Lo studio della cinetica e dei meccanismi di formazione delle PCDD/PCDF

Dept. Environmental Sciences, University of Milano-Bicocca Piazza della Scienza, 1 - 20126 Milano (Italy)

PolyChloroDibenzo-*p* -Dioxins (PCDD) and PolyChloroDibenzoFurans (PCDF) formation in combustion processes

STATE OF ART

APCDs become more and more sophisticated as emission limits became more and more low. *(END OF PIPE STRATEGY)*

> OUR STRATEGY To prevent PCDD/PCDF formation. (SUSTAINABLE TECHNOLOGY)

FLY ASH: catalyst and source of carbon

MUNICIPAL SOLID WASTE AND HAZARDOUS WASTE TREATMENT

INDUSTRIAL SCALE (1987 - 1995)

MAIN RESULTS

PCDD/PCDF characterization in the feeding of a MSW incinerator and correlation with the possible sources.

Estimation of the environmental risk in terms of ngTEQ/Nm³ and/or ngTEQ/g.

INDUSTRIAL SCALE (1987 - 1995)

MAIN RESULTS

Setting-up of a methodology for *on-line* monitoring of the combustion process.

Effects of sampling procedure on qualitative and quantitative behaviour of PCDD/F fingerprints in the gaseous emissions.

MAIN RESULTS

Optimisation of process parameters in order to minimise PCDD/F formation

- ⇒ In the combustion chamber
- ⇒ In the post-combustion chamber
- ⇒ At the stack emissions

LAB SCALE STUDIES STARTING POINTS FROM OUR AND LITERATURE STUDIES

Fly Ash collected in the "cold zone" of MSWI contains significant concentrations of PCDD/F.

PCDD/F are formed in the "cold zone" [280 < T (°C) < 350].

The observed concentrations of PCDD/F represent a balance between **degradation** and **formation** reactions.

PCDD/F are formed as traces (ppb) with respect to the organic materials in FA (very low reaction yields).

RESEARCH PROJECT AT LABORATORY SCALE

THERMAL DEGRADATION THERMAL FORMATION

REAGENTS OCDF in nitrogen stream with water vapor

OCDD in air stream with or without water vapor

HxCDF + PeCDF + TCDF

THERMAL DEGRADATION (1994 - 1995)

THERMAL DEGRADATION (1994 - 1995)

REAGENT (R = OCDF in N_2) DISAPPEARANCE

TO STUDY THE PCDD/F *DE NOVO* SYNTHESIS REACTIONS, IT IS NECESSARY

MODEL SYSTEMS

Support	Reagent	Catalyst
FA-R (Raw)	 DF C_{att} / C_{am} / C_{nat} 	Included
FA-E (Extracted/toluene)	C _{nat}	??
FA-SFE (Extracted/SFE)	 C_{nat} DF 	??
FA-TT (Thermally Treated at 600°C)	 C_{att} / C_{am} / C_{nat} DF OCDD/OCDF 	??
FA-W (Washed)	Catt / Cam / Cnat	??
SiO ₂	 C_{att} C_{att} / C_{am} / C_{nat} DF / BPh / DD 	No/Cu, Fe, Zn No No

M. Lasagni, E. Collina, M. Tettamanti, D. Pitea (1996) Environ. Sci. Technol., 30, 1896

REAL SYSTEMS

⇒ Raw Fly Ash from MSWI ESP hoppers: Denmark (FA1, FA2a and FA2b) and Italy (FA3)

PROPOSED MECHANISM

 $d[C]/dt = -k_1^0[C][O_2]^{n_1} - k_2^0[C][O_2]^{n_2}$ $d[C(O)]/dt = -k_1^0[C][O_2]^{n_1} - k_3^0[C(O)][O_2]^{n_3}$ $k_1 = k_1^0[O_2]^{n_1}$

Real systems: FA-R

Agreement between calc. and exp. data

Real systems: FA-R

MAIN CONCLUSION ABOUT MECHANISM

Measured conversion of FA native carbon to CO₂ is the result of two processes:

The dissociative oxygen chemisorption (k_1) followed by the gasification of the intermediate complexes (k_3) .

The direct carbon gasification (k₂).

Due to $\Delta G_1^{\neq} \cong \Delta G_2^{\neq} < \Delta G_3^{\neq}$, the two reactions become concurrent on FA surface.

