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1. Introduction

Over the past two decades, the increasing detection and reporting of
micropollutants (MPs) in the aquatic environment has raised great con-
cern. MPs such as pharmaceutical and personal care products (PPCPs),
endocrine disrupting chemicals (EDCs) and pesticides are frequently
detected globally in surface water and have been linked to adverse eco-
logical effects (Luo et al., 2014). There is evidence showing that effluent
discharge fromwastewater treatment plants (WWTPs) is a major path-
way for the introduction of MPs to the aquatic environment (Blair et al.,
2013). Hence, a better understanding of the fate and removal of MPs in
WWTPs and the environmentwould facilitate themanagement of these
emerging contaminants. MPs are commonly present in waters at trace
levels ranging from ng L−1 to μg L−1, which makes their detection and
quantification a challenge (Luo et al., 2014). Modelling is therefore
regarded as a useful approach to predict the fate and removal of MPs
during wastewater treatment and in the receiving environment
(Pomiès et al., 2013). Data on the occurrence and removal of MPs in dif-
ferent water matrices were summarised in a review paper by Luo et al.
(2014). Others have reviewed the removal ofMPs duringdifferent types
of wastewater treatment (Bolong et al., 2009; Deblonde et al., 2011)
such as biological treatment systems including activated sludge
(Onesios et al., 2009) and membrane bioreactors (MBRs) (Verlicchi
et al., 2012). The application of concentration-basedmodels for the bio-
logical wastewater treatment of MPs has been evaluated (Pomiès et al.,
2013) and Su et al. (2019) recently reviewed the application of different
multi-media models for the prediction of chemicals in various environ-
mental systems.

Concentration-based models have been developed to simulate
micropollutant removal mechanisms during wastewater treatment
(Pomiès et al., 2013), as well as for multimedia environmental systems
(Brandes and Den Hollander, 1996; Beyer and Matthies, 2002). Chemi-
cal concentrations for each removal pathway are required for the
development of the model. The advantage of concentration-based
models is that they enable the simulation of the detailed removalmech-
anisms of MPs during treatment processes or within a certain environ-
ment. Two well established concentration-based models are the ASMx
model for the prediction of the fate ofMPs during activated sludge treat-
ment (Plósz et al., 2012; Plósz et al., 2013; Polesel et al., 2016), and the
EOPLS model to support decision-making and assumed travel distance
of MPs within the global environment (Beyer and Matthies, 2002;
Wania and Dugani, 2003; Fenner et al., 2004; Zarfl et al., 2012). Other
concentration-basedmodels have been developed to better understand
the behavior of MPs during various treatment processes over the past
two decades (Lee et al., 1998; Byrns, 2001; Urase and Kikuta, 2005;
Limousin et al., 2007; Plósz et al., 2009; Vasiliadou et al., 2013;
Fernandez-Fontaina et al., 2014; Bürger et al., 2016).

A fugacity-based multimedia fate model is an environmental chem-
istry model which describes the processes controlling chemical behav-
ior in environmental media by developing and applying mathematical
statements of chemical fate (Mackay, 2001). These models could com-
prehensively illustrate the distribution of chemical concentrations in
various compartments within a system (Mackay and Paterson, 1991).
Quantitative analysis can be provided with accounts of the emission
sources, transportation and transfer routes, as well as sinks of MPs
(MacLeod et al., 2010), even on a national temporal level (Zhang et al.,
2015).

One advantage of the fugacity approach is that the use of fugacity, in-
steadof concentration,makes it easy to use inmass-balance calculations
to describe the behavior of chemicals released into the environment and
to simulate how chemicals are directionally transported between sev-
eral compartments (Mackay and Paterson, 1991; Su et al., 2019).

Fugacity models have been used frequently for the prediction of the
fate of MPs in aqueous systems. One of the limitations of this type of
model is the uncertainty in model outputs. Buser et al. (2012)
summarised six general principles of good modelling practice
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guidelines for applyingmultimediamodel in a decision-making context.
The present paper reviews recently published fugacity-based fate
models applied to MPs in wastewater and surface water systems. The
inherent sources and causes of uncertainties in aqueous fugacitymodels
were investigated as an update to the recommendations given by Buser
et al. (2012). Model features, applicabilty and modelling strategies are
critically reviewed, with a focus on exploring the sources of uncer-
tainties in the modelling applications, as well as the different ap-
proaches employed for uncertainty and sensitivity analysis. Future
perspectives and recommendations for the application this type of
model to different systems are discussed.

2. Fugacity models

A critical overview of the models covering the period from 1995 to
2019, sourced from two major scientific databases (Scopus and
ScienceDirect) describing the fate of organic MPs during wastewater
treatment and in surface water bodies, is presented here. For each
model, the original literature was found, and models with higher cita-
tions were selected to review. Three main fugacity models, including
the STP model, the QWASI model and similar static Level III fugacity
model, and the dynamic fugacity model are reviewed. Twenty-two fu-
gacity model applications (eight for wastewater treatment plants and
fourteen for surface water bodies) are compared and critically
discussed.

Fugacity models have also been used to predict the fate of metals
(primarily mercury) in lakes and reservoirs (Diamond et al., 2000;
Ethier et al., 2008; Liu et al., 2017). Some models have been developed
to assess the fate of MPs inmulti-media environments other than aque-
ous systems, such as the BETR model for global scale application
(MacLeod et al., 2001) and the MUM model for urban system applica-
tion (Diamond et al., 2001). Due to the differences in the compounds
and systems under investigation, these model applications are not cov-
ered in this review.

2.1. Fugacity concepts and approach

Fugacity (denoted as f and measured in Pa) which describes chemi-
cal escaping tendency, is regarded as an equilibrium criterion. There-
fore, when a compound moves between two compartments, equal
fugacity in both phases is expected, and the escaping tendency, or pres-
sure of this compound in both phases, is considered equal. Based on a
linear correlation, chemical concentration (C, mol m−3) is expressed
as in Eq. (1).

C ¼ Z� f ð1Þ

where Z (mol m−3 Pa−1) is the fugacity capacity. The value of Z is spe-
cific to a chemical, and depends on the phase in which it resides, and
temperature. A compartment with a higher fugacity capacity is able to
accept a higher concentration of a given micropollutant. Then fugacity
can be deduced from a known concentration of a solute chemical in
one phase, or vice versa (Mackay, 2001). The flows of the chemical in
water, biomass solids, and air, for both degradation and surface
volatilisation, constitute transport and transformation processes. The
rates of these processes are known as the D values (mol h−1 Pa−1)
and also need to be determined to fully develop a fugacity-based mass
balance model. To calculate the D values, the Z values, as well as infor-
mation related to the compounds (removal mechanism coefficients/
rate constants) and wastewater treatment plant under consideration
(volume of sewage tank and mass flows) are required.

