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Black Holes 

12.1 Introduction 

We have seen in previous chapters that both white dwarfs and neutron stars have 
a maximum possible mass. What happens to a neutron star that accretes matter 
and exceeds the mass limit? What is the fate of the collapsing core of a massive 
star, if the core mass is too large to form a neutron star? The answer, according to 
general relativity, is that nothing can halt the collapse. As the collapse proceeds, 
the gravitational field near the object becomes stronger and stronger. Eventually, 
nothing can escape from the object to the outside world, not even light. A black 
hole has been born. 

A black hole is defined simply as a region of spacetime that cannot communi- 
cate with the external universe. The boundary of this region is called the surface 
of the black hole, or the event horizon.’ 

The ultimate fate of collapsing matter, once it has crossed the black hole 
surface, is not known. Densities for a lM, object are - 10’’ g cm- as the black 
hole is formed, and are smaller for larger masses. How can we be sure that some 
hitherto unknown source of pressure does not become important above such 
extreme densities and halt the collapse? The answer is that by the time a black 
hole forms it is already too late to hold back the collapse: matter must move on 
worldlines inside the local light cone, and the spacetime geometry is so distorted 
that even an “outward” light ray does not escape. In fact, since all forms of 
energy gravitate in relativity, increasing the pressure energy only accelerates the 
late stages of the collapse. 

If we extrapolate Einstein’s equations all the way inside a black hole, they 
ultimately break down: a singularity develops. There is as yet no quantum theory 
of gravitation, and some people believe that the singularity would not occur in 

‘Strictly speaking, the event horizon is a three-dimensional hypersurface in spacetime (a 2-surface 
existing for some time interval). We shall, however, speak loosely of the event horizon or black hole 
surface as a 2-surface at some instant of time. 
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336 Black Holes 

such a theory. It would be replaced by finite, though unbelievably extreme, 
conditions. 

Exercise 12.1 Construct a density by dimensional analysis out of c, G, and A .  
Evaluate numerically this “Planck density” at which quantum gravitational effects would 
become important. 

Answer: p - g cm- ’. 
As long as the singularity is hidden inside the event horizon, it cannot 

influence the outside world. The singularity is said to be “causally disconnected” 
from the exterior world. We can continue to use general relativity to describe the 
observable universe, even though the theory breaks down inside the black hole. 

One might expect that the solutions of Einstein’s equations describing equi- 
librium black holes would be extremely complicated. After all, black holes can be 
formed from stars with varying mass distributions, shapes (multipole moments), 
magnetic field distributions, angular momentum distributions, and so on. Re- 
markably, the most general stationary black hole solution is known analytically. It 
depends on only three parameters: the mass M, angular momentum J ,  and charge 
Q of the black hole. All other information about the initial state is radiated away 
in the form of electromagnetic and gravitational waves during the collapse. The 
remaining three parameters are the only independent observable quantities that 
characterize a stationary black hole.* This situation is summarized by Wheeler’s 
aphorism, “A black hole has no hair.” 

The mass of a black hole is observable, for example, by applying Kepler’s 
Third Law for satellites in the Newtonian gravitational field far from the black 
hole. The charge is observable by the Coulomb force on a test charge far away. 
The angular momentum is observable by non-Newtonian gravitational effects. 
For example, a torque-free gyroscope will precess relative to an inertial frame at 
infinity (Lense-Thirring effect). 

12.2 History of the Black Hole Idea 

As early as 1795 Laplace (1795) noted that a consequence of Newtonian gravity 
and Newton’s corpuscular theory of light was that light could not escape from an 
object of sufficiently large mass and small radius. In spite of tlus early fore- 
shadowing of the possibility of black holes, the idea found few adherents, even 
after the formulation of general relativity. 

In December of 1915 and within a month of the publication of Einstein’s series 
of four papers outlining the theory of general relativity, Karl Schwarzschild 
( 1916) derived h s  general relativistic solution for the gravitational field surround- 

‘See Carter (1979) for a complete discussion 
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ing a spherical mass. Schwarzschild sent his paper to Einstein to transmit to the 
Berlin Academy. In replying to Schwarzschild, Einstein wrote, “ I  had not 
expected that the exact solution to the problem could be formulated. Your 
analytical treatment of the problem appears to me splendid.” Although the 
significance of the result was apparent to both men, neither they nor anyone else 
knew at that time that Schwarzschild‘s solution contained a complete description 
of the external field of a spherical, electrically neutral, nonrotating black hole. 
Today we refer to such black holes as Schwarzschild black holes, in honor of 
Schwarzschild’s great contribution. 

As we described in Chapter 3, Chandrasekhar (1931b) discovered in 1930 the 
existence of an upper limit to the mass of a completely degenerate configuration. 
Remarkably, Eddington (1 935) realized almost immediately that if Chandrasek- 
har’s analysis was to be accepted, it implied that the formation of black holes 
would be the inevitable fate of the evolution of massive stars. He thus wrote in 
January 1935: “The star apparently has to go on radiating and radiating and 
contracting and contracting until, I suppose, i t  gets down to a few kilometers 
radius when gravity becomes strong enough to hold the radiation and the star can 
at last find peace.” But he then went on to declare, “ I  felt driven to the 
conclusion that this was almost a reductio ad absurdum of the relativistic 
degeneracy formula. Various accidents may intervene to save the star, but I want 
more protection than that. I think that there should be a law of Nature to prevent 
the star from behaving in this absurd way.” 

As is clear from his concluding remarks, Eddington never accepted Chandra- 
sekhar’s result of the existence of an upper limit to the mass of a cold, degenerate 
star. This in spite of Eddington’s being one of the first to understand and 
appreciate Einstein’s theory of general relativity! (His book The Mathematical 
Theory of Relativity (1922) was the first textbook on general relativity to appear in 
English.) In fact, Eddington subsequently proceeded to modify the equation of 
state of a degenerate relativistic gas so that finite equilibrium states would exist 
for stars of arbitrary mass.3 

But Eddington was not alone in hts misgivings about the inevitability of 
collapse as the end product of the evolution of a massive star. Landau (1932), in 
the same paper giving his simple derivation of the mass limit (cf. Section 3.4), 
acknowledged that for stars exceeding the limit, “there exists in the whole 
quantum theory no cause preventing the system from collapsing to a point.” But 
rather then follow the sober advice put forth at the beginning of his paper (“It 
seems reasonable to try to attack the problem of stellar structure by methods of 
theoretical physics”), Landau, in the end, retreats and declares, “As in reality 
such masses exist quietly as [normal] stars and do not show any such tendencies, 

’ Chandrasekhar ( 1980) has recently lamented Eddington’s shortsightedness regarding black holes, 
declaring, “Eddington’s supreme authority in those years effectively delayed the development of 
fruitful ideas along these lines for some thirty years.” 
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we must conclude that all stars heavier than lSM, certainly possess regions in 
which the laws of quantum mechanics (and therefore quantum statistics) are 
violated.” 

In 1939 Oppenheimer and Snyder (1939) revived the discussion by calculating 
the collapse of a homogeneous sphere of pressureless gas in general relativity. 
They found that the sphere eventually becomes cut off from all communication 
with the rest of the Universe. This was the first rigorous calculation demonstrat- 
ing the formation of a black hole. 

Black holes and the problem of gravitational collapse were generally ignored 
until the 1960s, even more so than neutron stars. However, in the late 1950% J. A. 
Wheeler and his collaborators began a serious investigation of the problem of 
~ol lapse .~  Wheeler (1968) coined the name “black hole” in 1968. 

