelling errors. When experience is accumulated, this numerical coefficient may be
adjusted. However, this additional uncertainty must always be reported in publications so that

the work is reproducible.

The operator also needs to attribute an uncertainty to missing values and to values below the
detection limit. That uncertainty is normally higher than that of measured values. Polissar et al.
(1998) set the uncertainty of values below the detection limit to 5/6 of the detection limit,
while the uncertainty of missing values is by convention set at four times the geometric mean.
This convention has no general statistical basis. For some datasets, significantly larger

uncertainty values are needed for missing values.
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Sometimes the attribution of uncertainties may be achieved by a trial-and-error process that
aims to obtain the best model fit which is evaluated using Q values (see section 9), scatterplots,

distribution of residuals and results from multiple regressions (e.g. Polissar et al., 2001).

When dealing with databases in which single entry uncertainties are unavailable or are
inappropriate for modelling purposes, the global input data uncertainties may be estimated
using equation-based approaches, which rely on the species detection limit (DL), empirical
constants (k), species concentration (C) and/or the coefficient of variation (CV) (Karagulian &
Belis, 2012).

Analytical uncertainty can be estimated by the linear regression described in equation 7.1
where ca is the uncertainty of the analytical procedure, m is the mass of the analyte, and oo

and « are fitting parameters (Anttila et al.,, 1995):

cr§ = 03 + (am)? (7.1)

In the estimated fractional uncertainties (EFU) method the error structures (s;j) are (Kim and
Hopke, 2005):
Sij =[DL]/3 + kx (7.2)

When no empirical constants are used other than the DL and coefficient of variation (CV), the
analytical uncertainty is (Chow et al., 2007):

2 2
oty = \/ DL{ +(CV; xCi) (7.3)

Sampling contributes to the uncertainty of measured values due to sampling volume
uncertainty, selective effect and other artefacts caused by the sampler inlet, and losses due to
sample transport and conservation. These contributions can be assessed with field tests (e.q.
collocated measurements and comparison with reference instrumentation and techniques). In
the case of destructive analysis of the filters where PM is collected, the procedure of
subtracting blank filter (different from sampled ones) concentrations is an additional source of
uncertainty. Sampling and blank subtraction uncertainties have been incorporated into the input
data uncertainty by Amato et al. (2009):

2 2 2
Op =0, T 0pk (7.4)

2
ol = /3—?+(Bxij)2 (7.5)

where the standard deviation of species concentrations in blank filters (osw), the sampled

volume (Vi) and a coefficient () are used to account for the additional uncertainty sources.
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Input data uncertainties can also be estimated with the PMF2 software. This is a more complex
procedure that uses three codes, C1, C2 and C3, the error model and the arrays T, U and V
(Paatero, 2004).

CMB uses source profiles as input data with associated uncertainty estimation. When source
profiles are too similar, CMB may be not able to find a solution (collinearity). In order to prevent
problems related to collinearity, sources with similar chemical composition are either combined
into source categories / composite profiles or only one profile is incorporated in the analysis
while the other is dropped. The uncertainty of the composite is obtained by propagation of the
uncertainty of the pooled single profiles (Watson, 2004). However, this may not fully account

for the variety of similar sources in the study area and their variability over time.

In order to deal with the variability of source profiles, initial model runs often contain many
profiles, and a sensibility test should be carried out to assess their influence on the precision
and stability of the source contribution estimates.

A default value of zero with a standard deviation equal to the analytical detection limit may be
assigned to a species of a source profile if that species is known to be absent from that source
(Watson, 2004).

Metals are excellent receptor species given the assumption that such receptor species do not
chemically react or physically repartition during transport from source to receptor. As such,
metals have been used from the very beginning of receptor modelling activities (e.g. Hopke et
al,, 1991). However, in the search for specific receptor species for different combustion sources
(also called molecular markers), the use of organic chemical compounds has grown popular in
modern source apportionment studies (e.g. Srivastava et al,, 2018a & 2018b), even though this
class of compounds often comes into conflict with the above-mentioned assumption. An
interesting utilisation of uncertainty data for the inclusion of semi-volatile and photo-
chemically reactive species in CMB and PMF has been developed and adopted by Latella et al.
(2005), Junninen et al. (2009), Belis et al. (2011) and Larsen et al. (2012). In these studies,
methods are described for using information on volatility to account for the re-partitioning
processes (PAHs; semi-volatile organic carbon fraction) and photochemical degradation
(hydrocarbons, levoglucosan) from source to receptor. This information has served as error-

input to CMB and PMF for the error weighting in the statistical procedures.

PMF input uncertainty for advanced users (by P. Paatero)

The definition of correct input uncertainties for PMF is not only based on measurement errors.
Residuals are also caused by experimental problems (e.g. sample contamination) and by

modelling problems, such as:

- source profiles being variable, in contrast to PMF assumption of constant profiles.
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- sporadic sources, too weak to get their own factor but strong enough to cause "too large"

residuals
- incompatible or non-conforming variables that have nothing in common with other variables.

The basic idea of correctly weighted least squares (LS) fit is that assumed uncertainties s_ij
should be specified so that expected scaled residuals will be, on the average, between -2 and
+2 and, therefore, observed Q values approximate the theoretically expected Q values. This
behaviour should be valid for each single species in the dataset. Uncertainties s_ij should be
specified so that scaled residuals, for each variable, are of correct magnitudes even in the

presence of those ill-known modelling problems.

