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ABSTRACT

These lectures give an introduction to Gravitational Lensing. We discuss lensing by point masses, lensing by
galaxies, and lensing by clusters and larger-scale structures in the Universe. The relevant theory is developed and

applicationsto astrophysical problems are discussed.
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1. INTRODUCTION

One of the consequences of Einstein’s Genera Theory of Rel-
ativity is that light rays are deflected by gravity. Although this
discovery wasmadeonly in thiscentury, the possibility that there
could be such a deflection had been suspected much earlier, by
Newton and Laplace among others. Soldner (1804) calculated
the magnitude of the deflection due to the Sun, assuming that
light consists of material particles and using Newtonian grav-
ity. Later, Einstein (1911) employed the equivalenceprincipleto
calculate the deflection angle and re-derived Soldner’s formula.
Later yet, Einstein (1915) applied thefull field equations of Gen-
eral Relativity and discovered that the deflection angle is actu-
aly twice his previous result, the factor of two arising because
of the curvature of the metric. According to thisformula, alight
ray which tangentially grazesthe surface of the Sun is deflected
by 17. Eingtein's final result was confirmed in 1919 when the
apparent angular shift of stars close to the limb of the Sun (see
Fig. 1) was measured during atotal solar eclipse (Dyson, Edding-
ton, & Davidson 1920). The quantitative agreement between the
measured shift and Einstein’s prediction was immediately per-
ceived as compelling evidence in support of the theory of Gen-
eral Relativity. Thedeflection of light by massive bodies, and the

phenomenaresulting therefrom, are now referred to as Gravita-
tional Lensing.

Apparent Position

True Position

FIG. 1.—Angular deflection of aray of light passing close to the limb
of the Sun. Sincethelight ray is bent toward the Sun, the apparent po-
sitions of stars move away from the Sun.

Eddington (1920) noted that under certain conditions there
may be multiplelight paths connecting a source and an observer.
Thisimplies that gravitational lensing can give rise to multiple
images of a single source. Chwolson (1924) considered the cre-
ation of fictitious double stars by gravitational lensing of starsby
stars, but did not comment on whether the phenomenon could ac-
tually be observed. Einstein (1936) discussed the same problem
and concludedthat thereislittle chance of observinglensing phe-
nomena caused by stellar-mass lenses. His reason was that the
angular image splitting caused by a stellar-masslensistoo small
to be resolved by an optical telescope.

Zwicky (1937a) elevated gravitational lensing fromacuriosity
to afield with great potentia when he pointed out that galaxies
can split images of background sources by alarge enough angle
to be observed. At that time, galaxies were commonly believed
to have masses of ~ 10°M,. However, Zwicky had applied the
virial thearemto the Virgo and Comaclustersof galaxiesand had
derived galaxy masses of ~ 4 x 101 M,. Zwicky argued that the
deflection of light by galaxies would not only furnish an addi-
tional test of General Relativity, but would also magnify distant
galaxies which would otherwise remain undetected, and would
allow accurate determination of galaxy masses. Zwicky (1937b)
even calculated the probability of lensing by galaxies and con-
cluded that it is on the order of one per cent for a source at rea-
sonably large redshift.

Virtually all of Zwicky’s predictions have come true. Lens
ing by galaxies is a mgjor sub-discipline of gravitational lens-
ing today. The most accurate mass determinations of the cen-
tral regions of galaxies are due to gravitational lensing, and the
cosmic telescope effect of gravitational lenses has enabled usto



study faint and distant gal axieswhich happen to be strongly mag-
nified by galaxy clusters. The statistics of gravitational lensing
events, whose order of magnitude Zwicky correctly estimated,
offers one of the promising ways of inferring cosmological pa-
rameters.

Inastimulating paper, Refsdal (1964) described how the Hub-
ble constant Hy could in principle be measured through gravita-
tional lensing of avariablesource. Sincethelight travel timesfor
the variousimages are unequal, intrinsic variations of the source
would be observed at different timesin theimages. Thetimede-
lay between images is proportional to the difference in the ab-
solute lengths of the light paths, which in turn is proportional
to Ho‘l. Thus, if the time delay is measured and if an accurate
model of alensed sourceisdevel oped, the Hubble constant could
be measured.

All of theseideason gravitational lensing remained mere spec-
ulation until real examples of gravitational lensing were finally
discovered. Thestagefor thiswasset by thediscovery of quasars
(Schmidt 1963) which revealed a class of sources that is ideal
for studying the effects of gravitational lensing. Quasarsare dis-
tant, and so the probability that they are lensed by intervening
galaxiesis sufficiently large. Yet, they are bright enough to be
detected even at cosmological distances. Moreover, their optical
emission region is very compact, much smaller than the typical
scales of galaxy lenses. The resulting magnifications can there-
fore bevery large, and multiple image componentsare well sep-
arated and easily detected.

Walsh, Carswell, & Weymann (1979) discovered the first ex-
ample of gravitational lensing, the quasar QSO 0957+561A ,B.
This source consists of two images, A and B, separated by 6”.
Evidence that 0957+561A,B does indeed correspond to twin
lensed images of a single QSO is provided by (i) the similarity
of the spectra of the two images, (ii) the fact that the flux ra-
tio between the images is similar in the optical and radio wave-
bands, (iii) the presence of aforeground galaxy between theim-
ages, and (iv) VLBI observations which show detailed corre-
spondence between various knots of emission in the two radio
images. Over adozen convincing examples of multiple-imaged
quasarsare known today (Keeton & Kochanek 1996) and the list
continuesto grow.

Paczyhski (1986b) revived theidea of lensing of stars by stars
when he showed that at any given time onein amillion starsin
the Large Magellanic Cloud (LMC) might be measurably mag-
nified by the gravitational lens effect of an intervening star in
the halo of our Galaxy. The magnification events, which are
called microlensing events, have time scales between two hours
and two years for lens masses between 10~6M,, and 10°M.,.
Initially, it was believed that the proposed experiment of mon-
itoring the light curves of a million stars would never be fea-
sible, especially since the light curves have to be sampled fre-
quently and need to be distinguished from light curves of intrin-
sically variable stars. Nevertheless, techniques have advanced
so rapidly that today four separate collaborations have success-
fully detected microlensing events (Alcock et al. 1993; Aubourg
et a. 1993; Udalski et al. 1993; Alard 1995), and this field has
developed into an exciting method for studying the nature and
distribution of massin our Galaxy.

Einsteinrings, aparticularly interesting manifestation of grav-
itational lensing, were discovered first in the radio waveband by
Hewitt et al. (1987). About half a dozen radio rings are now
known and these sources permit the most detailed modeling yet
of the mass distributions of lensing galaxies.

Gravitational lensing by galaxy clusters had been considered
theoretically even before the discovery of QSO 0957+561. The
subject entered the observational realm with the discovery of gi-
ant blueluminousarcsin the galaxy clusters A 370 and Cl 2244

(Soucail et al. 1987a,b; Lynds & Petrosian 1986). Paczyhski
(1987) proposed that the arcs are the images of background
galaxieswhich are strongly distorted and elongated by the grav-
itational lens effect of the foreground cluster. This explanation
was confirmed when the first arc redshifts were measured and
found to be significantly greater than that of the clusters.

Apart from the spectacular giant luminous arcs, which re-
quire specia alignment between the cluster and the background
source, clusters also coherently distort the images of other faint
background galaxies (Tyson 1988). These distortions are mostly
weak, and the corresponding images are referred to as arclets
(Fort et al. 1988; Tyson, Vades, & Wenk 1990). Observa-
tions of arclets can be used to reconstruct parameter-free, two-
dimensional mass maps of the lensing cluster (Kaiser & Squires
1993). This technique has attracted a great deal of interest,
and two-dimensiona maps have been obtained of several galaxy
clusters (Bonnet et a. 1993; Bonnet, Mellier, & Fort 1994,
Fahlman et a. 1994; Broadhurst 1995; Smail et al. 1995; Tyson
& Fischer 1995; Squireset al. 1996; Seitz et al. 1996).

As this brief summary indicates, gravitational lensing mani-
festsitself through avery broad and interesting range of phenom-
ena. Atthesametime, lensing hasdevel opedinto apowerful tool
to study ahost of important questionsin astrophysics. The appli-
cations of gravitational lensing may be broadly classified under
three categories:

— The magnification effect enables us to observe objects
which are too distant or intrinsically too faint to be ob-
served without lensing. Lenses therefore act as “cosmic
telescopes’ and alow us to infer source properties far be-
low theresolution limit or sensitivity limit of current obser-
vations. However, since we do not have the ability to point
thistelescope at any particular object of interest but haveto
work with whatever nature gives us, the results have been
only modestly interesting.

— Gravitational lensing depends solely on the projected, two-
dimensional mass distribution of the lens, and is indepen-
dent of the luminosity or composition of the lens. Lensing
thereforeoffersanideal way to detect and study dark matter,
and to explore the growth and structure of mass condensa-
tionsin the universe.

— Many properties of individual lens systems or samples of
lensed objects depend on the age, the scale, and the overall
geometry of the universe. The Hubble constant, the cosmo-
logical constant, and the density parameter of the universe
can be significantly constrained through lensing.

The article is divided into three main sections. Sect. 2. dis-
cussesthe effectsof point-masslenses, Sect. 3. considersgalaxy-
scalelenses, and Sect. 4. discusses|ensing by galaxy clustersand
large-scale structure in the universe. References to the original
literature are given throughout the text. The following are some
general or specialized review articles and monographs:

M onograph

— Schneider, P, Ehlers, J., & Falco, E.E. 1992, Gravitational
Lenses (Berlin: Springer Verlag)

General Reviews

— Blandford, R.D., & Narayan, R. 1992, Cosmological Appli-
cations of Gravitational Lensing, Ann. Rev. Astr. Ap., 30,
311

— Refsdal, S, & Surdej, J. 1994, Gravitational Lenses, Rep.
Progr. Phys., 57,117



— Schneider, P. 1996, Cosmological Applications of Gravi-
tational Lensing, in: The universe at high-z, large-scale
structure and the cosmic microwave background, Lecture
Notes in Physics, eds. E. Martinez-Gonzélez & J.L. Sanz
(Berlin: Springer Verlag)

— Wu, X.-P. 1996, Gravitational Lensing in the Universe,
Fundamentals of Cosmic Physics, 17, 1

Special Reviews

— Fort, B., & Médllier, Y. 1994, Arc(let)sin Clusters of Galax-
ies, Astr. Ap. Rev., 5,239

— Bartelmann, M., & Narayan, R. 1995, Gravitational Lens-
ing and the Mass Distribution of Clusters, in: Dark Matter,
AIP Conf. Proc. 336, eds. S.S. Holt & C.L. Bennett (New
York: AlP Press)

— Keeton I, C.R. & Kochanek, C.S. 1996, Summary of Data
on Secure Multiply-Imaged Systems, in: Cosmological Ap-
plications of Gravitational Lensing, lAU Symp. 173, eds.
C.S. Kochanek & J.N. Hewitt

— Paczyhski, B. 1996, Gravitational Microlensing in the Lo-
cal Group, Ann. Rev. Astr. Ap., 34,419

— Roulet, E., & Mollerach, S. 1997, Microlensing, Physics
Reports, 279, 67

2. LENSING BY POINT MASSES IN THE UNIVERSE

2.1. Basicsof Gravitational Lensing

Thepropagation of light in arbitrary curved spacetimesisin gen-
eral acomplicated theoretical problem. However, for amost all
cases of relevance to gravitational lensing, we can assume that
the overall geometry of the universe is well described by the
Friedmann-L emaltre-Robertson-Walker metric and that the mat-
ter inhomogeneitieswhich cause thelensing are no morethan lo-
cal perturbations. Light paths propagating from the source past
the lens to the observer can then be broken up into three dis-
tinct zones. In the first zone, light travels from the source to a
point close to the lens through unperturbed spacetime. In the
second zone, near the lens, light is deflected. Finally, in the
third zone, light again travel sthrough unperturbed spacetime. To
study light deflection close to the lens, we can assume a locally
flat, Minkowskian spacetime which is weakly perturbed by the
Newtonian gravitational potential of the mass distribution con-
stituting the lens. This approach is legitimate if the Newtonian
potential ® is small, |®| < ¢?, and if the peculiar velocity v of
thelensissmall, v« c.

These conditions are satisfied in virtually all cases of astro-
physical interest. Consider for instance a galaxy cluster at red-
shift ~ 0.3 which deflects light from a source at redshift ~ 1.
Thedistancesfrom the sourceto the lensand from thelensto the
observer are ~ 1 Gpc, or about three orders of magnitude larger
than the diameter of the cluster. Thuszone 2 islimited to asmall
local segment of thetotal light path. Therelative peculiar veloci-
tiesinagalaxy cluster are ~ 10° kms~! « ¢, and the Newtonian
potential is|P| < 107 ¢? <« ¢?, in agreement with the conditions
stated above.

2.1.1. Effective Refractive Index of a Gravitational Field

In view of the simplifications just discussed, we can describe
light propagation close to gravitational lenses in a locally
Minkowskian spacetime perturbed by the gravitational potential

of thelensto first post-Newtonian order. The effect of spacetime
curvature on the light paths can then be expressed in terms of an
effectiveindex of refractionn, whichis given by (e.g. Schneider
et a. 1992)
2 2

n:l—?¢:1+?|¢|. 1)
Notethat the Newtonian potential is negativeif it is defined such
that it approaches zero at infinity. Asin normal geometrical op-
tics, arefractiveindex n > Limpliesthat light travelsslower than
in free vacuum. Thus, the effective speed of aray of lightin a
gravitational field is

c 2
—Z~c_Z% . 2
v n_c C|CI>| 2

Figure 2 shows the deflection of light by a glass prism. The
speed of light is reduced inside the prism. This reduction of
speed causes a delay in the arrival time of a signal through the
prism relative to another signal traveling at speed c. In addition,
it causes wavefrontsto tilt as light propagates from one medium
to another, leading to a bending of the light ray around the thick
end of the prism.

FIG. 2.—Light deflection by aprism. The refractiveindex n > 1 of the
glassinthe prism reduces the effective speed of light to ¢/n. Thiscauses
light rays to be bent around the thick end of the prism, as indicated.
The dashed lines are wavefronts. Although the geometrical distance be-
tween the wavefronts along the two rays is different, the travel timeis
the same because the ray on the left travel sthrough alarger thickness of
glass.

Thesame effectsare seenin gravitational lensing. Becausethe
effective speed of light is reduced in a gravitational field, light
rays are delayed relative to propagation in vacuum. The total
time delay At is obtained by integrating over the light path from
the observer to the source:

observer 2
At:/ Slold. 3
source

Thisis called the Shapiro delay (Shapiro 1964).



Asin the case of the prism, light rays are deflected when they
pass through a gravitational field. The deflection is the integral
along thelight path of the gradient of n perpendicular to thelight
path, i.e.

B, . 2 -
G = —/DLndI =5 /ngdl . (4)

In all cases of interest the deflection angle isvery small. We can
therefore simplify the computation of the deflection angle con-

siderably if we integrate 0 1 n not along the deflected ray, but
along an unperturbed light ray with the same impact parame-
ter. (Asan aside we note that while the procedureis straightfor-
ward with asingle lens, some care is needed in the case of mul-
tiple lenses at different distances from the source. With multiple
lenses, one takes the unperturbed ray from the source as the ref-
erence trgjectory for calculating the deflection by the first lens,
the deflected ray from thefirst lens as the reference unperturbed
ray for calculating the deflection by the second lens, and so on.)

FIG. 3.—Light deflection by a point mass. The unperturbed ray passes
the mass at impact parameter b and is deflected by the angle 6. Most of
the deflection occurs within Az ~ +b of the point of closest approach.

Asan example, wenow eval uatethe defl ection angle of apoint
mass M (cf. Fig. 3). The Newtonian potential of thelensis

GM

®(b,z) = RCEEar

©)
where b istheimpact parameter of the unperturbed light ray, and

zindicatesdistance along theunperturbedlight ray fromthe point
of closest approach. We therefore have

GMDb

0, ®@(b,2) = Caear

(6)

whereb is orthogonal to the unperturbed ray and points toward
the point mass. Equation (6) then yields the deflection angle

4GM
c2b -

2 [
a:?/mmdz: )

Note that the Schwarzschild radius of apoint massis

2GM
Rs= 2 8

so that the deflection angleis simply twice the inverse of theim-
pact parameter in units of the Schwarzschild radius. Asan exam-
ple, the Schwarzschild radiusof the Sunis2.95km, and the solar
radiusis6.96 x 10°km. A light ray grazing thelimb of the Sunis
therefore deflected by an angle (5.9/7.0) x 10 °radians = 1"'7.

2.1.2. Thin Screen Approximation

Figure 3illustratesthat most of the light deflection occurswithin
Az ~ +b of the point of closest encounter between the light
ray and the point mass. ThisAzis typically much smaller than
the distances between observer and lens and between lens and
source. The lens can therefore be considered thin compared to
thetotal extent of thelight path. Themassdistribution of thelens
can then be projected along theline-of-sight and be replaced by a
mass sheet orthogonal to the line-of-sight. The plane of the mass
sheet iscommonly called thelens plane. The mass sheet is char-
acterized by its surface mass density

£® = [ o2z, ©

Wheref is a two-dimensional vector in the lens plane. The de-

flection angle at position € isthe sum of the deflectionsdueto all
the mass elementsin the plane:

(10)

FIG. 4.—A light ray which intersects the lens plane at E is deflected by
anangled(&).