Levels I, II and IIImultimedia fugacitymodels are commonly used for
the prediction of the fate and distribution of organic compounds in the
environment (Mackay and Paterson, 1991). In level I models, steady-
state and equilibrium conditions are assumed for the transport of a
compound between all the environmental phases involved (air, water,
soil, sediment and biota). In level II models, only transformations and
advection of a compound are assumed as being in steady-state and
equilibrium conditions. In level III models inter-media transport pro-
cesses are included; the compound is discharged at a constant rate
into the chosen environmental media and achieves a steady-state, but
non-equilibrium condition at which input and output rates are equal
(Mackay, 2001). Level III models are the most widely used approach
and provide themost valuable insights into the fate of chemicals within
an environmental system. There is another type known as a level IV
model which gives predictions assuming unsteady state, non-
equilibrium conditions. The level IV fugacity model best represents a
system but is the most complex and has more data requirements
(Kilic and Aral, 2009). It has been used for dynamic systems such as riv-
ers (Wang et al., 2012b). Other models, such as SimpleTreat and
SimpleBox models, were also developed based on a fugacity approach
to describe the interface transfer between compartments. However,
the mass balance equations were built based on compound concentra-
tion rather than fugacity. These models are regarded as concentration-
based rather than fugacity-based models and so were not included in
the scope of this review paper.
2.2. Fugacity-based fate models for MPs in aqueous systems

2.2.1. The STP model
The sewage treatment plant (STP) model was developed by Clark

et al. (1995) to understand the fate of MPs in a conventional acti-
vated sludge treatment plant. In this model, Clark et al. (1995) set
up mass balance equations for each stage of the wastewater treat-
ment process to correlate and predict the steady-state phase concen-
trations, process stream fluxes and the fate of MPs in a sewage
treatment plant. One limitation of this STP model was its limited ca-
pacity for handling ionised compounds. Seth et al. (2008) upgraded
the STP model to the STP-EX model by updating the Z values of the
ionising chemicals (multiplying by the ionic/neutral factor). The
ionic/neutral factor was derived based on the pKa of the compound
under investigation, as well as the pH of the wastewater using the

equation:factor I ¼ Ionic=Neutral ¼ 10ðpH−pKa Þ). Applications of STP and
STP-EX models to conventional WWTPs have been reported world-
wide to assess the treatability of selected MPs during treatment or
to use it as a screening level risk assessment (Wang et al., 2007;
Bock et al., 2010; Thompson et al., 2011; Wang et al., 2015a). The
STP and the STP-EX models were applied by Tan et al. (2007) and
Wang et al. (2015b), respectively, to WWTPs with unconventional
designs and they confirmed that the fugacity approach can be suc-
cessfully applied to these systems to predict the fate of MPs.
2.2.2. The QWASI model and the static level III fugacity model
The STP model is not suitable for simulating the fate and behaviour

of MPs in surface waters. The Quantitative Water Air Sediment Interac-
tion (QWASI)modelwas developed to study the fate ofMPs in lakes and
rivers. The QWASI model is a level III multi-media fate and transport
model based on fugacity concepts (Mackay et al., 1983). The model
was used to investigate the fate of a range of chemicals in lakes and its
predictions have been demonstrated to match values measured onsite
(Mackay and Diamond, 1989). Since its development, the QWASI
model and its modified versions have been widely applied to simulate
the concentrations, distributions, transfer fluxes, and bioaccumulation
fluxes of chemicals in lake and river systems (Mackay and Diamond,
1989; Mackay and Hickie, 2000; Warren et al., 2002; Whelan, 2013;
Xu et al., 2013; Mackay et al., 2014; Guo et al., 2019). Apart from the
QWASI model, other Mackay-type static fugacity models have been de-
veloped to describe the fate of MPs in a river (Duan et al., 2013), a river
basin (Zhang et al., 2013) and reservoirs (Cao et al., 2010; Hawker et al.,
2011).
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2.2.3. Dynamic fugacity model
One drawback of static fugacitymodels when being applied to rivers

was that they did not account for the continuous spatial variability of
hydrological characteristics in the corresponding input parameters,
due to the lack of spatial profile in the model structure (Wang et al.,
2012c). Therefore, dynamic and continuous fugacity models have been
developed to assess the fate and distribution of MPs in rivers in a num-
ber of studies (Kilic and Aral, 2009; Zhang et al., 2011; Wang et al.,
2012b). These coupled the static fugacitymodelwith hydraulic dynamic
water flows to simulate the river network, and the fugacity approach
was applied to describe the dynamic interactions between all phases
in the physical domain.

3. Modelling strategy

On reviewing the application of fugacity models, it is clear that the
modelling approaches and/or model evaluation strategies varied be-
tween studies. This section compares several modelling aspects
Table 1
Summary of chemical selection and sources of physicochemical properties in the fugacity
modelling applications reviewed (EPI: Estimation Programs Interface, QSAR: quantitative
structural activity relationship).

MP category No.
of

MPs

Source of chemical related
inputs

Reference

Application to WWTPs
Wide range
selection

12 Literature Clark et al. (1995)
Estimated kbio

EDCs 8 Literature Tan et al. (2007)
PAHs 7 Literature Wang et al. (2007)
Wide range
selection

20 Literature Seth et al. (2008)
Estimated kbio (similar to STP

default setting)
EDC-Triclosan 1 Literature Bock et al. (2010)
EDCs 6 Literature Thompson et al.

(2011)EPI Suite estimation
Temperature corrected kbio

Cyclic VMSs 3 Literature; Wang et al. (2015a)
Onsite measurement calculation

(kd)
Cyclic and linear
VMSs

3 Literature (unclear) Wang et al. (2015b)

Application to surface water systems (static models)
PCB 1 Literature Mackay and

Diamond (1989)Assumption (degradation rate)
PAHs 7 Literature Mackay and Hickie

(2000)Temperature correction
Lindane, Benzo(a)
pyrene

2 Literature Warren et al. (2002)

EDCs 3 Literature Cao et al. (2010)
EPI Suite estimation (H, Melting

point)
Measurement (half-life in

water)
Assumption

Wide range
selection

263 EPI Suite estimation Hawker et al. (2011)

Pharmaceuticals 5 EPI Suite estimation Duan et al. (2013)
Onsite measurement (kOC)

Cyclic VMSs 3 Literature with adjustments Whelan (2013)
PAHs 15 Literature Xu et al. (2013)
EDCs 2 Literature Zhang et al. (2013)
D5 & PCB-180 2 Literature Mackay et al. (2014)
Cyclic VMSs 3 Literature

Calculated/adjusted based on
literature

Guo et al. (2019)

Application to surface water systems (dynamic models)
PCB and atrazine 2 Literature Kilic and Aral (2009)
EDCs 3 Literature

Zhang et al. (2011)Calculation
Onsite measurement (kOC)

PAHs 8 Literature Wang et al. (2012b)
including the use of model inputs, approach to sensitivity and uncer-
tainty analysis, as well as validation strategy.

3.1. Model inputs

There are two types of model inputs, those which are chemical-
related (internal) and those which are the plant/environment-related
(external). Tables 1, 2 and 3 summarise the sources of various sets of
model inputs. Note that the study on the original development of the
QWASI model (Mackay et al., 1983) is not included as this paper simply
described the general features of themodels and themathematical con-
cepts behind the establishment process, without describing specific
inputs.

3.1.1. Chemical-related model inputs and selection of MPs
Table 1 summarises modelling strategies associated with the selec-

tion of targetMPs aswell as the source of theMPphysicochemical prop-
erties used in the model applications in this review. The MPs studied
cover a wide range of substance categories and physicochemical prop-
erties. It appeared most of the researchers tended to establish a model
for a small number of chemicals within one category. However,
Hawker et al. (2011) reported the fate of 15 chemicals with various
functionality and physicochemical properties. Clark et al. (1995) devel-
oped the STP model for twelve chemicals from several categories in-
cluding polyaromatic hydrocarbons (PAHs), pesticides and volatile
organics. A similar selection of MPs was used in the advancement of
the STP model performed by Seth et al. (2008) who used 20 MPs with
a range of properties. The most frequently modelled category of MPs
was EDCs, with three applications each in wastewater and surface
water systems, and the most frequently studied EDCs were bisphenol
A and triclosan, with three or more references. The other most com-
monly studied chemical was decamethylcyclopentasiloxane (D5),
with five model applications investigating its fate in both surface
water and wastewater systems. It can be concluded that the selection
of target MPs was mostly based on: i) occurrence of certain MPs in the
water matrix of interest or ii) coverage of widely varying physicochem-
ical properties. However, for many of themodels reviewed, the basis for
selection of the MPs was not clearly explained.