A correct balance of different s_ij values is very important. The s_ij of different variables j must
be in harmony. Equally important is that s_ij of large data values x_ij are in harmony with s_ij
of small values x_ij for each variable j.

The uncertainty coefficients C1 and C3 were introduced in PMF2 in order to help users in
adjusting the balance between small and large data values. For this purpose, C1 is specified
small, corresponding to the uncertainty of small values. Then C3 should contribute the main
part of uncertainty for large values.

Practical experience with many real data sets has shown that quite often, coefficients C1 and
C3 lead to satisfactory uncertainties for both small, medium, and large data values. It has also
been realized that in many practical cases, different values of C3 must be specified for

different variables.

It is nowadays common that laboratories specify individual uncertainties for each measured
value. These uncertainties do not take into account the other reasons for increased residuals.
For this reason, it has been necessary to introduce in EPA PMF v5 the "extra modelling
uncertainty" coefficient. Such coefficient does not, however, compensate for too large scaled
residuals in small x_ij. If scaled residuals for small x_ij are too large, causing the overall Q to be
too large, the situation cannot be corrected by only increasing the coefficient value(s).

The extra modelling uncertainty is to be used for model set up. For any final analyses, the user
should not use the extra modelling uncertainty. Instead, the input file uncertainty calculation

should be revised and documented.

The following procedure is proposed to check whether the input uncertainties are suitable for

PMF analysis.

For each variable j, plot the scaled residuals r_ij vs. the fitted values y_ij (NOT vs. the measured
values x_ij). Each figure should be similar, showing a band of randomly oscillating values,
typically between -2 and +2. The band should be of same width for small, medium, and large

values of variable j. The band should be approximately symmetrical with respect to zero.

If the figure(s) does not fulfil these criteria, then the users should correct their model.

55




For substituted values (e.g. substituted BDL values) the diagram may not respect the
abovementioned criteria if the original BDL values are not used in the plot (sometimes the
original are not available).

If the band of residuals is not right only for small values y_ij, then C1 values should be changed

(if using PMF2). Similarly, for large values y_ij, adjust C3 (if using PMF2).

If the band of residuals is not symmetrical, then the problem may be that few uncertainties are
much too small. This happens if the lab has specified proportional uncertainties for all values,
so that a near-zero value gets an unrealistic small uncertainty that distorts the model. The EPA
PMF v5 does not cope with this problem case, not even in robust mode. Users must correct such

too small uncertainties manually.

All adjustments of uncertainties must be based on residuals of a number of values and must
apply collectively to a number of values, e.g. to all small values of variable j.

There are a few exceptions to the procedure that was outlined above:

1. Variables fitted by unique factors. This case is discussed in some detail in the PMF handbook
(Paatero, 2004). Even though the scaled residuals of such variables are much too small their
uncertainties must not be reduced.

2. In some cases, it is not desirable to perform a correctly weighted LS fit with PMF.
Downweighting weak variable(s) is the most usual case. Scaled residuals for a downweighted

variable are by definition very small.

3. Suspect or non-conforming variables are sometimes downweighted by users. This is similar
to the case of weak variables.
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8. CHEMICAL MASS BALANCE MODELS

Chemical Mass Balance (CMB) is based on the mass conservation of individual chemical
species: major aerosol components (such as elemental and organic carbon, sulphate, nitrate,
ammonium, etc.), other inorganic and elements, as well as metallic or organic compounds which
can be considered as source markers or tracers. In the mass conservation equations, deriving
from the general equation 1.1 (here the original notation was kept to facilitate consultation of
the references and our notation is reported between parentheses), known concentrations Ci ( Xij

) of specific species at a receptor site k are written as the product of unknown source

contributions sk (Qik) and known source profiles aj ( fij) (Cooper et al, 1984; Watson et al,,

1998). ;i ( fij ) are the fractional abundances of the species in the source emissions, commonly

expressed by the ratios between the species and the PMzs or organic carbon mass. The mass

conservation equations for each species emitted from m (p) sources can be written as follows:
m
Cik = . &jjSjk (8.1)
j=1

In practice, the set of linear equations generated by equation 8.1 is solved with an effective
variance-weighted least square method using the EPA-CMB8.2 software (USEPA, 2017). Note

that although equation 8.1 is similar to equation A.1 (in this case aj ( fj ) are known values), the

model is conceived for one sample per site and has no residual term.