In general, the deflection angle is a two-component vector. In
the special case of acircularly symmetric lens, we can shift the
coordinate origin to the center of symmetry and reduce light de-
flection to aone-dimensional problem. Thedeflection anglethen
points toward the center of symmetry, and its modulusis

_ 4AGM(¢)

a) = o (11)

where ¢ isthe distance from thelens center and M(§) isthe mass
enclosed within radius &,

g
M(E) =2 [ 5(E)E (12)

2.1.3. Lensing Geometry and Lens Equation

The geometry of atypical gravitational lens system is shownin
Fig. 5. A light ray from a source S is deflected by the angle?x at
the lens and reaches an observer O. The angle between the (arbi-
trarily chosen) optic axisand thetrue source position isB, andthe
angle between the optic axis and theimage | is 6. The (angular
diameter) distances between observer and lens, lens and source,
and observer and source are Dq, Dgs, and D, respectively.

FiG. 5.—lllustration of a gravitational lens system. The light ray prop-
agates from the source S at transverse distance | from the optic axisto
the observer O, passing the lens at transverse distance €. It is deflected
by anangle &. Theangular separations of the source and theimage from
the optic axis as seen by the observer are 3 and 6, respectively. There-
duced deflection angle o and the actual deflection angle G are related
by eg. (13). The distances between the observer and the source, the ob-
server and the lens, and the lens and the source are Ds, Dy, and Dy,
respectively.

It isnow convenient to introduce the reduced deflection angle

(13)

From Fig. 5 we see that 6Ds = BDs+ 6 Dgs. Therefore, the posi-
tions of the source and the image are related through the simple
equation

B=08-d(®). (14)

Equation (14) is called the lens equation, or ray-tracing equa-
tion. It is nonlinear in the general case, and so it is possible to

havemultiplei magesé correspondingto asingle source position

. AsFig. 5 shows, the lens equation istrivial to derive and re-
quires merely that the following Euclidean relation should exist
between the angle enclosed by two lines and their separation,
separation = angle x distance . (15)

Itisnot obviousthat the same relation should also hold in curved
spacetimes. However, if the distances Dy s g5 are defined such
that eg. (15) holds, then the lens equation must obviously betrue.
Distances so defined are called angular-diameter distances, and
egs. (13), (14) arevalid only when these distances are used. Note
that in general Dys # Ds— Dyg.

Asan instructive special case consider alens with a constant
surface-massdensity. From eg. (11), the (reduced) deflection an-
gleis

4TG3 DyD
c? Ds

_ Do 4G

ds
(e) - Ds CZE e)

(ErE?) =

(16)

where we have set § = Dy40. In this case, the lens equation is
linear; thatis, f 0 . Let usdefineacritical surface-massdensity

2 Ds

o= ——
™ ANG DyDgs

-1
=0.35gcm™2 <%pc> , (17)

where the effective distance D is defined as the combination of
distances
_ DdDus

Ds

For alenswith aconstant surface massdensity 2, thedeflection
angleisa(0) =6, andso 3 = Ofor all 6. Such alensfocuses per-
fectly, with a well-defined focal length. A typical gravitational
lens, however, behaves quite differently. Light rays which pass
thelensat different impact parameters crossthe optic axis at dif-
ferent distancesbehindthelens. Considered asan optical device,
agravitational lens therefore has almost all aberrations one can
think of. However, it does not have any chromatic aberration be-
cause the geometry of light paths is independent of wavelength.

A lenswhich has X > ¥ somewhere within it is referred to
as being supercritical. Usually, multiple imaging occurs only if
thelensissupercritical, but there are exceptionsto thisrule (e.g.,
Subramanian & Cowling 1986).

D (18)

2.1.4. Einstein Radius

Consider now acircularly symmetric lenswith an arbitrary mass
profile. Accordingto egs. (11) and (13), the lens equation reads

Dgs 4GM(0)

B(6) =6 DyDs 20

(19)

Due to the rotational symmetry of the lens system, a source
which lies exactly on the optic axis (B = 0) isimaged asaring if
the lens is supercritical. Setting 3 = 0 in eq. (19) we obtain the
radius of thering to be

1/2
4GM(6E) Dds} ) (20)

GEZ[ 2 DgDs



Thisisreferred to asthe Einstein radius. Figure 6 illustrates the
situation. Note that the Einstein radius is not just a property of
the lens, but depends also on the various distances in the prob-
lem.

FIG. 6.—A source S on the optic axis of acircularly symmetric lensis
imaged as aring with an angular radius given by the Einstein radius 6¢.

The Einstein radius provides a natural angular scale to de-
scribe the lensing geometry for severa reasons. In the case of
multiple imaging, the typical angular separation of imagesis of
order 26g. Further, sources which are closer than about 6g to
the optic axis experience strong lensing in the sense that they are
significantly magnified, whereas sources which are located well
outside the Einstein ring are magnified very little. In many lens
models, the Einstein ring also represents roughly the boundary
between source positionsthat are multiply-imaged and those that
areonly singly-imaged. Finally, by comparing egs. (17) and (20)
we see that the mean surface mass density insidethe Einstein ra-
diusisjust the critical density 2.

For a point mass M, the Einstein radiusis given by

1/2
6 = <4GM Dys ) _ 1)

C2 DdDS

To give two illustrative examples, we consider lensing by a star
in the Galaxy, for which M ~ Mg and D ~ 10 kpc, and lensing
by a galaxy at a cosmological distance with M ~ 101 M, and
D ~ 1 Gpc. The corresponding Einstein radii are

M\ /2 D ~1/2
oo () ()

M 12 ;o\ 12
b = (9 (rllm@) (@) :

6

(22)

2.1.5. Imaging by a Point Mass Lens

For a point mass lens, we can use the Einstein radius (20) to
rewrite the lens equation in the form

62
This equation has two solutions,
1
Gizé (Bi,/[32+46§> . (24)

Any source is imaged twice by a point mass lens. The two
images are on either side of the source, with one image inside
the Einstein ring and the other outside. As the source moves
away from the lens (i.e. as 3 increases), one of the images ap-
proachesthe lens and becomes very faint, while the other image
approachescloser and closer to thetrue position of the sourceand
tends toward a magnification of unity.

FIG. 7.—Relative locations of the source S and images | 4, |- lensed
by a point mass M. The dashed circle is the Einstein ring with radius
Bg. Oneimage isinside the Einstein ring and the other outside.

Gravitational light deflection preservessurface brightness (be-
cause of Liouville'stheorem), but gravitational lensing changes
the apparent solid angle of asource. Thetotal flux received from
agravitationally lensed image of asourceisthereforechangedin
proportionto the ratio between the solid angles of the image and
the source,
image area
sourcearea ’

Figure 8 shows the magnified images of a source lensed by a
point mass.

For acircularly symmetric lens, the magnification factor p is
given by

magnification = (25)

_6de

IJ—Ed—B- (26)



F1G. 8.—Magnified images of a source lensed by a point mass.

For apoint masslens, whichisaspecia case of acircularly sym-
metric lens, we can substitute for  using the lens equation (23)
to obtain the magnifications of the two images,

eE>4 w+2 1
=l1-(= =— - 4+ 27
He l <Gi 2u/u2+4 2 @7

where u is the angular separation of the source from the point
mass in units of the Einstein angle, u = Begl. Since 6_ < 6B,
M- < 0, and hence the magnification of the image which isin-
sidethe Einstein ring is negative. Thismeansthat thisimage has
its parity flipped with respect to the source. The net magnifica-
tion of flux in the two imagesis obtained by adding the absolute
magnifications,

M= [y |+ | I—ﬂ
- TV T

When the sourcelies onthe Einstein radius, we have 3 = Og, u=
1, and the total magnification becomes

M=117+017=134.

(28)

(29)

How can lensing by a point mass be detected? Unlessthelens
ismassive (M > 108 M, for acosmologically distant source), the
angular separation of the two imagesistoo small to be resolved.
However, evenwhen it isnot possibleto seethe multipleimages,
the magnification can still be detected if thelensand sourcemove
relative to each other, giving rise to lensing-induced time vari-
ability of the source (Chang & Refsdal 1979; Gott 1981). When
thiskind of variability isinduced by stellar mass lensesit isre-
ferred to asmicrolensing. Microlensing wasfirst observedin the
multiply-imaged QSO 223740305 (Irwin et a. 1989), and may
also have been seen in QSO 0957+561 (Schild & Smith 1991;
see also Sect. 3.7.4.). Paczyhski (1986b) had the brilliant idea of
using microlensing to search for so-called Massive Astrophysical
Compact Halo Objects (MACHOs, Griest 1991) in the Galaxy.
We discuss this topic in some depth in Sect. 2.2..

2.2. Microlensing in the Galaxy
2.2.1. Basic Relations

If the closest approach between a point masslensand asourceis
< B, the peak magnification in the lensing-induced light curve
iSUmax > 1.34. A magnification of 1.34 correspondsto a bright-
ening by 0.32 magnitudes, which is easily detectable. Paczyhski
(1986b) proposed monitoring millions of stars in the LMC to
look for such magnifications in a small fraction of the sources.
If enough events are detected, it should be possible to map the
distribution of stellar-mass objectsin our Galaxy.

Perhaps the biggest problem with Paczyhski's proposal isthat
monitoring a million stars or more primarily leads to the detec-
tion of ahuge number of variablestars. Theintrinsically variable
sources must somehow be distinguished from stars whose vari-
ability iscaused by microlensing. Fortunately, thelight curvesof
lensed stars have certain tell-tale signatures — the light curves
are expected to be symmetric in time and the magnification is
expected to be achromatic because light deflection does not de-
pend onwavelength (but seethe moredetail ed discussionin Sect.
2.2.4. below). In contrast, intrinsically variable stars typically
have asymmetric light curves and do change their colors.

The expected time scale for microlensing-induced variations
isgiven in terms of the typical angular scale Og, the relative ve-
locity v between source and lens, and the distance to the lens:

1/2 1/2
Dad _ 0.214yr M Da
% Mg 10kpc

Dgs\ /2 / 200kms™1

Ds v )
Theratio DgsDg ! is close to unity if the lenses are located in the
Galactic halo and the sources arein the LMC. If light curvesare
sampled with time intervals between about an hour and a year,
MACHOs in the mass range 10~M,, to 102M, are potentially
detectable. Notethat the measurement of tp in agiven microlens-
ing event does not directly give M, but only acombination of M,
Dy, Ds, and v. Variousideasto break this degeneracy have been
discussed. Figure9 shows microlensing-inducedlight curvesfor
six different minimum separations Ay = Ui between the source
and the lens. The widths of the peaks are ~ ty, and thereis a di-
rect one-to-one mapping between Ay and the maximum magnifi-
cation at the peak of thelight curve. A microlensing light curve
therefore gives two observables, ty and Ay.

The chance of seeing a microlensing event is usualy ex-
pressed intermsof theoptical depth, whichisthe probability that
at any instant of time a given star iswithin an angle 6 of alens.
Theoptical depthistheintegral over the number density n(Dy) of
lenses times the area enclosed by the Einstein ring of each lens,
i.e

to =

X

(30)

1

=2 / dV n(Dg) T82 , (31)
where dV = 3wD3dDy isthe volume of an infinitesimal spheri-
cal shell with radius Dy which coversa solid angle dw. Thein-
tegral givesthe solid angle covered by the Einstein circles of the
lenses, and the probability is obtained upon dividing this quan-
tity by the solid angle &w which is observed. Inserting equation
(21) for the Einstein angle, we obtain

Ds 4iGp DgDgys 4G _, 1
T _/o Z D, dDg = 2 DS/0 pP(X)x(1—x)dx,
(32)
where x = DgD5 ! and p is the mass density of MACHOs. In
writing (32), we have made use of the fact that spaceislocaly
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FIG. 9.—Microlensing-induced light curves for six minimum separa-
tions between the source and the lens, Ay = 0.1, 0.3,...,1.1. The sep-
aration is expressed in units of the Einstein radius.

Euclidean, hence Dgs = Ds— Dy. If p is constant along the line-
of-sight, the optical depth simplifiesto

(33)

Itisimportant to notethat the optical deptht dependsonthemass
density of lenses p and not on their mass M. The timescale of
variability induced by microlensing, however, does depend on
the square root of the mass, as shown by eq. (30).

2.2.2.  Ongoing Galactic Microlensing Searches

Paczyhski’s suggestion that microlensing by compact objectsin
the Gal actic halo may be detected by monitoring the light curves
of starsin the LMC inspired several groups to set up elaborate
searches for microlensing events. Four groups, MACHO (Al-
cock et al. 1993), EROS (Aubourg et al. 1993), OGLE (Udal-
ski et a. 1992), and DUO (Alard 1995), are currently searching
for microlensing-induced stellar variability in the LMC (EROS,
MACHO) as wdll as in the Galactic bulge (DUO, MACHO,
OGLE).

Sofar, about 100 microlensing eventshave been observed, and
their number is increasing rapidly. Most events have been seen
toward the Galactic bulge. The mgjority of events have been
caused by single lenses, and have light curves similar to those
shown in Fig. 9, but at least two events so far are due to binary
lenses. Strong lensing by binaries (defined as events where the
Source Crosses one or more caustics, see Fig. 10) was estimated
by Mao & Paczyhski (1991) to contribute about 10 per cent of all
events. Binary lensing is most easily distinguished from single-
lens events by characteristic double-peaked or asymmetric light
curves; Fig. 10 shows some typica examples.

The light curve of the first observed binary microlensing
event, OGLE #7, isshownin Fig. 11.
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FIG.11.—Light curve of the first binary microlensing
event, OGLE #7 (taken from the OGLE www home page at
http://www.astrouw.edu.pl/~ftp/ogle/ogle.html).

2.2.3. Early Results on Optical Depths

Both the OGLE and MACHO collaborations have determined
the microlensing optical depth toward the Galactic bulge. The
resultsare

N

Original theoretical estimates (Paczyhski 1991; Griest, Alcock,
& Axelrod 1991) had predicted an optical depth below 10-5.
Even though this value was increased dightly by Kiraga &
Paczyfski (1994) who realized the importance of lensing of
background bulge stars by foreground bulge stars (referred to as
self-lensing of the bulge), the measured optical depth is never-
theless very much higher than expected. Paczyhski et al. (1994)
suggested that a Galactic bar which is approximately aligned
with theline-of-sight toward the Gal actic bulge might explainthe
excess optical depth. Self-consistent calculations of the bar by
Zhao, Spergel, & Rich (1995) and Zhao, Rich, & Spergel (1996)
giveT ~ 2 x 1078, which iswithin one standard deviation of the
observed value. However, using COBE/DIRBE near-infrared
data of the inner Galaxy and calibrating the mass-to-light ratio
with the terminal velocities of HI and CO clouds, Bissantz et a.
(1997) find asignificantly lower optical depth, 0.8 x 1076 <1<
0.9 x 1075, Zhao & Mao (1996) describe how the shape of the
Galactic bar can be inferred from measuring the spatial depen-
dence of the optical depth. Zhao et al. (1995) claim that the du-
ration distribution of the bulge events detected by OGLE iscom-
patible with aroughly normal stellar mass distribution.

In principle, momentsof the mass distribution of microlensing
objects can be inferred from moments of the duration distribu-
tion of microlensing events (De R{jula, Jetzer, & Massb 1991).
Mao & Paczyhski (1996) have shown that arobust determination
of mass function parametersrequires ~ 100 microlensing events
even if the geometry of the microlens distribution and the kine-
matics are known.

Based on three events from their first year of data, of which
two are of only modest significance, Alcock et al. (1996) esti-
mated the optical depth toward the LMC to be

(3.3+1.2) x 10°® (Paczyhski et al. 1994)

(3.9718)x 1078 (Alcock et al. 1997) (39

1=9[x108, (35)

in the mass range 10*Mg, < M < 10~ *Mg,. Thisis too small
for the entire halo to be made of MACHOQOSs in this mass range.
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FIG. 10.—Left panel: A binary lens composed of two equal point masses. The critical curve is shown by the heavy line, and the corresponding
caustic isindicated by the thin line with six cusps. (See Sect. 3.3.2. for adefinition of critical curves and caustics.) Five source tragjectories across
this lens system are indicated. Right panel: Light curves corresponding to an extended source moving along the trajectories indicated in the left
panel. Double-peaked features occur when the source comes close to both lenses.

At the 95% confidencelevel, the first-year data of the MACHO
collaboration rule out a contribution from MACHOs to the halo
mass > 40% in the mass range 10 3My, < M < 10~°Mg,, and
> 60% within 107*Ms < M < 10~My,. Sahu (1994) argued
that all events can be due to objects in the Galactic disk or the
LMC itself. The EROS collaboration, having better time resolu-
tion, is able to probe smaller masses, 10~ M, < M < 10~ 1M,
(Aubourg et al. 1995). The 95% confidencelevel fromthe EROS
data excludes a halo fraction > (20 — 30)% in the mass range
100"Me < M < 1072M, (Ansari et al. 1996; Renault et al.
1997; see dlso Roulet & Mollerach 1997).