Chemical-related inputs are the physicochemical properties of the
target MPs. These parameters play a role in their removal mechanisms
and can determine the fate of the MPs under investigation (Luo et al.,
2014). The fate of MPs inWWTPs include volatilisation, biodegradation
and sorption, with the Henry's law constant (H), biodegradation rate
Table 2
Summary of sources of WWTP-related input parameters in the fugacity model
applications.

Model
type

WWTPs related inputs References

STP Typical illustrative operating conditions Clark et al. (1995)
Assumption from literature

STP Assumption from literature Tan et al. (2007)
Onsite measured concentrations

STP Onsite record (operating conditions &
concentrations)

Wang et al. (2007)

STP-EX Literature Seth et al. (2008)
Default STP setting

Reported concentrations
STP-EX Default settings of STP Bock et al. (2010)

Literature reported monitoring data
Onsite measured concentrations

STP Adjustment of default STP settings Thompson et al.
(2011)Assumption from literature

Reported concentrations
STP Onsite operating conditions Wang et al. (2015a)

Onsite measured concentrations
STP Onsite operating conditions Wang et al. (2015b)

Onsite measured concentration



Table 3
Summary of sources of surface water system-related input parameters in the fugacity
model applications – static models.

Model type Surface water system related inputs Reference

QWASI Actual measurement
Literature

Mackay and Diamond
(1989)

QWASI Local environment agency report
characteristics

Reported emission

Mackay and Hickie
(2000)

QWASI Local sampling and monitoring
Reported or estimated emission

Warren et al. (2002)

Level III Literature
Historical monitoring data

Cao et al. (2010)

Level III Literature default
Local authority data

Maximum emission estimated from
measurement

Hawker et al. (2011)

QWASI Default values from literature
Local sampling and monitoring
Relevant literature measurement
Local authority water discharge

estimation

Xu et al. (2013)

Level III Default values from literature
Local hydrographic offices

Measured emission

Duan et al. (2013)

QWASI Literature
Estimated emission based on usage

Whelan (2013)

Level III Literature
Calculation

Reported emission

Zhang et al. (2013)

Updated
QWASI

Default setting of QWASI model
Literature

Estimated emission

Mackay et al. (2014)

QWASI Literature
Temperature adjusted values

Estimated emission based on usage

Guo et al. (2019)
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constant (kbio) andwater-octanol coefficient (Kow) being the fate deter-
mining properties, respectively (Clark et al., 1995). The fate of MPs in
surfacewaters is a little more complicated as it can be attributed to var-
ious pathways including volatilisation, transformation inwater and sed-
iment, photolysis and sorption to sediment and particles in water. In
addition to the Henry's law constant and the sediment sorption coeffi-
cient, photodegradation rate, transformation rate in water and sedi-
ment compartments are all important physicochemical properties
which play significant roles.

The majority of the internal input parameters for the models were
obtained from literature data or via conversion of literature data. In
ten of the twenty-two applications, properties reported in the literature
were the only source of chemical-related model inputs. However, the
limited kinetic data available in the literature is a potential source of un-
certainty in model inputs, as noted by Pomiès et al. (2013). Further-
more, the experimentally obtained data in the literature may have
been determined under different conditions for the water matrices
under study, leading to inaccurate model simulations. Although Seth
et al. (2008) proposed a scheme for obtaining appropriate biodegrada-
tion half-lives from the literature for MPs in different water bodies,
most researchers did not provide the rationale for the choice of data
from the literature.

For bothwastewater and surfacewater studies, the properties can be
estimated by using computer programs such as USEPA EPI Suite (Cao
et al., 2010; Hawker et al., 2011; Thompson et al., 2011; Duan et al.,
2013). One of the limitations of this procedure is that the biodegrada-
tion rate constants estimated by the software used for this purpose
(BIOWIN) has certain limitations: i) it only provides accurate predic-
tions for MPs the molecular properties of which are fully described in
the BIOWINmodel database (Dayan and Kromidas, 2011), ii) it may un-
derestimate the half-lives of persistent organic contaminants (Aronson
et al., 2006), and iii) it does not provide temperature-dependent
predictions as its outputs are generated for the given temperature of
25 °C (Thompson et al., 2011).

Model inputs were measured experimentally under plant/environ-
mentally relevant conditions in only a limited number of studies as a
means of avoiding generating more uncertainties in model predictions.
Sorption-related parameters were frequently measured experimentally
when fugacity modelling was utilised. Onsite measurement of the sedi-
ment sorption coefficient (Koc) was performed by Duan et al. (2013)
and Zhang et al. (2011). Similarly,Wang et al. (2015a) performed onsite
measurements of the sludge sorption coefficient (Kd). Degradation (ac-
tivated sludge biodegradation, photodegradation and degradation of
chemicals in surface water or sediment) rate constants are another
type of important input parameter. For surface water studies, only Cao
et al. (2010) measured the degradation rates of MPs in the reservoir
water.

Wang et al. (2007) did not provide a clear description of the source
of their chemical-related model inputs. Since the degradation rates of
MPs in various phases, especially the sediment and air phases, are not
readily available, estimations were used for the determination of these
model inputs for the surface water models (Cao et al., 2010; Mackay
et al., 2014), which could generate uncertainties in the model outputs.
This could have been further addressed using sensitivity and uncer-
tainty analysis, which is further discussed in Section 3.2.

Adjustment of the chemical-related model inputs can enhance the
accuracy of fugacity models. The performance of the STP model was
evaluated by Wang et al. (2007) to compare the model predictions
with actual data collected by sampling at various stages of a full-scale
activated sludge process. Their results showed that the predicted re-
moval efficiencies of PAHs were in agreement with the measured data
after the input biodegradation half-lives were adjusted. They found
that the reported aqueous biodegradation half-lives divided by scaling
factors of 50 and 150 could result in more accurate model estimations
of the concentrations of the target compounds. Improvement of the ac-
curacy of the biodegradation parameters was also achieved by
Thompson et al. (2011) who incorporated the effect of temperature
on the biodegradation half-lives of the target compounds into the STP
model to study the fate of four EDCs, phenol and tetrachloroethylene
(PCE) in a conventional three stage WWTP. They concluded that with
the temperature calibrated biodegradation half-lives, the STP model
could provide useful operational considerations regarding removal of
the target MPs in different seasons. Wang et al. (2015a) investigated
the fate of three cyclic volatile methylsiloxanes (VMSs) in a conven-
tional WWTP. Adjustments including negligible removal of VMSs via
biodegradation and temperature corrected air-water coefficient (Kaw)
values for the target compoundsweremade tomake themodel suitable
for application in this study. The predicted and measured values were
fairly consistent, with volatilisation being the primary removal pathway
for octamethylcyclotetrasiloxane (D4) and sorption to the biomass the
most important removal mechanism for D5 and
dodecamethylcyclohexasiloxane (D6). This is reasonable since the sorp-
tion of D5 to particulate or dissolved organic matter has been observed
by other researchers (David et al., 2000; Whelan et al., 2010).

3.1.2. Treatment plant related model inputs
WWTP-related parameters include operating parameters (plant de-

sign dimensions, operating conditions), and MP concentrations in the
inputwater and sludge flows. As shown in Table 2, theWWTPoperating
parameters used in model applications mainly had three sources:
i) onsite data obtained from either the plant management/operator;
ii) operating data obtained from or assumed based on literature re-
ported values for plants with similar configurations, and iii) default set-
tings in the STP model. MP levels in the plants could be obtained from
onsite measurements (current or records) and reported concentrations
in the literature. Onsite plant operating conditions and MP measure-
ments are more plant specific, and more relevant model outputs could
be expected. However, the information collected can be rather limited,
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especially when grab samples are used (Wang et al., 2007). Values from
many similar WWTPs reported in the literature could provide a larger
input database (Bock et al., 2010), covering the best andworst scenarios
as much as possible, which is a useful approach in terms of modelling
and simulation. The use of a combination of onsite monitoring data
and literature reported values could serve both purposes, to be site-
specific and provide larger input databases (Seth et al., 2008; Bock
et al., 2010). Moreover, updates of the default WWTP setting could be
important to reflect the current plant operating conditions due to tech-
nical development since the original model was established.