Friedlander (1973) proposed a modified version of equation 8.1 that included a coefficient, ai,
that accounted for changes in the profile values for specific species in transit. However, the
current practice is to apportion the primary material that has not changed between source and
receptor, so this coefficient is set to 1. The remaining quantities of reactive species such as
ammonium, nitrate, sulphate, and organic carbon are then indirectly apportioned to secondary
sources. Accordingly, the species used as fitting species are strictly of primary origin. They must
be (i) stable during atmospheric transport (i.e. low volatility and moderately reactive), (ii)
accurately determined at the receptor site and (iii) reported for all source profiles considered in
the model. The number of fitting species has to exceed the number m of emission sources. The
first attempts to solve the mass balance equation were based on tracer compounds (ideally one
for each source, e.g. Miller, 1972). Since inorganic compounds rarely derive from a single
source, this approach gave way to another that considers a higher number of species than
sources. This latter approach was fully developed in the Chemical Mass Balance Model as
described by Watson et al. (1997), among others. More recently, the identification of organic
compounds that can be used as tracers for specific sources or types of sources (e.g. Schauer,
1999a and b) led to a combination of both approaches, i.e. containing more species than
sources but including some organic species (tracer or markers) deriving from unique sources
(e.g. Chow, 2007; Subramanian, 2006).
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The main strength of the CMB model is that, unlike other statistical receptor models (e.qg. PMF),
it does not require a large dataset and, theoretically, equation 8.1 can be solved for an
individual sample (see section 3). Moreover, unlike factor analysis techniques, the CMB output
does not require additional identification of the contributing sources/factors, as the profiles are

selected a priori for well-defined sources.

However, the most important issue generally encountered in CMB modelling is the selection of
the source profiles that best represent the aerosol collected at the receptor site. This selection
relies heavily on two implicit assumptions:

(i) The aggregate emissions from a given source class are well represented by an average

source profile with well-known aj ratios.
(ii) All the major primary sources of the species are included in the model.

With most commonly measured species for particles (e.g. ions, elements, carbon and organic
compounds) and common source types, approximately four to eight primary source classes are
linearly independent and can thus be apportioned by the CMB. These conventionally comprise
traffic emissions which are often separated between diesel and gasoline combustion engines,
biomass burning, vegetative detritus, cooking emissions and dust (e.g. Zheng et al., 2006a and
b; Sheesley et al., 2007; Docherty et al., 2008; Stone et al,, 2008; Favez et al,, 2010). Additional
profiles can also be selected to specifically represent the area of study, including coal burning
(Rutter et al, 2009), metal smelting (El Haddad et al., 2011), metallurgical coke production
(Subramanian et al, 2007; El Haddad et al, 2011) and shipping/heavy fuel oil combustion
(Minguillon et al., 2008; El Haddad et al,, 2011).

Currently in the literature, there are a great number of profiles and composite profiles for the
major primary sources (e.g. more than 50 profiles for traffic emissions and more than 40
profiles for biomass smoke). A comparison of these profiles reveals significant variations in
emissions depending on the fuel type and combustion conditions, rendering the choice between
these profiles very complex. Subramanian et al. (2007) show that library profiles may not
always reflect the properties of a specific source in a given study area.

To achieve CMB analysis and validation, a number of steps must be followed.

First, for each source, several profiles and composite profiles have to be selected based on the
specificity of the study area (e.g. harbour, industries, wood or coal burning, predominance of
diesel cars, etc.) and the species concentrations at the receptor site. Examining diagnostic ratios
between species can help to eliminate outlier profiles (Robinson et al., 2006a, b and c; El
Haddad et al, 2011). Constructing composite profiles from available data (Sheesley et al,
2007; Favez et al., 2010) or developing new source profiles through real world measurements,
for instance tunnel experiments (e.g. Phuleria et al,, 2006; El Haddad et al, 2009), twin site
studies (Pant et al, 2014) and open fires (e.g. Lee et al., 2005), are also common practices

carried out to better represent the emissions in the study area. Comparison of contribution
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estimates for sources such as traffic, cooking, biomass burning, coal combustion and secondary
organic aerosol can be made with simultaneously collected online and offline Aerosol Mass
Spectrometer data (Huang et al,, 2014; Yin et al,, 2015).

Second, the model is run repeatedly, including different combinations of the selected profiles.
Based on the quality of the CMB solutions, the best combinations can be selected. The
sensitivity of the results to the choice of the profiles and the related uncertainties can be
assessed. As a quality control check of the CMB calculation, statistical performance measures
include the use of R-square (target 0.8-1.0), chi-square (target 0-4.0) and the species’
calculated-to-measured ratios (target 0.5<C/M<2), as indicators of the goodness of fit (Watson
et al., 1998). If the CMB solutions do not meet these criteria, it would mean that one of the two

aforementioned assumptions is transgressed (i.e. non-representative or missing profiles).

The CMB also provides the uncertainties of the source contribution estimates by propagating
the uncertainty estimates of the receptor data and source profiles (entered as input by the
operator) through the effective-variance least squares calculations. Their magnitudes are a
function of the uncertainties in the input data and of the amount of collinearity (i.e. degree of
similarity) among source profiles. Two or three times the standard error may be taken as an
upper limit of the source contribution.

Third, CMB is often applied to the carbonaceous component of PM and, if the results are
combined with those of other analytes using a simple mass closure approach, this can be a
valuable check on data quality (e.g. Yin et al, 2010). A further useful check is whether the
concentration of organic carbon unaccounted for in a CMB model and assumed to be secondary
in origin can be compared with independent estimates of secondary organic carbon derived

using the elemental carbon tracer method as reported by Yin et al. (2010).

When available, soluble potassium, water-soluble organic carbon, radiocarbon and/or
Aethalometer measurements can also help corroborate the CMB outputs, especially in the case
of high contributions from secondary organic aerosols and biomass burning organic aerosols
(e.g. Docherty et al,, 2008; Favez et al., 2010).
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9. FACTOR ANALYSIS I: SELECTION OF THE NUMBER OF FACTORS AND
DEALING WITH ROTATIONAL AMBIGUITY (PMF)

The goal of Positive Matrix Factorization (PMF) - like any other multivariate receptor model (RM)
- is to identify a number of factors p, the species profile f of each source, and the amount of

mass g contributed by each factor to each individual sample (equation I.1).