More recently, the MACHO group reported results from 2.3
years of data. Based on 8 events, they now estimate the optical
depth toward the LMC to be

1=29"73x107", (36)
and the halo fraction to be 0.45 — 1 in the massrange 0.2Mg, <
M < 0.5Mg, at 68% confidence. Further, they cannot reject, at
the 99% confidence level, the hypothesis that the entire halo is
made of MACHOs with masses 0.2Mg, < M < 1M, (Suther-
land 1996). More data are needed before any definitive conclu-
sion can be reached on the contribution of MACHOsto the halo.

2.2.4. Other Interesting Discoveries

In the simplest scenario of microlensing in the Galaxy, asingle
point-like source is lensed by a single point mass which moves
with constant vel ocity relative to the source. Thelight curve ob-
served from such an event istime-symmetric and achromatic. At
the low optical depthsthat we expect in the Galaxy, and ignoring
binaries, microlensing events should not repeat since the proba
bility that the same star is lensed more than once is negligibly
small.

In practice, the situation is more complicated and detailed in-
terpretations of observed light curves must account for some of
the complicationslisted below. Theeffectsof binary lenses have
already been mentioned above. In the so-called resonant case,
the separation of the two lenses is comparable to their Einstein
radii. The light curve of such alens system can have dramatic
features such as the double peaks shown in Figs. 10 and 11. At
| east two such eventshave been observed so far, OGLE #7 (Udal-
ski et al. 1994; Bennett et al. 1995) and DUO #2 (Alard, Mao, &
Guibert 1995). In the non-resonant case, the lenses are well sep-
arated and act as almost independent lenses. Di Stefano & Mao
(1996) estimated that a few per cent of al microlensing events
should “repeat” due to consecutive magnification of astar by the
two starsin awide binary lens.

The sensitivity of microlensing searchesto binariesmay make
this a particularly powerful method to search for planets around
distant stars, as emphasized by Mao & Paczyhski (1991) and
Gould & Loeb (1992).

Multiple sources can giverise to various other complications.
Since the optical depth is low, microlensing searches are per-
formed in crowded fields where the number density of sources
ishigh. Multiple source stars which are closer to each other than
~ 1" appear assingle becausethey arenot resolved. TheEinstein
radius of a solar mass lens, on the other hand, is ~ 0001 (cf.
eg. 22). Therefore, if the projected separation of two sourcesis
< 1" but > 0001, asinglelensaffectsonly oneof them at atime.
Several effects can then occur. First, the microlensing event can
apparently recur when the two sources are lensed individually
(Griest & Hu 1992). Second, if the sources have different col-
ors, the event is chromatic because the color of the lensed star
dominatesduring the event (Udalski et al. 1994; K amionkowski
1995; Buchalter, Kamionkowski, & Rich 1996). Third, the ob-
served flux isablend of the magnified flux from the lensed com-
ponent and the constant flux of the unlensed components, and



this leads to various biases (Di Stefano & Esin 1995; see also
Alard & Guibert 1997). A systematic method of detecting mi-
crolensing in blended data has been proposed and is referred to
as"“pixel lensing” (Crotts1992; Baillon et al. 1993; Colley 1995;
Gould 1996).

Stars are not truly point-like. If asourceislarger than theim-
pact parameter of asinglelensor the caustic structure of abinary
lens, the finite source size madifies the light curve significantly
(Gould 1994a; Nemiroff & Wickramasinghe 1994; Witt & Mao
1994; Witt 1995).

Finally, if the relative transverse velocity of the source, the
lens, and the observer is not constant during the event, the light
curve becomes time-asymmetric. The parallax effect due to the
acceleration of the Earth was predicted by Gould (1992b) and de-
tected by Alcock et al. (1995b). The detection of parallax pro-
vides an additional observablewhich helps partially to break the
degeneracy among M, v, Dy and Dgs mentioned in Sect. 2.2.1..

Another method of breaking the degeneracy is via observa-
tionsfrom space. Theideaof space measurementswas suggested
by Refsda as early as 1966 as a means to determine distances
and masses of lenses in the context of quasar lensing (Refsdal
1966b). Some obvious benefits of space-based telescopes in-
clude absence of seeing and access to wavebandslike the UV or
IR which are absorbed by the Earth’satmosphere. The particular
advantage of space observationsfor microlensing in the Galaxy
arises from the fact that the Einstein radius of a sub-solar mass
microlensin the Galactic halo is of order 108 km and thus com-
parableto the AU, cf. eq. (22). Telescopes separated by ~ 1 AU
would therefore observe different light curves for the same mi-
crolensing event. This additional information on the event can
break the degeneracy between the parameters defining the time
scale ty (Gould 1994b). In the specia (and rare) case of very
high magnification when the source is resolved during the event
(Gould 19944a), al four parameters may be determined.

Interesting discoveries can be expected from the various mi-
crolensing “dert systems’ which have been recently set up
(GMAN, Pratt 1996; PLANET, Sackett 1996, Albrow et al.
1996). The goal of these programs is to monitor ongoing mi-
crolensing eventsin amost real timewith very high time resolu-
tion. It should be possible to detect anomalies in the microlens-
ing lightcurveswhich are expected from the complicationslisted
in this section, or to obtain detailed information (e.g. spectra,
Sahu 1996) from objects while they are being microlensed.

Jetzer (1994) showed that the microlensing optical depth to-
ward the Andromeda galaxy M 31 is similar to that toward the
LMC, T ~ 1076, Experiments to detect microlensing toward
M 31 have recently been set up (e.g. Gondolo et a. 1997; Crotts
& Tomaney 1996), and results are awaited.

2.3. Extragalactic Microlenses
2.3.1. Point Massesin the Universe

It has been proposed at various times that a significant fraction
of the dark matter in the universe may bein the form of compact
masses. These masses will induce various lensing phenomena,
some of which are very easily observed. The lack of evidence
for these phenomena can therefore be used to place useful limits
on the fraction of the massin the universein such objects (Press
& Gunn 1973).

Consider an Einstein-de Sitter universe with a constant co-
moving number density of point lenses of mass M corresponding
to acosmic density parameter Q. The optical depth for lensing
of sources at redshift zg can be shown to be

(Zs+2+2v/1+25) In(1+ z5)
Zs

1(zs) 3Qum —4

10

o2
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forzs<« 1

2

forzs=2.

(37)

We see that the probability for lensingis ~ Qy for high-redshift
sources (Press & Gunn 1973). Hence the number of lensing
eventsin agiven source sample directly measuresthe cosmolog-
ical density in compact objects.

In calculating the probability of lensing it is important to al-
low for various selection effects. Lenses magnify the observed
flux, and therefore sources which are intrinsically too faint to
be observed may be lifted over the detection threshold. At the
sametime, lensing increasesthe solid anglewithinwhich sources
are observed so that their number density in the sky is reduced
(Narayan 1991). If thereisalargereservoir of faint sources, the
increase in source number due to the apparent brightening out-
weighstheir spatial dilution, and the observed number of sources
is increased due to lensing. This magnification bias (Turner
1980; Turner, Ostriker, & Gott 1984; Narayan & Wallington
1993) can substantially increase the probability of lensing for
bright optical quasars whose number-count functionis steep.

2.3.2. Current Upper Limits on Qy in Point Masses

Various techniques have been proposed and applied to obtain
limitson Qy over abroad range of lensmasses (see Carr 1994 for
areview). Lenseswith massesintherange 10*° < M/Mg, < 10%2
will splitimagesof bright QSOsby 03— 3". Such angular split-
tings are accessible to optical observations; therefore, it is easy
to constrain Qy inthismassrange. Theimage splitting of lenses
with 106 < M/M, < 108 is on the order of milliarcseconds and
fallswithin the resolution domain of VLBI observationsof radio
quasars (Kassiola, Kovner, & Blandford 1991). The best limits
presently are due to Henstock et al. (1995). A completely dif-
ferent approach utilizes the differential time delay between mul-
tiple images. A cosmological y-ray burst, which is gravitation-
aly lensed will be seen as multiple repetitions of a single event
(Blaes & Webster 1992). By searching the y-ray burst database
for (lack of) evidenceof repetitions, Qy; can be constrained over
a range of masses which extends below the VLBI range men-
tioned above. Theregionwithin QSOswherethe broad emission
linesare emitted islarger than the region emitting the continuum
radiation. LenseswithM ~ 1M, can magnify the continuumrel-
ativeto the broad emission lines and thereby reducethe observed
emissionlinewidths. Lensesof till smaller masses cause appar-
ent QSO variability, and hence from observationsof the variabil-
ity an upper limit to Qp can be derived. Finally, the time delay
due to lenses with very small masses can be such that the light
beamsfrom multiply imaged y-ray burstsinterfere so that the ob-
served burst spectra should show interference patterns. Table 1
summarizes these various techniques and gives the most recent
resultson Q.

As Table 1 shows, we can eliminate Qy ~ 1 in virtualy all
astrophysically plausible mass ranges. The limits are especially
tightin therange 10° < M/M, < 102, where Qy; is constrained
to belessthan afew per cent.

2.3.3. Microlensingin QSO 2237+0305

Although the Galactic microlensing projects described earlier
havedevel opedinto oneof the most exciting branchesof gravita-
tional lensing, the phenomenon of microlensing was in fact first
detected in a cosmological source, the quadruply-imaged QSO
2237+0305 (Irwin et a. 1989; Corrigan et al. 1991; Webster
et al. 1991; Pstensen et a. 1996). The lensing galaxy in QSO



TABLE 1.—Summary of techniquesto constrain Q) in point masses, along with the current best limits.

Technique References MassRange Limiton
Mg Qum
Image doubling of Surdej et al. (1993) 101 —10% <0.02
bright QSOs
Doubling of VLBI Kassiolaet al. (1991) 10°— 108 <0.05
compact sources Henstock et al. (1995)
Echoes from y-ray Nemiroff et al. (1993) 1005 —10%1 <1
bursts excluded
Nemiroff et al. (1994) (10° =) null result
Diff. magnification Canizares (1982) 10°1-20 <01
of QSO continuumvs. | Dalcanton et al. (1994) 103-60 <0.2
broad emission lines
Quasar variability Schneider (1993) 10—3-10"2 <01
Femtolensing of y-ray | Gould (1992a) 1077 -10"8 -
bursts Stanek et al. (1993) -

2237+0305isaspira at aredshift of 0.04 (Huchraet a. 1985).
The four quasar images are almost symmetrically located in a
cross-shaped pattern around the nucleus of the galaxy; hence the
system has been named the “Einstein Cross’. Uncorrelated flux
variations have been observed in QSO 2237+0305, possibly in
al four images, and these variations provide evidence for mi-
crolensing due to stars in the lensing galaxy. Figure 12 shows
the light curves of the four images.
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FiG. 12.—Light curves of the four imagesin the “ Einstein Cross’ QSO
223740305 since August 1990 (from @stensen et &l . 1996)

The interpretation of the microlensing events in QSO
2237+0305 is much less straightforward than in the case of
microlensing in the Galaxy. When a distant galaxy forms
multiple images, the surface mass density at the locations of the
images is of order the critical density, 2. If most of the local
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mass is made of stars or other massive compact objects (as is
likely in the case of QSO 223740305 since the four images
are superposed on the bulge of the lensing spiral galaxy), the
optical depth to microlensing approaches unity. In such a case,
the mean projected separation of the stars is comparable to or
smaller than their Einstein radii, and the effects of the various
microlenses cannot be considered independently. Complicated
caustic networks arise (Paczyhski 1986a; Schneider & Weiss
1987; Wambsganss 1990), and the observed light curves haveto
be analyzed statistically on the basis of numerical simulations.
A new and el egant method to compute microlensing light curves
of point sourceswas introduced by Witt (1993).

Two important conclusions have been drawn from the mi-
crolensing events in QSO 2237+0305. First, it has been shown
that the continuum emitting region in QSO 2237+0305 must
have a size ~ 10 cm (Wambsganss, Paczyfski, & Schneider
1990; Rauch & Blandford 1991) in order to producethe observed
amplitude of magnification fluctuations. Thisis the most direct
and stringent limit yet on the size of an optical QSO. Second,
it appears that the mass spectrum of microlenses in the lensing
galaxy is compatible with a normal mass distribution similar to
that observed in our own Galaxy (Seitz, Wambsganss, & Schnei-
der 1994).

3. LENSING BY GALAXIES

Lensing by point masses, the topic we have considered so far, is
particularly straightforward because of the ssimplicity of thelens.
When we consider galaxy lenseswe need to allow for the distrib-
uted nature of the mass, which is usually done via a parameter-
ized model. The level of complexity of the model is dictated by
the application at hand.

3.1. Lensing by a Sngular Isothermal Sphere

A simple model for the mass distribution in galaxies assumes
that the stars and other mass componentsbehave like particles of
an ideal gas, confined by their combined, spherically symmetric
gravitational potential. The equation of state of the “particles’,
henceforth called stars for simplicity, takes the form

_ PKT

—, (38)



where p and m are the mass density and the mass of the stars.
In thermal equilibrium, the temperature T is related to the one-
dimensional velocity dispersion oy, of the stars through

=KkT. (39)
The temperature, or equivalently the velocity dispersion, could
in general depend on radiusr, but it is usually assumed that the
stellar gasisisothermal, so that oy, is constant across the galaxy.
The equation of hydrostatic equilibrium then gives

GM(r)

p/
= — r2 y

Y

where M(r) is the mass interior to radius r, and primes denote
derivatives with respect to r. A particularly simple solution of
egs. (38) through (40) is

M'(r) = 4rr?p (40)

2
_o 1

This mass distribution is called the singular isothermal sphere.
Since p O r~2, the mass M(r) increases [ r, and therefore the

rotational velocity of test particlesin circular orbitsin the grav-
itational potential is

(41)

GM(r)
r

Vay(r) = = 202 = constant . (42)
The flat rotation curves of galaxies are naturally reproduced by
this model.

Upon projecting along the line-of-sight, we obtain the surface
mass density
_oil

where € is the distance from the center of the two-dimensional
profile. Referring to eg. (11), we immediately obtain the deflec-
0\2, _ Oy

tionangle
2
_ v o "
=g = (1) (220kms*1) ’

which is independent of & and points toward the center of the
lens. The Einstein radius of the singular isothermal sphere fol-
lows from eq. (20),

(43)

a (44)

O' Dds

_ g Das
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O =4
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=a. (45)
Due to circular symmetry, the lens equation is essentially one-
dimensional. Multipleimagesare obtained only if thesourcelies
inside the Einstein ring, i.e. if B < 6g. When this condition is
satisfied, the lens equation has the two solutions
Gi = B + eE . (46)
Theimagesat 6., thesource, and thelensall lieonastraight line.
Technically, athirdimagewith zeroflux islocated at 6 = 0. This
third image acquiresafinite flux if the singularity at the center of
thelensis replaced by a core region with afinite density.
The magnifications of the two images follow from eqg. (26),
O 4%

B B <1¢

If the source lies outside the Einstein ring, i.e. if B > Og, thereis
only oneimageat 6 =6, = 3+ 6.

6 6

&)

. (47

Wy = —
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3.2. Effective Lensing Potential
Before proceeding to more complicated galaxy lens models, it
isuseful to develop the formalism alittle further. Let usdefinea

scalar potential Y(8) whichisthe appropriately scaled, projected
Newtonian potential of the lens,

Dds

/ ®(Dgd,2) dz. (48)

The derivatives of | with respect to 8 have convenient proper-
ties. The gradient of Y with respect to 0 is the deflection angle,

FloW = DdDELIJ_ED—dS/DL(DdZ_ (49)
while the Laplacian is proportional to the surface-mass density
Zl

M2y 02 DdDas / D2odz= 32 DdDes 45
S
2 ~
_ 2 o, = %), (50)
zCI‘

where Poisson’s equation hasbeen used to rel ate the L apl acian of
@ to the mass density. The surface mass density scaled with its
critical value X, iscalled theconvergencek (60). Since| satisfies

the two-dimensional Poisson equation Dgw = 2K, the effective
lensing potential can be written in terms of K

W) = %/K(é')lmé—é'mze'. (51)

As mentioned earlier, the deflection angle is the gradient of ,
hence Lo
2 = 1 2. 0-0

dg(e)=0 :—/K o) =—=

@ =0v=7 [ &) 55

whichisequivalent to eg. (10) if we account for the definition of

> givenineg. (17).
The local properties of the lens mapping are described by its

Jacobian matrix A,

op <6ij ~

28
Aswe haveindicated, A isnothing but theinverse of the magni-
fication tensor M. The matrix A istherefore also caled the in-
verse magnification tensor. The local solid-angle distortion due
to the lensis given by the determinant of A. A solid-angle ele-
ment 32 of the source is mapped to the solid-angle element of
the image 862, and so the magnification is given by

d%e’, (52)

da;(6)
28,

2y(6)
06,06

~1.(53)

o
op?