It should also be noted that someof theWWTP fugacitymodel appli-
cations were generalised investigations of typical STPs (Clark et al.,
1995; Seth et al., 2008; Bock et al., 2010; Thompson et al., 2011), rather
than describing an existing specific plant (Tan et al., 2007; Wang et al.,
2007; Wang et al., 2015a; Wang et al., 2015b). It is then reasonable to
find that for the four generalisedmodel applications default STP settings
and concentrations reported in the literature were used. On the other
hand, onsite operational parameters (except for Tan et al. (2007)) and
measured concentrations were used for the other four model applica-
tions developed for existing WWTPs.

3.1.3. Surface water system-related model inputs — static models
Surface water system-relatedmodel inputs included system charac-

teristics and chemical emission to the aqueous systems. The parameters
used embrace the system dimensions, sediment characteristics (den-
sity, solid content etc.), water flow conditions and sediment movement
rates.

As shown in Table 3, surfacewater system-related inputs used in the
model applications mainly had three sources. Information on the sys-
tem dimensions or flow rates is generally obtained as onsite data from
local authorities (Mackay and Hickie, 2000; Hawker et al., 2011; Duan
et al., 2013), local historicalmonitoring data (Cao et al., 2010) and actual
measurement (Mackay and Diamond, 1989;Warren et al., 2002). Some
studies only used data reported in the literature for other surface water
systems, without explaining the relevance or similarity between the
systems under study and the reported ones (Whelan, 2013; Zhang
et al., 2013; Mackay et al., 2014). Information on the sediment condi-
tions and movement was usually obtained from literature, default
model settings or default data from literature, since this information
was generally not readily available for the systems under study. Chem-
ical emission to the surface waters was another important model input,
onsitemeasurement ofMP emissionwas performed by only onemodel-
ling group (Zhang et al., 2011; Duan et al., 2013).Most applications used
estimated emission (Hawker et al., 2011; Whelan, 2013; Mackay et al.,
2014; Guo et al., 2019) or reported values (Mackay and Hickie, 2000;
Xu et al., 2013; Zhang et al., 2013), or a mixture of both (Warren et al.,
2002). Mackay and Diamond (1989) and Cao et al. (2010) did not men-
tion the MP emissions in their studies.

3.1.4. Surface water system-related model inputs — dynamic models
As well as the model inputs for static models, dynamic fugacity

models also utilise hydrodynamic estimations. Kilic and Aral (2009)
and Zhang et al. (2011) utilised modified one-dimensional advection-
dispersion Saint Venant equations while Wang et al. (2012b) used a
one-dimensional kinematic wave equation.

As noted in Table 4, Zhang et al. (2011) andWang et al. (2012b) used
onsite measurements as well as the chemical emission rates to the
Table 4
Summary of sources of surface water system-related input parameters in the dynamic fugacity

Model type Surface water system related inputs

Literature and calculation based on measurements;
Emission rate ignored

One-d

Level III Onsite measured parameters and emission/discharge One-d
Level IV Onsite measured parameters and emission
surface water system as model inputs, however, Kilic and Aral (2009)
did not take these into consideration. This was probably because the
aim of their study was to build the hydrodynamic model for the river
network, with the evaluation of the fate of chemicals as a minor
purpose.

Like the internal input parameters, data obtained from the literature,
default settings or via estimations for external parameters could gener-
ate variability in model predictions for WWTPs and surface waters.
These values contain degrees of uncertainty which should be addressed
in the modelling process. Some parameters may have little impact on
themodel outputs and so their values can be estimated with little addi-
tional effort. For those to which the models are very sensitive, precise
values should be obtained. This can be analysed using sensitivity and
uncertainty analysis, which will be discussed in the next section.

3.2. Model sensitivity and uncertainty analysis

Uncertainty analysis is essential for describing the lack of knowledge
inherent in a model and its parameters (Uusitalo et al., 2015). This is
particularly useful for fugacity models, for which predictions are only
an approximation of the actual fate of MPs and uncertainty is a major
limiting factor that needs to be addressed (Cacuci et al., 2003; Mackay
et al., 2014). Different forms of uncertainty exist and include the follow-
ing: parameter uncertainty, model uncertainty, dependency uncer-
tainty (Burgman, 2005). This section summarises the different
strategies involved in the assessment of uncertainty and variability of
model output.

3.2.1. Assessment strategies
Two commonly used approaches include uncertainty and sensitivity

analyses. Two strategies are usually adopted to assess the uncertainty
and sensitivity of a model. One strategy is known as the “one-at-a-
time” (OAT) method in which each parameter under investigation is
varied systematically over a rangewhilst keeping other factors constant
(a local sensitivity/uncertainty analysis) (Cacuci et al., 2003). This
method is generally used for sensitivity analysis (Cao et al., 2010;
Zhang et al., 2011; Hu et al., 2017; Liu et al., 2017) and can be used to
provide some insights into the causes of the model uncertainties
(Whelan, 2013; Mackay et al., 2014; Guo et al., 2019).

Another approach is to perform random sampling and Monte Carlo
simulation using commercial software (Bock et al., 2010; Mackay
et al., 2014; Wang et al., 2015a; Wang et al., 2015b), also known as a
global sensitivity/uncertainty analysis (Cacuci et al., 2003). In this
method, a probabilistic approach via Monte Carlo simulation is used to
quantify uncertainty and variability in themodel predictions. This tech-
nique is based on a repeated random sampling of the probability distri-
butions of each assumed parameter (Cao et al., 2004). Probability
density functions are developed for input parameters to cover the ex-
pected variability using distribution fitting. The model runs many
times (generally 500–20,000) so that an output distribution of concen-
trations and transfer fluxes in different environmental media can be
constructed.

Among the 22 fugacity applications reviewed in this paper, Zhang
et al. (2013), Xu et al. (2013) and Cao et al. (2010) used a mix of both
strategies in their studies, including a global probabilistic approach for
uncertainty analysis and an OAT local inspection for sensitivity analysis.
model applications.

Hydrodynamic estimations Reference

imensional advection-dispersion St. Venant equation K Kilic and Aral (2009)

imensional advection-dispersion St. Venant equation Zhang et al. (2011)
One-dimensional kinematic wave equation Wang et al. (2012b)
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Mackay et al. (2014) adopted both strategies in their sensitivity and un-
certainty assessment and obtained comparable yet not identical results.

Both local and global sensitivity/uncertainty analyses have been
widely applied in a variety of modelling applications. Local techniques
concentrate on estimating the local impact of a parameter on the
model output. This approachmeans that the analysis focuses on the im-
pact of changes in a certain parameter value. Local analysis methods,
such as the OAT approach, are very useful for hydrological and water
quality models (Francos et al., 2001; Van Griensven et al., 2002), since
they can analyse the sensitivity of several parameters with a low com-
putational cost. This approach can also enable the immediate knowl-
edge of which input factor is responsible for a model failure under
OAT analysis (Saltelli and Annoni, 2010). However, local methods
have certain limitations, since they only make evaluations at one point
in the parameter hyperspace (van Griensven et al., 2006). On the
other hand, global techniques analyse the whole parameter space at
once (van Griensven et al., 2006). A global approach aims to show that
even varying the input assumptions within some plausible ranges,
some desired inferences hold (Saltelli and Annoni, 2010). In principle,
local analyses cannot be used for demonstrating the robustness of
model-based inference unless the model is proven to be linear or at
least additive (Saltelli et al., 2006). When the property of the models
is unknown, a global sensitivity/uncertainty analysis is preferred (van
Griensven et al., 2006; Saltelli and Annoni, 2010; Sin et al., 2011).