In 1963 R. Kerr (1963) discovered an exact family of charge-free solutions to 
Einstein’s vacuum field equations. The charged generalization was subsequently 
found as a solution to the Einstein-Maxwell field equations by Newman et al. 
(1965). Only later was the connection of these results to black holes appreciated. 
We know today that the Kerr-Newman geomety described by these solutions 
provides a unique and complete description of the external gravitational and 
electromagnetic fields of a stationary black hole. 

A number of important properties of black holes were discovered and several 
powerful theorems concerning black holes were proved during this period. The 
discovery of quasars in 1963, pulsars in 1968, and compact X-ray sources in 1962 
helped motivate this intensive theoretical study of black holes. Observations of 
the binary X-ray source Cygnus X-1 in the early 1970s (cf. Section 13.5) provided 
the first plausible evidence that black holes might actually exist in space. 

We turn now from history to a discussion of the physics of black holes. We 
shall begin our treatment with a discussion of the simplest black hole, one with 
J = Q = O .  

12.3 Schwanschild Black Holes 

We repeat here the Schwarzschild solution from Eq. (5.6.8): 

ds2 = - 1 - - dt2 + 1 - 2M -‘dr2 + r 2 d e 2  + r2sin28d+’ 
( 2 : )  ( r )  

(12.3.1) 

We are using the geometrized units ( c  = G = 1) of Section 5.5. 

4See Harrison et al. (1965) for an account of these investigations 
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A static observer in this gravitational field is one who is at fixed r ,  e,+. The 
lapse of proper time for such an observer is given by Eq. (12.3.1) as 

or 

d T =  ( I  - y ) ” 2 d t .  

(12.3.2) 

(12.3.3) 

This simply shows the familiar gravitational time dilation (redshift) for a clock in 
the gravitational field compared with a clock at infinity (i.e., d r  < dt ) .  Note that 
Eq. (12.3.3) breaks down at r = 2M, which is the event horizon (= surface of the 
black hole = Schwarzschild radius). Another name for this is the static limit, 
because static observers cannot exist inside r = 2M; they are inexorably drawn 
into the central singularity, as we shall see later. 

A static observer makes measurements with lus or her local orthonormal tetrad 
(Section 5.1). Using carets to denote quantities in the local orthonormal frame, we 
have from Eq. (12.3.1) 

+ = ( *  - y * z , ,  

- 1 ,  
e; = -eo, 

r 

This is clearly an orthonormal frame, since’ 

12.4 Test Particle Motion 

(12.3.4) 

I ’”) gff = - 1, etc. (12.3.5) 
r 

To explore the Schwarzschild geometry further, let us consider the motion of 
freely moving test particles. Recall from Eq. (5.2.21) that such particles move 

’The reader may wish to review the last part of Section 5.2, which discusses the relationshp 
hetween an orthonormal frame and a general coordinate system. 
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along geodesics of spacetime, the geodesic equations being derivable from the 
Lagrangian 

2 L = -  ( 1 - - t 2 +  ':)' ( I - -  2:)-'p + r2e2 + r2sin28$*, (12.4.1) 

where i = dt/dX = p' is the t-component of 4-momentum, and so on. Here we 
have chosen the parameter X to satisfy A = r / m  for a particle of mass m. 

The Euler-Lagrange equations are 

For 8, +, and I these are, respectively, 

d 
x ( r 2 b )  = r2sin8cosO$2, 

d 
- ( r2sin28$)  dX = 0, 

"[(I dX 
- yi] = 0. 

(12.4.2) 

(12.4.3) 

(12.4.4) 

(12.4.5) 

Instead of using the r-equation directly, it is simpler to use the fact that 

gupPUPP = - m 2 .  (12.4.6) 

In other words, in Eq. (12.4.1) L has the value -m2/2. 
Now Eq. (12.4.3) shows that if we orient the coordinate system so that initially 

the particle is moving in the equatorial plane (i.e., 8 = m/2, b = 0), then the 
particle remains in the equatorial plane. This result follows from the uniqueness 
theorem for solutions of such differential equations, since 8 = m/2 for all X 
satisfies the equation. Physically, the result is obvious from spherical symmetry. 

With 8 = m/2, Eqs. (12.4.4) and (12.4.5) become 

p+ = r2$ = constant = I, (12.4.7) 

- p =  1 -  4 E)i = constant = E. 
r (12.4.8) 

These are simply the constants of the motion corresponding to the ignorable 
coordinates + and t in Eq. (12.4.1) (cf. Section 5.2). To understand their physical 
significance, consider a measurement of the particle's energy made by a static 
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observer in the equatorial plane. Ths  locally measured energy is the time 
component of the 4-momentum as measured in the observer’s local orthonormal 
frame-that is, the projection of the 4-momentum along the time basis vector: 

that is, 

(12.4.9) 

For r + co, Elma, + E ,  so the conserved quantity E is called the “energy-at-infin- 
ity.” I t  is related to Eloca, by a redshift factor. 

Exercise 
is constant along the photon’s path to show that 

12.2 For an alternative derivation of the redshift formula, use the fact that E 

(12.4.10) 

for a static emitter at r = re, and a receiver at r + co. Explain why the event horizon for a 
Schwarzschild black hole is sometimes called the “surface of infinite redshift.” 

The physical .interpretation of I follows from considering the locally mea- 
sured value of t9, the tangential velocity component: 

- + p~ 6-G; p*G+/r  p+/r *+ = L = 9 = - - -- 
pi pi Elmal Elocal E l < W c a ,  ’ 

and so 

I = Elocdrv+. (12.4.1 1) 

Comparing with the Newtonian expression m d r ,  we see that 1 is the conserved 
angular momentum of the particle. 

We now consider separately the cases m * 0 and m = 0. For particles of 
nonzero rest mass, i t  is convenient to renormalize E and I to quantities expressed 
per unit mass. Define 

- E  - I  
E = -  , I = -  

m m 
(12.4.12) 
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Then, recalling that X = r / m ,  we find from Eqs. (12.4.6)-(12.4.8): 

B - dt 
d r  1 - 2 M / r '  
_ -  

(12.4.13) 

(12.4.14) 

(12.4.15) 

Equation (12.4.13) can be solved for r = r ( r )  (in general, an elliptic integral); 
then Eq. (12.4.14) gives + ( r )  and Eq. (12.4.15) gives f (7) .  

It is interesting to consider orbits just outside the event horizon. The locally 
measured value of u', the radial velocity component, is given by 

from Eqs. (12.3.4) and (12.4.9). Recallingp' = m dr /dr  and Eq. (12.4.13), we get 

. dr 
(12.4.17) 

So as r --+ 2 M, u' -+ 1 and the particle is observed by a local static observer at r 
to approach the event horizon along a radial geodesic at the speed of light, 
independent of r. 
Exercise 
the particle satisfies 

12.3 Show that the same observer at r finds that the tangential velocity of 

(12.4.18) 

so that v9 --. 0 as r -B 2M. 