This expression is the appropriate generalization of eq. (26)
when there is no symmetry.

Equation (53) shows that the matrix of second partial deriva-
tives of the potential Y (the Hessian matrix of () describes the
deviation of the lens mapping from the identity mapping. For
convenience, we introduce the abbreviation

anJ
6,06

1

(54)

= Wi - (55)



Since the Laplacian of Y is twice the convergence, we have

1 1
K=§(¢11+LIJ22)=§ tr i - (56)

Two additional linear combinations of y;; are important, and
these are the components of the shear tensor,

2 1 A ~
i® = Wz =v0)cos[209)] .
B = W=z =v@)sn|200)] .
(57)
With these definitions, the Jacobian matrix can be written
_ [(1-k-w1 —Y2
A= ( ) 1—K+V1>
_ 10 cos2¢  sin2¢
= (1-x) (O 1> _y<sin2(p —cosZcp> :
(58)

The meaning of the terms convergence and shear now becomes
intuitively clear. Convergence acting alone causes an isotropic
focusing of light rays, leading to an isotropic magnification of
a source. The source is mapped onto an image with the same
shape but larger size. Shear introduces anisotropy (or astigma-
tism) into the lens mapping; the quantity y = (V3 + V3)%/? de-
scribesthe magnitude of the shear and ¢ describesits orientation.
Asshownin Fig. 13, acircular source of unit radius becomes, in
the presence of both k and y, an dliptical image with major and
minor axes

(I-k=y)7 (@A-k+y7" (59)
The magnification is
p=detM = ! ! (60)

detA ~ [(1-K)2—y?~

Note that the Jacobian A isin general afunction of position 6.

3.3. Gravitational Lensing via Fermat's Principle
3.3.1. TheTime-Delay Function

The lensing properties of model gravitational lenses are espe-
cially easy to visualize by application of Fermat’s principle of
geometrical optics (Nityananda 1984, unpublished; Schneider
1985; Blandford & Narayan 1986; Nityananda& Samuel 1992).
From the lens equation (14) and the fact that the deflection angle
isthe gradient of the effective lensing potential Y, we obtain

(6—B) - Dow=0. (61)
This equation can be written as a gradient,
- 12 =
Ce [5(9— B)* - w} =0. (62)

The physical meaning of the term in square brackets becomes
more obvious by considering the time-delay function,

3 1 D DS 1 =2 =2 =2
@ = 1200 2g 2oy
= tgeom +tgrav -

(63)
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Convergence alone

Source

Convergence + Shear

FiG. 13.—lllustration of the effects of convergence and shear on acir-
cular source. Convergence magnifies the imageisotropically, and shear
deformsit to an ellipse.

The term tgeom is proportional to the square of the angular off-

set between 3 and 6 andisthe time delay due to the extra path
length of the deflected light ray relative to an unperturbed null
geodesic. The coefficient in front of the square brackets ensures
that the quantity corresponds to the time delay as measured by
the observer. The second termty.o, isthetime delay dueto grav-
ity andisidentical to the Shapiro delay introducedin eg. (3), with
an extrafactor of (1+ zg4) to alow for time stretching. Equations
(62) and (63) imply that images satisfy the condition ﬁat(_é) =0
(Fermat’s Principle).

In the case of acircularly symmetric deflector, the source, the
lens and the images have to lie on a straight line on the sky.
Therefore, it is sufficient to consider the section along this line
of the time delay function. Figure 14 illustrates the geometrical
and gravitational time delaysfor this case. The top panel shows
tgeom fOr aslightly offset source. Thecurveisaparabolacentered
on the position of the source. The central panel displaystgray for
anisothermal spherewith asoftened core. Thiscurveiscentered
on the lens. The bottom panel shows the total time-delay. Ac-
cording to the above discussion images are located at stationary
points of t(8). For the case shown in Fig. 14 there are three sta-
tionary points, marked by dots, and the corresponding values of
0 give the image positions.

3.3.2. Properties of the Time-Delay Function

In the general caseit is necessary to consider image locationsin
the two-dimensional space of 6, not just on aline. The images
are then located at those points 6; where the two-dimensional

time-delay surfacet(é) is stationary. Thisis Fermat’s Principle
in geometrical optics, which states that the actual trajectory fol-
lowed by alight ray issuch that the light-travel timeis stationary
relative to neighboring trajectories. The time-delay surfacet(0)
has a number of useful properties.



time delay

angular position

FIG. 14.—Geometric, gravitational, and total time delay of acircularly
symmetric lens for a source that is dlightly offset from the symmetry
axis. The dotted line shows the location of the center of the lens, and 3
shows the position of the source. Images arelocated at points wherethe
total time delay function is stationary. The image positions are marked
with dots in the bottom panel.

1 Theheight difference between two stationary pointson t(é)
givestherelativetime delay between the correspondingim-
ages. Any variability in the source is observed first in the
image corresponding to the lowest point on the surface, fol-
lowed by the extrema located at successively larger values
of t. InFig. 14 for instance, thefirstimageto vary istheone
that is farthest from the center of the lens. Although Fig.
14 correspondsto acircularly symmetric lens,this property
usually carriesover evenfor lensesthat are not perfectly cir-
cular. Thus, in QSO 0957+561, we expect the A image,
which is ~ 5" from the lensing galaxy, to vary sooner than
the B image, whichisonly ~ 1" fromthe center. Thisisin-
deed observed (for recent optical and radio light curves of
QS0 0957+561 see Schild & Thomson 1993; Haarsma et
al. 1996, 1997; Kundit¢ et a. 1996).

2 There are three types of stationary points of a two-
dimensional surface: minima, saddle points, and maxima.
The nature of the stationary points is characterized by
the eigenvalues of the Hessian matrix of the time-delay
function at the location of the stationary points,

02t(8)

T= 96,08

D(éij—wij):A. (64)

Thematrix T describesthelocal curvatureof thetime-delay

surface. If both eigenvaluesof T arepositive, t(8) iscurved
“upward” in both coordinate directions, and the stationary
point is a minimum. If the eigenvalues of T have oppo-
site signs we have a saddle point, and if both eigenvalues
of T are negative, we have a maximum. Correspondingly,
we can distinguish three types of images. Images of type |

arise at minima of t(6) wheredetA > 0andtr A > 0. Im-
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time delay

ages of typell are formed at saddle points of t(é) wherethe
eigenvalues have opposite signs, hence det A < 0. Images

of typelll are located at maxima of t(é) where both eigen-
values are negative and so detA > Oand tr A < 0.

Since the magnification is the inverse of detA, images of
types | and 11l have positive magnification and images of
type Il have negative magnification. The interpretation of
a negative | is that the parity of the imageis reversed. A
little thought shows that the three images shown in Fig. 14
correspond, from the left, to a saddle-point, a maximum
and a minimum, respectively. Theimages A and B in QSO
0957+561 correspond to the images on the right and |eft
in this example, and ought to represent a minimum and a
saddle-point respectively in the time delay surface. VLBI
observations do indeed show the expected reversal of par-
ity between the two images (Gorenstein et al. 1988).

lca

angular position

FIG. 15.—Thetime delay function of a circularly symmetric lens for a
source exactly behind the lens (top panel), a source offset from the lens
by a moderate angle (center panel) and a source offset by alarge angle
(bottom panel).

4 The curvature of t(8) measures the inverse magnification.

When the curvature of t(é) along one coordinate direction
is small, the image is strongly magnified along that direc-
tion, whileif t(6) hasalarge curvature the magnification is
small. Figure 15 displays the time-delay function of atyp-
ical circularly symmetric lens and a source on the symme-
try axis (top panel), adightly offset source (central panel),
and a source with a large offset (bottom panel). If the sep-
aration between source and lensislarge, only oneimageis
formed, whileif the sourceis close to the lens three images
areformed. Notethat, as the source moves, two images ap-
proach each other, merge and vanish. It is easy to see that,
quite generally, the curvature of t(8) goesto zero astheim-
ages approach each other; in fact, the curvature varies as
AB~1. Thus, we expect that the brightest image configura-
tions are obtained when a pair of images are close together,



just prior to merging. Thelinesin B-space on whichimages
mergearereferredto ascritical lines, whilethe correspond-
ing source positionsin E—space are called caustics. Critical
lines and caustics are important because (i) they highlight
regions of high magnification, and (ii) they demarcate re-
gionsof differentimagemultiplicity. (Thereader isreferred
to Blandford & Narayan 1986 and Erdl & Schneider 1992
for more details.)

When the sourceis far from the lens, we expect only asin-
gle image, corresponding to a minimum of the time delay
surface. New extrema are always created in pairs (e.g. Fig.
15). Therefore, the total number of extrema, and thus the
number of images of a generic (non-singular) lens, is odd
(Burke 1981).

3.4. Circularly Symmetric Lens Models

Table 2 compilesformulaefor the effectivelensing potential and
deflection angle of four commonly used circularly symmetric
lens models; point mass, singular isothermal sphere, isothermal
sphere with a softened core, and constant density sheet. In ad-
dition, one can have more general models with non-isothermal
radial profiles, e.g. density varying as radius to a power other
than —2.

Thegravitational time-delay functionstgra,(8) O —(8) of the
models in Table 2 areillustrated in Fig. 16. Note that the four
potentialslisted in Tab. 2 al aredivergent for 6 — . (Although
the three-dimensional potential of the point massdropsdr—1, its
projection along the line-of-sight divergeslogarithmically.) The
divergenceis, however, not serious sinceimagesaways occur at
finite 8 where the functions are well-behaved.

(a)

~—

time delay

angular position

FIG. 16.—Gravitational time-delay functions for the four circularly
symmetric effective potentials listed in Tab. 2. (a) point mass; (b) sin-
gular isothermal sphere; (c) softened isothermal sphere with core radius
0¢; (d) constant density sheet.

The image configurations produced by a circularly symmet-
ric lens are easily discovered by drawing time delay functions
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t(8) asin Fig. 15 corresponding to various offsets of the source
with respect to the lens. Figures 17 and 18 show typical image
configurations. Theright halves of the figuresdisplay the source
plane, and the left halves show the image configuration in the
lens plane. Since A isa 2 x 2 matrix, atypical circularly sym-
metric lens has two critical lines where det A vanishes, and two
corresponding caustics in the source plane. The caustic of the
inner critical curveisacircle while the caustic of the outer crit-
ical curve degeneratesto a critical point because of the circular
symmetry of thelens. A sourcewhichislocated outside the out-
ermost caustic has a single image. Upon each caustic crossing,
the image number changes by two, indicated by the numbersin
Fig. 17. The source shown asasmall rectanglein the right panel
of Fig. 17 hasthree images as indicated in the |eft panel. Of the
three image, the innermost one is usualy very faint; in fact, this
imagevanishesif thelenshasasingular core (thecurvatureof the
time delay function then becomesinfinite) asin the point massor
the singular isothermal sphere.

Caustics

Critical Lines

FIG.17.—Imaging of a point source by a non-singular, circularly-
symmetric lens. Left: image positions and critical lines; right: source
position and corresponding caustics.

Figure 18 shows the images of two extended sources lensed
by the same model asin Fig. 17. One sourceis located close to
the point-like caustic in the center of thelens. It isimaged onto
the two long, tangentially oriented arcs close to the outer criti-
cal curve and the very faint image at the lens center. The other
source is located on the outer caustic and forms aradially €lon-
gated image which is composed of two merging images, and a
third tangentially oriented image outside the outer caustic. Be-
cause of the image properties, the outer critical curve is called
tangential, and the inner critical curveiscalled radial.

3.5. Non-Circularly-Symmetric Lens Models

A circularly symmetric lens model is much too idealized and is
unlikely to describe real galaxies. Therefore, considerable work
has goneinto devel oping non-circularly symmetric models. The
bresking of the symmetry leads to qualitatively new image con-



TABLE 2.—Examplesof circularly symmetric lenses. The effective lensing potential {(8) and the deflection angle a(8) are given.

The coreradius of the softened isothermal sphereis ..

[ Lens Modé | () a(®) |
Point mass DD—ZS % In|@| DD—ZS strm
Singular isothermal sphere %dss 42—22 El DD—d: 42—32
Softened isothermal sphere DD—d: 42—32 (Gg + 62) e %d: 41:2 i @ +eez)1 7
Constant density sheet g 02 K6

FIG. 18.—Imaging of an extended source by anon-singular circularly-
symmetriclens. A sourcecloseto the point caustic at thelenscenter pro-
ducestwo tangentially oriented arc-likeimages closeto the outer critical
curve, and afaint image at the lens center. A source on the outer caus-
tic produces aradially elongated image on the inner critical curve, and
atangentially oriented image outside the outer critical curve. Because
of these image properties, the outer and inner critical curves are called
tangential and radial, respectively.

figurations (see Grossman & Narayan 1988; Narayan & Gross-
man 1989; Blandford et al. 1989).

3.5.1. Elliptical Galaxy Model

To describe an eliptical galaxy lens, we should ideally consider
dliptical isodensity contours. A straightforward generalization
of theisothermal sphere with finite core gives

29
[02+ (1— )02+ (1+£)62] />

2(81,8;) = (65)

where 81, 6, are orthogonal coordinatesal ong the major and mi-
nor axes of the lens measured from the center. The potential

W(By, 6,) corresponding to this density distribution hasbeen cal-
culated by Kassiola & Kovner (1993) but is somewhat compli-
cated. For the specific case when the coreradius 6. vanishes, the
deflection angle and the magnification take on asimple form,

o, = 8C% V2ecos@
1T V2ec? (1—ecos2@)1/2 |’
oy — 8nGZo, 1 V2esing ’
V2ec? (1—ecos2@)l/2
2
pt=1 BnG2o (66)

 c2(62 4 02)1/2(1 — ecos2g) /2’

where @ is the polar angle corresponding to the vector position
0=(01,62).
Instead of the elliptical density model, it is simpler and often

sufficient to model a galaxy by means of an elliptical effective
lensing potential (Blandford & Kochanek 1987)

Dgs , 0% 1/2
W(B1,682) = FE4m |8 +(1-)0f+(1+e)85|  , (67)
S

where € measures the dllipticity. The deflection law and magni-
fication tensor corresponding to this potential are easily calcu-
lated using the equations given in Sect. 3.2.. When ¢ is large,
the elliptical potential model is inaccurate because it gives rise
to dumbbell-shaped isodensity contours, but for small €, itisa
perfectly viable lens model.

3.5.2. External Shear

The environment of a galaxy, including any cluster surrounding
theprimary lens, will in general contribute both convergenceand
shear. The effective potential due to the local environment then
reads

Y

W(61,02) = 5 (63 +03)+ 2 (87 -6) (69

inthe principal axes system of the external shear, wherethe con-

vergencek and shear y arelocally independent of 8. An external
shear breaksthecircular symmetry of alensand thereforeit often
has the same effect as introducing ellipticity in the lens (Kovner
1987). It isfrequently possible to model the same system either
with an elliptical potential or with acircular potential plusan ex-
ternal shear.
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3.5.3. Image Configurationswith a Non-Circularly

Symmetric Lens

In contrast to the circularly symmetric case, for a non-circular
lensthe source, lensand imagesare not restricted tolieon aline.
Therefore, it is not possible to analyze the problem via sections
of the time delay surface aswedid in Figs. 14 and 15. Fermat's
principle and the time delay function are still very useful but it

is necessary to visualize the full two-dimensional surface t(8).
Those who attended the lecturesin Jerusalem may recall the lec-
turer demonstrating many of the qualitative features of imaging
by dliptical lenses using a Mexican hat to ssimulate the time de-
lay surface. In the following, we merely state the results.

Figures 19 and 20 illustrate the wide variety of image configu-
rationsproduced by an elliptical galaxy lens(or acircularly sym-
metric lenswith external shear). In each panel, the source plane
with causticsis shown on theright, and the image configurations
together with the critical curvesare shown on theleft. Compared
to the circularly symmetric case, the first notable difference in-
troduced by dlipticity isthat the central caustic which was point-
like is now expanded into a diamond shape; it is referred to as
the astroid caustic (also tangential caustic). Figure 19 showsthe
images of a compact source moving away from the lens center
aong asymmetry line (right panel) and aline bisecting the two
symmetry directions (Ieft panel). A source behind the center of
the lens has five images because it is enclosed by two caustics.
One image appears at the lens center, and the four others form
a cross-shaped pattern. When the source is moved outward, two
of thefour outer images movetoward each other, merge, and dis-
appear as the source approaches and then crosses the astroid (or
tangential) caustic. Threeimagesremain until the source crosses
the radial caustic, when two more images merge and disappear
at theradial critical curve. A singleweakly distorted imageisfi-
nally left when the source has crossed the outer caustic. When
the source moves toward a cusp point (right panel of Fig. 19),
three images merge to form a single image. All the image con-
figurations shown in Fig. 19 are exhibited by various observed
cases of lensing of QSOs and radio quasars (e.g. Keeton & Ko-
chanek 1996).