3.2.2. Sensitivity analysis
A sensitivity analysis can be used to identify the key input parame-

ters and evaluate the influence of individual parameters on the outcome
variance of themultimedia fugacitymodel (Cao et al., 2004). Performing
a sensitivity analysis can demonstrate the importance of the individual
input variables on the model outputs. Where the model is shown to be
sensitive to a parameter, then the optimisation of that parameter needs
to be dealt with carefully (Whelan, 2013). It is recommended that the
higher impact parameters be obtained via onsite measurement to en-
sure the accuracy of the model output (Liu et al., 2017). On the other
hand, the parameters towhich themodel is insensitive can be estimated
or cited from other sources with less precision (Whelan, 2013; Liu et al.,
2017).

With both local and global strategies, model sensitivity is generally
assessed by the coefficient of correlation between input and output: ei-
ther i) the Spearman rank order correlation coefficient obtained by
Monte Carlo simulation; or ii) manually calculated sensitivity coeffi-
cients (SCs) in the OATmethodwhich are defined as the ratio of the rel-
ative change of model output to that of the input parameters as shown
in Eq. (2) (Zhang et al., 2011; Wang et al., 2012b; Zhang et al., 2013; Hu
et al., 2017):

SC ¼ ΔYi=Yi

ΔXi=Xi
ð2Þ

where X and Y are input and output parameters in the model. Some
modelling groups did not report the SCs in their OAT sensitivity
analyses.

Of the twenty-twomodel applications reviewed, sensitivity analysis
using an OAT method was applied to several input parameters in nine
studies with (Cao et al., 2010; Whelan, 2013; Xu et al., 2013; Zhang
et al., 2013; Mackay et al., 2014) or without (Thompson et al., 2011;
Zhang et al., 2011; Wang et al., 2012b; Guo et al., 2019) uncertainty
analysis. Some studies did not clearly present the SCs calculated.
Thompson et al. (2011) and Cao et al. (2010) simply compared the
change (in %) of model outputs along with the change of each specific
model input. It is difficult for the users to determine the extent of the
sensitivity of the model to each parameter if SC calculations are not
given. Moreover, it is also inconvenient to do comparisons when
many input parameters are involved in the analysis.
Only four model applications (Bock et al., 2010; Wang et al., 2015a;
Wang et al., 2015b) adopted global sensitivity analysis, including
Mackay et al. (2014) who used both OAT and probabilistic approaches.
These analyses were coupled with uncertainty analyses using a Monte
Carlo simulation to better evaluate the model uncertainty and
performance.

3.2.3. Uncertainty analysis
Generally, sensitivity and uncertainty analyses are performed in tan-

dem (Saltelli et al., 2006). Uncertainty analysis is an assessment of the
various sources of uncertainty to the model output (Zhang et al.,
2013). Due to lack of knowledge about the model inputs and/or errors
and variability in the experimental and environmental conditions, the
input parameters will have some degree of uncertainty which will con-
tribute to the overall uncertainty associated with the model results
(Hawker et al., 2011; Kim et al., 2013).

However, of the twenty-two model applications reviewed in this
paper, global uncertainty analysis was performed in only seven studies.
Four conducted both sensitivity and uncertainty analyses as mentioned
above. Most of these were conducted using global uncertainty analysis.
Another two applications included simple local uncertainty analysis by
discussing the possible changes caused by selected model inputs
(Hawker et al., 2011; Whelan, 2013).

3.2.4. Probabilistic approach— global sensitivity/uncertainty analysis
Asmentioned previously, sevenmodel applications reviewed in this

paper conducted global uncertainty/sensitivity analysis using a probabi-
listic approach. Different software or simulation sampling methods
were applied, which are discussed in this section. The probabilistic fac-
tors used include the distribution fitting of input parameters, the soft-
ware used for simulation, the type of simulation used as well as the
number of iterations of simulation, which are summarised in Table 5.

As shown in Table 5, Crystal Ball was the most commonly used soft-
ware for simulation. Three modelling groups did not provide informa-
tion regarding the version of the software/function used. All
researchers used Monte Carlo random sampling simulation except
Mackay et al. (2014)who considered that LatinHypercubewasmore ef-
ficient than random sampling. Latin Hypercube has advanced sampling
efficiency and has been regarded as a variance-reduction technique
(McKay et al., 1979). However, some researchers have pointed out
that further assessment is required for Latin Hypercube simulation
(Joseph and Hung, 2008; Pronzato and Müller, 2012). Monte Carlo ran-
dom sampling analysis is an important tool in the probabilistic analysis
in building simulation. Monte Carlo simulation is advantageous since it
is flexible, easy to use and does not suffer from multidimensionality or
non-linearity (Zio and Pedroni, 2013). However, the computational
costs of Monte Carlo can be a limiting factor. It was shown that a better
sampling strategy and convergence assessmentwill improve applicabil-
ity (Janssen, 2013). The number of iterations of simulation ranged from
500 to 20,000, with 10,000 runs used in most applications (Bock et al.,
2010; Mackay et al., 2014; Wang et al., 2015a; Wang et al., 2015b).
Cao et al. (2010) used only 500 simulations, and although they stated
that this enabled reasonably accurate representation of the probability
profile, they did not provide any statistical proof to confirm the validity
of their model. A larger sample size is recommended to provide better
accuracy of the simulation (Kim et al., 2013).

A single type of distributionwas fitted for all the input parameters in
four studies (Cao et al., 2010; Mackay et al., 2014; Wang et al., 2015a;
Wang et al., 2015b) whichmay not be realistic considering the variabil-
ity of the input data. Only Mackay et al. (2014) provided a reason for
their selection and noted that they chose log-normal distribution be-
cause it samples only positive values. However, this is questionable
since the choice of distribution should be based on the performance of
the distribution fitting. Zhang et al. (2013) assumed normal or log-
normal distributions for inputs around the mean or point values, and



Table 5
Summary of the probabilistic approach applied in the seven fugacity model applications.

Water matrix Analysis type Distribution of parameters Simulation Software Simulation sampling
(No. of runs)

Reference

Wastewater Sensitivity + Uncertainty Normal
Log normal
Uniform

Crystal Ball Monte Carlo random (10,000) Bock et al. (2010)

Surface water Uncertainty Normal Visual Basic Macro Function in Excel Monte Carlo random (500) Cao et al. (2010)
Surface water Uncertainty Normal

Log normal
Built-in function “Randn” in Matlab Monte Carlo random (3000) Xu et al. (2013)

Surface water Sensitivity + Uncertainty Log normal Crystal Ball 7.3.1 Latin Hypercube (10,000) Mackay et al. (2014)
Surface water Uncertainty Normal or log-normal Built-in function “Randn” in Matlab Monte Carlo (20,000) Zhang et al. (2013)
Wastewater Sensitivity + Uncertainty Uniform Crystal Ball 7.3.1 Monte Carlo random (10,000) Wang et al. (2015a)
Wastewater Sensitivity + Uncertainty Normal Crystal Ball 7.3.1 Monte Carlo random (10,000) Wang et al. (2015b)
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in the other two studies, three types of distribution fittingwere selected
to best represent the variability of their data.