PMF is an advanced factor analysis technique based on the work of Paatero and Tapper (1994);
it uses realistic error estimates to weigh data values and imposes non-negativity constraints in
the factor computational process. Briefly, it is a weighted least square fit, with weights based
on the known standard uncertainties of the element concentrations in the data matrix. The

factor model PMF can be written as:
X=G-F+E (9.1)

where X is the known n by m matrix of the m-measured chemical species in n samples. G is an
n by p matrix of source contributions to the samples (time variations of factors scores). Fis a p
by m matrix of source compositions (source profiles). G and F are factor matrices to be
determined, and E is defined as a residual matrix i.e. the difference between the measurement
X and the model Y = G - F as a function of G and F.

Two common programs solve the PMF problem described above: PMF2 (Paatero, 2010) and the
multilinear engine (ME) platform (Paatero, 1999).

It is well known that factor analysis can give a number of possible solutions, all mathematically
correct. The choice of the best solution in PMF analysis, e.g. the number of factors that best
represent the real case under study, shall be supported by quantitative indicators (Hopke, 2000;
Reff et al., 2007).

Examining the Q-value

The Q-value is a goodness of fit parameter, the evaluation of which may give useful indications

when the data-point uncertainties are well determined.

The theoretical Q-value is approximately equal to the number of degrees of freedom or to the
total number of good data points in the input data array minus the total number of fitted factor
elements. If the errors are properly estimated, it can be seen that fitting each good (not weak)
data point in such a way that the fitted value falls within the estimated error value, contributes
a value of approximately 1 to the Q-value. Contributions resulting from fitting downweighted

weak values are usually so small that they may be ignored.

The theoretical Q-value can be approximated by the user as nm - p(n+m), where n is the
number of species, m is the number of samples in the dataset, and p is the number of factors
fitted by the model (Paatero and Hopke, 2009).
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It is useful to look at the changes in the Q-value as additional factors are calculated. After an
appropriate number of factors are included in the fit, additional factors will not result in further

significant improvements in the Q-value.

It should be noted that the absolute level of Q-values depends strongly on the assumed
uncertainties. Usually, it is not recommended to change uncertainties just to get closer to the
theoretical Q-value (Brown and Hafner, 2005). If uncertainties have been adjusted to produce a
reasonable Q-value, then the Q-value can no longer be considered a goodness of fit indicator
(Paatero, 2010). However, the differences of Q-values obtained with different numbers of
factors are useful indicators even with adjusted uncertainties. If introducing another factor
lowers the Q-value only by the number of additional factor elements, then the introduced factor

should be rejected.

Useful information can be retrieved by comparing the theoretical Q-value to Q(true) and
Q(robust) values, which are output by each run of the EPA-PMF. Q(robust) is calculated by
excluding outliers and the Q(true) includes all points. Solutions where Q(true) is 1.5 times
greater than Q(robust) may indicate that the model is inconsistently modelling the data.
Outliers may be causing this phenomenon and can be downweighted by the user so that they
have less influence in the model (Brown and Hafner, 2005; Paatero, 2010). Weak variables (i.e.
species with low S/N values as defined in section 6) may also be downweighted.

A good fit of the data is characterised by values for Q(robust) and Q(true) that are near to the

theoretical Q-value calculated by the user (Brown and Hafner, 2005).

Examining the scaled residuals

The scaled residual is the ratio of the PMF-modelled residual e; to the input uncertainty o :

X. . P
Cij _ U Zp=19ikSkj ©2)
O'ij O'ij '

In PMF analysis, plotting the scaled residuals is also useful in choosing the final number of
factors. These residuals should be symmetrically distributed within a range of -3 to +3 (and
preferably less). If the scaled residuals are especially large (<<-3 or >>+3) for certain variables,
then one may consider that perhaps the uncertainties specified for these variables are too
small. If the scaled residuals are especially small (close to zero) for one variable, then either
overly large uncertainties have been specified or this variable is explained by a unique factor. It
may be acceptable to have a unique factor for a specific variable, but it must make
physical/chemical sense for the problem under consideration. A spurious unique factor may
arise if uncertainties that are too small are specified for a species. Too many very narrow
distributions suggest the presence of too many factors such that the solution is fitting the
errors rather than the concentration values. A strong skewness in the scaled residual plots

suggests that the fit is not correct and that other solutions should be sought.

64



Examining the regression parameters

If in the original dataset there is a good mass closure (i.e. the sum of the mass of the single
chemical components is close to the gravimetric mass), the “external mass” method - i.e. where
the PM mass is not included in the data array analysed by PMF - can be applied. In this case,
the measured mass is regressed against the estimated source contribution values. If the
regression produces negative parameters, then too many factors have been included in the
solution (Kim et al., 2003), or a strong source does not emit any of the measured species and

hence is not represented in any factor but only in PM mass.

