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ABSTRACT
These lectures give an introduction to Gravitational Lensing. We discuss lensing by point masses, lensing by

galaxies, and lensing by clusters and larger-scale structures in the Universe. The relevant theory is developed and
applications to astrophysical problems are discussed.
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1. INTRODUCTION

One of the consequences of Einstein’s General Theory of Rel-
ativity is that light rays are deflected by gravity. Although this
discovery was made only in this century, the possibility that there
could be such a deflection had been suspected much earlier, by
Newton and Laplace among others. Soldner (1804) calculated
the magnitude of the deflection due to the Sun, assuming that
light consists of material particles and using Newtonian grav-
ity. Later, Einstein (1911) employed the equivalence principle to
calculate the deflection angle and re-derived Soldner’s formula.
Later yet, Einstein (1915) applied the full field equations of Gen-
eral Relativity and discovered that the deflection angle is actu-
ally twice his previous result, the factor of two arising because
of the curvature of the metric. According to this formula, a light
ray which tangentially grazes the surface of the Sun is deflected
by 1:007. Einstein’s final result was confirmed in 1919 when the
apparent angular shift of stars close to the limb of the Sun (see
Fig. 1) was measured during a total solar eclipse (Dyson, Edding-
ton, & Davidson 1920). The quantitative agreement between the
measured shift and Einstein’s prediction was immediately per-
ceived as compelling evidence in support of the theory of Gen-
eral Relativity. The deflection of light by massive bodies, and the

phenomena resulting therefrom, are now referred to as Gravita-
tional Lensing.

FIG. 1.—Angular deflection of a ray of light passing close to the limb
of the Sun. Since the light ray is bent toward the Sun, the apparent po-
sitions of stars move away from the Sun.

Eddington (1920) noted that under certain conditions there
may be multiple light paths connecting a source and an observer.
This implies that gravitational lensing can give rise to multiple
images of a single source. Chwolson (1924) considered the cre-
ation of fictitious double stars by gravitational lensing of stars by
stars, but did not comment on whether the phenomenon could ac-
tually be observed. Einstein (1936) discussed the same problem
and concluded that there is little chance of observing lensing phe-
nomena caused by stellar-mass lenses. His reason was that the
angular image splitting caused by a stellar-mass lens is too small
to be resolved by an optical telescope.

Zwicky (1937a) elevated gravitational lensing from a curiosity
to a field with great potential when he pointed out that galaxies
can split images of background sources by a large enough angle
to be observed. At that time, galaxies were commonly believed
to have masses of � 109 M�. However, Zwicky had applied the
virial theorem to the Virgo and Coma clusters of galaxies and had
derived galaxy masses of� 4�1011 M�. Zwicky argued that the
deflection of light by galaxies would not only furnish an addi-
tional test of General Relativity, but would also magnify distant
galaxies which would otherwise remain undetected, and would
allow accurate determination of galaxy masses. Zwicky (1937b)
even calculated the probability of lensing by galaxies and con-
cluded that it is on the order of one per cent for a source at rea-
sonably large redshift.

Virtually all of Zwicky’s predictions have come true. Lens-
ing by galaxies is a major sub-discipline of gravitational lens-
ing today. The most accurate mass determinations of the cen-
tral regions of galaxies are due to gravitational lensing, and the
cosmic telescope effect of gravitational lenses has enabled us to
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study faint and distant galaxies which happen to be strongly mag-
nified by galaxy clusters. The statistics of gravitational lensing
events, whose order of magnitude Zwicky correctly estimated,
offers one of the promising ways of inferring cosmological pa-
rameters.

In a stimulating paper, Refsdal (1964) described how the Hub-
ble constant H0 could in principle be measured through gravita-
tional lensing of a variable source. Since the light travel times for
the various images are unequal, intrinsic variations of the source
would be observed at different times in the images. The time de-
lay between images is proportional to the difference in the ab-
solute lengths of the light paths, which in turn is proportional
to H�1

0 . Thus, if the time delay is measured and if an accurate
model of a lensed source is developed, the Hubble constant could
be measured.

All of these ideas on gravitational lensing remained mere spec-
ulation until real examples of gravitational lensing were finally
discovered. The stage for this was set by the discovery of quasars
(Schmidt 1963) which revealed a class of sources that is ideal
for studying the effects of gravitational lensing. Quasars are dis-
tant, and so the probability that they are lensed by intervening
galaxies is sufficiently large. Yet, they are bright enough to be
detected even at cosmological distances. Moreover, their optical
emission region is very compact, much smaller than the typical
scales of galaxy lenses. The resulting magnifications can there-
fore be very large, and multiple image components are well sep-
arated and easily detected.

Walsh, Carswell, & Weymann (1979) discovered the first ex-
ample of gravitational lensing, the quasar QSO 0957+561A,B.
This source consists of two images, A and B, separated by 600.
Evidence that 0957+561A,B does indeed correspond to twin
lensed images of a single QSO is provided by (i) the similarity
of the spectra of the two images, (ii) the fact that the flux ra-
tio between the images is similar in the optical and radio wave-
bands, (iii) the presence of a foreground galaxy between the im-
ages, and (iv) VLBI observations which show detailed corre-
spondence between various knots of emission in the two radio
images. Over a dozen convincing examples of multiple-imaged
quasars are known today (Keeton & Kochanek 1996) and the list
continues to grow.

Paczyński (1986b) revived the idea of lensing of stars by stars
when he showed that at any given time one in a million stars in
the Large Magellanic Cloud (LMC) might be measurably mag-
nified by the gravitational lens effect of an intervening star in
the halo of our Galaxy. The magnification events, which are
called microlensing events, have time scales between two hours
and two years for lens masses between 10�6 M� and 102 M�.
Initially, it was believed that the proposed experiment of mon-
itoring the light curves of a million stars would never be fea-
sible, especially since the light curves have to be sampled fre-
quently and need to be distinguished from light curves of intrin-
sically variable stars. Nevertheless, techniques have advanced
so rapidly that today four separate collaborations have success-
fully detected microlensing events (Alcock et al. 1993; Aubourg
et al. 1993; Udalski et al. 1993; Alard 1995), and this field has
developed into an exciting method for studying the nature and
distribution of mass in our Galaxy.

Einstein rings, a particularly interesting manifestation of grav-
itational lensing, were discovered first in the radio waveband by
Hewitt et al. (1987). About half a dozen radio rings are now
known and these sources permit the most detailed modeling yet
of the mass distributions of lensing galaxies.

Gravitational lensing by galaxy clusters had been considered
theoretically even before the discovery of QSO 0957+561. The
subject entered the observational realm with the discovery of gi-
ant blue luminous arcs in the galaxy clusters A 370 and Cl 2244

(Soucail et al. 1987a,b; Lynds & Petrosian 1986). Paczyński
(1987) proposed that the arcs are the images of background
galaxies which are strongly distorted and elongated by the grav-
itational lens effect of the foreground cluster. This explanation
was confirmed when the first arc redshifts were measured and
found to be significantly greater than that of the clusters.

Apart from the spectacular giant luminous arcs, which re-
quire special alignment between the cluster and the background
source, clusters also coherently distort the images of other faint
background galaxies (Tyson 1988). These distortions are mostly
weak, and the corresponding images are referred to as arclets
(Fort et al. 1988; Tyson, Valdes, & Wenk 1990). Observa-
tions of arclets can be used to reconstruct parameter-free, two-
dimensional mass maps of the lensing cluster (Kaiser & Squires
1993). This technique has attracted a great deal of interest,
and two-dimensional maps have been obtained of several galaxy
clusters (Bonnet et al. 1993; Bonnet, Mellier, & Fort 1994;
Fahlman et al. 1994; Broadhurst 1995; Smail et al. 1995; Tyson
& Fischer 1995; Squires et al. 1996; Seitz et al. 1996).

As this brief summary indicates, gravitational lensing mani-
fests itself through a very broad and interesting range of phenom-
ena. At the same time, lensing has developed into a powerful tool
to study a host of important questions in astrophysics. The appli-
cations of gravitational lensing may be broadly classified under
three categories:

– The magnification effect enables us to observe objects
which are too distant or intrinsically too faint to be ob-
served without lensing. Lenses therefore act as “cosmic
telescopes” and allow us to infer source properties far be-
low the resolution limit or sensitivity limit of current obser-
vations. However, since we do not have the ability to point
this telescope at any particular object of interest but have to
work with whatever nature gives us, the results have been
only modestly interesting.

– Gravitational lensing depends solely on the projected, two-
dimensional mass distribution of the lens, and is indepen-
dent of the luminosity or composition of the lens. Lensing
therefore offers an ideal way to detect and study dark matter,
and to explore the growth and structure of mass condensa-
tions in the universe.

– Many properties of individual lens systems or samples of
lensed objects depend on the age, the scale, and the overall
geometry of the universe. The Hubble constant, the cosmo-
logical constant, and the density parameter of the universe
can be significantly constrained through lensing.

The article is divided into three main sections. Sect. 2. dis-
cusses the effects of point-mass lenses, Sect. 3. considers galaxy-
scale lenses, and Sect. 4. discusses lensing by galaxy clusters and
large-scale structure in the universe. References to the original
literature are given throughout the text. The following are some
general or specialized review articles and monographs:

Monograph

– Schneider, P., Ehlers, J., & Falco, E.E. 1992, Gravitational
Lenses (Berlin: Springer Verlag)

General Reviews

– Blandford, R.D., & Narayan, R. 1992, Cosmological Appli-
cations of Gravitational Lensing, Ann. Rev. Astr. Ap., 30,
311

– Refsdal, S., & Surdej, J. 1994, Gravitational Lenses, Rep.
Progr. Phys., 57, 117
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– Schneider, P. 1996, Cosmological Applications of Gravi-
tational Lensing, in: The universe at high-z, large-scale
structure and the cosmic microwave background, Lecture
Notes in Physics, eds. E. Martı́nez-González & J.L. Sanz
(Berlin: Springer Verlag)

– Wu, X.-P. 1996, Gravitational Lensing in the Universe,
Fundamentals of Cosmic Physics, 17, 1

Special Reviews

– Fort, B., & Mellier, Y. 1994, Arc(let)s in Clusters of Galax-
ies, Astr. Ap. Rev., 5, 239

– Bartelmann, M., & Narayan, R. 1995, Gravitational Lens-
ing and the Mass Distribution of Clusters, in: Dark Matter,
AIP Conf. Proc. 336, eds. S.S. Holt & C.L. Bennett (New
York: AIP Press)

– Keeton II, C.R. & Kochanek, C.S. 1996, Summary of Data
on Secure Multiply-Imaged Systems, in: Cosmological Ap-
plications of Gravitational Lensing, IAU Symp. 173, eds.
C.S. Kochanek & J.N. Hewitt

– Paczyński, B. 1996, Gravitational Microlensing in the Lo-
cal Group, Ann. Rev. Astr. Ap., 34, 419

– Roulet, E., & Mollerach, S. 1997, Microlensing, Physics
Reports, 279, 67

2. LENSING BY POINT MASSES IN THE UNIVERSE

2.1. Basics of Gravitational Lensing

The propagation of light in arbitrary curved spacetimes is in gen-
eral a complicated theoretical problem. However, for almost all
cases of relevance to gravitational lensing, we can assume that
the overall geometry of the universe is well described by the
Friedmann-Lemaı̂tre-Robertson-Walker metric and that the mat-
ter inhomogeneities which cause the lensing are no more than lo-
cal perturbations. Light paths propagating from the source past
the lens to the observer can then be broken up into three dis-
tinct zones. In the first zone, light travels from the source to a
point close to the lens through unperturbed spacetime. In the
second zone, near the lens, light is deflected. Finally, in the
third zone, light again travels through unperturbed spacetime. To
study light deflection close to the lens, we can assume a locally
flat, Minkowskian spacetime which is weakly perturbed by the
Newtonian gravitational potential of the mass distribution con-
stituting the lens. This approach is legitimate if the Newtonian
potential Φ is small, jΦj � c2, and if the peculiar velocity v of
the lens is small, v� c.

These conditions are satisfied in virtually all cases of astro-
physical interest. Consider for instance a galaxy cluster at red-
shift � 0:3 which deflects light from a source at redshift � 1.
The distances from the source to the lens and from the lens to the
observer are � 1 Gpc, or about three orders of magnitude larger
than the diameter of the cluster. Thus zone 2 is limited to a small
local segment of the total light path. The relative peculiar veloci-
ties in a galaxy cluster are� 103 km s�1 � c, and the Newtonian
potential is jΦj< 10�4 c2 � c2, in agreement with the conditions
stated above.

2.1.1. Effective Refractive Index of a Gravitational Field

In view of the simplifications just discussed, we can describe
light propagation close to gravitational lenses in a locally
Minkowskian spacetime perturbed by the gravitational potential

of the lens to first post-Newtonian order. The effect of spacetime
curvature on the light paths can then be expressed in terms of an
effective index of refraction n, which is given by (e.g. Schneider
et al. 1992)

n = 1� 2
c2 Φ = 1+

2
c2 jΦj : (1)

Note that the Newtonian potential is negative if it is defined such
that it approaches zero at infinity. As in normal geometrical op-
tics, a refractive index n> 1 implies that light travels slower than
in free vacuum. Thus, the effective speed of a ray of light in a
gravitational field is

v =
c
n
' c� 2

c
jΦj : (2)

Figure 2 shows the deflection of light by a glass prism. The
speed of light is reduced inside the prism. This reduction of
speed causes a delay in the arrival time of a signal through the
prism relative to another signal traveling at speed c. In addition,
it causes wavefronts to tilt as light propagates from one medium
to another, leading to a bending of the light ray around the thick
end of the prism.

FIG. 2.—Light deflection by a prism. The refractive index n > 1 of the
glass in the prism reduces the effective speed of light to c=n. This causes
light rays to be bent around the thick end of the prism, as indicated.
The dashed lines are wavefronts. Although the geometrical distance be-
tween the wavefronts along the two rays is different, the travel time is
the same because the ray on the left travels through a larger thickness of
glass.

The same effects are seen in gravitational lensing. Because the
effective speed of light is reduced in a gravitational field, light
rays are delayed relative to propagation in vacuum. The total
time delay ∆t is obtained by integrating over the light path from
the observer to the source:

∆t =
Z observer

source

2
c3 jΦjdl : (3)

This is called the Shapiro delay (Shapiro 1964).
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As in the case of the prism, light rays are deflected when they
pass through a gravitational field. The deflection is the integral
along the light path of the gradient of n perpendicular to the light
path, i.e.

~̂α =�
Z
~∇?ndl =

2
c2

Z
~∇?Φdl : (4)

In all cases of interest the deflection angle is very small. We can
therefore simplify the computation of the deflection angle con-
siderably if we integrate ~∇?n not along the deflected ray, but
along an unperturbed light ray with the same impact parame-
ter. (As an aside we note that while the procedure is straightfor-
ward with a single lens, some care is needed in the case of mul-
tiple lenses at different distances from the source. With multiple
lenses, one takes the unperturbed ray from the source as the ref-
erence trajectory for calculating the deflection by the first lens,
the deflected ray from the first lens as the reference unperturbed
ray for calculating the deflection by the second lens, and so on.)

FIG. 3.—Light deflection by a point mass. The unperturbed ray passes
the mass at impact parameter b and is deflected by the angle α̂. Most of
the deflection occurs within ∆z��b of the point of closest approach.

As an example, we now evaluate the deflection angle of a point
mass M (cf. Fig. 3). The Newtonian potential of the lens is

Φ(b;z) =� GM

(b2 + z2)1=2
; (5)

where b is the impact parameter of the unperturbed light ray, and
z indicates distance along the unperturbed light ray from the point
of closest approach. We therefore have

~∇?Φ(b;z) =
GM~b

(b2 + z2)3=2
; (6)

where~b is orthogonal to the unperturbed ray and points toward
the point mass. Equation (6) then yields the deflection angle

α̂ =
2
c2

Z
~∇?Φdz =

4GM
c2b

: (7)

Note that the Schwarzschild radius of a point mass is

RS =
2GM

c2 ; (8)

so that the deflection angle is simply twice the inverse of the im-
pact parameter in units of the Schwarzschild radius. As an exam-
ple, the Schwarzschild radius of the Sun is 2:95 km, and the solar
radius is 6:96�105 km. A light ray grazing the limb of the Sun is
therefore deflected by an angle (5:9=7:0)�10�5radians = 1:007.