3.3. Model validation

Validation of a fugacity model includes a check of both its internal
and external consistency. In order to ensure that model calculations
are internally consistent, a mass balance can be performed for the over-
all process to ensure that the chemical balance closes. An internal con-
sistency check would be sufficient to ensure that output data could
correctly reflect all the inherent equations, values of input parameters
and simplifying assumptions. The model could be used simply as an
evaluative tool to provide a description of the principal fate and trans-
port processes, then themodel results could be used illustratively rather
than reflecting the real situation and no external validation is required
(Mackay et al., 2014). On the other hand, if the model is to be used as
a predictive or simulation tool, it would be better to conduct a thorough
validation by comparing the results predicted by the model with field
data (Mackay et al., 2014). Hence, additional data on chemical concen-
trations in the inlet and outlet of a system or even in each compartment
within an aqueous system would be needed.

Information onmodel validationwas notmentioned in the develop-
ment and description of two models (Clark et al., 1995; Mackay et al.,
2014). Although proper model validation was not performed, Cao
et al. (2010) compared their simulated results with the concentration
data in a local water quality monitoring report to check the validity of
their model. Among the other twelve WWTP applications, validation
of the applied fugacity model was undertaken for six of them (Tan
et al., 2007; Bock et al., 2010; Xu et al., 2013; Wang et al., 2015a;
Wang et al., 2015b; Guo et al., 2019), who performed validation by
using MP concentrations measured in both water and sludge phases.
Of the fugacity model applications for MPs in surface waters, four of
ten groups performed model validation (Mackay and Diamond, 1989;
Mackay and Hickie, 2000; Zhang et al., 2011; Zhang et al., 2013), and
the concentrations of MPs in both water and sediment phases were
measured to assess the validity of the models.

4. Discussion

4.1. Chemical properties of MPs

The physicochemical properties of the target MPs can be a source of
uncertainty in fugacity modelling. Although Hawker et al. (2011) noted
that the physicochemical properties of MPs can be predicted with rea-
sonable precision and have a small influence on the output of a fugacity
model, sensitivity analyses for several models indicated that chemical
properties, especially the degradation rate/half-life and sorption related
coefficients, are strongly linked to the variability and accuracy of the
model outputs.

Thompson et al. (2011) reported that the removal of target MPs was
very sensitive to their activated sludge biodegradation half-lives. Khan
and Ongerth (2004) stated that the uncertainty in the biodegradation
rates led to inaccurate predictions for chemical distribution in the efflu-
ent of aWWTP. However, Bock et al. (2010) suggested that although the
half-life of triclosan in activated sludgewas uncertain, it made a negligi-
ble contribution to variation in the model output. As found for surface
water bodies, the fate of MPs was sensitive to the degradation rate
(Hawker et al., 2011; Zhang et al., 2013) or hydrolysis half-life
(Mackay et al., 2014) in water and sediment. Several research groups
(Whelan, 2013; Xu et al., 2013; Zhang et al., 2013; Mackay et al.,
2014) determined that Koc, a factor with considerable uncertainty, was
the most influential model input affecting the predicted concentrations
of MPs in sediment (Guo et al., 2019).

By reviewing all these fugacity model applications, it appeared that
for the WWTP studies, kbio was an important parameter which needed
extra care in choosing the most appropriate input sources. It would be
more appropriate to obtain kbio values by performing bench scale bio-
degradation experiments which simulate actual plant operating condi-
tions. For those without the resources for performing laboratory work,
software estimated kbio values could be useful alternatives, where ap-
propriate adjustment (e.g., based on temperature) may be needed to
enhance the accuracy of the model outputs. In both static and dynamic
fugacitymodel development for surfacewater systems, Koc was a signif-
icant factor among the model inputs and required onsite measurement
or proper deduction using mathematical models (Whelan et al., 2010;
Hyland et al., 2012) to achieve better model performance. However, it
is strongly recommended to perform onsite measurement of koc with
quantification of MPs in both solid and aqueous phases for each
WWTP if possible. Alternatively, mathematical models can be used to
estimate the koc values for MPs (Whelan et al., 2010; Hyland et al.,
2012). Generally, reasonably accurate Henry's Law constant (H) values
can be estimated using software (USEPA EPI Suite) or obtained from
literature.

There is complementarity between fugacity-based and
concentration-based models. As mentioned in the Introduction section,
concentration-based models have been established to simulate the de-
tailed removal mechanisms of MPs during wastewater treatment, in-
cluding biodegradation (Plósz et al., 2009; Min et al., 2018), sorption
(Urase and Kikuta, 2005; Polesel et al., 2015a) and volatilisation
(Byrns, 2001). The kinetic parameters required as the fugacitymodel in-
puts can be predicted using concentration-based models. In this way,
fugacity model uncertainties caused by inappropriate sources of
model inputs could be reduced. This is particularly the case for the
study of the fate of MPs during wastewater treatment processes,
where the complementarity of the two types of model may result in a
more holistic picture.

4.2. Chemical emission rate

Chemical emission rate (or discharge rate) is among the most im-
portant model inputs in the application of fugacity models to natural
water systems (Zhang et al., 2015). For some MPs
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(e.g., pharmaceuticals), their human excretion rates contribute signifi-
cantly tomodel output uncertainty. It has been reported that significant
uncertainties were associated with the estimation of community drug
emission/consumption through wastewater analyses (Castiglioni et al.,
2013; Polesel et al., 2015b; Gracia-Lor et al., 2016). Apart from sampling
and chemical analysis, other issues included stability of drug biomarkers
in sewage, back-calculation of drug use and estimation of population
size in a given system (Castiglioni et al., 2013; Ort et al., 2014; Gracia-
Lor et al., 2016).

Only three of the fourteen natural water applications did not incor-
porate this factor in their modelling strategies (Mackay and Diamond,
1989; Kilic and Aral, 2009; Cao et al., 2010). In previously reported stud-
ies, chemical emission rates were generally estimated from the usage of
products containing the target MPs (Whelan, 2013; Guo et al., 2019), or
based on historical reported values (Mackay and Hickie, 2000). Wang
et al. (2012b) found that the predicted concentrations of PAHs in the
water column were most sensitive to their emission rate. The uncer-
tainty of emission rate can impact the simulation of the environmental
concentrations of MPs as varied emission rates could lead to different
absolute concentrations predicted for each compound in each compart-
ment of the receiving environment (Whelan, 2013).

A better estimation ormeasurement ofMP emission is crucial to bet-
ter understand their environmental behaviour in naturalwater systems.
Zhang et al. (2015) performed a comprehensive study to investigate the
national consumption and emissions of a range of frequently detected
antibiotics in China by amarket survey. However, such large-scale stud-
ies can be challenging and resource consuming. Moreover, under some
circumstances, it is difficult to quantify the consumption and emissions
of some chemicals, thus leading to significant uncertainty. In these
cases, to address the significant uncertainty, an alternative to precise
measurements of emission rates is to perform emission scenario studies
(Zhang et al., 2011; Whelan, 2013). Model outputs can be analysed at
different emission rates to find the boundary conditions of the systems
under investigation. Similar analysis has been performed by other re-
searchers studying the fate of MPs at global scale (Liu et al., 2015; Su
et al., 2018). Overall, it is very important for the modeller to explain
how the emission rates (or emission threshold) for the MPs were esti-
mated in each fugacity model application.

4.3. WWTP related parameters

Plant operating parameters are common sources of uncertainty in
fugacitymodels developed forWWTPs. The concentration of suspended
solids can be a source of uncertainty. Bock et al. (2010) found that var-
iation in volatile suspended solids (VSS) concentration accounted for
approximately 60% of the variation in predicted effluent concentrations
and 70% of the variation in the predicted biosolids concentration of tri-
closan. The concentration of total suspended solids (TSS) in effluentwas
reported to be amajor influence on the emission of VMSs in the effluent
due to the hydrophobic nature of these MPs (Wang et al., 2015a; Wang
et al., 2015b). Therefore, uncertainties in the TSS concentration could
greatly affect the modelled output of VMS emissions.