Exercise 12.4 

radially freely-falling particle released from rest at infinity is given by 
(a) Show from Eq. (12.4.17) that a local observer at r finds that the velocity of a 

(12.4.19) 

which has precisely the same form as the Newtonian velocity! 
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= 1 m .  (b) Obtain the same result from Eq. (12.4.9). noting that 

Exercise 12.5 A particle moves along a geodesic from r a n d  + to r + dr and + t d+ in 
time dt. A local static observer at ( r .  4)  measures the proper length of the particle’s path 
to have increased by & ( I ,  8 ,  + = const) = g;!’ dr( = dt) and h ( t ,  r ,  0 = const) = 

gLf d+(  = d 4 )  in the r and 4 directions, respectively, during this time; the proper time for 
this motion as measured on the observer’s clock lasts [ -h2( r ,  8 ,  + = c ~ n s t ) ] ’ / ~  = 

( -g,)1’2 dt( = di). [Note that di for the observer is not equal to d r  appearing, e g ,  in Eqs. 
( 12.4.I3)-( 12.4.15) for the particle!] Use the expressions for these measurements together 
with Eqs. (12.4.13)-(12.4.15) to rederive Eqs. (12.4.17) and (12.4.18). 

t 
~ = In 
2 M  

The simplest geodesics are those for radial infall, I$ = constant. This occurs if 
7 = 0, and Eq. (12.4.13) becomes 

( R / 2 M  - + tan(4/2) R 

( R / 2 M  - - tan(4/2) 

( 12.4.20) 

By considering the limit r + co of Eq. (12.4.20), we see that there are three cases: 
(i) < I ,  particle falls from rest at r = R ,  say; (ii) E = 1, particle falls from rest 
a t  infinity; (i i i)  E > I ,  particle falls with finite inward velocity from infinity, 
0 = urn. 

Exercise 12.6 
(a) Integrate Eq. (12.4.20) for the case E < I ,  so that 1 - t2 = 2M/R.  to get ( T  = 0 

at r = R ) :  

(b) Introduce the “cycloid parameter” q by 

r = - ( I  R t c o s q ) ,  (12.4.22) 2 

and show that 

I /> 

( q  t s inq) .  

(c) Integrate Q. (12.4.15) for t in terms of q to get ( t  = 0 at r = R ) :  

(12.4.23) 

(12.4.24) 
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Note the following important results for radial infall: from Eq. (12.4.21), the 
proper time to fall from rest at r = R > 2 M  to r = 2M is finite. In fact, the 
proper time to fall to r = 0 is T ( R ~ / ~ M ) ’ / ~ ,  also finite. However, from Eqs. 
(12.4.23) and (12.4.24), the coordinate time (proper time for an observer at 
infinity) to fall to r = 2 M  is infinite [at r = 2M, tan(q/2) = (R/2M - 1)’12]. 
These results are displayed in Figure 12.1. 

Exercise 12.7 
(a) Find T (  r )  and r (  r )  for radial infall when 
(b) Find ~ ( r ) ,  r ( q ) ,  ~ ( q ) ,  and t ( q )  when E > I .  You can get these from Eqs. 

( I  2.4.21)-( 12.4.24) by defining R such that 2 M/R = E2 - 1 and changing the sign of R in 
these equations. Show that 2 M/R = &( 1 - 0:). 

= 1. 

Answer: See Lightman et al. (1975), p. 407. 

Turn now to nonradial motion. The elliptic integrals resulting from Eqs. 
(12.4.13)-( 12.4.15) are not particularly informative, but we can get a general 
picture of the orbits by considering an “effective potential,” 

V ( r ) =  1 - -  ] + -  . ( (:) 

4 

( 12.4.25) 

\t, Schwarzchild coordinate time 

25 30 
TimelM 

Figure 12.1 F a l l  from rest toward a Schwmschild black hole as described ( a )  by a comoving 
observer (proper time T )  and ( h )  by a distant observer (Schwarzschild coordinate time I ) ,  In the one 
description, the point r = 0 is attained, and quickly [see Eq. (12.4.23)]. In the other description, r = 0 
is never reached and even r = 2 M is attained only asymptotically [Eq. (12.4.24)]. [From Gruoitatim by 
Charles W. Misner, Kip S .  Thorne, and John Archbald Wheeler, W. H. Freeman and Company. 
Copyright 0 1?73.] ,I 
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Equation ( 12.4.13) then becomes 

(12.4.26) 

For a fixed value of i, V is depicted schematically in Figure 12.2. Shown on the 
diagram are three horizontal lines corresponding to different values of E2. From 
Eq. (12.4.26) we see that the distance from the horizontal line to I/ gives 
( d r / d ? ) * .  Consider orbit 1, the horizontal line labeled 1 corresponding to a 
particle coming in from infinity with energy E2. When the particle reaches the 
value of r corresponding to point A ,  dr/d? passes through zero and changes 
sign-the particle returns to infinity. Such an orbit is unbound, and A is called a 
turning point. Orbit 2 is a capfure orbit; the particle plunges into the black hole. 
Orbit 3 is a bound orbit, with two turning points A ,  and A,. The point B 
corresponds to a stable circular orbit. If the particle is slightly perturbed away 
from B,  the orbit remains close to B. The point C is an unstable circular orbit; a 
particle placed in such an orbit will, upon experiencing the slightest inward radial 
perturbation, fall toward the black hole and be captured. If  it is perturbed 
outward, i t  flies off to infinity. Orbits like 1 and 3 exist in the Newtonian case for 
motion in a central gravitational field; capture orbits are unique to general 
relativity. 

0 ll 
I /  

Y I I 1 I I ,  
2 10 

r/M 

T E - 2  

Figure 12.2 Sketch of the effective potential profile for a particle with nonzeru rest mass orbiting-a 
Schwatzschild black hole of mass M. The three horizontal lines labeled by different values of E2 
correspond to an ( I )  unbound. (2) capture. and (3) bound orbit, respectively. See text for details. 
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Exercise 
for particle motion in a central gravitational field when 2 M/r -=K I .  

12.8 Show that Eq. (12.4.26) reduces to the familiar Newtonian expression 

Exercise 12.9 
(a) Show that aV/ar  = 0 when 

M r 2  - i2r  + 3 ~ 7 ~  = 0, (12.4.27) 

and hence that there are no maxima or minima of V for 7 < 2 6 M .  

(b) Show that V,, = I for i = 4M. 

The variation of V with f is shown in Figure 12.3. 
Circular orbits occur when dV/ar = 0 and dr/d.r = 0. Equations (12.4.26) and 

(12.4.27) give 

(12.4.28) 

( 12.4.29) 

Thus circular orbits exist down to r = 3M, the limiting case corresponding to a 
photon orbit (6 = E/m + m). The circular orbits are stable if V is concave up; 
that is, a2V/ar2  > 0 and unstable if a2V/ar2  < 0 (Why?). 

Exercise 
if r < 6M. 

12.10 Show the circular Schwmschild orbits are stable if r > 6M, unstable 

Exercise 12.11 

captured by a star of mass M and radius R if 
(a) Show that in Newtonian theory, a distant nonrelativistic test particle can only be 

(b) Taking into account general relativity, can particles with much larger values of 
angular momentum be captured by neutron stars? by white dwarfs? 

The binding energy per unit mass of a particle in the last stable circular orbit 
at r = 6M is, from Eq. (12.4.29), 

m - E  1 / 2  

kbhding = 7 = 1 - (:) = 5.72%. (12.4.30) 



- 
I/M = 

r/M 

Figure 12.3 The effective potential profile for nonzero rest-mass particles of various angular momenta 
I orbiting a Schwmschld black hole of-mass M. The dots at local minima locate radii of stable 
circular orbits. Such orbits exist only for I > 2 6 M .  [From Gruoirurion by Charles W. Misner, Kip S. 
Thorne, and John Archibald Wheeler, W. H. Freeman and Company. Copyright 0 1973.1 
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This is the fraction of rest-mass energy released when, say, a particle originally at 
rest at infinity spirals slowly toward a black hole to the innermost stable circular 
orbit, and then plunges into the black hole. Thus, the conversion of rest mass to 
other forms of energy is potentially much more efficient for accretion onto a 
black hole than for nuclear burning, which releases a maximum of only 0.9% of 
the rest mass (H + Fe). This high efficiency will be important in our discussion 
of accretion disks around black holes (Section 14.5). It is the basis for involung 
black holes as the energy source in numerous models seeking to explain astro- 
nomical observations of huge energy output from compact regions (e.g., Cygnus 
X- 1 ; quasars; double radio galaxies, etc.). 