The regression parameters can be also used to obtain the scaled source/factor profiles. Once
the source profiles are scaled, they can be summed together. It can then be determined
whether the sum of a source/factor profile exceeds 100% (within a 20% tolerance level to
account for errors). If this is the case, too few factors may have been chosen (Kim et al,, 2003;

Hopke, pers. comm.).
Examining the species/mass reconstruction

The appropriateness of the chosen solution can be also assessed by looking at the

mass/species reconstruction, which should improve when approaching the best solution.

In the EPA-PMF, there is a regression analysis of the variable with its reconstructed values that
provides some measure of the fit to the measurements. However, these regressions are
unweighted and, thus, values that are below the detection limit or are missing have a large
influence on the results and can produce degraded r? values (see section 5). To overcome this

issue, regressions with weighted values should be calculated manually.
Examining the IM and IS parameters

The maximum individual column mean (IM) and the maximum individual column standard
deviation (IS) parameters can be also used to identify the number of factors in a PMF. When the
number of factors increases to a critical value, the IM and IS values will drop dramatically (Lee
et al., 1999).

Examining multiple solutions

It is essential to perform the PMF analysis several times (typically >20) to be certain that the
same solution is obtained. A test for the best selection of the number of factors is that one
does not obtain multiple solutions or obtains at most one alternative solution. With greater or

fewer factors than the optimum, multiple solutions are more often obtained.

In general, any bilinear factor analysis has rotational ambiguity. In other words, there is no
unique solution even though there is a global minimum in the ‘least squares’ fitting process.
The addition of constraints can reduce the rotational freedom in the system, but non-negativity

alone does not generally result in a unique solution. One of the key features of PMF is that the
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rotations are part of the fitting process and are not applied after the extraction of the factors,

as is done in eigenvector-based methods.
Controlling rotations by the FPEAK value

FPEAK is a parameter used to explore the rotational ambiguity of a PMF solution ‘a posteriori’.
Assigning positive or negative FPEAK values produces rotations of which the suitability is
assessed by observing the changes of the Q-value and the G and F factors. The mathematically
optimum solution in PMF is FPEAK=0.0. Therefore, in the absence of any other consideration
such as G-space plots (see below), and unless there is a substantial improvement in the
interpretability of the profiles, the best fit is given by FPEAK = 0.0.

Controlling rotations by imposing external information
PMF rotations can also be controlled by imposing external information on the solution.

Fkey and Gkey constraints consist of binding individual elements of the F and G matrices,
respectively, to zero. If specific values of profiles or time series are known to be zero, then it is
possible to force the solution toward zero for those values through appropriate settings of the
rotational tools Fkey and Gkey values in PMF2. Controls can be applied through modifying the

script in Multilinear Engine-2 (ME-2) applications (see section 4).

In EPA-PMF v5 the Expression Builder is available to define additional constraints using three
different methods (EPA-PMF 5.0 User Guide):

e Ratio — Predefine the ratio of two species in a specific factor (e.g. Sisoil/Alsoii=3.2)
e Mass Balance — Add a constraint using the mass balance between species across one or

multiple factors (e.g. Fegiesel=2.5 Fegasoline)

Custom - Specify a constraint using a custom expression (e.g. Gsmeter=0 from August to
December 2008). The applied constraints are “soft pulling”, therefor a limit of change in the Q
value must be specified. The default value for this limit is set to % dQ = 0.5 but can be updated
if needed. See section 12 for more details.

Controlling rotations by examining G-space plots

G-space plots are source contribution scatter plots for pairs of factors (Paatero et al., 2005).
When factors are plotted in this way, unrealistic rotations appear as oblique edges that define
correlation between the factors. Edges are well-defined straight borders between regions that
are densely populated with points and regions where no points occur. With a correct rotation,

the limiting edges usually coincide with, or are parallel to, the axes.

Inspection of the plots helps choose a realistic rotation, but one must bear in mind the fact that
specific physical situations might occur where there is an oblique edge even though a realistic

rotation has been achieved. As an example, correlations could be induced by co-location of the
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sources coupled with meteorology (i.e. emissions from independent sources may have a certain

degree of correlation due to the influence of meteorology).

It must be also emphasised that the presence of aligned edges in G-plots of factors does not
necessarily guarantee that a unique rotation has been found. Although uniqueness will probably
be the case in most practical situations, there may be special cases in which the rotational

unigueness does not hold.
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10. FACTOR ANALYSIS II: EVALUATION OF SOURCE CONTRIBUTION
ESTIMATION AND MODEL PERFORMANCE INDICATORS

Principal Component Analysis - Multilinear Regression

Different techniques exist to carry out source contribution estimations by performing multi-
linear regression of the principal components versus the total PM mass: APCS (Absolute
Principal Component Scores; Thurston and Spengler, 1985), APCA (Absolute Principal
Component Analysis; e.g. Swietlicki and Krejci, 1996), and PCA-MLR (Principal Component
Analysis — Multilinear Regression; e.g. Tauler et al,, 2008).

In the following, these techniques are referred to as APCA.

This analysis may be carried out using numerous statistical software packages, many of them

freely available. The computation of source contributions with APCA is characterised by:
- no specific software required

- fast source identification

- relatively time-consuming source contribution estimation.