2.1.2. Thin Screen Approximation

Figure 3 illustrates that most of the light deflection occurs within
∆z � �b of the point of closest encounter between the light
ray and the point mass. This ∆z is typically much smaller than
the distances between observer and lens and between lens and
source. The lens can therefore be considered thin compared to
the total extent of the light path. The mass distribution of the lens
can then be projected along the line-of-sight and be replaced by a
mass sheet orthogonal to the line-of-sight. The plane of the mass
sheet is commonly called the lens plane. The mass sheet is char-
acterized by its surface mass density

Σ(~ξ) =
Z

ρ(~ξ;z)dz ; (9)

where~ξ is a two-dimensional vector in the lens plane. The de-
flection angle at position~ξ is the sum of the deflections due to all
the mass elements in the plane:

~̂α(~ξ) =
4G
c2

Z
(~ξ�~ξ0)Σ(~ξ0)
j~ξ�~ξ0j2

d2ξ0 : (10)

Figure 4 illustrates the situation.

FIG. 4.—A light ray which intersects the lens plane at~ξ is deflected by
an angle ~̂α(~ξ).
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In general, the deflection angle is a two-component vector. In
the special case of a circularly symmetric lens, we can shift the
coordinate origin to the center of symmetry and reduce light de-
flection to a one-dimensional problem. The deflection angle then
points toward the center of symmetry, and its modulus is

α̂(ξ) =
4GM(ξ)

c2ξ
; (11)

where ξ is the distance from the lens center and M(ξ) is the mass
enclosed within radius ξ,

M(ξ) = 2π
Z ξ

0
Σ(ξ0)ξ0 dξ0 : (12)

2.1.3. Lensing Geometry and Lens Equation

The geometry of a typical gravitational lens system is shown in
Fig. 5. A light ray from a source S is deflected by the angle ~̂α at
the lens and reaches an observer O. The angle between the (arbi-
trarily chosen) optic axis and the true source position is~β, and the
angle between the optic axis and the image I is~θ. The (angular
diameter) distances between observer and lens, lens and source,
and observer and source are Dd, Dds, and Ds, respectively.

FIG. 5.—Illustration of a gravitational lens system. The light ray prop-
agates from the source S at transverse distance η from the optic axis to
the observer O, passing the lens at transverse distance ξ. It is deflected
by an angle α̂. The angular separations of the source and the image from
the optic axis as seen by the observer are β and θ, respectively. The re-
duced deflection angle α and the actual deflection angle α̂ are related
by eq. (13). The distances between the observer and the source, the ob-
server and the lens, and the lens and the source are Ds, Dd, and Dds,
respectively.

It is now convenient to introduce the reduced deflection angle

~α =
Dds

Ds

~̂α : (13)

From Fig. 5 we see that θDs = βDs + α̂Dds. Therefore, the posi-
tions of the source and the image are related through the simple
equation

~β =~θ�~α(~θ) : (14)

Equation (14) is called the lens equation, or ray-tracing equa-
tion. It is nonlinear in the general case, and so it is possible to
have multiple images~θ corresponding to a single source position
~β. As Fig. 5 shows, the lens equation is trivial to derive and re-
quires merely that the following Euclidean relation should exist
between the angle enclosed by two lines and their separation,

separation = angle�distance : (15)

It is not obvious that the same relation should also hold in curved
spacetimes. However, if the distances Dd;s;ds are defined such
that eq. (15) holds, then the lens equation must obviously be true.
Distances so defined are called angular-diameter distances, and
eqs. (13), (14) are valid only when these distances are used. Note
that in general Dds 6= Ds�Dd.

As an instructive special case consider a lens with a constant
surface-mass density. From eq. (11), the (reduced) deflection an-
gle is

α(θ) =
Dds

Ds

4G
c2ξ

(Σπξ2) =
4πGΣ

c2

DdDds

Ds
θ ; (16)

where we have set ξ = Ddθ. In this case, the lens equation is
linear; that is, β ∝ θ. Let us define a critical surface-mass density

Σcr =
c2

4πG
Ds

DdDds
= 0:35gcm�2

�
D

1Gpc

��1

; (17)

where the effective distance D is defined as the combination of
distances

D =
DdDds

Ds
: (18)

For a lens with a constant surface mass density Σcr, the deflection
angle is α(θ) = θ, and so β = 0 for all θ. Such a lens focuses per-
fectly, with a well-defined focal length. A typical gravitational
lens, however, behaves quite differently. Light rays which pass
the lens at different impact parameters cross the optic axis at dif-
ferent distances behind the lens. Considered as an optical device,
a gravitational lens therefore has almost all aberrations one can
think of. However, it does not have any chromatic aberration be-
cause the geometry of light paths is independent of wavelength.

A lens which has Σ > Σcr somewhere within it is referred to
as being supercritical. Usually, multiple imaging occurs only if
the lens is supercritical, but there are exceptions to this rule (e.g.,
Subramanian & Cowling 1986).

2.1.4. Einstein Radius

Consider now a circularly symmetric lens with an arbitrary mass
profile. According to eqs. (11) and (13), the lens equation reads

β(θ) = θ� Dds

DdDs

4GM(θ)
c2 θ

: (19)

Due to the rotational symmetry of the lens system, a source
which lies exactly on the optic axis (β = 0) is imaged as a ring if
the lens is supercritical. Setting β = 0 in eq. (19) we obtain the
radius of the ring to be

θE =

�
4GM(θE)

c2

Dds

DdDs

�1=2

: (20)
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This is referred to as the Einstein radius. Figure 6 illustrates the
situation. Note that the Einstein radius is not just a property of
the lens, but depends also on the various distances in the prob-
lem.

FIG. 6.—A source S on the optic axis of a circularly symmetric lens is
imaged as a ring with an angular radius given by the Einstein radius θE.

The Einstein radius provides a natural angular scale to de-
scribe the lensing geometry for several reasons. In the case of
multiple imaging, the typical angular separation of images is of
order 2θE. Further, sources which are closer than about θE to
the optic axis experience strong lensing in the sense that they are
significantly magnified, whereas sources which are located well
outside the Einstein ring are magnified very little. In many lens
models, the Einstein ring also represents roughly the boundary
between source positions that are multiply-imaged and those that
are only singly-imaged. Finally, by comparing eqs. (17) and (20)
we see that the mean surface mass density inside the Einstein ra-
dius is just the critical density Σcr.

For a point mass M, the Einstein radius is given by

θE =

�
4GM

c2

Dds

DdDs

�1=2

: (21)

To give two illustrative examples, we consider lensing by a star
in the Galaxy, for which M � M� and D � 10 kpc, and lensing
by a galaxy at a cosmological distance with M � 1011 M� and
D� 1 Gpc. The corresponding Einstein radii are

θE = (0:9mas)

�
M

M�

�1=2 � D
10kpc

��1=2

;

θE = (0:009)

�
M

1011 M�

�1=2 � D
Gpc

��1=2

:

(22)

2.1.5. Imaging by a Point Mass Lens

For a point mass lens, we can use the Einstein radius (20) to
rewrite the lens equation in the form

β = θ� θ2
E

θ
: (23)

This equation has two solutions,

θ� =
1
2

�
β�

q
β2 +4θ2

E

�
: (24)

Any source is imaged twice by a point mass lens. The two
images are on either side of the source, with one image inside
the Einstein ring and the other outside. As the source moves
away from the lens (i.e. as β increases), one of the images ap-
proaches the lens and becomes very faint, while the other image
approaches closer and closer to the true position of the source and
tends toward a magnification of unity.

FIG. 7.—Relative locations of the source S and images I+, I
�

lensed
by a point mass M. The dashed circle is the Einstein ring with radius
θE. One image is inside the Einstein ring and the other outside.

Gravitational light deflection preserves surface brightness (be-
cause of Liouville’s theorem), but gravitational lensing changes
the apparent solid angle of a source. The total flux received from
a gravitationally lensed image of a source is therefore changed in
proportion to the ratio between the solid angles of the image and
the source,

magnification =
image area
source area

: (25)

Figure 8 shows the magnified images of a source lensed by a
point mass.

For a circularly symmetric lens, the magnification factor µ is
given by

µ =
θ
β

dθ
dβ

: (26)
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FIG. 8.—Magnified images of a source lensed by a point mass.

For a point mass lens, which is a special case of a circularly sym-
metric lens, we can substitute for β using the lens equation (23)
to obtain the magnifications of the two images,

µ� =

"
1�
�

θE

θ�

�4
#�1

=
u2 +2

2u
p

u2 +4
� 1

2
; (27)

where u is the angular separation of the source from the point
mass in units of the Einstein angle, u = βθ�1

E . Since θ� < θE,
µ� < 0, and hence the magnification of the image which is in-
side the Einstein ring is negative. This means that this image has
its parity flipped with respect to the source. The net magnifica-
tion of flux in the two images is obtained by adding the absolute
magnifications,

µ = jµ+j+ jµ�j=
u2 +2

u
p

u2 +4
: (28)

When the source lies on the Einstein radius, we have β = θE, u =

1, and the total magnification becomes

µ = 1:17+0:17= 1:34 : (29)

How can lensing by a point mass be detected? Unless the lens
is massive (M> 106 M� for a cosmologically distant source), the
angular separation of the two images is too small to be resolved.
However, even when it is not possible to see the multiple images,
the magnification can still be detected if the lens and source move
relative to each other, giving rise to lensing-induced time vari-
ability of the source (Chang & Refsdal 1979; Gott 1981). When
this kind of variability is induced by stellar mass lenses it is re-
ferred to as microlensing. Microlensing was first observed in the
multiply-imaged QSO 2237+0305 (Irwin et al. 1989), and may
also have been seen in QSO 0957+561 (Schild & Smith 1991;
see also Sect. 3.7.4.). Paczyński (1986b) had the brilliant idea of
using microlensing to search for so-called Massive Astrophysical
Compact Halo Objects (MACHOs, Griest 1991) in the Galaxy.
We discuss this topic in some depth in Sect. 2.2..

2.2. Microlensing in the Galaxy

2.2.1. Basic Relations

If the closest approach between a point mass lens and a source is
� θE, the peak magnification in the lensing-induced light curve
is µmax � 1:34. A magnification of 1:34 corresponds to a bright-
ening by 0:32 magnitudes, which is easily detectable. Paczyński
(1986b) proposed monitoring millions of stars in the LMC to
look for such magnifications in a small fraction of the sources.
If enough events are detected, it should be possible to map the
distribution of stellar-mass objects in our Galaxy.

Perhaps the biggest problem with Paczyński’s proposal is that
monitoring a million stars or more primarily leads to the detec-
tion of a huge number of variable stars. The intrinsically variable
sources must somehow be distinguished from stars whose vari-
ability is caused by microlensing. Fortunately, the light curves of
lensed stars have certain tell-tale signatures — the light curves
are expected to be symmetric in time and the magnification is
expected to be achromatic because light deflection does not de-
pend on wavelength (but see the more detailed discussion in Sect.
2.2.4. below). In contrast, intrinsically variable stars typically
have asymmetric light curves and do change their colors.

The expected time scale for microlensing-induced variations
is given in terms of the typical angular scale θE, the relative ve-
locity v between source and lens, and the distance to the lens:

t0 =
DdθE

v
= 0:214yr

�
M

M�

�1=2� Dd

10kpc

�1=2

�
�

Dds

Ds

�1=2�200kms�1

v

�
: (30)

The ratio DdsD�1
s is close to unity if the lenses are located in the

Galactic halo and the sources are in the LMC. If light curves are
sampled with time intervals between about an hour and a year,
MACHOs in the mass range 10�6 M� to 102 M� are potentially
detectable. Note that the measurement of t0 in a given microlens-
ing event does not directly give M, but only a combination of M,
Dd, Ds, and v. Various ideas to break this degeneracy have been
discussed. Figure 9 shows microlensing-induced light curves for
six different minimum separations ∆y= umin between the source
and the lens. The widths of the peaks are � t0, and there is a di-
rect one-to-one mapping between ∆y and the maximum magnifi-
cation at the peak of the light curve. A microlensing light curve
therefore gives two observables, t0 and ∆y.

The chance of seeing a microlensing event is usually ex-
pressed in terms of the optical depth, which is the probability that
at any instant of time a given star is within an angle θE of a lens.
The optical depth is the integral over the number density n(Dd) of
lenses times the area enclosed by the Einstein ring of each lens,
i.e.

τ =
1

δω

Z
dV n(Dd)πθ2

E ; (31)

where dV = δωD2
d dDd is the volume of an infinitesimal spheri-

cal shell with radius Dd which covers a solid angle δω. The in-
tegral gives the solid angle covered by the Einstein circles of the
lenses, and the probability is obtained upon dividing this quan-
tity by the solid angle δω which is observed. Inserting equation
(21) for the Einstein angle, we obtain

τ =
Z Ds

0

4πGρ
c2

DdDds

Ds
dDd =

4πG
c2 D2

s

Z 1

0
ρ(x)x(1� x)dx ;

(32)
where x � DdD�1

s and ρ is the mass density of MACHOs. In
writing (32), we have made use of the fact that space is locally
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FIG. 9.—Microlensing-induced light curves for six minimum separa-
tions between the source and the lens, ∆y = 0:1; 0:3; : : : ;1:1. The sep-
aration is expressed in units of the Einstein radius.

Euclidean, hence Dds = Ds�Dd. If ρ is constant along the line-
of-sight, the optical depth simplifies to

τ =
2π
3

Gρ
c2 D2

s : (33)

It is important to note that the optical depth τ depends on the mass
density of lenses ρ and not on their mass M. The timescale of
variability induced by microlensing, however, does depend on
the square root of the mass, as shown by eq. (30).

2.2.2. Ongoing Galactic Microlensing Searches

Paczyński’s suggestion that microlensing by compact objects in
the Galactic halo may be detected by monitoring the light curves
of stars in the LMC inspired several groups to set up elaborate
searches for microlensing events. Four groups, MACHO (Al-
cock et al. 1993), EROS (Aubourg et al. 1993), OGLE (Udal-
ski et al. 1992), and DUO (Alard 1995), are currently searching
for microlensing-induced stellar variability in the LMC (EROS,
MACHO) as well as in the Galactic bulge (DUO, MACHO,
OGLE).

So far, about 100 microlensing events have been observed, and
their number is increasing rapidly. Most events have been seen
toward the Galactic bulge. The majority of events have been
caused by single lenses, and have light curves similar to those
shown in Fig. 9, but at least two events so far are due to binary
lenses. Strong lensing by binaries (defined as events where the
source crosses one or more caustics, see Fig. 10) was estimated
by Mao & Paczyński (1991) to contribute about 10 per cent of all
events. Binary lensing is most easily distinguished from single-
lens events by characteristic double-peaked or asymmetric light
curves; Fig. 10 shows some typical examples.

The light curve of the first observed binary microlensing
event, OGLE #7, is shown in Fig. 11.

            

FIG. 11.—Light curve of the first binary microlensing
event, OGLE #7 (taken from the OGLE WWW home page at
http://www.astrouw.edu.pl/�ftp/ogle/ogle.html).

2.2.3. Early Results on Optical Depths

Both the OGLE and MACHO collaborations have determined
the microlensing optical depth toward the Galactic bulge. The
results are

τ =
�

(3:3�1:2)�10�6 (Paczyński et al. 1994)
(3:9+1:8

�1:2)�10�6 (Alcock et al. 1997)
: (34)

Original theoretical estimates (Paczyński 1991; Griest, Alcock,
& Axelrod 1991) had predicted an optical depth below 10�6.
Even though this value was increased slightly by Kiraga &
Paczyński (1994) who realized the importance of lensing of
background bulge stars by foreground bulge stars (referred to as
self-lensing of the bulge), the measured optical depth is never-
theless very much higher than expected. Paczyński et al. (1994)
suggested that a Galactic bar which is approximately aligned
with the line-of-sight toward the Galactic bulge might explain the
excess optical depth. Self-consistent calculations of the bar by
Zhao, Spergel, & Rich (1995) and Zhao, Rich, & Spergel (1996)
give τ� 2�10�6, which is within one standard deviation of the
observed value. However, using COBE/DIRBE near-infrared
data of the inner Galaxy and calibrating the mass-to-light ratio
with the terminal velocities of HI and CO clouds, Bissantz et al.
(1997) find a significantly lower optical depth, 0:8�10�6. τ.
0:9� 10�6. Zhao & Mao (1996) describe how the shape of the
Galactic bar can be inferred from measuring the spatial depen-
dence of the optical depth. Zhao et al. (1995) claim that the du-
ration distribution of the bulge events detected by OGLE is com-
patible with a roughly normal stellar mass distribution.