Another essential factor was sludge retention time (SRT), which
greatly impacts the biodegradation of MPs (Bock et al., 2010; Wang
et al., 2015b). These researchers found that the rate of solids wasting
from the secondary sedimentation tank (related to SRT) was a deter-
mining factor controlling the biodegradation of MPs in the activated
sludge process. This was reasonable since it has been shown that longer
SRTs will promote bacterial growth and enrich microbial diversity, and
so facilitate biodegradation and thus greater removal of MPs during
the treatment (Clara et al., 2005; Langford et al., 2005). On the other
hand, Samaras et al. (2013) showed that increased SRT (from 8 days
to 18 days) in full scale WWTPs did not lead to improved biodegrada-
tion of all selected target MPs. This could be due to the different mi-
crobes with different degradation kinetics present in the activated
sludge in the WWTPs studied by the different authors. Another
explanation could be the nature of the different MPs investigated in
these studies. The time required for acclimation may differ for different
microbial flora, leading to the different influences of SRT on their biolog-
ical removal. As Kruglova et al. (2016) explained, longer SRT conditions
can lead to greater diversity of microbial species, particularly for those
which grow slowly. Other than this factor, WWTP influent flow rate
(Wang et al., 2015a; Wang et al., 2015b) and mixed liquor suspended
solids (MLSS) concentration (Wang et al., 2015b) can also influence
the mass distributions of MPs in the WWTP and lead to uncertain
model predictions.

Overall, for MPs which are primarily adsorbed during wastewater
treatment, the concentration of suspended solids is likely to influence
their fate the most. Other WWTP related parameters can also play im-
portant roles in influencing the fate of MPs. To achieve the best removal
of persistent MPs, it is recommended to perform sensitivity analysis for
various operating parameters for each WWTP system during fugacity
modelling. The sensitivity analysis results can provide the means for
the operators to obtain optimum operating conditions.

4.4. Surface water system characteristics

The hydraulic characteristics of surface waters are considered major
sources of uncertainty in fugacity models developed for these water
bodies. Hawker et al. (2011) assumed a well-mixed lake model, how-
ever the target water system stratified during six months of the year;
this could generate a degree of uncertainty in the model output. A sim-
ilar situation applies to QWASI models, and Mackay and Hickie (2000)
assumed a well-mixed water column for a lake without considering
stratification.

Surface water systems can bemore complex thanWWTPs as the en-
vironmental conditions are not engineered or controlledwhich can gen-
erate more variables within the system. Therefore, more characteristics
need to be taken into consideration. System parameters such as water
volume, system surface area, water temperature, wind speed (Cao
et al., 2010; Hawker et al., 2011; Wang et al., 2012b; Xu et al., 2013)
and biomass concentration (Cao et al., 2010) are subject to spatial and
temporal variability, which can generate uncertainty. Zhang et al.
(2013) concluded that water system inflow rate was an important fac-
tor. Despite this, Zhang et al. (2011) reported that their model was in-
sensitive to water depth and water surface area. This was probably
because they were not investigating photodegradable MPs. Xu et al.
(2013) reported that the predictions for the PAHs they investigated
were highly sensitive to water temperature. Since temporal differences
of water temperature also apply to natural water systems, it is recom-
mended that fugacity models for natural water systems are developed
taking this into account. Temperature sensitivemodel input parameters
should be adjusted according to temperature variations using themath-
ematical models available (Guo et al., 2019).

Some estimated systemparameters such as sediment burial, deposi-
tion and resuspension rates are also potential sources of uncertainty
(Hawker et al., 2011; Guo et al., 2019). It was reported by Mackay
et al. (2014) that the concentration of PCB-180 in lake water was very
sensitive to either the sediment deposition rate or the sediment burial
rate in the three lakes studied. A similar conclusion was made by Guo
et al. (2019) for D4. Therefore, theprecision of these rates related to sed-
iment movement is essential to ensure accuracy of model output.

The application of fugacity models to MPs in surface water bodies
differs fromapplication inWWTPs as the diffusion andmass transfer co-
efficients play more important roles. Zhang et al. (2013) found that the
air-soil diffusion coefficient was an influential factor for a surface water
body. Uncertainty analysis showed that predictions of concentrations in
sediment had the largest uncertainty and more information about this
key process should be collected, such as the mass transfer coefficients
between the sediment and other phases (air and water) (Zhang et al.,
2013). Zhang et al. (2011) reported negligible impact of the water-
side mass transfer coefficient, whereas the air-side mass transfer
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coefficient was found to be an important factor as themodel predictions
displayed variability in response to this parameter.

4.5. Model performance evaluation

A better understanding of the impact of input parameters during
sensitivity and uncertainty analyses has practical implications. The in-
formation obtained from these analyses can facilitate optimisation of
WWTP operation to reduce the discharge of MPs to the environment
(Wang et al., 2015a, Wang et al., 2015b). Moreover, information associ-
ated with surface water characteristics may also be useful to predict the
changes in the amounts ofMPs in the systemunder differentweather or
recycling conditions (Cao et al., 2010). Buser et al. (2012) suggested that
sensitivity analysis and possible uncertainty analysis should be per-
formed in multi-media model applications. Nearly half of the fugacity
model applications covered in this review performed at least one anal-
ysis (sensitivity or uncertainty), with seven of them undertaking both
analyses. Uncertainty analysis was generally performed using a proba-
bilistic approach via computer simulation. However, the simulation
methodologies adopted in several of the applications varied. Further-
more, some studies did not provide the statistical data to support their
methodology selection. It is recommended that statistical quality assur-
ance data (e.g., error, standard deviations, etc.) should be included in fu-
ture fugacity model performance evaluations. Also, the number of
simulation iterations should be considered with caution. Generally, a
large number provides greater accuracy in Monte Carlo simulation.
However, specific model structure and computational effort required
should also be taken into account. The number of runs should be suffi-
cient to demonstrate the statistical relevance of the results. Also, once
a number has been chosen, the number of simulation runs should ex-
ceed that number as a test. Statistical proof should be provided to
show that the increased sample size does not significantly affect the
output probability distribution.

Some authors simply analysed the potential uncertainties present in
model outputs by briefly demonstrating input data variability and/or
uncertainty without using the simulation approach (Hawker et al.,
2011; Zhang et al., 2011;Whelan, 2013). The reliability of these analyses
is questionable since no statistical support was provided. Sensitivity
analysis was performed either by using computer simulation or an
OAT inspection. With the OAT method, several modelling groups did
not report the SC in the analysis. More in depth understanding could
be obtained if these SC values were included since they can directly
show the users the relative sensitivity of the model outputs to each pa-
rameter investigated. For example, detailed explanation and demon-
stration of the sensitivity analysis were provided by Xu et al. (2013).
The sensitivity coefficients of each parameter for each MP obtained in
sensitivity analysis were tabulated. The variance coefficients for each
MP obtained in uncertainty analysis were visualised using column
graphs for comparison. These simple and powerful visualisation tools
allowed a clear and straightforward understanding of the study. Inclu-
sion of a table or graph of the analysis outputs is necessary for the
users to better understand the model performance in terms of robust-
ness and output variances (Huang et al., 2019).