However, this analysis suffers from three strong limitations:

1. Given that non-negativity constraints are not included in APCA, negative regression
coefficients may be obtained. As a result, the output could show negative source contributions
(in terms of mass). Two different approaches are generally used to solve this issue: including
the resulting negative mass concentrations in the final result of APCA, even though this has no
physical meaning, or eliminating the negative values by replacing them with zero or an empty
cell. Evidently, the results obtained after the application of one or the other approach may vary
largely. Thus, in the absence of consensus regarding the issue of negative regression

coefficients, APCA solutions may be prone to high subjectivity and lack of comparability.

2. The number of sources resolved by APCA is generally lower than that obtained with other
models (e.g. PMF or CMB), and quantification of source contributions may not be as precise
(Table 10.1).

3. APCA has lower flexibility with respect to PMF and CMB, with fewer valid solutions being
produced (Table 10.2).
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Table 10.1. Sources and source contributions obtained during a receptor model inter-

comparison (Viana et al., 2008).

Individual sources

Clay 31 Clay 16 Clay 41
Industrial#1 15 Industrial 16 Industrial#1 4
Industrial#2 2 Industrial#2 2
Vehicular 10 Vehicular 10 Vehicular 13
Regional+marine 34 Regional+marine 23 Regional 18
Regional SO4% 25 Marine 3
Soil 12
Undetermined 8 Undetermined 10 Undetermined 7
Grouped sources
Mining&Industry 48 Mining&Industry 32 Mining&Industry 47
Vehicular 10 Vehicular 10 Vehicular 13
Regional 34 Regional 48 Regional 33

Source contributions are divided into the sources obtained directly by the receptor models, and grouped into three

main source categories to facilitate the intercomparison of results.

Several model performance indicators are available when applying APCA. These are relatively

simple to use in order to assess:
a. Correlation between modelled and measured PM mass.

b. Chemical mass closure: sum of the estimated source contributions, and comparison with
total measured PM mass.

c. Average absolute error (AAE): the average of the absolute percentage differences between
the estimated and experimental PM mass data, when different numbers of sources or
factors are considered (Chow et al., 2007, Table 10.2).

d. Correlation between modelled and measured known sources: the most commonly used
source for this test is the marine source, calculated as the sum of the chemically

determined Na and Cl in study areas with no other major sources of these elements.
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Table 10.2. Number of solutions obtained during a receptor model intercomparison (Viana et al.,
2008), and average absolute errors (AAEs) for each of the solutions computed using APCA, PMF
and CMB.

APCA PMF CMvB
Number of factors| AAE (%) AAEmax (%) | AAE (%) AAEmax (%) | AAE (%) AAEmax (%)
3 18 77 19 89 67 85
4 NS NS 17 81 13 34
5 14 69 16 73 11 34
6 NS NS 19 69 11-36* 25-68*
7 NS NS 16 69 11 20
8 NS NS 15 68 NS NS

* range depending on which source profiles are excluded.

In addition, model performance may also be tested by:

- Understanding the data and the solution: Does it make sense? Is it reasonable?
- Combination with other tools (e.g. back-trajectory analysis)

- Combination with other models (PMF to refine the quantification of source contributions
and potentially obtain uncertainty estimates)

- Correlation with EU guideline methods (SEC(2011) 208) for natural aerosol sources (e.g.
African dust, sea-spray).

In conclusion:

a. APCA is an exploratory receptor modelling tool for urban air quality management, i.e. for

the design of air pollution mitigation strategies, because of:
i. Fast source identification

ii. The size of datasets required could potentially be available from air quality monitoring

networks, from at least one selected station/network
iii. Easy to interpret model performance indicators, e.g. average absolute errors (AAE)

iv. However, the quantification of source contributions is rather inaccurate, and source
contributions (in terms of mass) are subject to uncertainty due to the absence of the non-

negativity constraint.

b. In scientific applications, APCA should mainly be used to obtain a preliminary picture of the
possible contribution sources, as a preparatory step for the use of more advanced models
(PMF, CMB, etc.).
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PMF (Positive Matrix Factorization)

In PMF, Q values indicate how well the model fits the input data. Q(robust) is calculated by
excluding outliers while Q(true) is calculated including all data points. The expected (theoretical)
Q is nm - p(n+m), where n is the number of species, m is the number of samples in the dataset,

and p is the number of factors fitted by the model (e.g., Norris et al., 2008).

An alternative estimation distinguishes weak from good species as follows (Brown and Hafner,
2005): Q = (# samples * # good species) + [(# samples * # weak species)/3] — (# samples * #

factors being estimated)

In addition, several diagnostic tests are embedded in the EPA PMF v3 and v5 softwares to
evaluate the runs: residual analysis, observed vs predicted scatter plot and time series,
combined plots of profiles and contributions and box plots to summarise the distribution of the

contributions, G-space plots (or G-plots) and factor pie charts.

Various elements can contribute to the uncertainty in the solutions modelled by PMF, including
temporal variation of particulate matter (PM) source profiles, measurement error, sampling
variability, and intrinsic limitations in the modelling process, such as rotational ambiguity and
incorrectly specified number of factors (see section 9).

In PMF2, it is possible to estimate uncertainties in the F and G matrices (eq. 9.1) using the
process originally described by Roscoe and Hopke (1981) and described in detail by Malinowski
(1991). The errors in the elements of one matrix are estimated based on the errors in the
ambient concentration values, assuming that the other matrix is error-free. Each matrix (F or G)
is treated similarly in such a way that an uncertainty value is associated with each element of

the matrix.