Figure 20illustrates what happenswhen asourcewith alarger
angular size is imaged by the same lens model as in Fig. 19.
Large arc-like images form which consist either of three or two
merging images, depending on whether the source lies on top of
acuspinthetangential caustic (topleft panel) or on aninter-cusp
segment (a so-called fold caustic, top right panel). If the source
is even larger (bottom panels), four images can merge, giving
rise to complete or incomplete rings. Radio rings such as MG
113140456 (Hewitt et al. 1987) correspond to the configuration
shown at bottom right in Fig. 20.

3.6. Sudiesof Galaxy Lensing
3.6.1. Detailed Models of Individual Cases of Lensing

Gravitational lens observations provide a number of constraints
which can be used to model the massdistribution of thelens. The
angular separation between the images determines the Einstein
radius of the lens and therefore gives the massM (eq. 22) or the
velocity dispersion oy (eg. 45) in simple models. The appear-
ance or absence of the central image constrains the core size of
thelens. Thenumber of imagesand their positionsrelativeto the
lens determine the ellipticity of the galaxy, or equivalently the
magnitude and orientation of an external shear. Since the radial
and tangential magnifications of images reflect the local curva
tures of the time-delay surface in the corresponding directions,
the relative image sizes constrain the slope of the density profile
of thelens. Thisdoesnot work very well if all one hasare multi-
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FI1G.20.—Images of resolved sources produced by an elliptica lens.
Top panels: Large arcs consisting of two or three merging images are
formed when the source lies on top of afold section (top left panel) or
acusp point (top right panel) of the tangential caustic. Bottom panels:
A source which covers most of the diamond-shaped caustic produces a
ring-like image consisting of four merging images.

ply imaged point images (Kochanek 1991). However, if theim-
ageshaveradio structurewhich can beresolved with VLBI, mat-
tersimprove considerably.

Figure 21 showsan extended, irregularly shaped source which
is mapped into two images which are each linear transforma-
tions of the unobservable source. The two transformations are
described by symmetric 2 x 2 magnification matrices M, and
M, (cf. eg. 53). These matrices cannot be determined from ob-
servations since the original source is not seen. However, the
two images are related to each other by alinear transformation
described by the relative magnification matrix My, = MM,
which can be measured viaVLBI observations(Gorensteinet a.
1988; Falco, Gorenstein, & Shapiro 1991). Thematrix My, isin
general not symmetric and thus contains four independent com-
ponents, which are each functions of the parameters of the lens
model. Infavorable cases, asin QSO 0957+561, it is even pos-
sibleto measure the spatial gradient of My, (Garrett et al. 1994)
which provides additional constraints on the model.

Radio rings with hundreds of independent pixels are partic-
ularly good for constraining the lens model. As shown in the
bottom panels of Fig. 20, ring-shaped images are formed from
extended sources which cover a large fraction of the central
diamond-shaped caustic. Rings provide large numbers of in-
dependent observational constraints and are, in principle, ca
pable of providing the most accurate mass reconstructions of
the lens. However, specia techniques are needed for analyzing
rings. Three such techniques have been developed and applied
toradiorings, viz.

1 The Ring Cycle agorithm (Kochanek et al. 1989) makes
use of the fact that lensing conserves surface brightness.
Surface elementsof an extended imagewhich arisefromthe
same source element should therefore share the same sur-
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FI1G. 19.—Compact source moving away from the center of an elliptical lens. Left panel: source crossing afold caustic; right panel: source crossing
acusp caustic. Within each panel, the diagram on the left shows critical lines and image positions and the diagram on the right shows caustics and

source positions.
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FIG. 21.—Shows an extended source which is mapped into two re-
solved images. While the source and the individua magnification ma-
trices M1 and M, are not observable, the relative magnification matrix
My =M 1M can be measured. This matrix provides four indepen-
dent congtraints on the lens model.

face brightness (to within observational errors). This pro-
vides a large number of constraints which can be used to
reconstruct the shape of the original source and at the same
time optimize a parameterized lens model.

2 The LensClean technique (Kochanek & Narayan 1992) isa
generalization of the Ring Cycle algorithm which uses the
Clean algorithm to allow for the finite beam of the radio
telescope.
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3 LensMEM (Wallington, Narayan, & Kochanek 1994;
Wallington, Kochanek, & Narayan 1996) is analogous
to LensClean, but uses the Maximum Entropy Method
instead of Clean.

3.6.2. Satistical Modeling of Lens Populations

Thestatistics of lensed QSOs can beused to infer statistical prop-
erties of the lens population. In this approach, parameterized
models of the galaxy and QSO populations in the universe are
used to predict the number of lensed QSOs expected to be ob-
served in agiven QSO sample and to model the distributions of
variousobservables such astheimage separation, flux ratio, lens
redshift, source redshift, etc. An important aspect of such stud-
iesisthe detailed modeling of selection effectsin QSO surveys
(Kochanek 1993a) and proper allowance for magnification bias
(Narayan & Wallington 1993). The lensing galaxies are usually
modeled either asisothermal spheresor intermsof simpleelipti-
cal potentials, with an assumed galaxy luminosity function and a
relation connecting luminosity and galaxy mass (or velocity dis-
persion). The QSO number-countasafunction of redshift should
be known sinceit strongly influences the lensing probability.

Statistical studies have been fairly successful in determining
properties of the galaxy population in the universe, especialy at
moderate redshifts where direct observations are difficult. Use-
ful results have been obtained on the number density, velocity
dispersions, coreradii, etc. of lenses. Resolved radio QSOs pro-
vide additional information on the internal structure of galaxy
lensessuch astheir ellipticities (Kochanek 1996b). By and large,
the lens population required to explain the statistics of multiply
imaged optical and radio QSOsturnsout to be consistent with the
locally observed galaxy population extrapolated to higher red-
shifts (Kochanek 1993b; Maoz & Rix 1993; Surdej et al. 1993;
see below).

So far, statistical studies of galaxy lensing neglected the con-



tribution from spirals because their velocity dispersions are sig-
nificantly lower than those of elipticals. However, most of the
lenses found by the CLASS survey (Myerset al. 1995) are clas-
sified as SO or spiral galaxies. This result has recently triggered
investigationsof lens model sthat contain disksin addition to ha-
los. While redlistic disks increase the multiple-image cross sec-
tions of halo-only modelsonly by ~ 10% (Wang & Turner 1997,
Keeton & Kochanek 1998), they allow for much more convinc-
ing models of lens systems such as B 1600, where anearly edge-
on disk is observed (Maller, Flores, & Primack 1997).

3.7. Astrophysical Results from Galaxy Lensing
3.7.1. Galaxy Srructure

The structure of galaxies influences lensing statistics as well as
the appearances of individual lensed objects. Gravitational lens-
ing can therefore be used to constrain galaxy modelsin various
ways.

As described earlier, galaxy lens models predict a weak cen-
tral image whose flux depends on the core radius of the galaxy.
The central imageis missing in virtually every known multiply-
imaged quasar. The lensing galaxiesin these cases must there-
fore have very small core radii, rc < 200 pc (Wallington &
Narayan 1993; Kassiola & Kovner 1993; Grogin & Narayan
1996).

Kochanek (1993b) has shown that the observed distribution
of image separations in the observed lens sample of quasars re-
quiresthat most galaxies must have dark haloswith characteris-
tic velocity dispersionsof 07j,, ~ 220+ 20kms L. If these dark
halos were absent, virtually no image separations larger than 2
would be produced (Maoz & Rix 1993), whereas several wide
separation examplesare known. Multiply-imaged quasarsdo not
generally constrain the size of the halo because the constraints
only extend out to about the Einstein radius, which is ~ 10 kpc
at the distance of the lens. The largest halo inferred from direct
modeling of amultiply-imaged quasar isin thelensing galaxy of
QS0 0957+561; the halo of this galaxy has been shown to have
aradiusof at least 15h~1 kpc, whereh = Hg /100 kms~tMpc—?t
isthereduced Hubble constant (Grogin & Narayan 1996). Brain-
erd et al. (1996) investigated weak lensing of background gal ax-
ies by foreground galaxies and found statistical evidencefor ha-
los extending out to radii ~ 100 kpc. At these radii, they deter-
mined that an L, galaxy must have a mass ~ 10?M.. Com-
parable results were obtained by Dell’ Antonio & Tyson (1996)
and Griffiths et al. (1996). Natargjan & Kneib (1996) show that
the sizes of halos around galaxies in clusters could be inferred
by measuring the weak lensing effect of these galaxies on back-
ground sources.

Only in two cases has it been possible to constrain signifi-
cantly theradial massdensity variation of thelensing galaxy. As-
suming a surface mass density profile ¥ O r—, the best fitting
values of a in these two examples are

(0.9-11) inMG 1654+134
o= (Kochanek 1995a) (69)
~) (1.0-12) inQSO 0957+561

(Grogin & Narayan 1996)

Both sources have particularly good data — the first is aradio
ring and the second has extensive VLBI observations — and it
is this feature that allows a good constraint on a. Note that the
density variationis close to isothermal in both cases. Recent ob-
servations of QSO 0957+561 with the Hubble Space Telescope
(Bernstein et al. 1997) show that the lensing galaxy is shifted by
45 mas from the position assumed by Grogin & Narayanin their
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model. This will modify the estimate of a for this galaxy, but
perhaps by only afraction of the stated uncertainty.

The observed morphologies of images in lensed quasars are
similar to those shown in Fig. 19, which means that most lenses
arenot circularly symmetric. If thenon-circularity isentirely due
to the dlipticity of the galaxy mass, then typical lipticities are
fairly large, ~ E3 — E4 (Kochanek 1996b). However, it is pos-
sible that part of the effect comes from external shear. The data
arecurrently not ableto distinguish very well between the effects
of galaxy dlipticity and external shear. In many well-modeled
examples, the mass ellipticity required to fit the imagesislarger
than the dllipticity of the galaxy isophotes, suggesting either that
the dark matter is more asymmetric than the luminous matter or
that there is a significant contribution from external shear (Ko-
chanek 1996b; Bar-Kana 1996). Keeton, Kochanek, & Seljak
(1997) find the external cosmic shear insufficient to explainfully
the discrepancy between the dlipticity of the galaxy isophotes
and the ellipticity of the mass required by lensmodels. Thisim-
pliesthat at least part of the inferred lipticity of the mass dis-
tributionisintrinsic to the galaxies.

3.7.2. Galaxy Formation and Evolution

The angular separations of multiple images depend on the lens
mass, and the number of observed multiply imaged quasarswith
a given separation depends on the number density of galaxies
with the corresponding mass. The usual procedure to set lim-
its on the galaxy population starts with the present galaxy pop-
ulation and extrapolates it to higher redshifts assuming some
parameterized prescription of evolution. The parameters are
then constrained by comparing the observed statistics of lensed
sources to that predicted by the model (Kochanek 1993b; Maoz
& Rix 1993; Rix et al. 1994; Mao & Kochanek 1994).

If galaxiesformed recently, most of the optical depth for mul-
tiple imaging will be from low-redshift galaxies. An analysis
which uses al the known information on lensed quasars, such
as the redshifts of lenses and sources, the observed fraction of
lensed quasars, and the distribution of image separations, can be
used to set limits on how recently galaxies could have formed.
Mao & Kochanek (1994) conclude that most galaxies must have
collapsed and formed by z ~ 0.8 if the universeiswell described
by the Einstein-de Sitter model.

If elliptical galaxiesare assembled from merging spiral galax-
ies, then with increasing redshift the present popul ation of ellip-
ticals is gradually replaced by spirals. This does not affect the
probability of producing lensed quasars as the increase in the
number of lens galaxies at high redshift is compensated by the
reduced lensing cross-sections of these galaxies. However, be-
cause of their lower velocity dispersion, spirals produce smaller
image separations than ellipticals (the image splitting is propor-
tional to 02, cf. eq. 45). Therefore, a merger scenario will pre-
dict smaller image separations in high redshift quasars, and the
observed image separations can be used to constrain the merger
rate (Rix et a. 1994). Assuming that the mass of the galaxies
scales with ¢ and is conserved in mergers, Mao & Kochanek
(1994) find that no significant mergerscould have occurred more
recently than z~ 0.4 in an Einstein-de Sitter universe.

If the cosmological constant is large, say /Ag > 0.6, the vol-
ume per unit redshift ismuch larger than in an Einstein-de Sitter
universe. For afixed number density of galaxies, the total num-
ber of available lenses then increases steeply. For such model
universes, lens statistics would be consistent with recent rapid
evolution of the galaxy population. However, studies of gravita-
tional clustering and structureformation show that galaxiesform
at highredshiftsprecisely when g islarge. When thisadditional
congtraint is included it is found that there is no scenario which



allows recent galaxy formation or evolution in the universe (see
also Sect. 3.7.5.).

Sincelensing statistics are fully consistent with the known lo-
cal galaxy population extrapolated to redshifts z ~ 1, the num-
ber densities of any dark “failed” galaxies are constrained quite
strongly. Asafunctionof velocity dispersion o, the current con-
straints are (Mao & Kochanek 1994)

Ngark < {
3.7.3. Constraint on CDM

The popular cold dark matter (CDM) scenario of structure for-
mationinits*“standard” variant (Qg = 1, Ag = 0 and COBE nor-
malized) predicts the formation of large numbers of dark mat-
ter halos in the mass range between galaxies and galaxy clus-
ters. The implications of these halos for lensing were consid-
ered by Narayan & White (1988) and more recently by Cen et
a. (1994); Wambsganss et al. (1995); Wambsganss, Cen, & Os-
triker (1998); and Kochanek (1995b). The latter authors have
shown quite convincingly that the standard CDM model pro-
duces many more wide-separation quasar pairs than observed.
For example, a recent search of a subsample of the HST snap-
shot survey for multiply imaged QSOs with image separations
between 7" and 50" found a null result (Maoz et al. 1997). To
save CDM, either the normalization of the model needs to be
reduced to ag ~ 0.5+ 0.2, or the long-wavelength slope of the
power spectrum needs to be lowered to n ~ 0.5+ 0.2. Both of
these options are inconsistent with the COBE results. The prob-
lem of the over-production of wideanglepairsisjust amanifesta-
tion of the well-known problem that standard COBE-normalized
CDM over-produces cluster-scal e mass condensationsby alarge
factor. Models which are adjusted to fit the observed number
density of clusters also satisfy the gravitational lens constraint.

If the dark halos have large core radii, their central density
could drop below the critical value for lensing and this would
reduce the predicted number of wide-separation lens systems.
Largecoreradii thusmay save standard CDM (Flores& Primack
1996), but there is some danger of fine-tuning in such an expla-
nation. Asdiscussedin Sect. 3.7.1., galaxy coresare quite small.
Therefore, one needs to invoke a rather abrupt increase of core
radius with increasing halo mass.

0.15h*Mpc2  for o, =100kms™!
0.032h3Mpc=2 for o, =150kms™1
0.017h®Mpc=2 for o, =200kms™1

(70)

3.7.4. Hubble Constant

The lens equation is dimensionless, and the positions of im-
ages as well as their magnifications are dimensionless numbers.
Therefore, information on the image configuration alone does
not provide any constraint on the overall scale of the lens geom-
etry or the value of the Hubble constant. Refsdal (1964) realized
that thetime delay, however, is proportional to the absolute scale
of the system and does depend on Hq (cf. Fig. 22).

To seethis, wefirst notethat the geometrical time delay issim-
ply proportional to the path lengths of the rays which scale as
Hy*. The potential time delay also scales as Hy ! because the
linear size of the lens and its mass have this scaling. Therefore,
for any gravitational lens system, the quantity

HoAt (71)
depends only on the lens model and the geometry of the system.
A good lens model which reproduces the positions and magni-
fications of the images providesthe scaled time delay Hy AT be-
tween the images. Therefore, a measurement of the time delay
At will yield the Hubble constant Hy (Refsdal 1964, 19664).
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FI1G. 22.—Sketch of the dependence of theoverall scale of alenssystem
on the value of the Hubble constant.

To measure the time delay, the fluxes of the imagesneed to be
monitored over aperiod of timesignificantly longer than thetime
delay in order to achievereasonable accuracy. In fact, the analy-
sis of theresulting light curvesis not straightforward because of
uneven data sampling, and careful and sophisticated data analy-
sis techniques have to be applied. QSO 09574561 has been
monitored both in the optical (Vanderriest et al. 1989; Schild &
Thomson 1993; Kundi¢ et a. 1996) and radio wavebands (L ehér
et a. 1992; Haarsmaet al. 1996, 1997). Unfortunately, analysis
of the data has led to two claimed time delays:

At = (1.48+0.03) years (72)
(Press, Rybicki, & Hewitt 1992a,b) and
AT ~ 1.14years (73)

(Schild & Thomson 1993; Pelt et al. 1994, 1996). The discrep-
ancy appearsto have been resolved in favor of the shorter delay.
Haarsmaet a. (1996) find At = 1.03 — 1.33years and Kundi€ et
al. (1996) derive At = 417 + 3daysusing a variety of statistical
techniques.