In principle, moments of the mass distribution of microlensing
objects can be inferred from moments of the duration distribu-
tion of microlensing events (De Rújula, Jetzer, & Massó 1991).
Mao & Paczyński (1996) have shown that a robust determination
of mass function parameters requires� 100 microlensing events
even if the geometry of the microlens distribution and the kine-
matics are known.

Based on three events from their first year of data, of which
two are of only modest significance, Alcock et al. (1996) esti-
mated the optical depth toward the LMC to be

τ = 9+7
�5�10�8 ; (35)

in the mass range 10�4 M� < M < 10�1 M�. This is too small
for the entire halo to be made of MACHOs in this mass range.

8



FIG. 10.—Left panel: A binary lens composed of two equal point masses. The critical curve is shown by the heavy line, and the corresponding
caustic is indicated by the thin line with six cusps. (See Sect. 3.3.2. for a definition of critical curves and caustics.) Five source trajectories across
this lens system are indicated. Right panel: Light curves corresponding to an extended source moving along the trajectories indicated in the left
panel. Double-peaked features occur when the source comes close to both lenses.

At the 95% confidence level, the first-year data of the MACHO
collaboration rule out a contribution from MACHOs to the halo
mass & 40% in the mass range 10�3 M� � M � 10�2 M�, and
& 60% within 10�4 M� � M � 10�1 M�. Sahu (1994) argued
that all events can be due to objects in the Galactic disk or the
LMC itself. The EROS collaboration, having better time resolu-
tion, is able to probe smaller masses, 10�7 M� �M � 10�1 M�

(Aubourg et al. 1995). The 95% confidence level from the EROS
data excludes a halo fraction & (20� 30)% in the mass range
10�7 M� � M � 10�2 M� (Ansari et al. 1996; Renault et al.
1997; see also Roulet & Mollerach 1997).

More recently, the MACHO group reported results from 2.3
years of data. Based on 8 events, they now estimate the optical
depth toward the LMC to be

τ = 2:9+1:4
�0:9�10�7 ; (36)

and the halo fraction to be 0:45�1 in the mass range 0:2M� �
M � 0:5M� at 68% confidence. Further, they cannot reject, at
the 99% confidence level, the hypothesis that the entire halo is
made of MACHOs with masses 0:2M� � M � 1M� (Suther-
land 1996). More data are needed before any definitive conclu-
sion can be reached on the contribution of MACHOs to the halo.

2.2.4. Other Interesting Discoveries

In the simplest scenario of microlensing in the Galaxy, a single
point-like source is lensed by a single point mass which moves
with constant velocity relative to the source. The light curve ob-
served from such an event is time-symmetric and achromatic. At
the low optical depths that we expect in the Galaxy, and ignoring
binaries, microlensing events should not repeat since the proba-
bility that the same star is lensed more than once is negligibly
small.

In practice, the situation is more complicated and detailed in-
terpretations of observed light curves must account for some of
the complications listed below. The effects of binary lenses have
already been mentioned above. In the so-called resonant case,
the separation of the two lenses is comparable to their Einstein
radii. The light curve of such a lens system can have dramatic
features such as the double peaks shown in Figs. 10 and 11. At
least two such events have been observed so far, OGLE #7 (Udal-
ski et al. 1994; Bennett et al. 1995) and DUO #2 (Alard, Mao, &
Guibert 1995). In the non-resonant case, the lenses are well sep-
arated and act as almost independent lenses. Di Stefano & Mao
(1996) estimated that a few per cent of all microlensing events
should “repeat” due to consecutive magnification of a star by the
two stars in a wide binary lens.

The sensitivity of microlensing searches to binaries may make
this a particularly powerful method to search for planets around
distant stars, as emphasized by Mao & Paczyński (1991) and
Gould & Loeb (1992).

Multiple sources can give rise to various other complications.
Since the optical depth is low, microlensing searches are per-
formed in crowded fields where the number density of sources
is high. Multiple source stars which are closer to each other than
� 100 appear as single because they are not resolved. The Einstein
radius of a solar mass lens, on the other hand, is � 0:00001 (cf.
eq. 22). Therefore, if the projected separation of two sources is
< 100 but> 0:00001, a single lens affects only one of them at a time.
Several effects can then occur. First, the microlensing event can
apparently recur when the two sources are lensed individually
(Griest & Hu 1992). Second, if the sources have different col-
ors, the event is chromatic because the color of the lensed star
dominates during the event (Udalski et al. 1994; Kamionkowski
1995; Buchalter, Kamionkowski, & Rich 1996). Third, the ob-
served flux is a blend of the magnified flux from the lensed com-
ponent and the constant flux of the unlensed components, and
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this leads to various biases (Di Stefano & Esin 1995; see also
Alard & Guibert 1997). A systematic method of detecting mi-
crolensing in blended data has been proposed and is referred to
as “pixel lensing” (Crotts 1992; Baillon et al. 1993; Colley 1995;
Gould 1996).

Stars are not truly point-like. If a source is larger than the im-
pact parameter of a single lens or the caustic structure of a binary
lens, the finite source size modifies the light curve significantly
(Gould 1994a; Nemiroff & Wickramasinghe 1994; Witt & Mao
1994; Witt 1995).

Finally, if the relative transverse velocity of the source, the
lens, and the observer is not constant during the event, the light
curve becomes time-asymmetric. The parallax effect due to the
acceleration of the Earth was predicted by Gould (1992b) and de-
tected by Alcock et al. (1995b). The detection of parallax pro-
vides an additional observable which helps partially to break the
degeneracy among M, v, Dd and Dds mentioned in Sect. 2.2.1..

Another method of breaking the degeneracy is via observa-
tions from space. The idea of space measurements was suggested
by Refsdal as early as 1966 as a means to determine distances
and masses of lenses in the context of quasar lensing (Refsdal
1966b). Some obvious benefits of space-based telescopes in-
clude absence of seeing and access to wavebands like the UV or
IR which are absorbed by the Earth’s atmosphere. The particular
advantage of space observations for microlensing in the Galaxy
arises from the fact that the Einstein radius of a sub-solar mass
microlens in the Galactic halo is of order 108 km and thus com-
parable to the AU, cf. eq. (22). Telescopes separated by� 1 AU
would therefore observe different light curves for the same mi-
crolensing event. This additional information on the event can
break the degeneracy between the parameters defining the time
scale t0 (Gould 1994b). In the special (and rare) case of very
high magnification when the source is resolved during the event
(Gould 1994a), all four parameters may be determined.

Interesting discoveries can be expected from the various mi-
crolensing “alert systems” which have been recently set up
(GMAN, Pratt 1996; PLANET, Sackett 1996, Albrow et al.
1996). The goal of these programs is to monitor ongoing mi-
crolensing events in almost real time with very high time resolu-
tion. It should be possible to detect anomalies in the microlens-
ing lightcurves which are expected from the complications listed
in this section, or to obtain detailed information (e.g. spectra,
Sahu 1996) from objects while they are being microlensed.

Jetzer (1994) showed that the microlensing optical depth to-
ward the Andromeda galaxy M 31 is similar to that toward the
LMC, τ ' 10�6. Experiments to detect microlensing toward
M 31 have recently been set up (e.g. Gondolo et al. 1997; Crotts
& Tomaney 1996), and results are awaited.

2.3. Extragalactic Microlenses

2.3.1. Point Masses in the Universe

It has been proposed at various times that a significant fraction
of the dark matter in the universe may be in the form of compact
masses. These masses will induce various lensing phenomena,
some of which are very easily observed. The lack of evidence
for these phenomena can therefore be used to place useful limits
on the fraction of the mass in the universe in such objects (Press
& Gunn 1973).

Consider an Einstein-de Sitter universe with a constant co-
moving number density of point lenses of mass M corresponding
to a cosmic density parameter ΩM. The optical depth for lensing
of sources at redshift zs can be shown to be

τ(zs) = 3ΩM

�
(zs +2+2

p
1+ zs) ln(1+ zs)

zs
�4

�

' ΩM
z2

s

4
for zs � 1

' 0:3ΩM for zs = 2 :

(37)

We see that the probability for lensing is�ΩM for high-redshift
sources (Press & Gunn 1973). Hence the number of lensing
events in a given source sample directly measures the cosmolog-
ical density in compact objects.

In calculating the probability of lensing it is important to al-
low for various selection effects. Lenses magnify the observed
flux, and therefore sources which are intrinsically too faint to
be observed may be lifted over the detection threshold. At the
same time, lensing increases the solid angle within which sources
are observed so that their number density in the sky is reduced
(Narayan 1991). If there is a large reservoir of faint sources, the
increase in source number due to the apparent brightening out-
weighs their spatial dilution, and the observed number of sources
is increased due to lensing. This magnification bias (Turner
1980; Turner, Ostriker, & Gott 1984; Narayan & Wallington
1993) can substantially increase the probability of lensing for
bright optical quasars whose number-count function is steep.

2.3.2. Current Upper Limits on ΩM in Point Masses

Various techniques have been proposed and applied to obtain
limits on ΩM over a broad range of lens masses (see Carr 1994 for
a review). Lenses with masses in the range 1010 <M=M�< 1012

will split images of bright QSOs by 0:003�300. Such angular split-
tings are accessible to optical observations; therefore, it is easy
to constrain ΩM in this mass range. The image splitting of lenses
with 106 < M=M� < 108 is on the order of milliarcseconds and
falls within the resolution domain of VLBI observations of radio
quasars (Kassiola, Kovner, & Blandford 1991). The best limits
presently are due to Henstock et al. (1995). A completely dif-
ferent approach utilizes the differential time delay between mul-
tiple images. A cosmological γ-ray burst, which is gravitation-
ally lensed will be seen as multiple repetitions of a single event
(Blaes & Webster 1992). By searching the γ-ray burst database
for (lack of) evidence of repetitions, ΩM can be constrained over
a range of masses which extends below the VLBI range men-
tioned above. The region within QSOs where the broad emission
lines are emitted is larger than the region emitting the continuum
radiation. Lenses with M� 1M� can magnify the continuum rel-
ative to the broad emission lines and thereby reduce the observed
emission line widths. Lenses of still smaller masses cause appar-
ent QSO variability, and hence from observations of the variabil-
ity an upper limit to ΩM can be derived. Finally, the time delay
due to lenses with very small masses can be such that the light
beams from multiply imaged γ-ray bursts interfere so that the ob-
served burst spectra should show interference patterns. Table 1
summarizes these various techniques and gives the most recent
results on ΩM.

As Table 1 shows, we can eliminate ΩM � 1 in virtually all
astrophysically plausible mass ranges. The limits are especially
tight in the range 106 <M=M� < 1012, where ΩM is constrained
to be less than a few per cent.

2.3.3. Microlensing in QSO 2237+0305

Although the Galactic microlensing projects described earlier
have developed into one of the most exciting branches of gravita-
tional lensing, the phenomenon of microlensing was in fact first
detected in a cosmological source, the quadruply-imaged QSO
2237+0305 (Irwin et al. 1989; Corrigan et al. 1991; Webster
et al. 1991; Østensen et al. 1996). The lensing galaxy in QSO
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TABLE 1.—Summary of techniques to constrain ΩM in point masses, along with the current best limits.

Technique References Mass Range Limit on
M� ΩM

Image doubling of Surdej et al. (1993) 1010�1012 < 0:02
bright QSOs
Doubling of VLBI Kassiola et al. (1991) 106�108 < 0:05
compact sources Henstock et al. (1995)
Echoes from γ-ray Nemiroff et al. (1993) 106:5�108:1 . 1
bursts excluded

Nemiroff et al. (1994) (103 !) null result
Diff. magnification Canizares (1982) 10�1�20 < 0:1
of QSO continuum vs. Dalcanton et al. (1994) 10�3�60 < 0:2
broad emission lines
Quasar variability Schneider (1993) 10�3�10�2 < 0:1
Femtolensing of γ-ray Gould (1992a) 10�17�10�13 –
bursts Stanek et al. (1993) –

2237+0305 is a spiral at a redshift of 0:04 (Huchra et al. 1985).
The four quasar images are almost symmetrically located in a
cross-shaped pattern around the nucleus of the galaxy; hence the
system has been named the “Einstein Cross”. Uncorrelated flux
variations have been observed in QSO 2237+0305, possibly in
all four images, and these variations provide evidence for mi-
crolensing due to stars in the lensing galaxy. Figure 12 shows
the light curves of the four images.

FIG. 12.—Light curves of the four images in the “Einstein Cross” QSO
2237+0305 since August 1990 (from Østensen et al. 1996)

The interpretation of the microlensing events in QSO
2237+0305 is much less straightforward than in the case of
microlensing in the Galaxy. When a distant galaxy forms
multiple images, the surface mass density at the locations of the
images is of order the critical density, Σcr. If most of the local

mass is made of stars or other massive compact objects (as is
likely in the case of QSO 2237+0305 since the four images
are superposed on the bulge of the lensing spiral galaxy), the
optical depth to microlensing approaches unity. In such a case,
the mean projected separation of the stars is comparable to or
smaller than their Einstein radii, and the effects of the various
microlenses cannot be considered independently. Complicated
caustic networks arise (Paczyński 1986a; Schneider & Weiss
1987; Wambsganss 1990), and the observed light curves have to
be analyzed statistically on the basis of numerical simulations.
A new and elegant method to compute microlensing light curves
of point sources was introduced by Witt (1993).

Two important conclusions have been drawn from the mi-
crolensing events in QSO 2237+0305. First, it has been shown
that the continuum emitting region in QSO 2237+0305 must
have a size � 1015 cm (Wambsganss, Paczyński, & Schneider
1990; Rauch & Blandford 1991) in order to produce the observed
amplitude of magnification fluctuations. This is the most direct
and stringent limit yet on the size of an optical QSO. Second,
it appears that the mass spectrum of microlenses in the lensing
galaxy is compatible with a normal mass distribution similar to
that observed in our own Galaxy (Seitz, Wambsganss, & Schnei-
der 1994).

3. LENSING BY GALAXIES

Lensing by point masses, the topic we have considered so far, is
particularly straightforward because of the simplicity of the lens.
When we consider galaxy lenses we need to allow for the distrib-
uted nature of the mass, which is usually done via a parameter-
ized model. The level of complexity of the model is dictated by
the application at hand.

3.1. Lensing by a Singular Isothermal Sphere

A simple model for the mass distribution in galaxies assumes
that the stars and other mass components behave like particles of
an ideal gas, confined by their combined, spherically symmetric
gravitational potential. The equation of state of the “particles”,
henceforth called stars for simplicity, takes the form

p =
ρkT

m
; (38)
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where ρ and m are the mass density and the mass of the stars.
In thermal equilibrium, the temperature T is related to the one-
dimensional velocity dispersion σv of the stars through

mσ2
v = kT : (39)

The temperature, or equivalently the velocity dispersion, could
in general depend on radius r, but it is usually assumed that the
stellar gas is isothermal, so that σv is constant across the galaxy.
The equation of hydrostatic equilibrium then gives

p0

ρ
=�GM(r)

r2 ; M0(r) = 4πr2 ρ ; (40)

where M(r) is the mass interior to radius r, and primes denote
derivatives with respect to r. A particularly simple solution of
eqs. (38) through (40) is

ρ(r) =
σ2

v

2πG
1
r2 : (41)

This mass distribution is called the singular isothermal sphere.
Since ρ ∝ r�2, the mass M(r) increases ∝ r, and therefore the
rotational velocity of test particles in circular orbits in the grav-
itational potential is

v2
rot(r) =

GM(r)
r

= 2σ2
v = constant : (42)

The flat rotation curves of galaxies are naturally reproduced by
this model.

Upon projecting along the line-of-sight, we obtain the surface
mass density

Σ(ξ) =
σ2

v

2G
1
ξ
; (43)

where ξ is the distance from the center of the two-dimensional
profile. Referring to eq. (11), we immediately obtain the deflec-
tion angle

α̂ = 4π
σ2

v

c2 = (1:004)
� σv

220kms�1

�2
; (44)

which is independent of ξ and points toward the center of the
lens. The Einstein radius of the singular isothermal sphere fol-
lows from eq. (20),

θE = 4π
σ2

v

c2

Dds

Ds
= α̂

Dds

Ds
= α : (45)

Due to circular symmetry, the lens equation is essentially one-
dimensional. Multiple images are obtained only if the source lies
inside the Einstein ring, i.e. if β < θE. When this condition is
satisfied, the lens equation has the two solutions

θ� = β�θE : (46)

The images at θ�, the source, and the lens all lie on a straight line.
Technically, a third image with zero flux is located at θ = 0. This
third image acquires a finite flux if the singularity at the center of
the lens is replaced by a core region with a finite density.