The standard deviation of the source contribution estimates (SCE) of every factor in all the
samples can be used as an estimation of the uncertainty of the average SCEs.

Bootstrapping can be used to determine the precision of PMF profiles by calculating the
standard deviation (assuming normality) or various percentiles of factor profiles (F-matrix
values) from numerous bootstrap runs. Nevertheless, to obtain a better representation of the
component of uncertainty associated with rotational ambiguity, an improved error estimation
scheme has been proposed by Paatero et al. (2013), which is currently available in the EPA-PMF
v5. The new scheme combines bootstrapping and a “displacement” technique based on the

controlled perturbation of factor elements.

Advanced User Box: Q/Qexp ratio (by P. Paatero)

If the data matrix, error matrix, and analysis fulfil the PMF model assumptions the variability of
Q values may be statistically estimated. This estimation of Q variation is based on the width of
a chi-2 distribution and is very reliable. For large matrices, the variation is typically less than

10% of the expected Q. This holds also for the overall Q and for the column Q values of not-so-
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large matrices. For row Q values of small matrices (less than 20 good species) the variation
may be up to a factor of 2. This statistically estimated variability is solely due to random

variations in data noise, from row to row and from column to column.

If the observed Q values exceed significantly these estimated limits it is possible that not all

model assumptions are fulfilled.
Examples of situations that may cause high Q values are:

- number of factors in PMF model is smaller than number of significant sources in the
measured data,

- data uncertainties are incorrectly estimated for some species and/or for some samples,

- there are gross errors in some data values or in some uncertainty values (this happens
surprisingly often, especially if values are typed manually in the file and no proofreading is

performed),
- profiles of sources do not stay constant with time,

- there are sporadic sources, too weak to support dedicated factors but strong enough to
disturb the model,

- there are incompatible species that do not correlate with any other species.

There are no fixed rules telling what to do when model assumptions are not fulfilled. Of course,
such a situation must be openly discussed when the results are published.

For mass-spectral data, a limit for the overall Q/Qexp is reasonable if there are no modelling
errors. In this case, the overall Q should not exceed the expected Q by more than a few tens of
percent. Note that the expected Q for downweighted columns should be correctly evaluated; the
expected Q contribution from those columns should be computed so that downweighting is
taken into account.There are cases in which the substitution of many values below the
detection limit in several trace species creates an artificial factor containing trace species with
a characteristic pattern. This “ghost factor” is generated by the model to fit the substituted
values in all those species in which they occur simultaneously. When using ME-2-based analysis
tools, it is possible to avoid such distortions by using the special error model code -16 (Paatero,
2000) for all substituted data points. This code stipulates that all fitted values below the
detection limit are to be considered a perfect fit, with Q contribution (see section 9) equal to
zero. This alternative is not yet implemented in version 3.0 of the US - EPA Positive Matrix

Factorization (PMF), but it may be used when controlling ME-2 using home-made scripts.
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11. FACTOR ANALYSIS Ill: CRITERIA FOR FACTOR ASSIGNMENT

The most subjective and least quantifiable step in applying PMF for source apportionment is the
assignment of identities to the factors chosen as the final solution. It is important for the data
analyst to know what types of sources are present in the study area. However, even in cases
where there are good emission inventories, there can be situations where a source cannot be
identified (Hwang and Hopke, 2006). In addition, atmospheric processes may result in multiple
factors such as summer and winter secondary sulphate, or in producing sufficiently collinear
sources that an irresolvable mixture of source profiles is obtained. Thus, profiles have to be
interpreted with both knowledge of the study area and a background in atmospheric science.
For that reason, any choice concerning the correspondence between source categories and

factors must be supported by objective and quantitative tests.

High shares of a source marker in a factor profile may be used for a preliminary source

attribution. However, further evidence is required for confirmation of this initial hypothesis.
Proposed steps to support factor assignment:

- Compare the obtained factor profiles with those reported in previously published PMF
studies (the comparison can be performed either visually or numerically using, for instance,
the Pearson coefficient);

- Search the literature for measured PM source profiles with characteristics similar to the

factor profiles in the F-matrix;

- Search for measured PM source profiles in relevant databases (e.g. SPECIATE,
SPECIEUROPE);

- ldentify the source by comparing certain species ratios (also referred to as “enrichment
factors”) in PMF source/factor profiles to the same ratios in measured PM source profiles

(see also section 18);

- Perform local and/or regional source sampling along with the ambient PM sampling to

develop source profiles needed to identify PMF profiles;

- Look at temporal patterns for “expected” behaviours (e.g. the largest contributions of a
source believed to be residential wood burning should likely occur during winter months);
plots of contributions over time can be inspected in order to look for daily, weekly, seasonal,
and yearly oscillations of source contributions. Mean source contributions by season and by

day of the week (weekend versus weekday) should also be examined;
- Check the correlations between factor time series and time series of external tracers.

It should be noted that when source profiles are not independent (i.e. there is severe
collinearity) it is difficult to separate their contributions. In this case, additional

chemical/physical information is needed to improve source segregation. Nevertheless, sources
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can clearly be separated for a sufficiently low level of collinearity and precision in the input
data. In spectrochemical problems, good factors can be obtained despite quite severe
collinearity. However, the collinearity inflates the uncertainties of the values (Cheng et al,
1988).