In addition to ameasurement of thetimedelay, itisalso neces-
sary to develop areliable model to calculate the value of HpAT.
QSO 09574561 has been studied by a number of groups over
theyears, with recent work incorporating constraintsfrom VLBI
imaging (Falco et al. 1991). Grogin & Narayan (1996) estimate
the Hubble constant to be given by

At
1.14yr

1
Ho = (82+6)(1—K) ( ) kmsiMpct  (74)

where K refers to the unknown convergence due to the cluster
surrounding the lensing galaxy. Since the cluster k cannot be
negative, this result directly gives an upper bound on the Hub-
ble constant (Hp < 88 kms tMpc~ for At = 1.14 years). Ac-
tually, k can also be modified by large scale structure along the



line of sight. In contrast to the effect of the cluster, this fluctu-
ation can have either sign, but the rms amplitude is estimated
to be only afew per cent (Seljak 1994; Bar-Kana 1996). Surpi,
Harari, & Frieman (1996) confirm that large-scal e structure does
not modify thefunctional relationship between lens observables,
and therefore does not affect the determination of Hy.

To obtain an actual value of Hp instead of just an upper bound,
we need an independent estimate of K. Studies of weak lensing
by the cluster (Fischer et a. 1997) give kK = 0.24 + 0.12 (20)
at the location of the lens (cf. Kundi€ et al. 1996). This corre-
sponds to Hp = 62712 kms 1Mpc~1. Another technique is to
measure the velocity dispersion agy of the lensing galaxy, from
which it is possible to estimate k (Falco et al. 1992; Grogin &
Narayan 1996). Falco et al. (1997) used the Keck telescope to
measure Oggq = 279+ 12 kms~1, which corresponds to Hy =

66+ 7kms tMpcL. Although most modelsof QSO 0957+561
are based on a spherically symmetric galaxy embedded in an ex-
ternal shear (mostly dueto the cluster), introduction of dlipticity
in the galaxy, or a point mass at the galaxy core, or substructure
inthecluster seemto havelittle effect on the estimate of Hq (Gro-
gin & Narayan 1996).

A measurement of the time delay has also been attempted in
the Einstein ring system B 0218+ 357. In this case, a single
galaxy is responsible for the small image splitting of 03. The
time delay has been determined to be 12 + 3 days (10 confidence
limit) which translates to Hy ~ 60 kms 1 Mpc 1 (Corbett et al.
1996).

Schechter et al. (1997) recently announced a time delay of
At = 23.7 + 3.4days between images B and C of the quadruple
lens PG 1115+080. Using a different statistical technique, Bar-
Kana(1997) finds At = 25.0"3 3 days (95% confidence) fromthe
same data. Their best fitting lens model, where the lens galaxy
aswell as an associated group of galaxies are modeled as singu-
lar isothermal spheres, gives Hy = 42 + 6kms~1Mpc 1. Other
models give larger values of Hg but fit the data less well. Kee-
ton & Kochanek (1997) have considered amore general class of
modelswherethelensing galaxy is permitted to beelliptical, and
present afamily of modelswhich fit the PG 11154080 datawell.
They estimate Hy = 60+ 17kms~*Mpc 2. With more accurate
dataon the position of the lens galaxy, this estimate could beim-
proved to Hy = 5373°kms 1 Mpc1 (Courbin et al. 1997).

The determination of Hy through gravitational lensing has a
number of advantages over other techniques.

1 The method works directly with sources at large redshifts,
z~ 0.5, whereas most other methodsarelocal (observations
within ~ 100 Mpc) where peculiar velocities are still com-
parable to the Hubble flow.

While other determinations of the Hubble constant rely on
distanceladderswhich progressively reach out toincreasing
distances, the measurement via gravitationa time delay is
aone-shot procedure. One measures directly the geometri-
cal scale of thelens system. This meansthat the lens-based
method is absolutely independent of every other method
and at the very least providesavaluabletest of other deter-
minations.

The lens-based method is based on fundamental physics
(the theory of light propagation in General Relativity),
which is fully tested in the relevant weak-field limit of
gravity. Other methods rely on models for variable stars
(Cepheids) or supernova explosions (Type I1), or empiri-
cal calibrationsof standard candles (Tully-Fisher distances,
Type | supernovae). Thelensing method doesrequire some

21

information on the “shapes’ of galaxies which is used to
guide the choice of a parameterized lens model.

3.7.5. Cosmological Constant

A large cosmological constant /\g increases the volume per unit
redshift of the universe at high redshift. As Turner (1990) re-
alized, this means that the relative number of lensed sources
for a fixed comoving number density of galaxies increases
rapidly with increasing Ag. Turning this around it is pos-
sible to use the observed probability of lensing to constrain
No. This method has been applied by various authors (Turner
1990; Fukugita & Turner 1991; Fukugita et a. 1992; Maoz
& Rix 1993; Kochanek 19964), and the current limit is Ay <
0.65 (20 confidencelimit) for a universe with Qg+ Ag = 1.
With a combined sample of optical and radio lenses, this limit
could be dightly improved to Ag < 0.62 (20; Falco, Kochanek,
& Mufioz 1998). Malhotra, Rhoads, & Turner (1996) claim that
there is evidence for considerable amounts of dust in lensing
galaxies. They arguethat the absorption in dusty lenses can rec-
oncilealarge cosmological constant with the observed multiple-
image statistics.

A completely independent approach (K ochanek 1992) consid-
erstheredshift distribution of lenses. For agiven sourceredshift,
the probability distribution of zy peaksat higher redshift with in-
creasing /\g. Once again, by comparing the observations against
the predi cted distributionsone obtainsan upper limit on Ag. This
methodisless sensitivethanthefirst, but givesconsistent results.

Another technique consists in comparing the observed QSO
image separations to those expected from the redshifts of lenses
and sources and the magnitudes of the lenses, assuming certain
valuesfor Qg and Ag. Thecosmological parametersarethen var-
ied to optimize the agreement with the observations. Applying
this approach to a sample of seven lens systems, Im, Griffiths,
& Ratnatunga (1997) find Ag = 0.6470.32 (1o confidence limit)
assuming Qg +/\p = 1.

4., LENSING BY GALAXY CLUSTERS AND LARGE-SCALE
STRUCTURE

Two distinct types of lensing phenomenaare observed with clus-
ters of galaxies (Fig. 23):

1 Rich centrally condensed clusters occasionally produce gi-
ant arcs when a background galaxy happens to be aligned
with one of the cluster caustics. These instances of lens-
ing areusually analyzed with techniquessimilar to those de-
scribed in Sect. 2. for galaxy lenses. In brief, a parameter-
ized lensmodel is optimized so asto obtain agood fit to the
observed image.

Every cluster produces weakly distorted images of large
numbers of background galaxies. These images are called
arclets and the phenomenon is referred to as weak lensing.
With the development of the Kaiser & Squires (1993) algo-
rithm and its variants, weak lensing is being used increas-
ingly to derive parameter-free two-dimensional mass maps
of lensing clusters.

In addition to these two topics, we also discuss in this sec-
tion weak lensing by large-scale structure in the universe. This
topic promises to develop into an important branch of gravita-
tional lensing, and could in principle provide a direct measure-
ment of the primordia power spectrum P(k) of the density fluc-
tuationsin the universe.



FIG. 23.—Hubble Space Telescope image of the cluster Abell 2218,
showing anumber of arcs and arclets around the two centers of the clus-
ter. (NASA HST Archive)

4.1. Srong Lensing by Clusters — Giant Arcs
4.1.1. Basic Optics

We begin by summarizing afew features of generic lenseswhich
we have aready discussed in the previous sections. A lensis

fully characterized by its surface mass density Z(é). Strong lens-
ing, which is accompanied by multipleimaging, requiresthat the
surface mass density somewherein thelens should belarger than
the critical surface mass density,

D > -1

o (75)

> >3y =035gcm™3 (

where D is the effective lensing distance defined in eg. (18). A
lens which satisfies this condition produces one or more caus-
tics. Examplesof the caustics produced by an elliptical lenswith
a finite core are shown in Fig. 19. Sources outside all caus-
tics produce a single image; the number of images increases by
two upon each caustic crossing toward the lens center. As il-
lustrated in Figs. 19 and 20, extended sources like galaxies pro-
ducelargearcsif they lie ontop of caustics. Thelargest arcsare
formed from sources on cusp points, because then three images
of asource mergeto formthearc (cf. theright panel in Fig. 19 or
thetop right panel in Fig. 20). At the so-called “lips’ and “ beak-
to-beak” caustics, which arerelated to cusps, similarly largearcs
areformed. Sourceson afold caustic giveriseto two rather than
three merging images and thus form moderate arcs.

4.1.2. Cluster Mass Inside a Giant Arc

Thelocation of an arcin acluster providesasimple way to esti-
mate the projected cluster mass within a circle traced by the arc
(cf. Fig. 24). For acircularly symmetric lens, the average sur-
face mass density (%) within the tangential critical curve equals
the critical surface mass density ;. Tangentialy oriented large
arcsoccur approximately at thetangential critical curves. Thera
dius B4 of thecircletraced by thearc thereforegivesan estimate
of the Einstein radius 6g of the cluster.

Thuswe have
(Z(Bac)) ~ (2(Bg)) = 2o, (76)
and we obtain for the mass enclosed by 6 = O
2 14 8 \°/ D
M(6) = 2 Ti(DgB)” ~ 1.1x 10 M | 5o o)
(77)
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FIG. 24.—Tangential arcs constrain the cluster mass within a circle
traced by the arcs.

Assuming an isothermal model for the mass distribution in the
cluster and using eg. (45), we obtain an estimate for the velocity

dispersion of the cluster,
> 1/2 ( > 1/2

In addition to thelensing technique, two other methodsare avail-
ableto obtainthe mass of acluster: the observed velocity disper-
sion of the cluster galaxies can be combined with the viria the-
orem to obtain one estimate, and observations of the X-ray gas
combined with the condition of hydrostatic equilibrium provides
another. These three quite independent techniques yield masses
which agree with one another to within afactor ~ 2 — 3.

The mass estimate (77) is based on very simple assumptions.
It can beimproved by modeling the arcs with parameterized lens
mass distributions and carrying out more detailed fits of the ob-
served arcs. We list in Tab. 3 masses, mass-to-blue-light ratios,
and velocity dispersions of three clusters with prominent arcs.
Additional results can be found in the review article by Fort &
Mellier (1994).

0
28"
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Dae (78)

oy ~ 10°kms?! (

4.1.3. Asphericity of Cluster Mass

The fact that the observed giant arcs never have counter-arcs
of comparable brightness, and rarely have even small counter-
arcs, implies that the lensing geometry has to be non-spherical
(Grossman & Narayan 1988; Kovner 1989; see also Figs. 19 and
20). Cluster potentials therefore must have substantial quadru-
pole and perhaps a so higher multipole moments. In the case of
A 370, for example, there are two cD galaxies, and the potential
quadrupol eestimated from their separation is consistent with the
quadrupolerequired to model the observed giant arc (Grossman
& Narayan 1989). The more detailed model of A 370 by Kneib
et a. (1993) shows aremarkabl e agreement between the lensing
potential and the strongly aspheric X-ray emission of the cluster.



TABLE 3.—Masses, mass-to-blue-light ratios, and velocity dispersions for three clusters with prominent arcs.

Cluster M M/Lg o Reference
(Mg) (solar) kmst
A 370 ~5x10%h~t ~270h ~1350 Grossman& Narayan 1989
Bergmann et al. 1990
Kneib et al. 1993
A 2390 ~8x108h1 ~240h ~ 1250 Pell6etal. 1991
MS2137-23 | ~3x10%h~1 ~500h ~ 1100 Meéllier etal. 1993

Large deviations of the lensing potentialsfrom spherical sym-
metry also help increase the probability of producing large arcs.
Bergmann & Petrosian (1993) argued that the apparent abun-
dance of large arcs relative to small arcs and arclets can be rec-
onciled with theoretical expectationsif aspheric lensmodels are
takeninto account. Bartelmann & Weiss (1994) and Bartelmann,
Steinmetz, & Weiss (1995) showed that the probability for large
arcs can be increased by more than an order of magnitudeif as-
pheric cluster models with significant substructure are used in-
stead of smooth spherically symmetric models. The essential
reason for thisisthat the largest (three-image) arcs are produced
by cusp caustics, and asymmetry increases the number of cusps
on the cluster caustics.

4.1.4. CoreRadii

If acluster is able to produce large arcs, its surface-mass den-
sity in the core must be approximately supercritical, ~ 2> . If
applied to simple lens models, e.g. softened isothermal spheres,
this condition requires

) (5)

Narayan, Blandford, & Nityananda (1984) argued that cluster
mass distributions need to have smaller core radii than those de-
rived from optical and X-ray observationsif they areto produce
strong gravitational lens effects. This has been confirmed by
many later effortsto model giant arcs. In virtually every casethe
core radius estimated from lensing is significantly smaller than
the estimates from optical and X-ray data. Some representative
results on lens-derived core radii are listed in Tab. 4, where the

estimates correspond to Hy = 50 kms™1M pcfl.

Oy
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103 kms-1

Bcore < 15"
core S ( De

(79)

TABLE 4.—Limits on cluster core radii from models of large
arcs.

Cluster rcore  Reference
(kpe)
A 370 <60 Grossman & Narayan (1989)
<100 Kneibetal. (1993)
MS2137-23 ~50  Mdlier et al. (1993)
Cl 002441654 | <130 Bonnetet a. (1994)
MS 044040204 | < 90 Luppinoeta. (1993)

Statistical analyses based on spherically symmetric cluster
models lead to similar conclusions. Miralda-Escudé (1992,
1993) argued that cluster coreradii can hardly be larger than the
curvature radii of large arcs. Wu & Hammer (1993) claimed
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that clusters either have to have singular cores or density pro-
filesmuch steeper thanisothermal in order to reproducethe abun-
dance of large arcs. Although this conclusion can substantially
be atered once deviations from spherical symmetry are taken
into account (Bartelmann et al. 1995), it remainstrue that we re-
quirereore < 100 kpein al observed clusters. Cores of thissize
can also be reconciled with large-arc statistics.

Interestingly, thereare at | east two observationswhich seem to
indicate that cluster cores, although small, must befinite. Fort et
al. (1992) discovered aradial arc near the center of MS2137—23,
and Smail et al. (1996) found a radial arc in A 370. To pro-
duce a radial arc with a softened isothermal sphere model, the
core radius has to be roughly equal to the distance between the
cluster center and the radial arc (cf. Fig. 19). Mdllier, Fort, &
Kneib (1993) find reore = 40 kpc in MS 2137—-23, and Smail et
al. (1996) infer reore ~ 50 kpc in A 370. Bergmann & Petrosian
(1993) presented a statistical argumentin favor of finite coresby
showing that lensmodel swith singular coresproducefewer large
arcs (relative to small arcs) than observed. The relative abun-
dance increases with asmall finite core. These results, however,
have to be interpreted with caution because it may well be that
the softened isothermal sphere model is inadequate to describe
the interiors of galaxy clusters. While this particular model in-
deed requires coreradii on the order of the radial critical radius,
other lens models can produce radial arcs without having a flat
core, and there are even singular density profiles which can ex-
plainradial arcs(Miral da-Escudé 1995; Bartelmann 1996). Such
singular profilesfor the dark matter are consistent with the fairly
large core radii inferred from the X-ray emission of clusters, if
the intracluster gasis isothermal and in hydrostatic equilibrium
with the dark-matter potential (Navarro, Frenk, & White 1996;
J.P. Ostriker, private communication).

4.1.5. Radial Density Profile

Many of the observed giant arcs are unresolved in the radial di-
rection, some of them even when observed under excellent see-
ing conditions or with the Hubble Space Telescope. Since the
faint blue background gal axies which providethe source popula
tionfor the arcs seemto beresolved (e.g. Tyson 1995), the giant
arcs appear to be demagnified in width. It was realized by Ham-
mer & Rigaut (1989) that spherically symmetric lenses can radi-
ally demagnify giant arcsonly if their radial density profilesare
steeper than isothermal. The maximum demagnification is ob-
tained for a point mass lens, whereit is afactor of two. Kovner
(1989) and Hammer (1991) demonstrated that, irrespectiveof the
mass profile and the symmetry of the lens, the thin dimension of
an arc is compressed by afactor =~ 2(1— k), wherek isthe con-
vergence at the position of the arc. Arcs which are thinner than
the original source therefore require k < 0.5. Since giant arcs
haveto be located close to those critical curvesin the lens plane
aongwhich1—k —y=0, largeandthin arcsadditionally require



y 2 0.5.

In principle, the radius of curvature of large arcs relative to
their distance from the cluster center can be used to constrain
the steepness of theradial density profile (Miralda-Escudé 1992,
1993), but results obtained from observed arcs are not yet con-
clusive (Grossman & Saha1994). One problemwith thismethod
isthat substructurein clusterstendsto enlarge curvatureradii ir-
respective of the mass profile of the dominant component of the
cluster (Miralda-Escudé 1993; Bartelmann et al. 1995).

Wu & Hammer (1993) argued for steep massprofileson statis-
tical grounds because the observed abundance of large arcs ap-
pearsto require highly centrally condensed cluster mass profiles
in order to increase the central mass density of clusters while
keeping their total mass constant. However, their conclusions
are based on spherically symmetric lens models and are sig-
nificantly changed when the symmetry assumption is dropped
(Bartelmann et al. 1995).