TOWARDS A GLOBAL REACTION MECHANISM OF NATIVE CARBON THERMAL OXIDATION AND PCDD/PCDFs FORMATION

EXPERIMENTAL SYSTEM

GC-TCD for on line determination of CO/CO₂

Reaction matrix: Fly ash (AMSA, MI) Gas mixture: $80\% v/v N_2$, $20\% v/v O_2$ Flow: 100 mL/minTemperature: $230-350^{\circ}$ C Time: 0-24 h

HYPOTHESIZED REACTION MECHANISM

$$C+O_{2} \xrightarrow{k_{1}^{0}} C(O)$$

$$C+O_{2} \xrightarrow{k_{2}^{0}} CO_{2}$$

$$C(O)+O_{2} \xrightarrow{k_{3}^{0}} CO_{2}$$

$$C+O_{2} \xrightarrow{k_{4}^{0}} CO$$

$$C(O)+CI^{-} \xrightarrow{k_{2}^{0}} C(O)(CI)$$

$$C(O)(CI) \xrightarrow{k_{5}} (PCDD/F)_{s}$$

$$(PCDD/F)_{s} \xrightarrow{k_{7}} (PCDD/F)_{v}$$

$$(PCDD/F)_{s} \xrightarrow{k_{8}} P_{deg}$$

$$(PCDD/F)_{v} \xrightarrow{k_{9}} P_{dec}$$

RATE EQUATIONS

 $d[C]/dt = -(k_1 + k_2 + k_3)[C]$ $d[C(O)]/dt = -k_1[C] - (k_3 + k_5)[C(O)]$ $d[CO]/dt = k_4[C]$ $d[CO_2]/dt = k_2[C] + k_3[C(O)]$

 $d[C(O)(CI)]/dt = k_{5}[C(O)] - k_{6}[C(O)(CI)]$

 $d[(PCDD/F)_{s}]/dt = k_{6}[C(O)(CI)] - (k_{7} + k_{8})[(PCDD/F)_{s}]$

Where

$$\begin{split} & k_1 = k_1^0 \begin{bmatrix} O_2 \end{bmatrix}^{n_0} & k_4 = k_4^0 \begin{bmatrix} O_2 \end{bmatrix}^{n_0} \\ & k_2 = k_2^0 \begin{bmatrix} O_2 \end{bmatrix}^{n_0} & k_5 = k_5^0 \begin{bmatrix} CI_2 \end{bmatrix}^{n_{CI}} \\ & k_3 = k_3^0 \begin{bmatrix} O_2 \end{bmatrix}^{n_0} \end{split}$$

$$\frac{[O_2]}{[C]} = 22 \Longrightarrow [O_2]^{n_0} = \text{cost}$$
$$\frac{[CI^-]}{[C]} = 14 \Longrightarrow [CI_2]^{n_c} = \text{cost}$$
$$n_c = 1$$

PCDD/F reaction order = 1

INTEGRATION BOUNDARY CONDITIONS

The system was analytically integrated by partial fraction method under the following boundary conditions

t = 0

 $[C] = [C]_0$

 $[CO]_0 = [C(O)]_0 = [C(O)(CI)]_0 = 0$

 $\left[\left(\mathsf{PCDD/F}\right)_{\mathsf{S}}\right] = \left[\left(\mathsf{PCDD/F}\right)_{\mathsf{S}}\right]_{\mathsf{O}}$

INTEGRATED EQUATIONS

$$\frac{[C]}{[C]_{0}} = \{ \exp[-(k_{1}+k_{2}+k_{4})t] \}$$

$$\frac{[C(O)]}{[C]_0} = \frac{k_1}{(k_1 + k_2 + k_4) - (k_3 + k_5)} \left\{ \exp\left[-(k_3 + k_5) t\right] - \exp\left[-(k_1 + k_2 + k_4) t\right] \right\}$$

$$\frac{[CO]}{[C]_0} = \frac{k_4}{(k_1 + k_2 + k_4)} \left\{ 1 - \exp[-(k_1 + k_2 + k_4) t] \right\}$$

$$\frac{[CO_2]}{[C]_0} = \frac{k_2}{(k_1 + k_2 + k_4)} \left\{ 1 - \exp\left[-(k_1 + k_2 + k_4)t\right]\right\} + \frac{k_1^* k_3}{(k_1 + k_2 + k_4) - (k_3 + k_5)} \left\{ \frac{1 - \exp\left[-(k_3 + k_5)t\right]}{k_3 + k_5} - \frac{1 - \exp\left[-(k_1 + k_2 + k_4)t\right]}{k_1 + k_2 + k_4} \right\} \right\}$$
$$\frac{\left[C(O)(CI)\right]}{[C]_0} = \frac{k_1^* k_5}{(k_1 + k_2 + k_4) - (k_3 + k_5)} \left\{ \frac{\exp\left[-k_6 t\right] - \exp\left[-(k_3 + k_5)t\right]}{(k_3 + k_5) - k_6} - \frac{\exp\left[-k_6 t\right] - \exp\left[-(k_1 + k_2 + k_4)t\right]}{(k_1 + k_2 + k_4) - k_6} \right\}$$