The magnifications of the two images follow from eq. (26),

µ� =
θ�
β

= 1� θE

β
=

�
1� θE

θ�

��1

: (47)

If the source lies outside the Einstein ring, i.e. if β > θE, there is
only one image at θ = θ+ = β+θE.

3.2. Effective Lensing Potential

Before proceeding to more complicated galaxy lens models, it
is useful to develop the formalism a little further. Let us define a
scalar potential ψ(~θ) which is the appropriately scaled, projected
Newtonian potential of the lens,

ψ(~θ) =
Dds

DdDs

2
c2

Z
Φ(Dd

~θ;z)dz : (48)

The derivatives of ψ with respect to~θ have convenient proper-
ties. The gradient of ψ with respect to θ is the deflection angle,

~∇θψ = Dd
~∇ξψ =

2
c2

Dds

Ds

Z
~∇?Φdz =~α ; (49)

while the Laplacian is proportional to the surface-mass density
Σ,

∇2
θψ =

2
c2

DdDds

Ds

Z
∇2

ξΦdz =
2
c2

DdDds

Ds
�4πGΣ

= 2
Σ(~θ)
Σcr

� 2κ(~θ) ; (50)

where Poisson’s equation has been used to relate the Laplacian of
Φ to the mass density. The surface mass density scaled with its
critical value Σcr is called the convergence κ(~θ). Since ψ satisfies
the two-dimensional Poisson equation ∇2

θψ = 2κ, the effective
lensing potential can be written in terms of κ

ψ(~θ) =
1
π

Z
κ(~θ0) ln j~θ�~θ0jd2θ0 : (51)

As mentioned earlier, the deflection angle is the gradient of ψ,
hence

~α(~θ) = ~∇ψ =
1
π

Z
κ(~θ0)

~θ�~θ0

j~θ�~θ0j2
d2θ0 ; (52)

which is equivalent to eq. (10) if we account for the definition of
Σcr given in eq. (17).

The local properties of the lens mapping are described by its
Jacobian matrix A,

A � ∂~β
∂~θ

=

 
δi j�

∂αi(~θ)
∂θ j

!
=

 
δi j�

∂2ψ(~θ)
∂θi∂θ j

!
= M �1 : (53)

As we have indicated, A is nothing but the inverse of the magni-
fication tensor M . The matrix A is therefore also called the in-
verse magnification tensor. The local solid-angle distortion due
to the lens is given by the determinant of A. A solid-angle ele-
ment δβ2 of the source is mapped to the solid-angle element of
the image δθ2, and so the magnification is given by

δθ2

δβ2 = detM =
1

detA
: (54)

This expression is the appropriate generalization of eq. (26)
when there is no symmetry.

Equation (53) shows that the matrix of second partial deriva-
tives of the potential ψ (the Hessian matrix of ψ) describes the
deviation of the lens mapping from the identity mapping. For
convenience, we introduce the abbreviation

∂2ψ
∂θi∂θ j

� ψi j : (55)
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Since the Laplacian of ψ is twice the convergence, we have

κ =
1
2
(ψ11 +ψ22) =

1
2

tr ψi j : (56)

Two additional linear combinations of ψi j are important, and
these are the components of the shear tensor,

γ1(
~θ) =

1
2
(ψ11�ψ22)� γ(~θ)cos

h
2φ(~θ)

i
;

γ2(
~θ) = ψ12 = ψ21 � γ(~θ)sin

h
2φ(~θ)

i
:

(57)

With these definitions, the Jacobian matrix can be written

A =

�
1�κ� γ1 �γ2
�γ2 1�κ+ γ1

�

= (1�κ)
�

1 0
0 1

�
� γ
�

cos2φ sin2φ
sin2φ �cos2φ

�
:

(58)

The meaning of the terms convergence and shear now becomes
intuitively clear. Convergence acting alone causes an isotropic
focusing of light rays, leading to an isotropic magnification of
a source. The source is mapped onto an image with the same
shape but larger size. Shear introduces anisotropy (or astigma-
tism) into the lens mapping; the quantity γ = (γ2

1 + γ2
2)

1=2 de-
scribes the magnitude of the shear and φ describes its orientation.
As shown in Fig. 13, a circular source of unit radius becomes, in
the presence of both κ and γ, an elliptical image with major and
minor axes

(1�κ� γ)�1 ; (1�κ+ γ)�1 : (59)

The magnification is

µ = detM =
1

detA
=

1
[(1�κ)2� γ2]

: (60)

Note that the Jacobian A is in general a function of position~θ.

3.3. Gravitational Lensing via Fermat’s Principle

3.3.1. The Time-Delay Function

The lensing properties of model gravitational lenses are espe-
cially easy to visualize by application of Fermat’s principle of
geometrical optics (Nityananda 1984, unpublished; Schneider
1985; Blandford & Narayan 1986; Nityananda & Samuel 1992).
From the lens equation (14) and the fact that the deflection angle
is the gradient of the effective lensing potential ψ, we obtain

(~θ�~β)�~∇θψ = 0 : (61)

This equation can be written as a gradient,

~∇θ

�
1
2
(~θ�~β)2�ψ

�
= 0 : (62)

The physical meaning of the term in square brackets becomes
more obvious by considering the time-delay function,

t(~θ) =
(1+ zd)

c
DdDs

Dds

�
1
2
(~θ�~β)2�ψ(~θ)

�
= tgeom + tgrav :

(63)

FIG. 13.—Illustration of the effects of convergence and shear on a cir-
cular source. Convergence magnifies the image isotropically, and shear
deforms it to an ellipse.

The term tgeom is proportional to the square of the angular off-

set between~β and~θ and is the time delay due to the extra path
length of the deflected light ray relative to an unperturbed null
geodesic. The coefficient in front of the square brackets ensures
that the quantity corresponds to the time delay as measured by
the observer. The second term tgrav is the time delay due to grav-
ity and is identical to the Shapiro delay introduced in eq. (3), with
an extra factor of (1+zd) to allow for time stretching. Equations
(62) and (63) imply that images satisfy the condition~∇θt(~θ) = 0
(Fermat’s Principle).

In the case of a circularly symmetric deflector, the source, the
lens and the images have to lie on a straight line on the sky.
Therefore, it is sufficient to consider the section along this line
of the time delay function. Figure 14 illustrates the geometrical
and gravitational time delays for this case. The top panel shows
tgeom for a slightly offset source. The curve is a parabola centered
on the position of the source. The central panel displays tgrav for
an isothermal sphere with a softened core. This curve is centered
on the lens. The bottom panel shows the total time-delay. Ac-
cording to the above discussion images are located at stationary
points of t(θ). For the case shown in Fig. 14 there are three sta-
tionary points, marked by dots, and the corresponding values of
θ give the image positions.

3.3.2. Properties of the Time-Delay Function

In the general case it is necessary to consider image locations in
the two-dimensional space of~θ, not just on a line. The images
are then located at those points ~θi where the two-dimensional
time-delay surface t(~θ) is stationary. This is Fermat’s Principle
in geometrical optics, which states that the actual trajectory fol-
lowed by a light ray is such that the light-travel time is stationary
relative to neighboring trajectories. The time-delay surface t(~θ)
has a number of useful properties.
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FIG. 14.—Geometric, gravitational, and total time delay of a circularly
symmetric lens for a source that is slightly offset from the symmetry
axis. The dotted line shows the location of the center of the lens, and β
shows the position of the source. Images are located at points where the
total time delay function is stationary. The image positions are marked
with dots in the bottom panel.

1 The height difference between two stationary points on t(~θ)
gives the relative time delay between the corresponding im-
ages. Any variability in the source is observed first in the
image corresponding to the lowest point on the surface, fol-
lowed by the extrema located at successively larger values
of t. In Fig. 14 for instance, the first image to vary is the one
that is farthest from the center of the lens. Although Fig.
14 corresponds to a circularly symmetric lens,this property
usually carries over even for lenses that are not perfectly cir-
cular. Thus, in QSO 0957+561, we expect the A image,
which is � 500 from the lensing galaxy, to vary sooner than
the B image, which is only� 100 from the center. This is in-
deed observed (for recent optical and radio light curves of
QSO 0957+561 see Schild & Thomson 1993; Haarsma et
al. 1996, 1997; Kundić et al. 1996).

2 There are three types of stationary points of a two-
dimensional surface: minima, saddle points, and maxima.
The nature of the stationary points is characterized by
the eigenvalues of the Hessian matrix of the time-delay
function at the location of the stationary points,

T =
∂2t(~θ)
∂θi∂θ j

∝
�
δi j�ψi j

�
= A : (64)

The matrix T describes the local curvature of the time-delay
surface. If both eigenvalues of T are positive, t(~θ) is curved
“upward” in both coordinate directions, and the stationary
point is a minimum. If the eigenvalues of T have oppo-
site signs we have a saddle point, and if both eigenvalues
of T are negative, we have a maximum. Correspondingly,
we can distinguish three types of images. Images of type I
arise at minima of t(~θ) where detA > 0 and tr A > 0. Im-

ages of type II are formed at saddle points of t(~θ) where the
eigenvalues have opposite signs, hence detA < 0. Images
of type III are located at maxima of t(~θ) where both eigen-
values are negative and so detA > 0 and tr A < 0.

3 Since the magnification is the inverse of detA, images of
types I and III have positive magnification and images of
type II have negative magnification. The interpretation of
a negative µ is that the parity of the image is reversed. A
little thought shows that the three images shown in Fig. 14
correspond, from the left, to a saddle-point, a maximum
and a minimum, respectively. The images A and B in QSO
0957+561 correspond to the images on the right and left
in this example, and ought to represent a minimum and a
saddle-point respectively in the time delay surface. VLBI
observations do indeed show the expected reversal of par-
ity between the two images (Gorenstein et al. 1988).

FIG. 15.—The time delay function of a circularly symmetric lens for a
source exactly behind the lens (top panel), a source offset from the lens
by a moderate angle (center panel) and a source offset by a large angle
(bottom panel).

4 The curvature of t(~θ) measures the inverse magnification.
When the curvature of t(~θ) along one coordinate direction
is small, the image is strongly magnified along that direc-
tion, while if t(~θ) has a large curvature the magnification is
small. Figure 15 displays the time-delay function of a typ-
ical circularly symmetric lens and a source on the symme-
try axis (top panel), a slightly offset source (central panel),
and a source with a large offset (bottom panel). If the sep-
aration between source and lens is large, only one image is
formed, while if the source is close to the lens three images
are formed. Note that, as the source moves, two images ap-
proach each other, merge and vanish. It is easy to see that,
quite generally, the curvature of t(θ) goes to zero as the im-
ages approach each other; in fact, the curvature varies as
∆θ�1. Thus, we expect that the brightest image configura-
tions are obtained when a pair of images are close together,
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just prior to merging. The lines in~θ-space on which images
merge are referred to as critical lines, while the correspond-
ing source positions in~β-space are called caustics. Critical
lines and caustics are important because (i) they highlight
regions of high magnification, and (ii) they demarcate re-
gions of different image multiplicity. (The reader is referred
to Blandford & Narayan 1986 and Erdl & Schneider 1992
for more details.)

5 When the source is far from the lens, we expect only a sin-
gle image, corresponding to a minimum of the time delay
surface. New extrema are always created in pairs (e.g. Fig.
15). Therefore, the total number of extrema, and thus the
number of images of a generic (non-singular) lens, is odd
(Burke 1981).

3.4. Circularly Symmetric Lens Models

Table 2 compiles formulae for the effective lensing potential and
deflection angle of four commonly used circularly symmetric
lens models; point mass, singular isothermal sphere, isothermal
sphere with a softened core, and constant density sheet. In ad-
dition, one can have more general models with non-isothermal
radial profiles, e.g. density varying as radius to a power other
than �2.

The gravitational time-delay functions tgrav(θ)∝�ψ(θ) of the
models in Table 2 are illustrated in Fig. 16. Note that the four
potentials listed in Tab. 2 all are divergent for θ!∞. (Although
the three-dimensional potential of the point mass drops ∝ r�1, its
projection along the line-of-sight diverges logarithmically.) The
divergence is, however, not serious since images always occur at
finite θ where the functions are well-behaved.

FIG. 16.—Gravitational time-delay functions for the four circularly
symmetric effective potentials listed in Tab. 2. (a) point mass; (b) sin-
gular isothermal sphere; (c) softened isothermal sphere with core radius
θc; (d) constant density sheet.

The image configurations produced by a circularly symmet-
ric lens are easily discovered by drawing time delay functions

t(θ) as in Fig. 15 corresponding to various offsets of the source
with respect to the lens. Figures 17 and 18 show typical image
configurations. The right halves of the figures display the source
plane, and the left halves show the image configuration in the
lens plane. Since A is a 2� 2 matrix, a typical circularly sym-
metric lens has two critical lines where detA vanishes, and two
corresponding caustics in the source plane. The caustic of the
inner critical curve is a circle while the caustic of the outer crit-
ical curve degenerates to a critical point because of the circular
symmetry of the lens. A source which is located outside the out-
ermost caustic has a single image. Upon each caustic crossing,
the image number changes by two, indicated by the numbers in
Fig. 17. The source shown as a small rectangle in the right panel
of Fig. 17 has three images as indicated in the left panel. Of the
three image, the innermost one is usually very faint; in fact, this
image vanishes if the lens has a singular core (the curvature of the
time delay function then becomes infinite) as in the point mass or
the singular isothermal sphere.

FIG. 17.—Imaging of a point source by a non-singular, circularly-
symmetric lens. Left: image positions and critical lines; right: source
position and corresponding caustics.

Figure 18 shows the images of two extended sources lensed
by the same model as in Fig. 17. One source is located close to
the point-like caustic in the center of the lens. It is imaged onto
the two long, tangentially oriented arcs close to the outer criti-
cal curve and the very faint image at the lens center. The other
source is located on the outer caustic and forms a radially elon-
gated image which is composed of two merging images, and a
third tangentially oriented image outside the outer caustic. Be-
cause of the image properties, the outer critical curve is called
tangential, and the inner critical curve is called radial.

3.5. Non-Circularly-Symmetric Lens Models

A circularly symmetric lens model is much too idealized and is
unlikely to describe real galaxies. Therefore, considerable work
has gone into developing non-circularly symmetric models. The
breaking of the symmetry leads to qualitatively new image con-
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TABLE 2.—Examples of circularly symmetric lenses. The effective lensing potential ψ(θ) and the deflection angle α(θ) are given.
The core radius of the softened isothermal sphere is θc.

Lens Model ψ(θ) α(θ)

Point mass
Dds

Ds

4GM
Ddc2 ln jθj Dds

Ds

4GM
c2Ddjθj

Singular isothermal sphere
Dds

Ds

4πσ2

c2 jθj Dds

Ds

4πσ2

c2

Softened isothermal sphere
Dds

Ds

4πσ2

c2

�
θ2

c +θ2
�1=2 Dds

Ds

4πσ2

c2

θ
(θ2

c +θ2)
1=2

Constant density sheet
κ
2

θ2 κjθj

FIG. 18.—Imaging of an extended source by a non-singular circularly-
symmetric lens. A source close to the point caustic at the lens center pro-
duces two tangentially oriented arc-like images close to the outer critical
curve, and a faint image at the lens center. A source on the outer caus-
tic produces a radially elongated image on the inner critical curve, and
a tangentially oriented image outside the outer critical curve. Because
of these image properties, the outer and inner critical curves are called
tangential and radial, respectively.

figurations (see Grossman & Narayan 1988; Narayan & Gross-
man 1989; Blandford et al. 1989).