Exercise 12.12 
(a) Use Eq. (12.4.18) to show that the velocity of a particle in the innermost stable cir- 

cular orbit as measured by a local static observer is vd = f ( c  = I). 

(b) Suppose the particle in part (a) is emitting monochromatic light at frequency v,, 
in its rest frame. Show that the frequency received at infinity varies periodically between 

Hint: Write v,/v,, = ( vm/vstal)( V ~ , ~ ~ / V , , ) ,  where v,,,, is the frequency measured by 
the local static observer and is related to v,, by the special relativistic Doppler formula. 

(c) Compute the orbital period for the particle as measured by the local static 
observer and by the observer at infinity. 

Hint: Since d4 = r d+,  the proper circumference of the orbit is simply 2sr .  

Answer: T,,,, = 24sM, T, = q,at/(2/3)’’2 = 4.5 X 10 - 4  s (M/M,) 

Exercise 12.13 
(a) Show that the angular velocity as measured from infinity, Q = d+/dt, has the 

same form in the Schwarzschild geometry as for circular orbits in Newtonian 
gravity- namely, 

(12.4.31) 

(b) Use this result to confirm the value of T, found in Exercise 12.12. 

In our later discussion of accretion onto black holes, we will need to know the 
capture cross section for particles falling in from infinity. This is simply 

( 12.4.32) 

where b,, is the maximum impact parameter of a particle that is captured. To 
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express b in terms of E and 1, consider the definition of the impact parameter (cf. 
Fig. 12.4) 

b = lim rs in+.  
r -  00 

Now for r .--) co, Eqs. (12.4.13) and (12.4.14) give 

Substituting r 2: b/+, we identify 

(12.4.33) 

( 12.4.34) 

( 12.4.35) 

or in terms of the velocity at infinity, E = (1  - u i )  ~ 

- 1 / 2  I =  bom(i - u;) 

-+ born for urn << 1 .  (12.4.36) 

Consider now a nonrelativistic particle moving towards the black hole ( k  = 1, 
urn << 1) .  From Exercise 12.9, we know that it is captured if 1 < 4M. Thus 

4M 

0, 
b,, = -, 

which gives a capture cross section 

(12.4.37) 

(12.4.38) 

Particle 

Figure 12.4 Impact parameter b for a particle with trajectory r = r ( + )  about mass M .  
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This value should be compared with the geometrical capture cross section of a 
particle by a sphere of radius R in Newtonian theory: 

(12.4.39) 

A black hole thus captures nonrelativistic particles like a Newtonian sphere of 
radius R = 8M. 

12.5 Massless Particle Orbits in the Schwanschild Geometry 

For rn = 0 (e.g., a photon), € 2 2 ~ .  (12.4.6)-( 12.4.8) become 

E - dt 
dh  I - 2 M / r ’  
_ -  (12.5.1) 

(12.5.2) 

(12.5.3) 

Now by the Equivalence Principle, we know that the particle’s worldline should 
be independent of its energy. We can see this by introducing a new parameter 

Anew = IX. (12.5.4) 

Writing 

1 b =  - 
E 

and dropping the subscript “new,” we find 

1 - dt 
dX b(l  - 2M/r) ’ 
_ -  

(12.5.5) 

(12.5.6) 

(12.5.7) 

(12.5.8) 
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The worldline depends only on the parameter b, which is the particle’s impact 
parameter, and not on I or E separately. Taking the limit m + 0 of EQ. (12.4.35), 
we see that b of Eq. (12.5.5) is the same quantity defined in the previous section 
for massive particles. 

We can understand photon orbits by means of an effective potential 

so that Eq. (12.5.8) becomes 

(12.5.9) 

( 12.5.10) 

Clearly the distance from a horizontal line of height l / b 2  to Vpho, gives ( d r / d h ) 2 .  
The quantity Vphot has a maximum of 1/(27M2) at r = 3M; it is displayed in 
Figure 12.5. We see that the critical impact parameter separating capture from 
scattering orbits is given by I / b 2  = l/(27M2), or 

b, = 3 0 M .  (12.5.11) 

The capture cross section for photons from infinity is thus 

ophot = nb: = 27nM2. (12.5.12) 

Figure 12.5 Sketch of the effective potential profile for a particle with zero rest mass orbiting a 
Schwanschild black hole of mass M. If the particle falls from r = m with impact parameter 
b > 3 6 M  i t  is scattered back out to r = 00. If, however, 6 < 3 f i M  the particle is captured by the 
black hole. 
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To calculate the observed emission from gas near a black hole we must know 
those propagation directions, as measured by a static observer, for which a 
photon emitted at radius r can escape to infinity. Referring to Figure 12.5, we see 
that a photon at r 3 3M escapes only if (i) v' > 0, or (ii) v' < 0 and b > 3 4 3 M .  
In terms of the angle + between the propagation direction and the radial direction 
(see Figure 12.6), we have since IvJ = 1, 

v+ = sin +, vi  = cos +. ( 12.5.13) 

But Eqs. (12.4.12) and (12.4.18) give, with b = l / E ,  

( 12.5.14) 

(b )  

Figure 12.6 ( a )  The angle 4 between the propagation direction of a photon and the radial direction 
at a given point P. ( b )  Gravitational capture of radiation by a Scbwmschild black hole, Rays emitted 
from each point into the interior of the shuded conical cavity are captured. The indicated capture 
cavities are those measured in the orthonormal frame of a local static observer. 
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Thus an inward-moving photon escapes the black hole if 

3J3 M ( 2 3 1 2  
sin I) > - 

r 
(12.5.15) 

At r = 6M, escape requires I) < 135"; at r = 3M, I) < 90" so that all inward- 
moving photons are captured (i.e., 50% of the radiation from a stationary, 
isotropic emitter at r = 3M is captured). 

Exercise 12.14 Show that an outward-directed photon emitted between r = 2 M and 
r = 3 M  escapes i f  

Only the outward-directed radial photons escape as the source approaches 
r = 2M. See Figure 12.6 for a diagram of these effects. 

12.6 Nonsingularity of the Schwanschild Radius 

The metric (12.3.1) appears singular at r = 2 M ;  the coefficient of dt goes to zero, 
while the coefficient of dr2 becomes infinite. However, we cannot immediately 
conclude that t h s  behavior represents a true physical singularity. Indeed, the 
coefficient of d+2 becomes zero at 8 = 0, but we know this is simply because the 
polar coordinate system itself is singular there. The coordinate singularity at 
fl = 0 can be removed by choosing another coordinate system ( e g ,  stereographc 
coordinates on the 2-sphere). 

We already have a clue that the Schwarzschild radius r = 2 M  is only a 
coordinate singularity. Recall that a radially infalling particle does not notice 
anything strange about r = 2 M ;  there is nothng special about r( 7 )  at t h s  point. 
However, the coordinate time z becomes infinite as r --f 2M. This strongly 
suggests the presence of a coordinate singularity rather than a physical singular- 
ity. 