$$\frac{(PCDD/F)_{s}}{[C]_{0}} = \frac{[(PCDD/F)_{s}]_{0}}{[C]_{0}} \exp[-k_{8}t] + \frac{k_{1}*k_{5}*k_{6}}{(k_{1}+k_{2}+k_{4})-(k_{3}+k_{5})} \left\{ \frac{1}{(k_{3}+k_{5})-k_{6}} \left[\frac{\exp[-k_{8}t]-\exp[-k_{6}t]}{k_{6}-k_{8}} \right] - \frac{\exp[-k_{8}t]-\exp[-(k_{3}+k_{5})t]}{(k_{3}+k_{5})-k_{6}} \right\} - \frac{k_{1}*k_{5}*k_{6}}{(k_{1}+k_{2}+k_{4})-(k_{3}+k_{5})} \left\{ \frac{1}{(k_{1}+k_{2}+k_{4})-k_{6}} \left[\frac{\exp[-k_{8}t]-\exp[-k_{6}t]}{k_{6}-k_{8}} \right] - \frac{\exp[-k_{8}t]-\exp[-(k_{1}+k_{2}+k_{4})t]}{(k_{1}+k_{2}+k_{4})-k_{6}} \right] \right\}$$

EXPERIMENTAL DATA

 $[C]_0 = 3.268 \ 10^{+5} \text{ nmol C/g} \quad [(PCDD/F)_S]_0 = 2.381 \text{ nmol C/g} \quad T = 280^{\circ}C$

CALCULATED RATE CONSTANTS

The kinetic constants were determined with a step by step procedure using a trial and error technique

k ₁	min ⁻¹	2.49 10 ⁻³
k ₂	min ⁻¹	5.85 10 ⁻⁴
k ₃	min ⁻¹	3.16 10 ⁻⁵
k ₄	min ⁻¹	1.85 10 ⁻⁵
k ₅	min ⁻¹	4.05 10 ⁻⁶
k ₆	min ⁻¹	6.99 10 ⁻⁵
k ₈	min ⁻¹	4.87 10 ⁻³

10th International Congress on Combustion By-Products and their Health Effects June 17-20, 2007 - Hotel Continental Terme - Ischia, Italy

26

T = 280 °C

!!!! [C(0)] and [C(0)(Cl)] vs [PCDD/F] !!!!

[PCDD/F] increase whit increasing C(O)] and [C(O)(CI)]

!!!! [C(O)] and [C(O)(CI)] vs [PCDD/F] !!!!

[PCDD/F] increase whit increasing C(O)] and [C(O)(CI)]

CONTRIBUTION OF C(O) COMPLEXES

CONTRIBUTION OF C(O)(CI) COMPLEXES

PCDD AND PCDF FORMATION

$$\begin{bmatrix} (PCDD/F)_{s} \end{bmatrix} 1 = \frac{\begin{bmatrix} (PCDD/F)_{s} \end{bmatrix}_{0}}{\begin{bmatrix} C \end{bmatrix}_{0}} \exp[-k_{8} t]$$

$$\begin{bmatrix} (PCDD/F)_{s} \end{bmatrix} 2 = \begin{cases} \frac{1}{(k_{3} + k_{5}) - k_{6}} \begin{bmatrix} \frac{\exp[-k_{8} t] - \exp[-k_{6} t]}{k_{6} - k_{8}} \end{bmatrix} - \frac{\exp[-k_{8} t] - \exp[-(k_{3} + k_{5}) t]}{(k_{3} + k_{5}) - k_{6}} \end{cases}$$

$$\begin{bmatrix} (PCDD/F)_{s} \end{bmatrix} 3 = -\begin{cases} \frac{1}{(k_{1} + k_{2} + k_{4}) - k_{6}} \begin{bmatrix} \exp[-k_{8} t] - \exp[-k_{6} t] \\ k_{6} - k_{8} \end{bmatrix} - \frac{\exp[-k_{8} t] - \exp[-(k_{1} + k_{2} + k_{4}) t]}{(k_{1} + k_{2} + k_{4}) - k_{6}} \end{cases}$$