3.5.1. Elliptical Galaxy Model

To describe an elliptical galaxy lens, we should ideally consider
elliptical isodensity contours. A straightforward generalization
of the isothermal sphere with finite core gives

Σ(θ1;θ2) =
Σ0�

θ2
c +(1� ε)θ2

1 +(1+ ε)θ2
2

�1=2
; (65)

where θ1, θ2 are orthogonal coordinates along the major and mi-
nor axes of the lens measured from the center. The potential

ψ(θ1;θ2) corresponding to this density distribution has been cal-
culated by Kassiola & Kovner (1993) but is somewhat compli-
cated. For the specific case when the core radius θc vanishes, the
deflection angle and the magnification take on a simple form,

α1 =
8πGΣ0p

2εc2
tan�1

" p
2εcosφ

(1� εcos2φ)1=2

#
;

α2 =
8πGΣ0p

2εc2
tanh�1

" p
2εsinφ

(1� εcos2φ)1=2

#
;

µ�1 = 1� 8πGΣ0

c2(θ2
1 +θ2

2)
1=2(1� εcos2φ)1=2

; (66)

where φ is the polar angle corresponding to the vector position
~θ� (θ1;θ2).

Instead of the elliptical density model, it is simpler and often
sufficient to model a galaxy by means of an elliptical effective
lensing potential (Blandford & Kochanek 1987)

ψ(θ1;θ2) =
Dds

Ds
4π

σ2
v

c2

h
θ2

c +(1� ε)θ2
1 +(1+ ε)θ2

2

i1=2
; (67)

where ε measures the ellipticity. The deflection law and magni-
fication tensor corresponding to this potential are easily calcu-
lated using the equations given in Sect. 3.2.. When ε is large,
the elliptical potential model is inaccurate because it gives rise
to dumbbell-shaped isodensity contours, but for small ε, it is a
perfectly viable lens model.

3.5.2. External Shear

The environment of a galaxy, including any cluster surrounding
the primary lens, will in general contribute both convergence and
shear. The effective potential due to the local environment then
reads

ψ(θ1;θ2) =
κ
2
(θ2

1 +θ2
2)+

γ
2
(θ2

1�θ2
2) (68)

in the principal axes system of the external shear, where the con-
vergence κ and shear γ are locally independent of~θ. An external
shear breaks the circular symmetry of a lens and therefore it often
has the same effect as introducing ellipticity in the lens (Kovner
1987). It is frequently possible to model the same system either
with an elliptical potential or with a circular potential plus an ex-
ternal shear.
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3.5.3. Image Configurations with a Non-Circularly
Symmetric Lens

In contrast to the circularly symmetric case, for a non-circular
lens the source, lens and images are not restricted to lie on a line.
Therefore, it is not possible to analyze the problem via sections
of the time delay surface as we did in Figs. 14 and 15. Fermat’s
principle and the time delay function are still very useful but it
is necessary to visualize the full two-dimensional surface t(~θ).
Those who attended the lectures in Jerusalem may recall the lec-
turer demonstrating many of the qualitative features of imaging
by elliptical lenses using a Mexican hat to simulate the time de-
lay surface. In the following, we merely state the results.

Figures 19 and 20 illustrate the wide variety of image configu-
rations produced by an elliptical galaxy lens (or a circularly sym-
metric lens with external shear). In each panel, the source plane
with caustics is shown on the right, and the image configurations
together with the critical curves are shown on the left. Compared
to the circularly symmetric case, the first notable difference in-
troduced by ellipticity is that the central caustic which was point-
like is now expanded into a diamond shape; it is referred to as
the astroid caustic (also tangential caustic). Figure 19 shows the
images of a compact source moving away from the lens center
along a symmetry line (right panel) and a line bisecting the two
symmetry directions (left panel). A source behind the center of
the lens has five images because it is enclosed by two caustics.
One image appears at the lens center, and the four others form
a cross-shaped pattern. When the source is moved outward, two
of the four outer images move toward each other, merge, and dis-
appear as the source approaches and then crosses the astroid (or
tangential) caustic. Three images remain until the source crosses
the radial caustic, when two more images merge and disappear
at the radial critical curve. A single weakly distorted image is fi-
nally left when the source has crossed the outer caustic. When
the source moves toward a cusp point (right panel of Fig. 19),
three images merge to form a single image. All the image con-
figurations shown in Fig. 19 are exhibited by various observed
cases of lensing of QSOs and radio quasars (e.g. Keeton & Ko-
chanek 1996).

Figure 20 illustrates what happens when a source with a larger
angular size is imaged by the same lens model as in Fig. 19.
Large arc-like images form which consist either of three or two
merging images, depending on whether the source lies on top of
a cusp in the tangential caustic (top left panel) or on an inter-cusp
segment (a so-called fold caustic, top right panel). If the source
is even larger (bottom panels), four images can merge, giving
rise to complete or incomplete rings. Radio rings such as MG
1131+0456 (Hewitt et al. 1987) correspond to the configuration
shown at bottom right in Fig. 20.

3.6. Studies of Galaxy Lensing

3.6.1. Detailed Models of Individual Cases of Lensing

Gravitational lens observations provide a number of constraints
which can be used to model the mass distribution of the lens. The
angular separation between the images determines the Einstein
radius of the lens and therefore gives the mass M (eq. 22) or the
velocity dispersion σv (eq. 45) in simple models. The appear-
ance or absence of the central image constrains the core size of
the lens. The number of images and their positions relative to the
lens determine the ellipticity of the galaxy, or equivalently the
magnitude and orientation of an external shear. Since the radial
and tangential magnifications of images reflect the local curva-
tures of the time-delay surface in the corresponding directions,
the relative image sizes constrain the slope of the density profile
of the lens. This does not work very well if all one has are multi-

FIG. 20.—Images of resolved sources produced by an elliptical lens.
Top panels: Large arcs consisting of two or three merging images are
formed when the source lies on top of a fold section (top left panel) or
a cusp point (top right panel) of the tangential caustic. Bottom panels:
A source which covers most of the diamond-shaped caustic produces a
ring-like image consisting of four merging images.

ply imaged point images (Kochanek 1991). However, if the im-
ages have radio structure which can be resolved with VLBI, mat-
ters improve considerably.

Figure 21 shows an extended, irregularly shaped source which
is mapped into two images which are each linear transforma-
tions of the unobservable source. The two transformations are
described by symmetric 2� 2 magnification matrices M1 and
M2 (cf. eq. 53). These matrices cannot be determined from ob-
servations since the original source is not seen. However, the
two images are related to each other by a linear transformation
described by the relative magnification matrix M12 = M �1

1 M2
which can be measured via VLBI observations (Gorenstein et al.
1988; Falco, Gorenstein, & Shapiro 1991). The matrix M12 is in
general not symmetric and thus contains four independent com-
ponents, which are each functions of the parameters of the lens
model. In favorable cases, as in QSO 0957+561, it is even pos-
sible to measure the spatial gradient of M12 (Garrett et al. 1994)
which provides additional constraints on the model.

Radio rings with hundreds of independent pixels are partic-
ularly good for constraining the lens model. As shown in the
bottom panels of Fig. 20, ring-shaped images are formed from
extended sources which cover a large fraction of the central
diamond-shaped caustic. Rings provide large numbers of in-
dependent observational constraints and are, in principle, ca-
pable of providing the most accurate mass reconstructions of
the lens. However, special techniques are needed for analyzing
rings. Three such techniques have been developed and applied
to radio rings, viz.

1 The Ring Cycle algorithm (Kochanek et al. 1989) makes
use of the fact that lensing conserves surface brightness.
Surface elements of an extended image which arise from the
same source element should therefore share the same sur-
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FIG. 19.—Compact source moving away from the center of an elliptical lens. Left panel: source crossing a fold caustic; right panel: source crossing
a cusp caustic. Within each panel, the diagram on the left shows critical lines and image positions and the diagram on the right shows caustics and
source positions.

            

FIG. 21.—Shows an extended source which is mapped into two re-
solved images. While the source and the individual magnification ma-
trices M1 and M2 are not observable, the relative magnification matrix
M12 = M�1

1 M2 can be measured. This matrix provides four indepen-
dent constraints on the lens model.

face brightness (to within observational errors). This pro-
vides a large number of constraints which can be used to
reconstruct the shape of the original source and at the same
time optimize a parameterized lens model.

2 The LensClean technique (Kochanek & Narayan 1992) is a
generalization of the Ring Cycle algorithm which uses the
Clean algorithm to allow for the finite beam of the radio
telescope.

3 LensMEM (Wallington, Narayan, & Kochanek 1994;
Wallington, Kochanek, & Narayan 1996) is analogous
to LensClean, but uses the Maximum Entropy Method
instead of Clean.

3.6.2. Statistical Modeling of Lens Populations

The statistics of lensed QSOs can be used to infer statistical prop-
erties of the lens population. In this approach, parameterized
models of the galaxy and QSO populations in the universe are
used to predict the number of lensed QSOs expected to be ob-
served in a given QSO sample and to model the distributions of
various observables such as the image separation, flux ratio, lens
redshift, source redshift, etc. An important aspect of such stud-
ies is the detailed modeling of selection effects in QSO surveys
(Kochanek 1993a) and proper allowance for magnification bias
(Narayan & Wallington 1993). The lensing galaxies are usually
modeled either as isothermal spheres or in terms of simple ellipti-
cal potentials, with an assumed galaxy luminosity function and a
relation connecting luminosity and galaxy mass (or velocity dis-
persion). The QSO number-countas a function of redshift should
be known since it strongly influences the lensing probability.

Statistical studies have been fairly successful in determining
properties of the galaxy population in the universe, especially at
moderate redshifts where direct observations are difficult. Use-
ful results have been obtained on the number density, velocity
dispersions, core radii, etc. of lenses. Resolved radio QSOs pro-
vide additional information on the internal structure of galaxy
lenses such as their ellipticities (Kochanek 1996b). By and large,
the lens population required to explain the statistics of multiply
imaged optical and radio QSOs turns out to be consistent with the
locally observed galaxy population extrapolated to higher red-
shifts (Kochanek 1993b; Maoz & Rix 1993; Surdej et al. 1993;
see below).

So far, statistical studies of galaxy lensing neglected the con-
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tribution from spirals because their velocity dispersions are sig-
nificantly lower than those of ellipticals. However, most of the
lenses found by the CLASS survey (Myers et al. 1995) are clas-
sified as S0 or spiral galaxies. This result has recently triggered
investigations of lens models that contain disks in addition to ha-
los. While realistic disks increase the multiple-image cross sec-
tions of halo-only models only by� 10% (Wang & Turner 1997;
Keeton & Kochanek 1998), they allow for much more convinc-
ing models of lens systems such as B 1600, where a nearly edge-
on disk is observed (Maller, Flores, & Primack 1997).

3.7. Astrophysical Results from Galaxy Lensing

3.7.1. Galaxy Structure

The structure of galaxies influences lensing statistics as well as
the appearances of individual lensed objects. Gravitational lens-
ing can therefore be used to constrain galaxy models in various
ways.

As described earlier, galaxy lens models predict a weak cen-
tral image whose flux depends on the core radius of the galaxy.
The central image is missing in virtually every known multiply-
imaged quasar. The lensing galaxies in these cases must there-
fore have very small core radii, rc < 200 pc (Wallington &
Narayan 1993; Kassiola & Kovner 1993; Grogin & Narayan
1996).

Kochanek (1993b) has shown that the observed distribution
of image separations in the observed lens sample of quasars re-
quires that most galaxies must have dark halos with characteris-
tic velocity dispersions of σ�dark � 220�20 km s�1. If these dark
halos were absent, virtually no image separations larger than 200

would be produced (Maoz & Rix 1993), whereas several wide
separation examples are known. Multiply-imaged quasars do not
generally constrain the size of the halo because the constraints
only extend out to about the Einstein radius, which is � 10 kpc
at the distance of the lens. The largest halo inferred from direct
modeling of a multiply-imaged quasar is in the lensing galaxy of
QSO 0957+561; the halo of this galaxy has been shown to have
a radius of at least 15h�1 kpc, where h = H0=100 kms�1 Mpc�1

is the reduced Hubble constant (Grogin & Narayan 1996). Brain-
erd et al. (1996) investigated weak lensing of background galax-
ies by foreground galaxies and found statistical evidence for ha-
los extending out to radii � 100 kpc. At these radii, they deter-
mined that an L� galaxy must have a mass � 1012M�. Com-
parable results were obtained by Dell’Antonio & Tyson (1996)
and Griffiths et al. (1996). Natarajan & Kneib (1996) show that
the sizes of halos around galaxies in clusters could be inferred
by measuring the weak lensing effect of these galaxies on back-
ground sources.

Only in two cases has it been possible to constrain signifi-
cantly the radial mass density variation of the lensing galaxy. As-
suming a surface mass density profile Σ ∝ r�α, the best fitting
values of α in these two examples are

α =

8><
>:

(0:9�1:1) in MG 1654+134
(Kochanek 1995a)

(1:0�1:2) in QSO 0957+561
(Grogin & Narayan 1996)

: (69)

Both sources have particularly good data — the first is a radio
ring and the second has extensive VLBI observations — and it
is this feature that allows a good constraint on α. Note that the
density variation is close to isothermal in both cases. Recent ob-
servations of QSO 0957+561 with the Hubble Space Telescope
(Bernstein et al. 1997) show that the lensing galaxy is shifted by
45 mas from the position assumed by Grogin & Narayan in their

model. This will modify the estimate of α for this galaxy, but
perhaps by only a fraction of the stated uncertainty.

The observed morphologies of images in lensed quasars are
similar to those shown in Fig. 19, which means that most lenses
are not circularly symmetric. If the non-circularity is entirely due
to the ellipticity of the galaxy mass, then typical ellipticities are
fairly large, � E3�E4 (Kochanek 1996b). However, it is pos-
sible that part of the effect comes from external shear. The data
are currently not able to distinguish very well between the effects
of galaxy ellipticity and external shear. In many well-modeled
examples, the mass ellipticity required to fit the images is larger
than the ellipticity of the galaxy isophotes, suggesting either that
the dark matter is more asymmetric than the luminous matter or
that there is a significant contribution from external shear (Ko-
chanek 1996b; Bar-Kana 1996). Keeton, Kochanek, & Seljak
(1997) find the external cosmic shear insufficient to explain fully
the discrepancy between the ellipticity of the galaxy isophotes
and the ellipticity of the mass required by lens models. This im-
plies that at least part of the inferred ellipticity of the mass dis-
tribution is intrinsic to the galaxies.

3.7.2. Galaxy Formation and Evolution

The angular separations of multiple images depend on the lens
mass, and the number of observed multiply imaged quasars with
a given separation depends on the number density of galaxies
with the corresponding mass. The usual procedure to set lim-
its on the galaxy population starts with the present galaxy pop-
ulation and extrapolates it to higher redshifts assuming some
parameterized prescription of evolution. The parameters are
then constrained by comparing the observed statistics of lensed
sources to that predicted by the model (Kochanek 1993b; Maoz
& Rix 1993; Rix et al. 1994; Mao & Kochanek 1994).

If galaxies formed recently, most of the optical depth for mul-
tiple imaging will be from low-redshift galaxies. An analysis
which uses all the known information on lensed quasars, such
as the redshifts of lenses and sources, the observed fraction of
lensed quasars, and the distribution of image separations, can be
used to set limits on how recently galaxies could have formed.
Mao & Kochanek (1994) conclude that most galaxies must have
collapsed and formed by z� 0:8 if the universe is well described
by the Einstein-de Sitter model.

If elliptical galaxies are assembled from merging spiral galax-
ies, then with increasing redshift the present population of ellip-
ticals is gradually replaced by spirals. This does not affect the
probability of producing lensed quasars as the increase in the
number of lens galaxies at high redshift is compensated by the
reduced lensing cross-sections of these galaxies. However, be-
cause of their lower velocity dispersion, spirals produce smaller
image separations than ellipticals (the image splitting is propor-
tional to σ2

v , cf. eq. 45). Therefore, a merger scenario will pre-
dict smaller image separations in high redshift quasars, and the
observed image separations can be used to constrain the merger
rate (Rix et al. 1994). Assuming that the mass of the galaxies
scales with σ4

v and is conserved in mergers, Mao & Kochanek
(1994) find that no significant mergers could have occurred more
recently than z� 0:4 in an Einstein-de Sitter universe.

If the cosmological constant is large, say Λ0 > 0:6, the vol-
ume per unit redshift is much larger than in an Einstein-de Sitter
universe. For a fixed number density of galaxies, the total num-
ber of available lenses then increases steeply. For such model
universes, lens statistics would be consistent with recent rapid
evolution of the galaxy population. However, studies of gravita-
tional clustering and structure formation show that galaxies form
at high redshifts precisely when Λ0 is large. When this additional
constraint is included it is found that there is no scenario which
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allows recent galaxy formation or evolution in the universe (see
also Sect. 3.7.5.).