There are many different coordinate transformations that can be used to show 
explicitly that r = 2M is not a physical singularity. We shall exhibit one-the 
Kruska16 Coordinate system. I t  is defined by the transformation 

(12.6.1) 

(12.6.2) 

'Kruskal (1960): Szckeres (1960) 
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The inverse transformation is 

t U tanh- = - 
4M u ‘  

(12.6.3) 

(12.6.4) 

The metric (12.3.1) takes the form 

ds2 = x e - ‘ / ” ( - d u 2  r + d u 2 )  + r 2 d e 2  + r2sin28dG2, (12.6.5) 

where r is defined implicitly in terms of u and u by Eq. (12.6.3). Clearly the metric 
(12.6.5) is nonsingular at r = 2M. However, r = 0 is still a singularity. One can 
show that it is a real physical singularity of the metric, with infinite gravitational 
field strengths there. 

2 1/2 Note that r = 0 is, from Eq. (12.6.3), at u2 - u2 = 1, or u = i-(1 + u ) . 
There are two singularities! Note also that r >/ 2M is the region u2 >, 02-that is, 
u 2 IuJ or u G - 1 ~ 1 .  Two regions correspond to r >/ 2M! 

The original Schwarzschild coordinate system covers only part of the spacetime 
manifold. Kruskal coordinates give an analytic continuation of the same solution 
of the field equations to cover the whole spacetime manifold. This situation is 
depicted in the Kruskal diagram, Figure 12.7. Kruskal coordinates have the nice 
property that radial light rays travel on 45” straight lines [see Eq. (12.6.5) with 
ds2 = 0). A Kruskal diagram is a spacetime diagram, with the time coordinate u 
plotted vertically and the spatial coordinate u plotted horizontally. I t  can be read 
like a special relativistic spacetime diagram, because the light cones are at 45” at 
every point, and particle worldlines must lie inside the light cones. 

Region I is “our universe,” the original region r > 2M. Region I1 is the 
“interior of the black hole,” the region r < 2 M. Regions I11 and IV are the “other 
universe”: region I11 is asymptotically flat, with r > 2 M, while region IV corre- 
sponds to r < 2M. 

If one checks the signs of u and u in the various quadrants, one finds that the 
relationship between Kruskal and Schwarzschild coordinates in the various re- 
gions is [cf. Eqs. (12.6.1) and (12.6.2)] 

u = +_ (r - I)l/2e’/4Mcosh--. t 
2M 4M 

(12.6.6) 

(12.6.7) u = f (r - l)”2er/4Msinh-, t ( r  >, 2M),  2M 4M 
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Worldline of infalling 

Figure 12.7 Kruskal diagram of the Schwarzschild metric. 

12.6 Nonsinylarity of the Schwarzschild Radius 

Worldline of infalling 

i r 2 0  , v = -  J1.;;2 

Figure 12.7 Kruskal diagram of the Schwarzschild metric. 
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and 

(12.6.8) 

(12.6.9) 
t 

0 = f 1 - - c ‘ ’ ~ ~ c o s ~ -  ( r  d 2M).  ( ;M)‘’’ 4M ’ 

Here the upper sign refers to “our universe,” the lower to the “other universe.” 
Equation (12.6.3) holds everywhere, while the right-hand side of Eq. (12.6.4) 
becomes u / u  for r < 2M. Equation (12.6.4) shows that lines of constant t are 
straight lines. These relationshps are shown in Figure 12.8. 

The singularity at the top of the Kruskal diagram at r = 0 occurs inside of the 
black hole. Clearly any timelike worldline at r Q 2M (i.e., in region 11) musr strike 
the singularity. The singularity at the bottom of the diagram represents a “white 
hole,” from whch anything can come spewing out. 

It is important to realize that the full analytically continued Schwarzschild 
metric is merely a mathematical solution of Einstein’s equations. For a black hole 
formed by gravitational collapse, part of spacetime must contain the collapsing 
matter. We know from Birkhofrs theorem (Section 5.6) that outside the collaps- 
ing star the geometry is still described by the Schwarzschild metric. Thus the 
worldline of a point on the surface of the star will be the boundary of the 
physically meaningful part of the Kruskal diagram (see Fig. 12.9). The ‘‘whte 
hole” and the “other universe” are not present in real black holes. 



t = -2.5M 

Figure 12.8 Kruskal diagram of the Schwarzschild metric showing the relation between Schwarzschild 
( 1 ,  r )  and Kruskal ( 0 ,  u) coordinates. 

Figure 12.9 Kruskal diagram for gravitational collapse. Only the unshaded portion to the right of the 
surface of the star is physically meaningful. The remainder of the diagram must be replaced by the 
spacetime geometry of the interior of the star. 

356 
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The Kruskal diagram makes clear the two key properties of black holes: once 
an object crosses r = 2M, it must strike the singularity at r = 0; and once inside 
r = 2 M ,  i t  cannot send signals back out to infinity. However, there is no local test 
for this horizon. An observer does not notice anything significantly different in 
crossing from r = 2M + E to r = 2M - E.  

12.7 Kerr Black Holes 

The most general stationary black hole metric, with parameters M ,  J, and Q, 
is called the Kerr-Newman rne t r i~ .~  Special cases are the Kerr metric (Q = 0), 
the Reissner-Nordstrom metric ( J  = 0), and the Schwarzschild metric ( J  = 0, 
Q = 0). 

It is usually true that a charged astrophysical object is rapidly neutralized by 
the surrounding plasma. We shall accordingly simplify our discussion by assum- 
ing that charged black holes are not likely to be important astrophysically. All 
astrophysical objects rotate however, and so we expect black holes formed by 
gravitational collapse to be rotating in general. Remarkably, when all the radia- 
tion of various kinds produced by the collapse has been radiated away, the 
gravitational field settles down asymptotically to the Kerr metric. 

This solution of Einstein’s equations, discovered by Kerr in 1963, was not at 
first recognized to be a black hole solution. Its properties are more transparent in 
Boyer- Lindquist ( 1967) coordinates, where 

4aMr sin28 2 
z A d t d $  + -dr2 

) sin2B d$’. (12.7.1) 
2 Mra ’ sin2B 

r 2 + a 2 +  

Here the black hole is rotating in the + direction, and 

J 
a = - 

M ’  
A = r 2  - 2Mr + a2,  Z = r 2  + a2cos28. (12.7.2) 

The metric is stationary (independent of t )  and axisymmetric about the polar axis 
(independent of $). Note that a, the angular momentum per unit mass, is 
measured in cm when expressed in units with c = G = 1. Setting a = 0 in Eq. 
(12.7.1) gives the Schwarzschild metric. 

Exercise 
J = 1.63 x lo4* g cmz s ~ I. What is a / M  for the sun? 

12.15 The angular momentum of the sun (assuming uniform rotation) is 

Answer: 0.185. 

’See, for example, Wsner, Thorne, and Wheeler ( I  973) 
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The horizon occurs where the metric function A vanishes. This occurs first at 
the larger root of the quadriitic equation A = 0, 

r + =  M + ( M 2 - a  2 ) I/2 . (12.7.3) 

Note that a must be less than M for a black hole to exist. If a exceeded M ,  one 
would have a gravitational field with a “naked” singularity (i.e., one not “clothed” 
by an event horizon). A major unsolved problem in general relativity is Penrose’s 
Cosmic Censorship Conjecture, that gravitational collapse from well-behaved 
initial conditions never gives rise to a naked singularity. Certainly no mechanism 
is known to take a Kerr black hole with a < M and spin it up so that a becomes 
greater than M (see Section 12.8). A black hole with a = M is called a maxi- 
mally rotating black hole. 