Advanced User Box

Auxiliary analyses can be used to aid in the identification of PMF factors: e.q. contribution of
wind roses, conditional probability function, potential source contribution function, cluster
analysis, and residence time analysis are some techniques for analysing wind or backward

trajectories (see section 17).
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12. FACTOR ANALYSIS IV: CONSTRAINED AND EXPANDED MODELS

Common Positive Matrix Factorization (PMF) analysis fits the data into a limited bilinear model.
However, PMF also permits the development of more complex mathematical models to account
for physical and chemical information when fitting the data. “Constrained” and “Expanded” PMF
models represent the advanced tools in receptor modelling, and efforts are being made to
improve and increase their capabilities. Since this is a new field of research, the terminology is
still evolving in the literature and the distinction between Constrained and Expanded models is
not very well defined yet. In this document, Constrained models are considered a subcategory
of Expanded (or Extended) models. More precisely, Constrained models are those in which
additional constraints are introduced (in most cases after an initial run, the results of which are
used as a starting point), while Expanded models are those in which the customary bilinear
equation is augmented by another more complicated set of equations, depending on the aims
of the study.

Constrained PMF

By definition, the Positive Matrix Factorization model is a weighted least squares analysis where
the object function is minimised under the constraint that all or some of the elements of G and
F are constrained to non-negative values (Paatero, 1997). Therefore, all PMF studies are
constrained. Nevertheless, recent literature uses the term ‘constrained’ to refer to more

complicated PMF models, where the constraint is not limited to non-negativity.

Different types of constraint can be implemented in PMF, but they must all derive from some a
priori knowledge of the user about the system that is to be modelled. This knowledge can be of
physical or chemical origin (Amato et al., 2009). Physical constraints can relate, for example, to
the mass conservation principle (e.g. the sum of factor profiles cannot exceed unity; the lower
the particle size, the lower the source contribution, etc). On the other hand, chemical
information is associated with source profiles. The relative abundance of some
elements/compounds may already be known and can represent valuable information for the
model in order to find a better solution, reducing the number of possible alternatives (the
‘rotational ambiqguity’). Another example of a priori knowledge is the information about periods
during which a specific point source is not operative. These data can be useful constraints to

drive the model towards a more realistic solution by setting the emission of that source to zero.

The choice of the program to use in performing a Constrained PMF depends on the type of

constraint to be used:

=  PMF2 implements only the Fkey and Gkey constraints, which consist of binding individual
elements of the F and G matrices, respectively, to zero. Gkeyik and Fkeyy are two matrices
of the same shapes as G and F respectively. They are applied a posteriori (in a ‘continuation
run’ that takes place after the base run) and each element of the matrix with a key value

>1 is bound to zero, with an increased strength of the bond for higher key values. It is not
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possible to bind elements to non-zero values. Both constraints are imposed regardless of

changes in the Q value, i.e. they are considered to be “hard” constraints.

ME-2 (Multilinear Engine) is a special-purpose programming language, which allows for the
incorporation of any additional constraints that are introduced by the user into the script
(Paatero, 1999; Paatero and Hopke, 2009; Amato et al, 2009; Amato and Hopke, 2012).
The constraints can be introduced in terms of pulling equations, upper/lower limits and fixed
values. Pulling equations are weighted by uncertainties, which express the confidence of the
user in the equation. A lower uncertainty corresponds to a harder pulling effect. Each pulling

equation is converted into an auxiliary term of the object function to be minimised.

As mentioned in chapter 9, EPA PMF v5 includes a user-friendly interface for introducing

constraints in several ways:
o Ratios of F constituents (e.q. Sisoil/Alsoit=3.2)

o Mass Balance between F elements of the same or different factors (e.g. Fedieser=2.5

Fegasoline)

o Custom expression, where the user can build any kind of equation on F and G elements,

based on a priori knowledge (e.g. Gsmeiter=0 from August to December 2008)

When F and/or G elements are set to zero or confined to upper/lower limits, the constraints
are “hard” or imposed without regard to the change in the Q value. Equations constraining
variables towards a value, upwards or downwards, are classified as “soft” pulling, and their
strength (based on the confidence of the user) is expressed by the limit of change allowed

in the Q value. A higher dQ will determine a harder constraint.

Once the constraints are applied in a continuation run, the user should look at the deviations in

the results between the two model runs and examine the impact of the constraints on:

Achievement of the target values (within the uncertainty range in the case of ME-2)
The increase of dQ

Correlations between factor profiles and reference source profiles

Changes in G-space plots

Possible distortions in all factors and source contributions

Possible factor swaps, so that identities of factors have changed. Such swaps cause the
constraints to act on physical factor(s) that are different from those originally intended, so

the constraints are meaningless. For details, see Paatero et al. (2013).

Sensitivity tests - carried out modifying the strength of pulling equations - can be useful for a

comprehensive evaluation of the model output (Viana et al., 2009; Brown et al,, 2012).
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Expanded PMF

As already mentioned, the Multilinear Engine (ME-2) has been used to constrain PMF profiles
and contributions. However, the flexible structure of ME-2 makes it suitable for solving any
other complex problems such as expanded models. ME-2 has been applied to several datasets
for multiple purposes.

In general, the expanded models were found to give similar so