Since lensing statistics are fully consistent with the known lo-
cal galaxy population extrapolated to redshifts z � 1, the num-
ber densities of any dark “failed” galaxies are constrained quite
strongly. As a function of velocity dispersion σ�, the current con-
straints are (Mao & Kochanek 1994)

ndark <

8<
:

0:15h3 Mpc�3 for σ� = 100 km s�1

0:032h3 Mpc�3 for σ� = 150 km s�1

0:017h3 Mpc�3 for σ� = 200 km s�1
: (70)

3.7.3. Constraint on CDM

The popular cold dark matter (CDM) scenario of structure for-
mation in its “standard” variant (Ω0 = 1, Λ0 = 0 and COBE nor-
malized) predicts the formation of large numbers of dark mat-
ter halos in the mass range between galaxies and galaxy clus-
ters. The implications of these halos for lensing were consid-
ered by Narayan & White (1988) and more recently by Cen et
al. (1994); Wambsganss et al. (1995); Wambsganss, Cen, & Os-
triker (1998); and Kochanek (1995b). The latter authors have
shown quite convincingly that the standard CDM model pro-
duces many more wide-separation quasar pairs than observed.
For example, a recent search of a subsample of the HST snap-
shot survey for multiply imaged QSOs with image separations
between 700 and 5000 found a null result (Maoz et al. 1997). To
save CDM, either the normalization of the model needs to be
reduced to σ8 � 0:5� 0:2, or the long-wavelength slope of the
power spectrum needs to be lowered to n � 0:5� 0:2. Both of
these options are inconsistent with the COBE results. The prob-
lem of the over-productionof wide angle pairs is just a manifesta-
tion of the well-known problem that standard COBE-normalized
CDM over-produces cluster-scale mass condensations by a large
factor. Models which are adjusted to fit the observed number
density of clusters also satisfy the gravitational lens constraint.

If the dark halos have large core radii, their central density
could drop below the critical value for lensing and this would
reduce the predicted number of wide-separation lens systems.
Large core radii thus may save standard CDM (Flores & Primack
1996), but there is some danger of fine-tuning in such an expla-
nation. As discussed in Sect. 3.7.1., galaxy cores are quite small.
Therefore, one needs to invoke a rather abrupt increase of core
radius with increasing halo mass.

3.7.4. Hubble Constant

The lens equation is dimensionless, and the positions of im-
ages as well as their magnifications are dimensionless numbers.
Therefore, information on the image configuration alone does
not provide any constraint on the overall scale of the lens geom-
etry or the value of the Hubble constant. Refsdal (1964) realized
that the time delay, however, is proportional to the absolute scale
of the system and does depend on H0 (cf. Fig. 22).

To see this, we first note that the geometrical time delay is sim-
ply proportional to the path lengths of the rays which scale as
H�1

0 . The potential time delay also scales as H�1
0 because the

linear size of the lens and its mass have this scaling. Therefore,
for any gravitational lens system, the quantity

H0 ∆τ (71)

depends only on the lens model and the geometry of the system.
A good lens model which reproduces the positions and magni-
fications of the images provides the scaled time delay H0 ∆τ be-
tween the images. Therefore, a measurement of the time delay
∆τ will yield the Hubble constant H0 (Refsdal 1964, 1966a).

FIG. 22.—Sketch of the dependence of the overall scale of a lens system
on the value of the Hubble constant.

To measure the time delay, the fluxes of the images need to be
monitored over a period of time significantly longer than the time
delay in order to achieve reasonable accuracy. In fact, the analy-
sis of the resulting light curves is not straightforward because of
uneven data sampling, and careful and sophisticated data analy-
sis techniques have to be applied. QSO 0957+561 has been
monitored both in the optical (Vanderriest et al. 1989; Schild &
Thomson 1993; Kundić et al. 1996) and radio wavebands (Lehár
et al. 1992; Haarsma et al. 1996, 1997). Unfortunately, analysis
of the data has led to two claimed time delays:

∆τ = (1:48�0:03) years (72)

(Press, Rybicki, & Hewitt 1992a,b) and

∆τ' 1:14 years (73)

(Schild & Thomson 1993; Pelt et al. 1994, 1996). The discrep-
ancy appears to have been resolved in favor of the shorter delay.
Haarsma et al. (1996) find ∆τ = 1:03�1:33years, and Kundić et
al. (1996) derive ∆τ = 417�3days using a variety of statistical
techniques.

In addition to a measurement of the time delay, it is also neces-
sary to develop a reliable model to calculate the value of H0∆τ.
QSO 0957+561 has been studied by a number of groups over
the years, with recent work incorporating constraints from VLBI
imaging (Falco et al. 1991). Grogin & Narayan (1996) estimate
the Hubble constant to be given by

H0 = (82�6)(1�κ)
�

∆τ
1:14 yr

��1

kms�1 Mpc�1 (74)

where κ refers to the unknown convergence due to the cluster
surrounding the lensing galaxy. Since the cluster κ cannot be
negative, this result directly gives an upper bound on the Hub-
ble constant (H0 < 88 kms�1 Mpc�1 for ∆τ = 1:14 years). Ac-
tually, κ can also be modified by large scale structure along the
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line of sight. In contrast to the effect of the cluster, this fluctu-
ation can have either sign, but the rms amplitude is estimated
to be only a few per cent (Seljak 1994; Bar-Kana 1996). Surpi,
Harari, & Frieman (1996) confirm that large-scale structure does
not modify the functional relationship between lens observables,
and therefore does not affect the determination of H0.

To obtain an actual value of H0 instead of just an upper bound,
we need an independent estimate of κ. Studies of weak lensing
by the cluster (Fischer et al. 1997) give κ = 0:24� 0:12 (2σ)
at the location of the lens (cf. Kundić et al. 1996). This corre-
sponds to H0 = 62+12

�13 kms�1 Mpc�1. Another technique is to
measure the velocity dispersion σgal of the lensing galaxy, from
which it is possible to estimate κ (Falco et al. 1992; Grogin &
Narayan 1996). Falco et al. (1997) used the Keck telescope to
measure σgal = 279� 12 kms�1, which corresponds to H0 =

66�7 kms�1 Mpc�1. Although most models of QSO 0957+561
are based on a spherically symmetric galaxy embedded in an ex-
ternal shear (mostly due to the cluster), introduction of ellipticity
in the galaxy, or a point mass at the galaxy core, or substructure
in the cluster seem to have little effect on the estimate of H0 (Gro-
gin & Narayan 1996).

A measurement of the time delay has also been attempted in
the Einstein ring system B 0218+ 357. In this case, a single
galaxy is responsible for the small image splitting of 0:003. The
time delay has been determined to be 12�3 days (1σ confidence
limit) which translates to H0 � 60 kms�1 Mpc�1 (Corbett et al.
1996).

Schechter et al. (1997) recently announced a time delay of
∆τ = 23:7�3:4days between images B and C of the quadruple
lens PG 1115+080. Using a different statistical technique, Bar-
Kana (1997) finds ∆τ= 25:0+3:3

�3:8 days (95% confidence) from the
same data. Their best fitting lens model, where the lens galaxy
as well as an associated group of galaxies are modeled as singu-
lar isothermal spheres, gives H0 = 42� 6kms�1 Mpc�1. Other
models give larger values of H0 but fit the data less well. Kee-
ton & Kochanek (1997) have considered a more general class of
models where the lensing galaxy is permitted to be elliptical, and
present a family of models which fit the PG 1115+080 data well.
They estimate H0 = 60�17kms�1 Mpc�1. With more accurate
data on the position of the lens galaxy, this estimate could be im-
proved to H0 = 53+10

�7 kms�1 Mpc�1 (Courbin et al. 1997).
The determination of H0 through gravitational lensing has a

number of advantages over other techniques.

1 The method works directly with sources at large redshifts,
z� 0:5, whereas most other methods are local (observations
within � 100 Mpc) where peculiar velocities are still com-
parable to the Hubble flow.

2 While other determinations of the Hubble constant rely on
distance ladders which progressively reach out to increasing
distances, the measurement via gravitational time delay is
a one-shot procedure. One measures directly the geometri-
cal scale of the lens system. This means that the lens-based
method is absolutely independent of every other method
and at the very least provides a valuable test of other deter-
minations.

3 The lens-based method is based on fundamental physics
(the theory of light propagation in General Relativity),
which is fully tested in the relevant weak-field limit of
gravity. Other methods rely on models for variable stars
(Cepheids) or supernova explosions (Type II), or empiri-
cal calibrations of standard candles (Tully-Fisher distances,
Type I supernovae). The lensing method does require some

information on the “shapes” of galaxies which is used to
guide the choice of a parameterized lens model.

3.7.5. Cosmological Constant

A large cosmological constant Λ0 increases the volume per unit
redshift of the universe at high redshift. As Turner (1990) re-
alized, this means that the relative number of lensed sources
for a fixed comoving number density of galaxies increases
rapidly with increasing Λ0. Turning this around it is pos-
sible to use the observed probability of lensing to constrain
Λ0. This method has been applied by various authors (Turner
1990; Fukugita & Turner 1991; Fukugita et al. 1992; Maoz
& Rix 1993; Kochanek 1996a), and the current limit is Λ0 <
0:65 (2σ confidence limit) for a universe with Ω0 + Λ0 = 1.
With a combined sample of optical and radio lenses, this limit
could be slightly improved to Λ0 < 0:62 (2σ; Falco, Kochanek,
& Muñoz 1998). Malhotra, Rhoads, & Turner (1996) claim that
there is evidence for considerable amounts of dust in lensing
galaxies. They argue that the absorption in dusty lenses can rec-
oncile a large cosmological constant with the observed multiple-
image statistics.

A completely independent approach (Kochanek 1992) consid-
ers the redshift distribution of lenses. For a given source redshift,
the probability distribution of zd peaks at higher redshift with in-
creasing Λ0. Once again, by comparing the observations against
the predicted distributions one obtains an upper limit on Λ0. This
method is less sensitive than the first, but gives consistent results.

Another technique consists in comparing the observed QSO
image separations to those expected from the redshifts of lenses
and sources and the magnitudes of the lenses, assuming certain
values for Ω0 and Λ0. The cosmological parameters are then var-
ied to optimize the agreement with the observations. Applying
this approach to a sample of seven lens systems, Im, Griffiths,
& Ratnatunga (1997) find Λ0 = 0:64+0:15

�0:26 (1σ confidence limit)
assuming Ω0 +Λ0 = 1.

4. LENSING BY GALAXY CLUSTERS AND LARGE-SCALE
STRUCTURE

Two distinct types of lensing phenomena are observed with clus-
ters of galaxies (Fig. 23):

1 Rich centrally condensed clusters occasionally produce gi-
ant arcs when a background galaxy happens to be aligned
with one of the cluster caustics. These instances of lens-
ing are usually analyzed with techniques similar to those de-
scribed in Sect. 2. for galaxy lenses. In brief, a parameter-
ized lens model is optimized so as to obtain a good fit to the
observed image.

2 Every cluster produces weakly distorted images of large
numbers of background galaxies. These images are called
arclets and the phenomenon is referred to as weak lensing.
With the development of the Kaiser & Squires (1993) algo-
rithm and its variants, weak lensing is being used increas-
ingly to derive parameter-free two-dimensional mass maps
of lensing clusters.

In addition to these two topics, we also discuss in this sec-
tion weak lensing by large-scale structure in the universe. This
topic promises to develop into an important branch of gravita-
tional lensing, and could in principle provide a direct measure-
ment of the primordial power spectrum P(k) of the density fluc-
tuations in the universe.
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FIG. 23.—Hubble Space Telescope image of the cluster Abell 2218,
showing a number of arcs and arclets around the two centers of the clus-
ter. (NASA HST Archive)

4.1. Strong Lensing by Clusters — Giant Arcs

4.1.1. Basic Optics

We begin by summarizing a few features of generic lenses which
we have already discussed in the previous sections. A lens is
fully characterized by its surface mass density Σ(~θ). Strong lens-
ing, which is accompanied by multiple imaging, requires that the
surface mass density somewhere in the lens should be larger than
the critical surface mass density,

Σ& Σcr = 0:35 gcm�3
�

D
Gpc

��1

; (75)

where D is the effective lensing distance defined in eq. (18). A
lens which satisfies this condition produces one or more caus-
tics. Examples of the caustics produced by an elliptical lens with
a finite core are shown in Fig. 19. Sources outside all caus-
tics produce a single image; the number of images increases by
two upon each caustic crossing toward the lens center. As il-
lustrated in Figs. 19 and 20, extended sources like galaxies pro-
duce large arcs if they lie on top of caustics. The largest arcs are
formed from sources on cusp points, because then three images
of a source merge to form the arc (cf. the right panel in Fig. 19 or
the top right panel in Fig. 20). At the so-called “lips” and “beak-
to-beak” caustics, which are related to cusps, similarly large arcs
are formed. Sources on a fold caustic give rise to two rather than
three merging images and thus form moderate arcs.

4.1.2. Cluster Mass Inside a Giant Arc

The location of an arc in a cluster provides a simple way to esti-
mate the projected cluster mass within a circle traced by the arc
(cf. Fig. 24). For a circularly symmetric lens, the average sur-
face mass density hΣi within the tangential critical curve equals
the critical surface mass density Σcr. Tangentially oriented large
arcs occur approximately at the tangential critical curves. The ra-
dius θarc of the circle traced by the arc therefore gives an estimate
of the Einstein radius θE of the cluster.

Thus we have

hΣ(θarc)i � hΣ(θE)i= Σcr ; (76)

and we obtain for the mass enclosed by θ = θarc

M(θ) = Σcr π(Ddθ)2 � 1:1�1014 M�

�
θ

3000

�2 � D
1Gpc

�
:

(77)

FIG. 24.—Tangential arcs constrain the cluster mass within a circle
traced by the arcs.

Assuming an isothermal model for the mass distribution in the
cluster and using eq. (45), we obtain an estimate for the velocity
dispersion of the cluster,

σv � 103 kms�1
�

θ
2800

�1=2 � Ds

Dds

�1=2

: (78)

In addition to the lensing technique, two other methods are avail-
able to obtain the mass of a cluster: the observed velocity disper-
sion of the cluster galaxies can be combined with the virial the-
orem to obtain one estimate, and observations of the X-ray gas
combined with the condition of hydrostatic equilibrium provides
another. These three quite independent techniques yield masses
which agree with one another to within a factor� 2�3.

The mass estimate (77) is based on very simple assumptions.
It can be improved by modeling the arcs with parameterized lens
mass distributions and carrying out more detailed fits of the ob-
served arcs. We list in Tab. 3 masses, mass-to-blue-light ratios,
and velocity dispersions of three clusters with prominent arcs.
Additional results can be found in the review article by Fort &
Mellier (1994).

4.1.3. Asphericity of Cluster Mass

The fact that the observed giant arcs never have counter-arcs
of comparable brightness, and rarely have even small counter-
arcs, implies that the lensing geometry has to be non-spherical
(Grossman & Narayan 1988; Kovner 1989; see also Figs. 19 and
20). Cluster potentials therefore must have substantial quadru-
pole and perhaps also higher multipole moments. In the case of
A 370, for example, there are two cD galaxies, and the potential
quadrupole estimated from their separation is consistent with the
quadrupole required to model the observed giant arc (Grossman
& Narayan 1989). The more detailed model of A 370 by Kneib
et al. (1993) shows a remarkable agreement between the lensing
potential and the strongly aspheric X-ray emission of the cluster.
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TABLE 3.—Masses, mass-to-blue-light ratios, and velocity dispersions for three clusters with prominent arcs.

Cluster M M=LB σ Reference
(M�) (solar) km s�1

A 370 � 5�1013 h�1 � 270h � 1350 Grossman & Narayan 1989
Bergmann et al. 1990
Kneib et al. 1993

A 2390 � 8�1013 h�1 � 240h � 1250 Pelló et al. 1991
MS 2137�23 � 3�1013 h�1 � 500h � 1100 Mellier et al. 1993

Large deviations of the lensing potentials from spherical sym-
metry also help increase the probability of producing large arcs.
Bergmann & Petrosian (1993) argued that the apparent abun-
dance of large arcs relative to small arcs and arclets can be rec-
onciled with theoretical expectations if aspheric lens models are
taken into account. Bartelmann & Weiss (1994) and Bartelmann,
Steinmetz, & Weiss (1995) showed that the probability for large
arcs can be increased by more than an order of magnitude if as-
pheric cluster models with significant substructure are used in-
stead of smooth spherically symmetric models. The essential
reason for this is that the largest (three-image) arcs are produced
by cusp caustics, and asymmetry increases the number of cusps
on the cluster caustics.