Validation is an important approach to assess the performance of an
established model. Even though Mackay et al. (2014) stated that model
validation is not compulsory if the results were used qualitatively, some
researchers did not describe the clear use of modelling data. Model val-
idationwas performed for twelve of the twenty-twomodel applications
reviewed in this paper. All of the model validations were performed by
the determination of onsite measurements in both liquid and solid
phases, indicating a fairly high reliability of the data sets. Only two of
the twelve models were calibrated (Bock et al., 2010; Zhang et al.,
2011). Calibration is a process to adjust certain model parameters to
achieve the best performance of themodel for specific locations and ap-
plications, whereas validation attempts to assess the closeness between
the predictions and the observations (Dee, 1995). Certain adjustment of
model parameterisation is necessary to ensure a better model perfor-
mance (Refsgaard, 1997). However, it is crucial to ensure the accuracy
of the data used formodel calibration. Overall, it is reasonable to not cal-
ibrate those parameterswhichwere determined to be less influential on
model outputs to reduce the number of parameters to be calibrated
(Jens 1997). Sensitivity and uncertainty analyses facilitate the identifi-
cation of the model parameters required to be calibrated (Su et al.,
2019).

For those with reported validation data, a majority of models (with
or without calibration) produced predictions which were fairly consis-
tent or comparable with measured concentrations in both wastewater
and surface water matrices (Mackay and Hickie, 2000; Wang et al.,
2007; Bock et al., 2010; Zhang et al., 2011; Xu et al., 2013; Zhang et al.,
2013; Wang et al., 2015a; Wang et al., 2015b). Tan et al. (2007) found
differences ranging from 0 to 40% between themodelled and measured
concentration of the EDCs being studied, suggesting some model pre-
dictions could be inaccurate. For multimedia fugacity models, it is ac-
ceptable to have differences of less than 0.5 orders of magnitude
between the modelled and observed values (Cao et al., 2004). Hence,
the reported model effectiveness demonstrates the success of this
type of model in the prediction of the fate and concentrations of MPs
in WWTPs and environmentally relevant aqueous systems. Therefore,
it is suggested that in the absence of appropriate data, model calibration
is not a compulsory component of the fugacity modelling strategy.
Jørgensen et al. (2014) pointed out that the aim of calibration in fugacity
modelling is to avoid impossiblemodel parameters instead of fitting the
model results as closely as possible to the observations.

It is strongly recommended that model validation be performed and
validity demonstrated prior to quantitative application to prediction of
chemical concentrations. A clear description of the purpose of the
modelled results should be provided if validation was not conducted.
In particular, the use of onsite measurements in both liquid and solid
phase samples is recommended since it gives greater reliability of vali-
dation results. This is especially the case for applications aiming to im-
prove or adjust a current model (Seth et al., 2008; Thompson et al.,
2011). Particular attention should be paid to fugacitymodels developed
for natural water systems with unique environmental conditions,
where comparable data are not easily found. It is also suggested to col-
lect historically measured data for the target MPs in the associated re-
gion from literature sources, this can provide a comprehensive dataset
for comparison (Liu et al., 2015). It is recommended to use quantitative
statistical methods for model validation to better evaluate the perfor-
mance of the established model. Three methods including Nash–
Sutcliffe efficiency (NSE), percent bias (PBIAS) and ratio of the root-
mean-square to the standard deviation of measured data (RSR) have
been used for similar purposes (Wang et al., 2012a; Kim et al., 2017).
However, none of the reviewed model applications clearly presented
statistical analysis in their model validation.

Another problem related to fugacity model performance is over-
parameterisation. During model development, it is difficult to judge
the appropriate level of detail within modelling processes. Conse-
quently, it is easy formodels to become over-parameterised, potentially
increasing uncertainty in predictions (Crout et al., 2009). This is partic-
ularly the case for Bayesian network as well as hydrological models
(Gaume andGosset, 2003; vanGriensven et al., 2006). Similar situations
exist for fugacitymodels due tomodel complexity, especially for the dy-
namic fugacitymodels used for the study ofMPs in rivers which include
hydrological features. However, by applying sensitivity analysis and un-
certainty analysis, the uncertainty generated by this issue can be miti-
gated (van Griensven et al., 2006).

5. Conclusions

Fugacitymodels have been applied to both conventional and uncon-
ventionalWWTPswith different operating conditions, aswell as various
natural water bodies including reservoirs, lakes and rivers to gain
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insights into the behaviour and fate of MPs in the various aqueous sys-
tems. Three main types of fugacity models were reviewed in this paper
including the STPmodel, the QWASI model and similar Level III fugacity
model, as well as dynamic fugacity model. Twenty-two fugacity model
applications for both surface water and wastewater systems were
reviewed here.

STP is a commercial computer program designed for WWTPs and
has been widely applied to predict the fate of MPs in sewage treatment
plants. However, thismodel only covers conventionalwastewater treat-
ment process (activated sludge) configurations, with tertiary processes
such as chlorination, ozonation, and lagoon treatment not included. In
terms of surface water fugacity models, most input data for these
models were obtained from literature or default data. It is recom-
mended that more effort should be put into improving the quality of
input data to enhance their performance in the prediction of the fate
and removal of MPs in surface waters. Another limitation of surface wa-
ters fugacity models is that the sources of the pollutants are usually
regarded as a steady state system so that the transport of pollutants
can be described by a one-dimensional advection-dispersion equation
of steady state.

For the STP and STP-EX model applications, kbio appeared to be the
parameter which requires particular attention when choosing the
most appropriate input sources. For surface water fugacity models, Koc

is an important factor.More accuratemeasurement or careful deduction
of this parameter is desirable to give better model performance. Chem-
ical emission/discharge rate is a crucial model input which can lead to
significant uncertainty. Careful estimation of this parameter and a de-
tailed estimation scheme in the modelling strategy are desirable to
achieve better model performance. Wherever applicable, it is recom-
mended to take all the possible emission routes into consideration,
with a thorough background investigation (such as literature study)
on the usage, consumption and population. Alternatively, development
of emission scenarios is useful to enable the determination of the
boundary conditions which can be used in emission estimation. For ex-
perimentally obtained model inputs, laboratory conditions and experi-
mental approach should be described in detail. For model inputs
obtained from literature or by estimation, reasons for the selection of
the data sources should be given.

Uncertainty and sensitivity analysis of the systemparameters aswell
as of the chemical-related parameters can provide useful and insightful
information regarding the variability of the outputs of a (fugacity)
model. The most important input parameters of the model as well as
the influence of those parameters on themodel estimations can be iden-
tified with this approach. It is highly recommended to perform both
analyses using the appropriate methodologies. Also, statistical quality
assurance data should be presented alongwith theMonte Carlo simula-
tion strategies. It is recommended that the number of simulation itera-
tions be chosen carefully. A balance between simulation quality and
computational effort should be maintained. For those research groups
without the resources to performmultiple simulations, theOAT strategy
can be applied. However, it is important for modellers to report detailed
analysis results in a clear manner (including SC in the results to show
the extent of sensitivity). Model validation by comparing the predicted
data with site measurements was conducted for only approximately
half of the model applications. Hence uncertainties remain with regard
to the real performance of those models that have not been validated.
Moreover, it is strongly recommended to use quantitative statistical
methods for model validation to enable quantitative evaluation of the
model performance.

This review has discussed the causes and sources of fugacity model
uncertainties when used to predict the fate of MPs in aqueous systems.
The importance of the quantity and quality of data in developing useful
fugacity models to predict the fate of MPs in both wastewater and sur-
face water systems has been demonstrated. In future research, it
would be useful to adopt a chemical moiety approach to enhance both
quantity and quality of internal input data for this type of model. Also,
the applications of fugacity models can be expanded to make it suitable
for the description of the fate of MPs in different aqueous systems; for
example, for wastewater lagoon treatment and natural water systems
with largewater surfaces inwhich photolysis can be an important path-
way. By including thisMP removalmechanism in the fugacitymodelling
process, uncertainty of the model output can also be reduced.
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