Static observers were useful for understanding the Schwarzschild metric. We 
can generalize to rotating black holes by introducing stationary observers, who are 
at fixed r and 8, but rotate with a constant angular velocity 

(1 2.7.4) 

The condition u’ *u’ = - 1 (i.e., that the observers follow a timelike worldline) is 

- 1 == (.I)’[ g,, + 2Qg,, + Q2g,*], (12.7.5) 

where Eq. (12.7.4) has been used to eliminate u*. The quantity in square brackets 
in Eq. (12.7.5) must therefore be negative. Since g,, in Eq. (12.7.1) is positive, this 
is true only if Q lies between the roots of the quadratic equation obtained by 
setting the bracketed expression equal to zero. Thus 

where 

(12.7.6) 

(12.7.7) 

Exercise 12.16 Discuss the restriction (12.7.6) in the weak-field limit. 

z-axis with u < c. 
Answer: -c/(rsinB) < D < c/(rsinB); stationary observers must rotate about the 
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a 

u 
Top view 

Side view 

Figure 12.10 Ergosphere of a Kerr black hole: the region between the static limit [the flattened outer 
surface r = M + ( M 2  - u ~ c o s ~ ~ ) ” ~ ]  and the event horizon [inner sphere r = M + ( M 2  - u ~ ) ” ~ ] .  

Note that Qfin = 0 when g,, = 0; that is, when r 2  - 2Mr + a2cos28 = 0. This 
occurs at 

ro = M + ( ~ 2  - a2cos2e)’/2. (12.7.8) 

Observers between r+ and ro must have 52 > 0; no static observers (52 = 0) exist 
within r + <  r < r,,. The surface r = ro is therefore called the static limit. It is also 
called the “boundary of the ergosphere,” for reasons that will become clearer 
later. 

Note that the horizon r+  and the static limit ro are distinct for a * 0. T h s  is 
depicted in Figure 12.10. From Eq. (12.7.7), we see that stationary observers fail 
to exist when g:+ - g,,g,, < 0-that is, when A < 0; this can occur only when 
r < r + .  This is the generalization of the fact that static observers do not exist 
inside the horizon for a Schwarzschild black hole. 

The Kerr metric can be analytically continued inside r = r +  in a manner 
similar to the Kruskal continuation of the Schwarzschild metric. However, this 
interior solution is not physically meaningful for two reasons. First, part of it 
must be replaced by the interior of the collapsing object that formed the black 
hole. More important, there is no Birkhoffs theorem for rotating collapse. The 
Kerr metric is not the exterior metric during the collapse; it is only the asymptotic 
form of the metric when all the dynamics has ceased. Its mathematical continua- 
tion inside r+ is essentially irrelevant. We shall therefore restrict our discussion to 
the region r 2 r + ,  adopting the viewpoint that anything entering inside that 
region becomes causally disconnected from the rest of the universe. 

A complete description of the geodesics of a Kerr black hole is quite com- 
plicated because of the absence of spherical symmetry. There is, however, a 
“ hdden” symmetry that can be exploited to solve for the geodesics analytically.* 

‘Carter (1968); see also Misner, Thome, and Wheeler ( I  973). 
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To get some insight into the effects of rotation on the geodesics, we shall restrict 
ourselves to considering test particle motion in the equatorial plane. This can be 
done in a straightforward way without invoking the hidden symmetry. 

Setting 0 = n/2 in Eq. (12.7.1), we obtain the Lagrangian 

(12.7.9) 

where i = dt /dX,  and so on. Corresponding to the ignorable coordinates t and +, 
we obtain two first integrals: 

onstant = - E ,  (12.7.10) p = - = c  
aL  

ai 
dL 

p+ = -T = constant = 1. 
a+ 

(12.7.1 1) 

Evaluating the derivatives from Eq. (12.7.9) and solving the two equations for i 
and 4, we obtain 

(12.7.12) 
. 
t =  

( r3  + a 2 r  + 2Ma2)E  - 2aMI 
rA 

. + =  - ( r  - 2 M ) I  + 2aME 
rA 

(1 2.7.13) 

We get a third integral of the motion as usual be setting gaapapS = - m2-that 
is, L = -m2/2. Substituting Eqs. (12.7.12) and (12.7.13), we obtain after some 
simplification 

r 3 (  -$)2 = R ( E ,  I ,  r ) ,  (12.7 

where 

R = E 2 ( r 3  + a 2 r  + 2Ma2)  - 4aMEI - ( r  - 2M)12 - m2rA. (12.7. 

4) 

5 )  

We can regard R as an effective potential for radial motion in the equatorial 
plane.' For example, circular orbits occur where dr/dX remains zero (perpetual 

'Some authors define the effective potential as that value of E which makes R = 0, as we did in the 
Schwarzschild case, Eq. (12.4.26). 



12.7 Ken Black Holes 361 

turning point). This requires 

aR 
dr 

R = 0 ,  - = O .  (12.7.16) 

After considerable algebra, Eqs. (12.7.16) can be solved for E and I to give 

r 2  - 2 ~ r  f am 

r ( r 2  - 3Mr f 2 a W r ) ‘ / *  ’ 
g =  ( 12.7.17) 

J M r ( r 2  T 2aJMr + a ’ )  

r(r2 - 3 ~ r  2 a v ‘ ~ ) ” ~ .  
i =  ( 12.7.18) 

Here the upper sign refers to corotating or direct orbits (i.e., orbital angular 
momentum of particle parallel to black hole spin angular momentum), the lower 
sign to counterrotafing orbits. These formulas generalize Eqs. ( 12.4.28)-( 12.4.29) 
for the Schwarzschld metric. 

Exercise 12.17 Show that Kepler’s Third Law takes the form 

(12.7.19) 

for circular equatorial orbits in the Kerr metric. Here s1 = d+/d t  = +/;. 

Circular orbits exist from r = 00 all the way down to the limiting circular 
photon orbit, when the denominator of Eq. (12.7.17) vanishes. Solving the 
resulting cubic equation in r ’ / ’ ,  we find for the photon orbit” 

rph = 2M(1 + cos[~cos- ’ (  T a / M ) ] ) .  ( 12.7.20) 

For a = 0, rph = 3M, whle for a = M ,  rph = M (direct) or 4M(retrograde). 
For r > rph, not all circular orbits are bound. An unbound circular orbit has 

E / m  > 1. Given an infinitesimal outward perturbation, a particle in such an 
orbit will escape to infinity on an asymptotically hyperbolic trajectory. Bound 
circular orbits exist for r > rmb, where rmb is the radius of the marginally bound 
circular orbit with E / m  = 1: 

rmb = 2 M  T a + 2M1/2(  M f a)”’ .  (12.7.21) 

Note also that rmb is the minimum periastron of all parabolic ( E / m  = 1) orbits. 

“Bardeen et al. (1972). 
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In astrophysical problems, particle infall from infinity is very nearby parabolic, 
since urn << c. Any parabolic trajectory which penetrates to r < rmb must plunge 
directly into the black hole. For a = 0, rmb = 4M; for a = M ,  rmb = M(direct) or 
5.8 3M( retrograde). 