It should aso be kept in mind that not all arcs are thin. Some
“thick” and resolved arcs are known (e.g. in A 2218, Pello-
Descayre et al. 1988; and in A 2390, Pdll6 et al. 1991), and it
is quite possible that thin arcs predominate just because they are
more easily detected than thick ones due to observational selec-
tion effects. Also, Miralda-Escudé (1992, 1993) has argued that
intrinsic source ellipticity canincreasethe probability of produc-
ingthinarcs, while Bartelmann et al. (1995) showed that the con-
dition k < 0.5 which is required for thin arcs can be more fre-
quently fulfilled in clusters with substructure where the shear is
larger than in spherically symmetric clusters.

4.1.6. Mass Sub-Condensations

The cluster A 370 has two cD galaxies and is a clear example
of acluster with multiple mass centers. A two-component mass
model centered on the cD galaxies (Kneib et al. 1993) fits very
well thelensdataaswell as X-ray and deep optical images of the
cluster. Abell 2390 is an interesting example becauseit contains
a“straight arc” (Pello et al. 1991, see also Mathez et al. 1992)
which can be produced only with either alips or a beak-to-beak
caustic (Kassiola, Kovner, & Blandford 1992). If thearc is mod-
ededwithalipscaustic, it requiresthe masspeak to becloseto the
location of the arc, but thisis not where the cluster light is cen-
tered. With a beak-to-beak caustic, the model requires two sep-
arate mass condensations, one of which could be at the peak of
the luminosity, but then the other has to be a dark condensation.
Pierre et al. (1996) find enhanced X-ray emission at a plausible
position of the secondary mass clump, and from awesk lensing
analysis Squires et a. (1996b) find a mass map which is consis-
tent with a mass condensation at the | ocation of the enhanced X-
ray emission.

Abell 370 and A 2390 are the most obvious examples of what
is probably a widespread phenomenon, namely that clusters are
in general not fully relaxed but have substructure as a result of
ongoing evolution. If clusters are frequently clumpy, this can
lead to systematic effectsin the statistics of arcs and in the de-
rived cluster parameters (Bartelmann et a. 1995; Bartelmann
1995bh).

4.1.7. Lensing Resultsvs. Other Mass Determinations

Enclosed Mass Three different methods are currently used to
estimate cluster masses. Galaxy velocity dispersions yield a
mass estimate from the virial theorem, and hence the galaxies
haveto bein viria equilibrium for such estimatesto be valid. It
may also bethat thevelocities of cluster galaxiesare biased rela-
tiveto the velocities of the dark matter particles (Carlberg 1994),
though current estimates suggest that the bias is no more than
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about 10%. The X-ray emission of rich galaxy clustersis domi-
nated by free-freeemission of thermal el ectronsand thereforede-
pendsonthe squared density of theintracluster gas, whichinturn
traces the gravitational potential of the clusters. Such estimates
usually assumethat the cluster gasisin thermal hydrostatic equi-
librium and that the potential is at least approximately spheri-
cally symmetric. Finaly, large arcs in clusters provide a mass
estimate through eg. (77) or by more detailed modeling. These
three mass estimates arein qualitative agreement with each other
up to factorsof ~ 2 — 3.

Miralda-Escudé & Babul (1995) compared X-ray and large-
arc mass estimates for the clusters A 1689, A 2163 and A 2218.
They took into account deviations from spherical symmetry and
obtained lensing masses from individual lens models which re-
produce the observed arcs. They arrived at the conclusion that
in A 1689 and A 2218 the mass required for producing the large
arcsis higher by a factor of 2 — 2.5 than the mass required for
the X-ray emission, and proposed a variety of reasons for such
a discrepancy, among them projection effects and non-thermal
pressure support. Loeb & Mao (1994) specifically suggested
that strong turbulence and magnetic fieldsin the intracluster gas
may constitute a significant non-thermal pressure component in
A 2218 and thusrender the X -ray mass estimate too low. Bartel-
mann & Steinmetz (1996) used gas dynamical cluster smula-
tionsto compare their X-ray and lensing properties. They found
a similar discrepancy as that identified by Miralda-Escudé &
Babul (1995) in those clustersthat show structurein the distribu-
tion of line-of-sight velocities of the cluster particles, indicative
of merging or infall along the line-of-sight. The discrepancy is
probably dueto projection effects.

Bartelmann (1995b) showed that cluster mass estimates ob-
tained from large arcs by straightforward application of eq. (77)
are systematically too high by afactor of ~ 1.6 on average, and
by asmuch asafactor of ~ 2in 1 out of 5 cases. Thisdiscrepancy
arises because eg. (77) assumes a smooth spherically symmetric
mass distribution whereas redlistic clusters are asymmetric and
have substructure. Notethat Daines et al. (1996) found evidence
for two or more mass condensations along the line of sight to-
ward A 1689, whilethearcletsin A 2218 show at |east two mass
concentrations. It appearsthat cluster mass estimates from lens-
ing require detailed lens modelsin order to be accurate to better
than ~ 30 — 50 per cent. In the case of MS 1224, Fahiman et
a. (1994) and Carlberg, Yee, & Ellingson (1994) have obtained
masses using the Kaiser & Squires weak-lensing cluster recon-
struction method. Their mass estimates are 2 — 3 times higher
than the cluster’svirial mass. Carlberg et al. find evidence from
velocity measurements that there is a second poor cluster in the
foreground of MS 1224 which may explain the result. All of
these mass discrepanciesillustrate that cluster masses must still
be considered uncertain to a factor of ~ 2 in general.

CoreRadii Lensing estimates of cluster core radii are gener-
ally much smaller than the core radii obtained from optical or
X-ray data. The upper limits on the core radii from lensing are
fairly robust and probably reliable. Many clusterswith largearcs
have cD galaxies which can steepen the central mass profile of
the cluster. However, there are al'so non-cD clusters with giant
arcs, e.g. A 1689 and Cl 1409 (Tyson 1990), and M S 0440+02
(Luppino et al. 1993). In fact, Tyson (1990) claims that these
two clusters have cores smaller than 100h~1 kpc, similar to up-
per limitsfor coreradii found in other arc clusterswith cD galax-
ies. Asmentioned in Sect. 4.1.4., even the occurrence of radial
arcsin clusters does not necessarily require anon-singular core,
and so al the lensing data are consistent with singular coresin
clusters. The X-ray coreradii depend on whether or not the cool-
ing regions of clusters are included in the emissivity profilefits,



because the cooling radii are of the same order of magnitude
as the core radii. If cooling is included, the best-fit core radii
are reduced by a factor of ~ 4 (Gerbal et al. 1992; Durret et al.
1994). Also, isothermal gasin hydrostatic equilibriumin asin-
gular dark-matter distribution developsaflat corewith acorera
dius similar to those observed. Therefore, the strongly peaked
mass distributions required for lensing seem to be quite compat-
ible with the extended X-ray cores observed.

DoesMassFollow Light? Leavingthe coreradiusaside, does
mass follow light? It is clear that the mass cannot be as concen-
trated within the galaxies as the optical light is (e.g. Bergmann,
Petrosian, & Lynds 1990). However, if the optical light is
smoothed and assumed to trace the mass, then the resulting mass
distributionis probably not very different from thetrue mass dis-
tribution. For instance, in A 370, the elongation of the mass dis-
tribution required for the giant arc is along the line connecting
the two cD galaxiesin the cluster (Grossman & Narayan 1989)
andinfact Kneib et al. (1993) are ableto achieve an excellent fit
of the giant arc and several arcletswith two mass concentrations
surrounding thetwo cDs. Their model potential also agreesvery
well with the X-ray emission of the cluster. InMS 2137, the opti-
cal haloiselongated in the direction indicated by the arcsfor the
overall massasymmetry (Mellier et al. 1993), andin Cl 0024, the
mass distribution is elongated in the same direction asthe galaxy
distribution (Wallington, Kochanek, & Koo 1995). Smail et al.
(1995) find that the mass maps of two clustersreconstructed from
weak lensing agreefairly well with their X-ray emission. Anim-
portant counterexampleisthe cluster A 2390, where the straight
arc requiresamass concentrationwhichiscompletely dark inthe
optical (Kassiolaet a. 1992). Pierre et al. (1996), however, find
excess X-ray emission at a position compatible with the arc.

What Kinds of Clusters Produce Giant Arcs? Which para-
meters determine whether or not a galaxy cluster is able to pro-
duce large arcs? Clearly, large velocity dispersions and small
coreradii favor theformation of arcs. Asargued earlier, intrinsic
asymmetriesand substructure also increasethe ability of clusters
to produce arcs because they increase the shear and the number
of cuspsin the caustics.

The abundance of arcsin X-ray luminous clusters appears to
be higher than in optically selected clusters. At least a quarter,
maybe half, of the 38 X-ray bright clusters selected by Le Févre
et al. (1994) contain large arcs, while Smail et al. (1991) found
only one large arc in a sample of 19 distant optically selected
clusters. However, some clusters which are prominent lenses
(A 370, A 1689, A 2218) are moderate X-ray sources, while
other clusters which are very luminous X-ray sources (A 2163,
Cl 1455) are poor lenses. The correlation between X-ray bright-
ness and enhanced occurrence of arcs may suggest that X-ray
bright clusters are more massive and/or more centrally con-
densed than X-ray quiet clusters.

Substructure appears to be at least as important as X-ray
brightnessfor producing giant arcs. For example, A 370, A 1689
and A 2218 all seem to have clumpy mass distributions. Bartel-
mann & Steinmetz (1996) used numerical cluster smulationsto
show that the optical depth for arc formation is dominated by
clusterswith intermediaterather than the highest X-ray luminosi-
ties.

Another possibility is that giant arcs preferentially form in
clusters with cD galaxies. A 370, for instance, even has two
cDs. However, non-cD clusters with giant arcs are known, e.g.
A 1689, Cl 1409 (Tysonet a. 1990), and M S 0440+02 (L uppino
et al. 1993).
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4.2. Weak Lensing by Clusters — Arclets

In addition to the occasional giant arc, which is produced when
asource happensto straddle a caustic, alensing cluster also pro-
duces alarge number of weakly distorted images of other back-
ground sourceswhich are not located near caustics. Thesearethe
arclets. Thereis apopulation of distant blue galaxiesin the uni-
versewhose spatial density reaches 50 — 100 gal axies per square
arc minute at faint magnitudes (Tyson 1988). Each cluster there-
fore has on the order of 50 — 100 arclets per square arc minute
exhibiting acoherent pattern of distortions. Arcletswerefirst de-
tected by Fort et al. (1988).

The separations between arclets, typicaly ~ (5 —10)", are
much smaller than the scale over which the gravitational poten-
tia of a cluster as a whole changes appreciably. The weak and
noisy signalsfrom several individual arclets can therefore be av-
eraged by statistical techniques to get an idea of the mass dis-
tribution of a cluster. This technique was first demonstrated by
Tyson, Valdes, & Wenk (1990). Kochanek (1990) and Miralda-
Escudé (19914a) studied how parameterized cluster lens models
can be constrained with arclet data.

The first systematic and parameter-free procedure to convert
the observed ellipticities of arclet images to a surface density

map Z(é) of the lensing cluster was developed by Kaiser &
Squires (1993). An ambiguity intrinsic to all such inversion
methods which are based on shear information aone was iden-
tified by Seitz & Schneider (1995a). This ambiguity can be re-
solved by including information on the convergence of the clus-
ter; methods for this were developed by Broadhurst, Taylor, &
Peacock (1995) and Bartelmann & Narayan (1995a).

4.2.1. TheKaiser & Squires Algorithm

The technique of Kaiser & Squires (1993) is based on the fact

that both convergence k (8) and shear y; »(8) are linear combi-
nations of second derivatives of the effective lensing potential

W(B). Thereisthus amathematical relation connecting the two.

In the Kaiser & Squires method one first estimates y172(§) by
measuring the weak distortions of background galaxy images,

and then uses the relation to infer k(8). The surface density of
the lens s then obtained from Z(8) = Sk () (see eg. 50).
Asshownin Sect. 3., k and y » are given by

A1 [(o%(®)  *y(d)
k) = E( 02 o |
. 1 (0%p(®) o2(®)
n®) = E( 062 o082 |’
L)
VZ(G) - aelaez :

(80)

If we introduce Fourier transforms of K, y; 5, and g (which we
denote by hats on the symbols), we have

kB = 5+ RBE),
IR
Bl = k),

(81)



wherek is the two dimensional wave vector conjugateto 6. The
relation between k and y; » in Fourier space can then be written

() = (%)

¢ = e [06 -1, k] (1)

ki — &)
2kiko
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Y2
K
(82)

If the shear components y172(§) have been measured, we can
solvefor k(K) in Fourier space, and this can be back transformed
to obtain k(8) and thereby >(8). Equivalently, we can write the
relationship as a convolution in © space,

k() = % / d%e Re[D*(é—é’)y(é’)] : (83)
where D isthe complex convolution kernel,
A 82 — 92) — 2i0,0
D(e):( 2 12)4 172 (84)
and y(8) isthe complex shear,
¥(8) = v1(B) +iv2(8) . (85)

The asterisk denotes complex conjugation.
The key to the Kaiser & Squires method isthat the shear field

y(8) can be measured. (Elaborate techniques to do so were de-
scribed by Bonnet & Méllier 1995 and Kaiser, Squires, & Broad-
hurst 1995.) If we definethe ellipticity of an image as

. 1-r1 5 b
8:81_'_'82:1——”92'([)’ a, (86)

r

where @ is the position angle of the ellipse and a and b are its
major and minor axes, respectively, we see from eg. (59) that the
average dlipticity induced by lensing is

<e>=< >

where the angle brackets refer to averages over a finite area of
the sky. In thelimit of weak lensing, K < 1 and |y| < 1, and the
mean ellipticity directly gives the shear,

@)~ (a0) . (%0)~(c@).

They,(8), y-(8) fields so obtained can be transformed using the
integral (83) to obtain k() and thereby =(8). The quantities
(£1(8)) and (5(8)) in (88) haveto be obtained by averaging over
sufficient numbers of weakly lensed sourcesto have areasonable
signal-to-noiseratio.

Y

(88)

4.2.2. Practical Details and Subtleties

In practice, several difficulties complicate the application of
the elegant inversion technique summarized by eq. (83). At-
mospheric turbulence causesimagestaken by ground-basedtel e-
scopesto be blurred. Asaresult, elliptical imagestend to becir-
cularized so that ground-based telescopes measure alower limit
totheactual shear signal. Thisdifficulty isnot present for space-
based observations.
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The point-spread function of the telescope can be anisotropic
and can vary across the observed field. Anintrinsically circular
image can thereforebeimaged as an ellipsejust because of astig-
matism of the telescope. Subtle effectslike dight tracking errors
of the telescope or wind at the tel escope site can also introduce
aspurious shear signal.

In principle, al these effects can be corrected for. Given the
seeing and the intrinsic brightness distribution of the image, the
amount of circularization due to seeing can be estimated and
taken into account. The shape of the point-spread function and
its variation across the image plane of the telescope can also be
calibrated. However, sincethe shear signal especially in the out-
skirts of acluster isweak, the effects have to be determined with
high precision, and thisis a challenge.

The need to average over several background galaxy images
introduces a resolution limit to the cluster reconstruction. As-
suming 50 galaxies per square arc minute, the typical separation
of two galaxiesis ~ 8”. If the averageistaken over ~ 10 galax-
ies, the spatial resolution is limited to ~ 30”.

We have seenin eqg. (87) that the observed ellipticities strictly
do not measurey, but rather a combination of k and y,

()

Inserting y = (€)(1 — k) into the reconstruction equation (83)
yields an integral equation for K which can be solved iteratively.
Thisprocedure, however, revealsaweakness of themethod. Any
reconstruction techniquewhich is based on measurementsof im-
ageellipticitiesaloneisinsensitiveto isotropic expansions of the
images. The measured dllipticities are thus invariant against re-
placing the Jacobian matrix A by some scalar multiple A A of it.

Putting

we seethat scaling A with A isequivalent to the following trans-
formationsof k and y,

vy
1-k

(89)

1-kK—v1
Y2

Y2

1-K+v1 (90)

A’:)\A:)\(

1-k'=A(1-K), Y=Ay.
Manifestly, thistransformation leaves g invariant. We thus have
a one-parameter ambiguity in shear-based reconstruction tech-
niques,

(91)

K—AK+(1-A),

with A an arbitrary scalar constant.

This invariance transformation was highlighted by Schneider
& Seitz (1995) and was originally discovered by Falco, Goren-
stein, & Shapiro (1985) inthe context of galaxy lensing. If A < 1,
the transformation is equivalent to replacing K by K plus a sheet
of constant surface mass density 1 — A. The transformation (92)
isthereforereferred to as the mass-sheet degeneracy.

Another weakness of the Kaiser & Squires method is that the
reconstruction equation (83) requires a convolution to be per-
formed over the entire 8 plane. Observational data however are
availableonly over afinitefield. Ignoring everything outside the
field and restricting the range of integration to the actua field
is equivalent to setting y = O outside the field. For circularly
symmetric mass distributions, this implies vanishing total mass
within the field. The influence of the finiteness of the field can
therefore be quite severe.