4.1.4. Core Radii

If a cluster is able to produce large arcs, its surface-mass den-
sity in the core must be approximately supercritical, Σ & Σcr. If
applied to simple lens models, e.g. softened isothermal spheres,
this condition requires

θcore . 1500
� σv

103 kms�1

�2
�

Dds

Ds

�
: (79)

Narayan, Blandford, & Nityananda (1984) argued that cluster
mass distributions need to have smaller core radii than those de-
rived from optical and X-ray observations if they are to produce
strong gravitational lens effects. This has been confirmed by
many later efforts to model giant arcs. In virtually every case the
core radius estimated from lensing is significantly smaller than
the estimates from optical and X-ray data. Some representative
results on lens-derived core radii are listed in Tab. 4, where the
estimates correspond to H0 = 50 kms�1 Mpc

�1
.

TABLE 4.—Limits on cluster core radii from models of large
arcs.

Cluster rcore Reference
(kpc)

A 370 < 60 Grossman & Narayan (1989)
< 100 Kneib et al. (1993)

MS 2137�23 � 50 Mellier et al. (1993)
Cl 0024+1654 < 130 Bonnet et al. (1994)
MS 0440+0204 � 90 Luppino et al. (1993)

Statistical analyses based on spherically symmetric cluster
models lead to similar conclusions. Miralda-Escudé (1992,
1993) argued that cluster core radii can hardly be larger than the
curvature radii of large arcs. Wu & Hammer (1993) claimed

that clusters either have to have singular cores or density pro-
files much steeper than isothermal in order to reproduce the abun-
dance of large arcs. Although this conclusion can substantially
be altered once deviations from spherical symmetry are taken
into account (Bartelmann et al. 1995), it remains true that we re-
quire rcore . 100 kpc in all observed clusters. Cores of this size
can also be reconciled with large-arc statistics.

Interestingly, there are at least two observations which seem to
indicate that cluster cores, although small, must be finite. Fort et
al. (1992) discovered a radial arc near the center of MS 2137�23,
and Smail et al. (1996) found a radial arc in A 370. To pro-
duce a radial arc with a softened isothermal sphere model, the
core radius has to be roughly equal to the distance between the
cluster center and the radial arc (cf. Fig. 19). Mellier, Fort, &
Kneib (1993) find rcore & 40 kpc in MS 2137�23, and Smail et
al. (1996) infer rcore � 50 kpc in A 370. Bergmann & Petrosian
(1993) presented a statistical argument in favor of finite cores by
showing that lens models with singular cores produce fewer large
arcs (relative to small arcs) than observed. The relative abun-
dance increases with a small finite core. These results, however,
have to be interpreted with caution because it may well be that
the softened isothermal sphere model is inadequate to describe
the interiors of galaxy clusters. While this particular model in-
deed requires core radii on the order of the radial critical radius,
other lens models can produce radial arcs without having a flat
core, and there are even singular density profiles which can ex-
plain radial arcs (Miralda-Escudé 1995; Bartelmann 1996). Such
singular profiles for the dark matter are consistent with the fairly
large core radii inferred from the X-ray emission of clusters, if
the intracluster gas is isothermal and in hydrostatic equilibrium
with the dark-matter potential (Navarro, Frenk, & White 1996;
J.P. Ostriker, private communication).

4.1.5. Radial Density Profile

Many of the observed giant arcs are unresolved in the radial di-
rection, some of them even when observed under excellent see-
ing conditions or with the Hubble Space Telescope. Since the
faint blue background galaxies which provide the source popula-
tion for the arcs seem to be resolved (e.g. Tyson 1995), the giant
arcs appear to be demagnified in width. It was realized by Ham-
mer & Rigaut (1989) that spherically symmetric lenses can radi-
ally demagnify giant arcs only if their radial density profiles are
steeper than isothermal. The maximum demagnification is ob-
tained for a point mass lens, where it is a factor of two. Kovner
(1989) and Hammer (1991) demonstrated that, irrespective of the
mass profile and the symmetry of the lens, the thin dimension of
an arc is compressed by a factor� 2(1�κ), where κ is the con-
vergence at the position of the arc. Arcs which are thinner than
the original source therefore require κ . 0:5. Since giant arcs
have to be located close to those critical curves in the lens plane
along which 1�κ�γ= 0, large and thin arcs additionally require
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γ& 0:5.
In principle, the radius of curvature of large arcs relative to

their distance from the cluster center can be used to constrain
the steepness of the radial density profile (Miralda-Escudé 1992,
1993), but results obtained from observed arcs are not yet con-
clusive (Grossman & Saha 1994). One problem with this method
is that substructure in clusters tends to enlarge curvature radii ir-
respective of the mass profile of the dominant component of the
cluster (Miralda-Escudé 1993; Bartelmann et al. 1995).

Wu & Hammer (1993) argued for steep mass profiles on statis-
tical grounds because the observed abundance of large arcs ap-
pears to require highly centrally condensed cluster mass profiles
in order to increase the central mass density of clusters while
keeping their total mass constant. However, their conclusions
are based on spherically symmetric lens models and are sig-
nificantly changed when the symmetry assumption is dropped
(Bartelmann et al. 1995).

It should also be kept in mind that not all arcs are thin. Some
“thick” and resolved arcs are known (e.g. in A 2218, Pelló-
Descayre et al. 1988; and in A 2390, Pelló et al. 1991), and it
is quite possible that thin arcs predominate just because they are
more easily detected than thick ones due to observational selec-
tion effects. Also, Miralda-Escudé (1992, 1993) has argued that
intrinsic source ellipticity can increase the probability of produc-
ing thin arcs, while Bartelmann et al. (1995) showed that the con-
dition κ . 0:5 which is required for thin arcs can be more fre-
quently fulfilled in clusters with substructure where the shear is
larger than in spherically symmetric clusters.

4.1.6. Mass Sub-Condensations

The cluster A 370 has two cD galaxies and is a clear example
of a cluster with multiple mass centers. A two-component mass
model centered on the cD galaxies (Kneib et al. 1993) fits very
well the lens data as well as X-ray and deep optical images of the
cluster. Abell 2390 is an interesting example because it contains
a “straight arc” (Pelló et al. 1991, see also Mathez et al. 1992)
which can be produced only with either a lips or a beak-to-beak
caustic (Kassiola, Kovner, & Blandford 1992). If the arc is mod-
eled with a lips caustic, it requires the mass peak to be close to the
location of the arc, but this is not where the cluster light is cen-
tered. With a beak-to-beak caustic, the model requires two sep-
arate mass condensations, one of which could be at the peak of
the luminosity, but then the other has to be a dark condensation.
Pierre et al. (1996) find enhanced X-ray emission at a plausible
position of the secondary mass clump, and from a weak lensing
analysis Squires et al. (1996b) find a mass map which is consis-
tent with a mass condensation at the location of the enhanced X-
ray emission.

Abell 370 and A 2390 are the most obvious examples of what
is probably a widespread phenomenon, namely that clusters are
in general not fully relaxed but have substructure as a result of
ongoing evolution. If clusters are frequently clumpy, this can
lead to systematic effects in the statistics of arcs and in the de-
rived cluster parameters (Bartelmann et al. 1995; Bartelmann
1995b).

4.1.7. Lensing Results vs. Other Mass Determinations

Enclosed Mass Three different methods are currently used to
estimate cluster masses. Galaxy velocity dispersions yield a
mass estimate from the virial theorem, and hence the galaxies
have to be in virial equilibrium for such estimates to be valid. It
may also be that the velocities of cluster galaxies are biased rela-
tive to the velocities of the dark matter particles (Carlberg 1994),
though current estimates suggest that the bias is no more than

about 10%. The X-ray emission of rich galaxy clusters is domi-
nated by free-free emission of thermal electrons and therefore de-
pends on the squared density of the intracluster gas, which in turn
traces the gravitational potential of the clusters. Such estimates
usually assume that the cluster gas is in thermal hydrostatic equi-
librium and that the potential is at least approximately spheri-
cally symmetric. Finally, large arcs in clusters provide a mass
estimate through eq. (77) or by more detailed modeling. These
three mass estimates are in qualitative agreement with each other
up to factors of � 2�3.

Miralda-Escudé & Babul (1995) compared X-ray and large-
arc mass estimates for the clusters A 1689, A 2163 and A 2218.
They took into account deviations from spherical symmetry and
obtained lensing masses from individual lens models which re-
produce the observed arcs. They arrived at the conclusion that
in A 1689 and A 2218 the mass required for producing the large
arcs is higher by a factor of 2� 2:5 than the mass required for
the X-ray emission, and proposed a variety of reasons for such
a discrepancy, among them projection effects and non-thermal
pressure support. Loeb & Mao (1994) specifically suggested
that strong turbulence and magnetic fields in the intracluster gas
may constitute a significant non-thermal pressure component in
A 2218 and thus render the X-ray mass estimate too low. Bartel-
mann & Steinmetz (1996) used gas dynamical cluster simula-
tions to compare their X-ray and lensing properties. They found
a similar discrepancy as that identified by Miralda-Escudé &
Babul (1995) in those clusters that show structure in the distribu-
tion of line-of-sight velocities of the cluster particles, indicative
of merging or infall along the line-of-sight. The discrepancy is
probably due to projection effects.

Bartelmann (1995b) showed that cluster mass estimates ob-
tained from large arcs by straightforward application of eq. (77)
are systematically too high by a factor of � 1:6 on average, and
by as much as a factor of� 2 in 1 out of 5 cases. This discrepancy
arises because eq. (77) assumes a smooth spherically symmetric
mass distribution whereas realistic clusters are asymmetric and
have substructure. Note that Daines et al. (1996) found evidence
for two or more mass condensations along the line of sight to-
ward A 1689, while the arclets in A 2218 show at least two mass
concentrations. It appears that cluster mass estimates from lens-
ing require detailed lens models in order to be accurate to better
than � 30� 50 per cent. In the case of MS 1224, Fahlman et
al. (1994) and Carlberg, Yee, & Ellingson (1994) have obtained
masses using the Kaiser & Squires weak-lensing cluster recon-
struction method. Their mass estimates are 2� 3 times higher
than the cluster’s virial mass. Carlberg et al. find evidence from
velocity measurements that there is a second poor cluster in the
foreground of MS 1224 which may explain the result. All of
these mass discrepancies illustrate that cluster masses must still
be considered uncertain to a factor of � 2 in general.

Core Radii Lensing estimates of cluster core radii are gener-
ally much smaller than the core radii obtained from optical or
X-ray data. The upper limits on the core radii from lensing are
fairly robust and probably reliable. Many clusters with large arcs
have cD galaxies which can steepen the central mass profile of
the cluster. However, there are also non-cD clusters with giant
arcs, e.g. A 1689 and Cl 1409 (Tyson 1990), and MS 0440+02
(Luppino et al. 1993). In fact, Tyson (1990) claims that these
two clusters have cores smaller than 100h�1 kpc, similar to up-
per limits for core radii found in other arc clusters with cD galax-
ies. As mentioned in Sect. 4.1.4., even the occurrence of radial
arcs in clusters does not necessarily require a non-singular core,
and so all the lensing data are consistent with singular cores in
clusters. The X-ray core radii depend on whether or not the cool-
ing regions of clusters are included in the emissivity profile fits,
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because the cooling radii are of the same order of magnitude
as the core radii. If cooling is included, the best-fit core radii
are reduced by a factor of ' 4 (Gerbal et al. 1992; Durret et al.
1994). Also, isothermal gas in hydrostatic equilibrium in a sin-
gular dark-matter distribution develops a flat core with a core ra-
dius similar to those observed. Therefore, the strongly peaked
mass distributions required for lensing seem to be quite compat-
ible with the extended X-ray cores observed.

Does Mass Follow Light? Leaving the core radius aside, does
mass follow light? It is clear that the mass cannot be as concen-
trated within the galaxies as the optical light is (e.g. Bergmann,
Petrosian, & Lynds 1990). However, if the optical light is
smoothed and assumed to trace the mass, then the resulting mass
distribution is probably not very different from the true mass dis-
tribution. For instance, in A 370, the elongation of the mass dis-
tribution required for the giant arc is along the line connecting
the two cD galaxies in the cluster (Grossman & Narayan 1989)
and in fact Kneib et al. (1993) are able to achieve an excellent fit
of the giant arc and several arclets with two mass concentrations
surrounding the two cDs. Their model potential also agrees very
well with the X-ray emission of the cluster. In MS 2137, the opti-
cal halo is elongated in the direction indicated by the arcs for the
overall mass asymmetry (Mellier et al. 1993), and in Cl 0024, the
mass distribution is elongated in the same direction as the galaxy
distribution (Wallington, Kochanek, & Koo 1995). Smail et al.
(1995) find that the mass maps of two clusters reconstructed from
weak lensing agree fairly well with their X-ray emission. An im-
portant counterexample is the cluster A 2390, where the straight
arc requires a mass concentration which is completely dark in the
optical (Kassiola et al. 1992). Pierre et al. (1996), however, find
excess X-ray emission at a position compatible with the arc.

What Kinds of Clusters Produce Giant Arcs? Which para-
meters determine whether or not a galaxy cluster is able to pro-
duce large arcs? Clearly, large velocity dispersions and small
core radii favor the formation of arcs. As argued earlier, intrinsic
asymmetries and substructure also increase the ability of clusters
to produce arcs because they increase the shear and the number
of cusps in the caustics.

The abundance of arcs in X-ray luminous clusters appears to
be higher than in optically selected clusters. At least a quarter,
maybe half, of the 38 X-ray bright clusters selected by Le Fèvre
et al. (1994) contain large arcs, while Smail et al. (1991) found
only one large arc in a sample of 19 distant optically selected
clusters. However, some clusters which are prominent lenses
(A 370, A 1689, A 2218) are moderate X-ray sources, while
other clusters which are very luminous X-ray sources (A 2163,
Cl 1455) are poor lenses. The correlation between X-ray bright-
ness and enhanced occurrence of arcs may suggest that X-ray
bright clusters are more massive and/or more centrally con-
densed than X-ray quiet clusters.

Substructure appears to be at least as important as X-ray
brightness for producing giant arcs. For example, A 370, A 1689
and A 2218 all seem to have clumpy mass distributions. Bartel-
mann & Steinmetz (1996) used numerical cluster simulations to
show that the optical depth for arc formation is dominated by
clusters with intermediate rather than the highest X-ray luminosi-
ties.

Another possibility is that giant arcs preferentially form in
clusters with cD galaxies. A 370, for instance, even has two
cDs. However, non-cD clusters with giant arcs are known, e.g.
A 1689, Cl 1409 (Tyson et al. 1990), and MS 0440+02 (Luppino
et al. 1993).

4.2. Weak Lensing by Clusters — Arclets

In addition to the occasional giant arc, which is produced when
a source happens to straddle a caustic, a lensing cluster also pro-
duces a large number of weakly distorted images of other back-
ground sources which are not located near caustics. These are the
arclets. There is a population of distant blue galaxies in the uni-
verse whose spatial density reaches 50�100 galaxies per square
arc minute at faint magnitudes (Tyson 1988). Each cluster there-
fore has on the order of 50� 100 arclets per square arc minute
exhibiting a coherent pattern of distortions. Arclets were first de-
tected by Fort et al. (1988).

The separations between arclets, typically � (5� 10)00, are
much smaller than the scale over which the gravitational poten-
tial of a cluster as a whole changes appreciably. The weak and
noisy signals from several individual arclets can therefore be av-
eraged by statistical techniques to get an idea of the mass dis-
tribution of a cluster. This technique was first demonstrated by
Tyson, Valdes, & Wenk (1990). Kochanek (1990) and Miralda-
Escudé (1991a) studied how parameterized cluster lens models
can be constrained with arclet data.

The first systematic and parameter-free procedure to convert
the observed ellipticities of arclet images to a surface density
map Σ(~θ) of the lensing cluster was developed by Kaiser &
Squires (1993). An ambiguity intrinsic to all such inversion
methods which are based on shear information alone was iden-
tified by Seitz & Schneider (1995a). This ambiguity can be re-
solved by including information on the convergence of the clus-
ter; methods for this were developed by Broadhurst, Taylor, &
Peacock (1995) and Bartelmann & Narayan (1995a).