Even the bound circular orbits are not all stable. Stability requires that 

- < 0.  d2R 
ar 

From Eq. (1  2.7.1 5) ,  we get 

2 M  
1 - ( q 2 2  7 ; .  

( 12.7.22) 

( 12.7.23) 

Substituting Eq. (12.7.17), we get a quartic equation in r112 for the limiting case of 
equality. The solution for r,,,, the radius of the marginally stable circular orbit, is 
given by Bardeen et al. (1972): 

z l = l +  ( I - - ,  ; ) i I 3 [ (  1 + -  3 ’ 3  + ( 1 - -  y 3 ]  , 

( 12.7.24) 

For a = 0, r,, = 6M; for a = M, rms = M(direct) or 9M(retrograde). A quantity 
of great interest for the potential efficiency of a black hole accretion disk as an 
energy source is the binding energy of the marginally stable circular orbit. If we 
eliminate r from Eq. (12.7.17) using Eq. (12.7.23), we find 

4Jz(  1 - iy2 - 2E 
f 

U - =  
M 3 0 ( 1  - E 2 )  

(12.7.25) 

The quantity decreases from J8/9 ( a  = 0) to J1/3 ( a  = M )  for direct 
orbits, while it increases from J8/9 to J25/21 for retrograde orbits. The maxi- 
mum binding energy 1 - for a maximally rotating black hole is 1 - 1/  6, or 
42.3% of the rest-mass energy! This is the amount of energy that is released by 
matter spiralling in toward the black hole through a succession of almost circular 
equatorial orbits. Negligible energy is released during the final plunge from rms 
into the black hole. 

Note that the Boyer-Lindquist coordinate system collapses rms, rmb, rph, and r +  
into r = M as a + M. This is simply an artifact of the coordinates as discussed 



12.7 Kern Black Holes 363 

by Bardeen et al. (1972): the radii actually correspond to distinct spacetime 
regions. 

An exceedingly interesting property of rotating black holes is that there exist 
negative energy test particle trajectories. If we solve Eq. (12.7.14) for E, we find 

2aMI + ( I2r2A + m2rA + r3 i2 )”2  

r 3  + a 2 r  + 2Ma2 
E =  ( 12.7.26) 

(The sign of the square root is determined by letting r -+ co.) To have E < 0, we 
require a retrograde orbit ( I  < 0), with 

12r2A + m2rA + r 3 p  < 4a2M212 .  ( 12.7.27) 

The boundary of the region of negative energy orbits is found by making the 
left-hand side of inequality (12.7.27) as small as possible. Thus let m + 0 (highly 
relativistic particle) and L -+ 0. We then find that the boundary is at  r = 2M = 

ro ( 8  = 7r/2). One can in fact show that the static limit ro is the boundary of the 
region containing negative energy orbits for all values of 8. A particle can only be 
injected into such an orbit inside the static limit; i t  then plunges into the black 
hole. 

Penrose (1969) exploited this property of Kerr black holes in a remarkable 
thought experiment to demonstrate that rotating black holes are potentially vast 
storehouses of energy. Imagne sending a particle in from infinity with an energy 
E,n. The trajectory is carefully chosen so that i t  penetrates inside the static limit. 
The particle is then “instructed” (or preprogrammed) to split into two. One piece 
goes into a negative energy trajectory and down the black hole, with energy 
Edown < 0. The other comes back out to infinity with energy E,,,. Energy 
conservation gives 

(12.7.28) 

Even though some rest-mass has been lost down the hole, there is a net gain of 
energy at infinity. This energy is extracted from the rotational energy of the hole, 
which slows down slightly when the retrograde negative energy particle is cap- 
tured. 

The region r + <  r < ro, where energy extraction is possible, is called the 
ergosphere, from the Greek word for work. 

Unfortunately, the original Penrose process is not likely to be important 
astrophysically. Bardeen et al. (1972) have shown that the breakup of the two 
particles inside the ergosphere must happen with a relative velocity of at least t c ;  
i t  is hard to imagine astrophysical processes that produce such large relative 
velocities. 



364 Black Holes 

Energy amplification also occurs when waves (electromagnetic or gravitational) 
of suitable frequency are scattered by a rotating black hole. Part of the wave is 
absorbed, but the part that scatters can, under the right conditions, have more 
energy than the incident wave. Whether such “superradiant scattering” is im- 
portant astrophysically or not is an open question. Superradiant scattering has 
been invoked to design a “black hole bomb,” and for advanced civilizations to 
solve their energy crisis.” Incidentally, it has been shown that rotating black holes 
are dynamically stable objects, in the sense that they cannot spontaneously 
explode in a burst of energy.I2 

Exercise 12.18 Consider a particle with i = 0 released from rest far from a Kerr black 
hole. Show that the particle “corotates with the geometry” as it spirals toward the hole 
along a conical surface of constant 8.  In other words, show that the particle acquires an 
angular velocity d+/di = w ( r ,  8 )  as viewed from infinity, where 

2aMr 

( r ’  + a’)’ - Aa’sin’8. 

Note: Observers at fixed r and 8 with zero angular momentum also “corotate with the 
geometry” with angular velocity o ( r ,  8 ) .  Such observers define the so-called “locally 
nonrotating frame” (LNRF) (see Bardeen et al., 1972); according to such observers, the 
released particle described above appears to move radially locally. 

w ( r ,  0 )  = 

The procedure for deternlining the emission angles leading to photon capture 
and escape from a radiating source near a Kerr hole has been outlined by 
Bardeen (1 973). Capture must be accounted for whenever one wishes to determine 
the actual radiation observed at infinity that originates frotp a local source near 
the hole. For a rotating hole, photons emitted with u+ > 0 in the LNRF 
preferentially escape to infinity. In general applications, the calculation of the 
escape angles must be performed n~merically.’~ 

12.8 The Area Theorem and Black Hole Evaporation 

Hawking’* proved a remarkable theorem about black holes: in any interaction, 
the surface area of a black hole can never decrease. If several black holes are 
present, it is the sum of the surface areas that can never decrease. 

We can compute the surface area of a Kerr black hole quite easily from the 
metric (12.7.1). Setting t = constant, r = r +  = constant, and using Eq. (12.7.3), we 

’ ‘ Press and Teukolsky ( 1972). 
I2Press and Teukolsky (1973), Teukolsky and Press (1974); but see Section 12.8. 
%ee Cunningham and Bardeen (1972) and Shapiro (1974). 
I4See Hawking and Ellis (1973). 
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find for the metric on the surface 

The area of the horizon is 

= 877M [ M + ( M 2  - u ~ ) ” ~ ] ,  (12.8.2) 

where g is the determinant of the metric coefficients appearing in Eq. (12.8.1). 
Note that for a = 0, A = 4 ~ ( 2 M ) ’ ,  as we would expect. 

Exercise 12.19 Use Hawking’s area theorem to find the minimum mass M ,  of a 
Schwarzschild black hole that results from the collision of two Kerr black holes of equal 
mass M and opposite angular momentum parameter a. Show that if la1 -+ M ,  50% of the 
rest mass is allowed to be radiated away. Show that no other combinations of masses and 
angular momenta lead to higher possible efficiencies. Show that if u = 0, the maximum 
efficiency is 29%. 

Note: The actuul amount of radiation generated by such a collision is amenable to 
numerical computation. The result is not yet known for the general case, but for a = 0 it is 
- 0.1% (Smarr, 1979a). See also Chapter 16. 

We can use the area theorem to show that one cannot make a naked singularity 
by adding particles to a maximally rotating black hole in an effort to spin it up. 
From Eq. (12.8.2), we find that 6A > 0 implies 

[2M(M2 - a 2 ) ’ l 2  + 2 M 2  - u 2 ]  SM > M a 6 a .  (12.8.3) 

As a .+ M, this becomes 

M S M  > a6a.  (12.8.4) 

Thus M 2  always remains greater than a2 ,  and the horizon is not destroyed [cf. Eq. 
(12.7.3)]. The capture cross section for particles that increase a / M  goes to zero as 
a -, M .  