Finally, the reconstruction yields k(8), and in order to calcu-

|ate the surface mass density =(8) wemust know thecritical den-
sity 3¢, but since we do not know the redshifts of the sources

(92)



FIG. 25.—HST image of the cluster Cl 0024, overlaid on the left with the shear field obtained from an observation of arclets with the Canada-
France Hawaii Telescope (Y. Mellier & B. Fort), and on the right with the reconstructed surface-mass density determined from the shear field (C.
Seitz et d.). The reconstruction was done with a non-linear, finite-field algorithm.

there is a scaling uncertainty in this quantity. For a lens with
given surface mass density, the distortion increases with increas-
ing source redshift. If the sources are at much higher redshifts
than the cluster, the influence of the source redshift becomes
weak. Therefore, this uncertainty isless serious for low redshift
clusters.

Nearly all the problems mentioned above have been addressed
and solved. The solutions are discussed in the following subsec-
tions.

4.2.3. Eliminating the Mass Sheet Degeneracy by Measuring
the Convergence

By eq. (60), L

H=io02—e

and so the magnification scaleswith A asp A 2. Therefore, the
mass-sheet degeneracy can be broken by measuring the magnifi-
cation p of theimagesin addition to the shear (Broadhurst et al.
1995). Two methods have been proposed to measure . Thefirst
relies on comparing the galaxy counts in the cluster field with
thosein an unlensed “empty” field (Broadhurst et al. 1995). The
observed counts of galaxies brighter than some limiting magni-
tude m are related to the intrinsic counts through

(93)

N'(m) = No(m) p?%5~*, (94)
where s is the logarithmic slope of the intrinsic number count
function,
dlogN(m)
sS=——~ .,
dm

Inbluelight, s~ 0.4, and thus N'(m) ~ N(m) independent of the
magnification, but in red light s ~ 0.15, and the magnification
leads to adilution of galaxies behind clusters. The reduction of

(95)

27

red galaxy counts behind the cluster A 1689 has been detected
by Broadhurst (1995).

The other method is to compare the sizes of galaxies in the
cluster field to those of similar galaxies in empty fields. Since
lensing conserves surface brightness, it is most convenient to
match galaxies with equal surface brightness while making this
comparison (Bartelmann & Narayan 1995a). The magnification
isthen simply theratio between the sizes of lensed and unlensed
galaxies. Labeling galaxies by their surface brightness has the
further advantage that the surface brightnessis a steep function
of galaxy redshift, which allows the user to probe the change of
lens efficiency with source redshift (see below).

4.2.4. Determining Source Redshifts

For a given cluster, the strength of distortion and magnification
due to lensing increases with increasing source redshift z;. The
mean redshift z; of sourcesasafunction of apparent magnitudem
can thusbeinferred by studying the mean strength of thelensing
signal vs. m (Kaiser 1995; Kneib et al. 1996).

The surface brightness S probably provides a better label for
galaxiesthan the apparent magnitude because it depends steeply
onredshift and isunchanged by lensing. Bartelmann & Narayan
(1995a) have devel oped an algorithm, which they named thelens
parallax method, to reconstruct the cluster massdistributionsand
to infer smultaneously z as afunction of the surface brightness.
Insimulations, datafrom ~ 10 cluster fieldsand an equal number
of empty comparison fieldswere sufficient to determinethe clus-
ter massesto ~ +5% and the galaxy redshiftsto ~ +10% accu-
racy. Theinclusion of galaxy sizesin the iterative lens-parallax
algorithm breaks the mass-sheet degeneracy, thereby removing
the ambiguitiesin shear-based cluster reconstruction techniques
arising from the transformation (92) and from the unknown red-
shift distribution of the sources.



4.2.5. Finite Field Methods

Asemphasized previously, theinversion equation (83) requiresa
convolution to be performed over the entire real plane. The fact
that dataarealwaysrestricted to afinitefield thusintroducesase-
vere bias in the reconstruction. Modified reconstruction kernels
have been suggested to overcome this limitation.

Consider the relation (Kaiser 1995)

aK:(

Thisshowsthat the convergenceat any point 8 inthe datafield is
related by alineintegral to the convergence at another point 8,

Yi,1+VYe,2

Y2,1—VY1,2 (96)

—

o o 6 .
k(8) = k(Bo) + /é dr'- Ek[B()] . (97)

If the starting point B is far from the cluster center, k(8;) may
be expected to be small and can be neglected. For each start-
ing point 8y, eq. (97) yields an estimate for K(é) - K(éo), and
by averaging over all chosen 8, modified reconstruction kernels
can be constructed (Schneider 1995; Kaiser et a. 1995; Bartel-
mann 1995c; Seitz & Schneider 1996). Various choices for the
set of starting positions By have been suggested. For instance,
one can divide the observed field into an inner region centered

on the cluster and take as 6 al points in the rest of the field.
Another possibility is to take 8y from the entire field. In both
cases, theresult isk(8) — Kk, wherek is the average convergence

in the region from which the points éo were chosen. Theaverage
K is unknown, of course, and thus a reconstruction based on eq.
(97) yields k only up to a constant. Equation (97) therefore ex-
plicitly displaysthe mass sheet degeneracy sincethefinal answer
depends on the choice of the unknown k (8p).

A different approach (Bartelmann et al. 1996) employsthefact
that kK and y are linear combinations of second derivatives of the
same effective lensing potential . In this method one recon-
structs Y rather than K. If both Kk and y can be measured through
image distortions and magnifi cations (with different accuracies),
then a straightforward finite-field Maximum-Likelihood can be

developed to construct m(é) on a finite grid such that it opti-
mally reproducesthe observed magnificationsand distortions. It
is easy in this approach to incorporate measurement accuracies,
correlationsin the data, selection effects etc. to achieve an opti-
mal result.

4.2.6. ResultsfromWeak Lensing

The cluster reconstruction technique of Kaiser & Squires and
variants thereof have been applied to a number of clusters and
several more are being analyzed. We summarize some resultsin
Tab. 5, focusing on the mass-to-light ratios of clustersand the de-
gree of agreement between weak |ensing and other independent
studies of the same clusters.

Mass-to-light ratios inferred from weak lensing are generally
quite high, ~ 400h in solar units (cf. table 5 and, e.g., Smail et
al. 1997). Therecent detection of asignificant shear signal inthe
cluster MS 1054—03 at redshift 0.83 (Luppino & Kaiser 1997)
indicatesthat the source galaxieseither areat very high redshifts,
z2 (2—3), or that themass-to-light ratio in this cluster is excep-
tionally high; if the galaxy redshifts are z < 1, the mass-to-light
ratio needsto be > 1600h.

The measurement of a coherent weak shear pattern out to
a distance of amost 1.5 Mpc from the center of the cluster
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Cl 0024+1654 by Bonnet, Méllier, & Fort (1994) demonstrates
apromising method of constraining cluster mass profiles. These
observations show that the density decreases rapidly outward,
though the data are compatible both with an isothermal profile
and a steeper de Vaucouleurs profile. Tyson & Fischer (1995)
find the mass profile in A 1689 to be steeper than isothermal.
Squires et al. (1996b) derived the mass profile in A 2390 and
showed that it is compatible with both an isothermal profile
and steeper profiles. Quite generaly, the weak-lensing results
on clusters indicate that the smoothed light distribution follows
the mass well. Moreover, mass estimates from weak lensing
and from the X-ray emission interpreted on the basis of hydro-
static equilibrium are consistent with each other (Squires et al.
1996a,b).

The epoch of formation of galaxy clusters depends on cosmo-
logical parameters, especialy Qg (Richstone, Loeb, & Turner
1992; Bartelmann, Ehlers, & Schneider 1993; Lacey & Cole
1993, 1994). Clustersin the local universe tend to be younger
if Qg islarge. Such young clusters should be less relaxed and
more structured than clustersin alow density universe (Mohr et
al. 1995; Crone, Evrard, & Richstone 1996). Wesak lensing of -
fers straightforward ways to quantify cluster morphology (Wil-
son, Cole, & Frenk 1996; Schneider & Bartelmann 1997), and
therefore may be used to estimate the cosmic density Qg.

Thedependenceof cluster evolution on cosmological parame-
ters also has a pronounced effect on the statistics of giant arcs.
Numerical cluster simulations in different cosmological mod-
elsindicate that the observed abundance of arcs can only be re-
produced in low-density universes, Qg ~ 0.3, with vanishing
cosmological constant, Ag ~ O (Bartelmann et al. 1998). Low-
density, flat modelswith Qg+ Ag = 1, or Einstein-de Sitter mod-
els, produce one or two orders of magnitude fewer arcsthan ob-
served.

4.3. Weak Lensing by Large-Scale Structure
4.3.1. Magnification and Shear in‘Empty’ Fields

Lensing by even larger scale structures than galaxy clusters has
been discussed in various contexts. Kristian & Sachs (1966) and
Gunn (1967) discussed the possibility of looking for distortions
in images of background galaxies due to weak lensing by large-
scale foreground mass distributions. The idea has been revived
and studied in greater detail by Babul & Lee(1991); Jaroszyhski
et a. (1990); Miralda-Escudé (1991b); Blandford et al. (1991);
Bartelmann & Schneider (1991); Kaiser (1992); Seljak (1994);
Villumsen (1996); Bernardeau, van Waerbeke, & Méellier (1997);
Kaiser (1996); and Jain & Seljak (1997). The effect is weak—
magnification and shear are typically on the order of afew per
cent—and ahuge number of galaxieshasto beimaged with great
care before a coherent signal can be observed.

Despite the obvious practical difficulties, the rewards are po-
tentially great since the two-point correlation function of theim-
agedistortionsgivesdirect information on the power spectrum of
density perturbations P(K) in the universe. The correlation func-
tion of image shear, or polarization as it is sometimes referred
to (Blandford et al. 1991), has been calculated for the standard
CDM model and other popular models of the universe. Weak
lensing probes mass concentrations on large scales where the
density perturbations are still in the linear regime. Therefore,
there are fewer uncertainties in the theoretical interpretation of
the phenomenon. The problems are expected to be entirely ob-
servational.

Using a deep image of a blank field, Mould et al. (1994) set
alimit of p < 4 per cent for the average polarization of galaxy
imageswithin a4.8 arcminutefield. Thisis consistent with most
standard models of the universe. Fahlman et al. (1995) claimed



TABLE 5.—Mass-to-light ratios of several clusters derived from weak lensing.

| Cluster | M/L Remark Reference

MS 1224 800h virial mass ~ 3timessmaler Fahiman et al.
(oy=770kms™1) (1994)
reconstruction out to ~ 3’

A 1689 (400£60)h  mass smoother than light Tyson & Fischer
near center; mass steeper (1995)
than isothermal from Kaiser (1995)
(200 — 1000) h~* kpc

Cl 1455 520h dark matter more concen- Small et al.
trated than galaxies (1995)

CI 0016 740h dark matter more concen- Smail et a.
trated than galaxies (1995)

A 2218 440h gas mass fraction Squireset a.
< 4%h—3/2 (1996a)

A 851 200h mass distribution agrees Seitz et d. (1996)
with galaxies and X-rays

A 2163 | (300+100)h gasmassfraction Squireset al.
~ 7%h—3/2 (1997)

a tighter bound, p < 0.9 per cent in a 2.8 arcminute field. On
the other hand, Villumsen (1995a), using the Mould et al. (1994)
data, claimed a detection at a level of p = (2.4 +1.2) per cent
(95% confidence limit). Thereis clearly no consensus yet, but
thefield is till in itsinfancy.

Villumsen (1995b) has discussed how the two-point angular
correlation function of faint galaxies is changed by weak lens-
ing and how intrinsic clustering can be distinguished from clus-
tering induced by lensing. The random magnification by large-
scale structuresintroducesadditional scatter in the magnitudesof
cosmologically interesting standard candles such as supernovae
of type la. For sources at redshifts z ~ 1, the scatter was found
to be negligibly small, of order Am ~ 0.05 magnitudes (Frieman
1996; Wambsganss et al. 1997).

4.3.2. Large-Scale QSO-Galaxy Correlations

Fugmann (1990) noticed an excess of Lick galaxiesinthevicin-
ity of high-redshift, radio-loud QSOs and showed that the excess
reaches out to ~ 10’ from the QSOs. If real, this excessis most
likely caused by magnification bias due to gravitational lensing.
Further, the scale of the lens must be very large. Galaxy-sized
lenses have Einstein radii of afew arc seconds and are clearly
irrelevant. The effect has to be produced by structure on scales
much larger than galaxy clusters.

Following Fugmann's work, various other correlations of
a similar nature have been found. Bartelmann & Schneider
(1993b, 1994; see also Bartsch, Schneider, & Bartelmann 1997)
discovered correlations between high-redshift, radio-loud, op-
tically bright QSOs and optical and infrared galaxies, while
Bartelmann, Schneider & Hasinger (1994) found correlations
with diffuse X-ray emission in the 0.2 — 2.4 keV ROSAT
band. Benitez & Martinez-Gonzélez (1995, 1997) found an ex-
cess of red galaxies from the APM catalog around radio-loud
QSOs with redshift z~ 1 on scales < 10'. Seitz & Schneider
(1995b) found correlations between the Bartelmann & Schnei-
der (1993b) sample of QSOs and foreground Zwicky clusters.
They followed in part an earlier study by Rodrigues-Williams
& Hogan (1994), who found a highly significant correlation be-
tween optically-selected, high-redshift QSOs and Zwicky clus-
ters. Later, Rodrigues-Williams & Hawkins (1995) detected
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similar correl ationsbetween QSOs sel ected for their optical vari-
ability and Zwicky clusters. Wu & Han (1995) searched for asso-
ciations between distant radio-loud QSOs and foreground Abell
clusters and found a marginally significant correlation with a
subsampl e of QSOs.

All these results indicate that there are correlations between
background QSOs and foreground “light” inthe optical, infrared
and soft X-ray wavebands. The angular scale of the correlations
is compatible with that expected from lensing by large-scale
structures. Bartelmann & Schneider (1993a, see al so Bartelmann
1995a for an analytical treatment of the problem) showed that
current models of large-scal e structure formation can explain the
observed large-scale QSO-galaxy associations, provided a dou-
ble magnification bias (Borgeest, von Linde, & Refsdal 1991) is
assumed. Itisgenerally agreedthat lensing by individual clusters
of galaxiesisinsufficient to produce the observed effectsif clus-
ter velocity dispersionsare of order 103 kms™* (e.g. Rodrigues-
Williams & Hogan 1994; Rodrigues-Williams & Hawkins 1995;
Wu & Han 1995; Wu & Fang 1996). It appears, therefore,
that lensing by large-scale structures has to be invoked to ex-
plain the observations. Bartelmann (1995a) has shown that con-
straints on the density perturbation spectrum and the bias fac-
tor of galaxy formation can be obtained from the angular cross-
correlation function between QSOs and galaxies. This calcula
tion was recently refined by including the non-linear growth of
density fluctuations (Sanz, Martinez-Gonzélez, & Benitez 1997;
Dolag & Bartelmann 1997). The non-linear effects are strong,
and provide a good fit to the observational results by Benitez &
Martinez-Gonzélez (1995, 1997).

4.3.3. Lensing of the Cosmic Microwave Background

The random deflection of light dueto large-scale structures also
affects the anisotropy of the cosmic microwave background
(CMB) radiation. The angular autocorrelation function of the
CMB temperatureisonly negligibly changed (Cole & Efstathiou
1989). However, high-order peaksin the CMB power spectrum
are somewhat broadened by lensing. This effect is weak, of or-
der ~ 5% on angular scalesof < 10’ (Seljak 1996; Seljak & Zal-
darriaga 1996; Martinez-Gonzélez, Sanz, & Cayon 1997), but it
could be detected by future CM B observations, e.g. by the Planck



Microwave Satellite.

4.3.4. Outlook: Detecting Dark Matter Concentrations

If lensing is indeed responsible for the correlations discussed
above, other signatures of lensing should be found. Fort et al.
(1996) searched for shear due to weak lensing in the fields of
five luminous QSOs and found coherent signalsin all fivefields.
In addition, they detected foreground galaxy groupsfor three of
the sources. Earlier, Bonnet et al. (1993) had found evidencefor
a coherent shear pattern in the field of the lens candidate QSO
2345+007. The shear was later identified with a distant cluster
(Méllier et al. 1994; Fischer et al. 1994).

In general, it appears that looking for weak coherent image
distortions provides an excellent way of searching for otherwise
invisible dark matter concentrations. A systematic techniquefor
this purpose has been developed by Schneider (1996a). Weak
lensing outside cluster fields may in the near future alow ob-
servers to obtain samples of mass concentrations which are se-
lected purely on the basis of their lensing effect. Such a selec-
tion would be independent of the mass-to-light ratio, and would
permit the identification and study of nonlinear structuresin the
universe with unusually large mass-to-light ratios. This would
be complementary to the limits on compact masses discussed in
Sect. 2.3.2..
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