The law of increase of area looks very much llke the second law of thermody- 
namics for the increase of entropy. Bekenstein (1973) tried to develop a thermo- 
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dynamics of black hole interactions. However, in classical general relativity there 
is no equilibrium state involving black holes. If a black hole is placed in a 
radiation bath, it continually absorbs radiation without ever coming to equi- 
librium. 

This situation was changed by Hawking’s remarkable discovery l 5  that when 
quantum effects are taken into account, black holes radiate with a thermal 
spectrum. The expectation number of particles of a given species emitted in a 
mode with frequency w is 

r 
( . W )  = 

exp( h w / k T )  T 1 ’ 
(12.8.5) 

where r is the absorption coefficient for that mode incident on the hole. The 
absorption coefficient r is a slowly varying function of w depending on the lund 
of particle emitted and is close to unity for wavelengths much less than M; we 
shall simply take it to be unity. The temperature of the black hole is inversely 
proportional to its mass: 

T = . -  8nkM h 
- - 10-7.(%). (12.8.6) 

Note that the “Planck mass” and “Planck radius” are 

h 1 I 2  = 2.2 x l o p 5  g = 1.6 X cm (12.8.7) 

in units with c = G = 1. 

Exercise 12.20 Verify the numerical relations in Eqs. (12.8.6) and (12.8.7). 

We are giving Hawking’s formulas for the case of a Schwarzschdd black hole. 
They can be easily generalized to include charge and rotation. Dimensionally, T is 
obtained by setting a thermal wavelength16 hc/kT equal to the Schwarzschild 
radius. Because of the thermal nature of the spectrum, mainly massless particles 
are produced (photons, neutrinos, and gravitons). To create a significant amount 
of particles of mass rn, one requires kT - mc2; that is, the Schwarzschld radius 
must be of order the Compton wavelength A, - h/mc of the particle. 

We can now compute the entropy of a black hole: since the area is (restoring 
the c’s and G’s) 

A = 4 7 1 ( 7 - ) ,  2GM 
(12.8.8) 

”Hawking (1974). (1975). 
‘‘A thermal wavelength is roughly the average separation between photons in equilibrium at 

temperature T.  
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we have 

dA = TdS 
cb 1 

d (  MC2) = - - 
~2 321rM 

provided we identify the entropy S with 

kc3 1 
GA 4 

s = - - A  

(12.8.9) 

(12.8.10) 

The ratio of a macroscopic quantity ( A )  to a microscopic quantity ( A )  ensures 
that black holes have large entropy. This is in accord with the “no hair” ideas 
about many different internal states of a black hole corresponding to the same 
external gravitational field, and that information is lost from the outside world 
once black holes form.I7 

Note that during black hole “evaporation” (emission of thermal quanta), M 
decreases by energy conservation and thus so does A (and S) .  This violates 
Hawking’s area theorem. However, one of the postulates of the area theorem is 
that matter obeys the “strong” energy condition, which requires that a local 
observer always measures positive energy densities and that there are no spacelike 
energy fluxes. Black hole evaporation can be understood as pair creation in the 
gravitational field of the black hole, one member of the pair going down the black 
hole and the other coming out to infinity. In pair creation the pair of particles 
materializes with a spacelike separation-effectively there is a spacelike energy 
flux. 

The area theorem of classical general relativity gets replaced by a generalized 
second law of thermodynamics: in any interactions, the sum of the entropies of all 
black holes plus the entropy of matter outside black holes never decreases. Thus 
black holes do not simply have laws analogous to those of thermodynamics; they 
actually fit very naturally into an extended framework of thermodynamics. 

We can get a qualitative understanding of the Hawking process by first 
considering the case of pair production in a strong electric field E (cf. Fig. 12.1 1). 
In quantum mechanics, the vacuum is continuously undergoing fluctuations, 
where a pair of “ virtual” particles is created and then annihilated. The electric 
field tends to separate the charges. If the field is strong enough, the particles 
tunnel through the quantum barrier and materialize as real particles. The critical 
field strength is achieved when the work done in separating them by a Compton 
wavelength equals the energy necessary to create the particles: 

eEh,. - 2mc2 .  (12.8.1 1 )  

”Compare Bekenstein (1975). 
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Figure 12.11 Pair production in a strong electric -+- field. 

In the black hole case, the tidal gravitational force across a distance A ,  is of 
order 

GmM 
r 3  

A , .  (12.8.12) 

The work done is the product of tlus with A,. Setting r - G M / c 2 ,  since the 
maximum field strength is near the horizon, and equating the work to 2mc2 gives 

GM 

c2  
A,- -. (12.8.13) 

Thus particles are created when their Compton wavelength is of order the 
Schwarzschild radius, as we mentioned earlier. [The argument has to be modified 
for massless particles, which have no barrier to penetrate. Their production rate is 
controlled by the phase space available. If we equate the mean separation of 
blackbody photons, hc/kT, to the only length scale associated with the black 
hole, G M / c 2 ,  we get a dimensional estimate of the black hole temperature, Eq. 
(12.8.6).] 

The rate of energy loss from an evaporating black hole is gwen by the 
blackbody formula 

dE 
- dt - area X T4 - M 2  X M - 4  - M - 2 .  (12.8.14) 

The associated timescale is 

7‘- - M 3  
dE/dt (12.8.15) 
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To get the dimensions correct (with c = G = 1). we must restore a factor of 8:  

( %)’. 

M 3  
A 

T - - - 10”yr - (12.8.16) 

For solar mass black holes, Hawking evaporation is completely unimportant, as is 
clear from Eqs. (12.8.6) and (12.8.16). Only when M 6 10’’ g is the timescale 
shorter than the age of the Universe. Presumably such “mini” black holes could 
only have been formed from density fluctuations during the Big Bang. Their 
Schwarzschild radius is about a fermi. If a spectrum of mini black holes were in 
fact formed in the early Universe, those with M << 1015 g would long since have 
exploded. Those with M - lo t5  g would just now be exploding, with 

[cf. Eq. (12.8.14)], producing quanta with energy 

(12.8.17) 

(12.8.18) 

[cf. Eq. (12.8.6)]. Rees (1977a) and Blandford (1977) have discussed the possibility 
of detecting such events. Page (1976) has computed detailed predictions of the 
energy spectrum emitted by l O I 5  g black holes. 

g 
cm ’. The calculations of Page suggest that about 10% of the energy of an 
exploding black hole is emitted in the form of photons (as opposed to neutrinos, 
gravitons or particles with mass). Thus the density of 10” g black holes must be 
less than 10 - 37 g cm- ’, which is about 10 - ’ times the critical density to close the 
universe.” 

The observed energy density of y-rays at around 100 MeV isIx - 

Exercise 12.21 
(a) Compute the entropy of a IM,  black hole in units of k ,  Boltzmann’s constant. 
Answer: S = 1.0 X k. 

(b) Estimate the entropy of the sun. Assume it consists of completely ionized 

Answer 

(c) Estimate the entropy of a I M, iron white dwarf and a 1 Mo neutron star. Take the 
mean temperature to be 10’ K, and the mean densities to be lo6 g cm- and I O l 4  g cm ~ ’, 
respectively. Note that the expression (11.8.1) for C, for a degenerate ideal gas is also 
equal to S ,  since C, = TdS/dT.  [Bekenstein (1975) has discussed the very large entropy of 
black holes from an information-theoretic viewpoint.] 

hydrogen, with a mean density of 1 g cm- and a mean temperature of lo6 K. 
S - 2 X los8 k .  

‘*Fichtel et al. (1975). 
”See also Chapline (1975); Page and IIawking (1976); Carr (1976) 