4.2.1. The Kaiser & Squires Algorithm

The technique of Kaiser & Squires (1993) is based on the fact
that both convergence κ(~θ) and shear γ1;2(

~θ) are linear combi-
nations of second derivatives of the effective lensing potential
ψ(~θ). There is thus a mathematical relation connecting the two.
In the Kaiser & Squires method one first estimates γ1;2(

~θ) by
measuring the weak distortions of background galaxy images,
and then uses the relation to infer κ(~θ). The surface density of
the lens is then obtained from Σ(~θ) = Σcrκ(~θ) (see eq. 50).

As shown in Sect. 3., κ and γ1;2 are given by

κ(~θ) =
1
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(80)

If we introduce Fourier transforms of κ, γ1;2, and ψ (which we
denote by hats on the symbols), we have

κ̂(~k) = �1
2
(k2

1 + k2
2)ψ̂(~k) ;

γ̂1(
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2
(k2

1� k2
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(81)
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where~k is the two dimensional wave vector conjugate to~θ. The
relation between κ and γ1;2 in Fourier space can then be written�

γ̂1
γ̂2

�
= k�2

�
(k2

1� k2
2)

2k1k2

�
κ̂ ;

κ̂ = k�2
h
(k2

1� k2
2);(2k1k2)

i � γ̂1
γ̂2

�
:

(82)

If the shear components γ1;2(
~θ) have been measured, we can

solve for κ̂(~k) in Fourier space, and this can be back transformed
to obtain κ(~θ) and thereby Σ(~θ). Equivalently, we can write the
relationship as a convolution in~θ space,

κ(~θ) =
1
π

Z
d2θ0Re

h
D�

(~θ�~θ0)γ(~θ0)
i
; (83)

where D is the complex convolution kernel,

D(~θ) =
(θ2

2�θ2
1)�2iθ1θ2

θ4 ; (84)

and γ(~θ) is the complex shear,

γ(~θ) = γ1(
~θ)+ iγ2(

~θ) : (85)

The asterisk denotes complex conjugation.
The key to the Kaiser & Squires method is that the shear field

γ(~θ) can be measured. (Elaborate techniques to do so were de-
scribed by Bonnet & Mellier 1995 and Kaiser, Squires, & Broad-
hurst 1995.) If we define the ellipticity of an image as

ε = ε1 + iε2 =
1� r
1+ r

e2iφ ; r� b
a
; (86)

where φ is the position angle of the ellipse and a and b are its
major and minor axes, respectively, we see from eq. (59) that the
average ellipticity induced by lensing is

hεi=
�

γ
1�κ

�
; (87)

where the angle brackets refer to averages over a finite area of
the sky. In the limit of weak lensing, κ� 1 and jγj � 1, and the
mean ellipticity directly gives the shear,D

γ1(
~θ)
E
�
D

ε1(
~θ)
E
;
D

γ2(
~θ)
E
�
D

ε2(
~θ)
E
: (88)

The γ1(
~θ), γ2(

~θ) fields so obtained can be transformed using the
integral (83) to obtain κ(~θ) and thereby Σ(~θ). The quantities
hε1(

~θ)i and hε2(
~θ)i in (88) have to be obtained by averaging over

sufficient numbers of weakly lensed sources to have a reasonable
signal-to-noise ratio.

4.2.2. Practical Details and Subtleties

In practice, several difficulties complicate the application of
the elegant inversion technique summarized by eq. (83). At-
mospheric turbulence causes images taken by ground-based tele-
scopes to be blurred. As a result, elliptical images tend to be cir-
cularized so that ground-based telescopes measure a lower limit
to the actual shear signal. This difficulty is not present for space-
based observations.

The point-spread function of the telescope can be anisotropic
and can vary across the observed field. An intrinsically circular
image can therefore be imaged as an ellipse just because of astig-
matism of the telescope. Subtle effects like slight tracking errors
of the telescope or wind at the telescope site can also introduce
a spurious shear signal.

In principle, all these effects can be corrected for. Given the
seeing and the intrinsic brightness distribution of the image, the
amount of circularization due to seeing can be estimated and
taken into account. The shape of the point-spread function and
its variation across the image plane of the telescope can also be
calibrated. However, since the shear signal especially in the out-
skirts of a cluster is weak, the effects have to be determined with
high precision, and this is a challenge.

The need to average over several background galaxy images
introduces a resolution limit to the cluster reconstruction. As-
suming 50 galaxies per square arc minute, the typical separation
of two galaxies is� 800. If the average is taken over� 10 galax-
ies, the spatial resolution is limited to � 3000.

We have seen in eq. (87) that the observed ellipticities strictly
do not measure γ, but rather a combination of κ and γ,

hεi= hgi �
�

γ
1�κ

�
: (89)

Inserting γ = hεi(1� κ) into the reconstruction equation (83)
yields an integral equation for κ which can be solved iteratively.
This procedure, however, reveals a weakness of the method. Any
reconstruction technique which is based on measurements of im-
age ellipticities alone is insensitive to isotropic expansions of the
images. The measured ellipticities are thus invariant against re-
placing the Jacobian matrix A by some scalar multiple λA of it.
Putting

A 0 = λA = λ
�

1�κ� γ1 �γ2
�γ2 1�κ+ γ1

�
; (90)

we see that scaling A with λ is equivalent to the following trans-
formations of κ and γ,

1�κ0 = λ(1�κ) ; γ0 = λγ : (91)

Manifestly, this transformation leaves g invariant. We thus have
a one-parameter ambiguity in shear-based reconstruction tech-
niques,

κ! λκ+(1�λ) ; (92)

with λ an arbitrary scalar constant.
This invariance transformation was highlighted by Schneider

& Seitz (1995) and was originally discovered by Falco, Goren-
stein, & Shapiro (1985) in the context of galaxy lensing. If λ. 1,
the transformation is equivalent to replacing κ by κ plus a sheet
of constant surface mass density 1�λ. The transformation (92)
is therefore referred to as the mass-sheet degeneracy.

Another weakness of the Kaiser & Squires method is that the
reconstruction equation (83) requires a convolution to be per-
formed over the entire~θ plane. Observational data however are
available only over a finite field. Ignoring everything outside the
field and restricting the range of integration to the actual field
is equivalent to setting γ = 0 outside the field. For circularly
symmetric mass distributions, this implies vanishing total mass
within the field. The influence of the finiteness of the field can
therefore be quite severe.

Finally, the reconstruction yields κ(~θ), and in order to calcu-
late the surface mass density Σ(~θ) we must know the critical den-
sity Σcr, but since we do not know the redshifts of the sources
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FIG. 25.—HST image of the cluster Cl 0024, overlaid on the left with the shear field obtained from an observation of arclets with the Canada-
France Hawaii Telescope (Y. Mellier & B. Fort), and on the right with the reconstructed surface-mass density determined from the shear field (C.
Seitz et al.). The reconstruction was done with a non-linear, finite-field algorithm.

there is a scaling uncertainty in this quantity. For a lens with
given surface mass density, the distortion increases with increas-
ing source redshift. If the sources are at much higher redshifts
than the cluster, the influence of the source redshift becomes
weak. Therefore, this uncertainty is less serious for low redshift
clusters.

Nearly all the problems mentioned above have been addressed
and solved. The solutions are discussed in the following subsec-
tions.

4.2.3. Eliminating the Mass Sheet Degeneracy by Measuring
the Convergence

By eq. (60),

µ =
1

(1�κ)2� γ2 ; (93)

and so the magnification scales with λ as µ ∝ λ�2. Therefore, the
mass-sheet degeneracy can be broken by measuring the magnifi-
cation µ of the images in addition to the shear (Broadhurst et al.
1995). Two methods have been proposed to measure µ. The first
relies on comparing the galaxy counts in the cluster field with
those in an unlensed “empty” field (Broadhurst et al. 1995). The
observed counts of galaxies brighter than some limiting magni-
tude m are related to the intrinsic counts through

N0(m) = N0(m)µ2:5s�1 ; (94)

where s is the logarithmic slope of the intrinsic number count
function,

s =
d logN(m)

dm
: (95)

In blue light, s� 0:4, and thus N0(m)�N(m) independent of the
magnification, but in red light s � 0:15, and the magnification
leads to a dilution of galaxies behind clusters. The reduction of

red galaxy counts behind the cluster A 1689 has been detected
by Broadhurst (1995).

The other method is to compare the sizes of galaxies in the
cluster field to those of similar galaxies in empty fields. Since
lensing conserves surface brightness, it is most convenient to
match galaxies with equal surface brightness while making this
comparison (Bartelmann & Narayan 1995a). The magnification
is then simply the ratio between the sizes of lensed and unlensed
galaxies. Labeling galaxies by their surface brightness has the
further advantage that the surface brightness is a steep function
of galaxy redshift, which allows the user to probe the change of
lens efficiency with source redshift (see below).

4.2.4. Determining Source Redshifts

For a given cluster, the strength of distortion and magnification
due to lensing increases with increasing source redshift zs. The
mean redshift z̄s of sources as a function of apparent magnitude m
can thus be inferred by studying the mean strength of the lensing
signal vs. m (Kaiser 1995; Kneib et al. 1996).

The surface brightness S probably provides a better label for
galaxies than the apparent magnitude because it depends steeply
on redshift and is unchanged by lensing. Bartelmann & Narayan
(1995a) have developed an algorithm, which they named the lens
parallax method, to reconstruct the cluster mass distributions and
to infer simultaneously z̄s as a function of the surface brightness.
In simulations, data from� 10 cluster fields and an equal number
of empty comparison fields were sufficient to determine the clus-
ter masses to ��5% and the galaxy redshifts to ��10% accu-
racy. The inclusion of galaxy sizes in the iterative lens-parallax
algorithm breaks the mass-sheet degeneracy, thereby removing
the ambiguities in shear-based cluster reconstruction techniques
arising from the transformation (92) and from the unknown red-
shift distribution of the sources.
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4.2.5. Finite Field Methods

As emphasized previously, the inversion equation (83) requires a
convolution to be performed over the entire real plane. The fact
that data are always restricted to a finite field thus introduces a se-
vere bias in the reconstruction. Modified reconstruction kernels
have been suggested to overcome this limitation.

Consider the relation (Kaiser 1995)

~∇κ =

�
γ1;1 + γ2;2
γ2;1� γ1;2

�
: (96)

This shows that the convergence at any point~θ in the data field is
related by a line integral to the convergence at another point~θ0,

κ(~θ) = κ(~θ0)+

Z ~θ

~θ0

d~l �~∇κ[~θ(~l)] : (97)

If the starting point~θ0 is far from the cluster center, κ(~θ0) may
be expected to be small and can be neglected. For each start-
ing point ~θ0, eq. (97) yields an estimate for κ(~θ)� κ(~θ0), and
by averaging over all chosen~θ0 modified reconstruction kernels
can be constructed (Schneider 1995; Kaiser et al. 1995; Bartel-
mann 1995c; Seitz & Schneider 1996). Various choices for the
set of starting positions~θ0 have been suggested. For instance,
one can divide the observed field into an inner region centered
on the cluster and take as ~θ0 all points in the rest of the field.
Another possibility is to take ~θ0 from the entire field. In both
cases, the result is κ(~θ)� κ̄, where κ̄ is the average convergence
in the region from which the points~θ0 were chosen. The average
κ̄ is unknown, of course, and thus a reconstruction based on eq.
(97) yields κ only up to a constant. Equation (97) therefore ex-
plicitly displays the mass sheet degeneracy since the final answer
depends on the choice of the unknown κ(~θ0).

A different approach (Bartelmann et al. 1996) employs the fact
that κ and γ are linear combinations of second derivatives of the
same effective lensing potential ψ. In this method one recon-
structs ψ rather than κ. If both κ and γ can be measured through
image distortions and magnifications (with different accuracies),
then a straightforward finite-field Maximum-Likelihood can be
developed to construct ψ(~θ) on a finite grid such that it opti-
mally reproduces the observed magnifications and distortions. It
is easy in this approach to incorporate measurement accuracies,
correlations in the data, selection effects etc. to achieve an opti-
mal result.

4.2.6. Results from Weak Lensing

The cluster reconstruction technique of Kaiser & Squires and
variants thereof have been applied to a number of clusters and
several more are being analyzed. We summarize some results in
Tab. 5, focusing on the mass-to-light ratios of clusters and the de-
gree of agreement between weak lensing and other independent
studies of the same clusters.

Mass-to-light ratios inferred from weak lensing are generally
quite high, � 400h in solar units (cf. table 5 and, e.g., Smail et
al. 1997). The recent detection of a significant shear signal in the
cluster MS 1054�03 at redshift 0:83 (Luppino & Kaiser 1997)
indicates that the source galaxies either are at very high redshifts,
z& (2�3), or that the mass-to-light ratio in this cluster is excep-
tionally high; if the galaxy redshifts are z. 1, the mass-to-light
ratio needs to be & 1600h.

The measurement of a coherent weak shear pattern out to
a distance of almost 1:5 Mpc from the center of the cluster

Cl 0024+1654 by Bonnet, Mellier, & Fort (1994) demonstrates
a promising method of constraining cluster mass profiles. These
observations show that the density decreases rapidly outward,
though the data are compatible both with an isothermal profile
and a steeper de Vaucouleurs profile. Tyson & Fischer (1995)
find the mass profile in A 1689 to be steeper than isothermal.
Squires et al. (1996b) derived the mass profile in A 2390 and
showed that it is compatible with both an isothermal profile
and steeper profiles. Quite generally, the weak-lensing results
on clusters indicate that the smoothed light distribution follows
the mass well. Moreover, mass estimates from weak lensing
and from the X-ray emission interpreted on the basis of hydro-
static equilibrium are consistent with each other (Squires et al.
1996a,b).

The epoch of formation of galaxy clusters depends on cosmo-
logical parameters, especially Ω0 (Richstone, Loeb, & Turner
1992; Bartelmann, Ehlers, & Schneider 1993; Lacey & Cole
1993, 1994). Clusters in the local universe tend to be younger
if Ω0 is large. Such young clusters should be less relaxed and
more structured than clusters in a low density universe (Mohr et
al. 1995; Crone, Evrard, & Richstone 1996). Weak lensing of-
fers straightforward ways to quantify cluster morphology (Wil-
son, Cole, & Frenk 1996; Schneider & Bartelmann 1997), and
therefore may be used to estimate the cosmic density Ω0.

The dependence of cluster evolution on cosmological parame-
ters also has a pronounced effect on the statistics of giant arcs.
Numerical cluster simulations in different cosmological mod-
els indicate that the observed abundance of arcs can only be re-
produced in low-density universes, Ω0 � 0:3, with vanishing
cosmological constant, Λ0 � 0 (Bartelmann et al. 1998). Low-
density, flat models with Ω0+Λ0 = 1, or Einstein-de Sitter mod-
els, produce one or two orders of magnitude fewer arcs than ob-
served.

4.3. Weak Lensing by Large-Scale Structure

4.3.1. Magnification and Shear in ‘Empty’ Fields

Lensing by even larger scale structures than galaxy clusters has
been discussed in various contexts. Kristian & Sachs (1966) and
Gunn (1967) discussed the possibility of looking for distortions
in images of background galaxies due to weak lensing by large-
scale foreground mass distributions. The idea has been revived
and studied in greater detail by Babul & Lee (1991); Jaroszyński
et al. (1990); Miralda-Escudé (1991b); Blandford et al. (1991);
Bartelmann & Schneider (1991); Kaiser (1992); Seljak (1994);
Villumsen (1996); Bernardeau, van Waerbeke, & Mellier (1997);
Kaiser (1996); and Jain & Seljak (1997). The effect is weak—
magnification and shear are typically on the order of a few per
cent—and a huge number of galaxies has to be imaged with great
care before a coherent signal can be observed.

Despite the obvious practical difficulties, the rewards are po-
tentially great since the two-point correlation function of the im-
age distortions gives direct information on the power spectrum of
density perturbations P(k) in the universe. The correlation func-
tion of image shear, or polarization as it is sometimes referred
to (Blandford et al. 1991), has been calculated for the standard
CDM model and other popular models of the universe. Weak
lensing probes mass concentrations on large scales where the
density perturbations are still in the linear regime. Therefore,
there are fewer uncertainties in the theoretical interpretation of
the phenomenon. The problems are expected to be entirely ob-
servational.

Using a deep image of a blank field, Mould et al. (1994) set
a limit of p̄ < 4 per cent for the average polarization of galaxy
images within a 4.8 arcminute field. This is consistent with most
standard models of the universe. Fahlman et al. (1995) claimed
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TABLE 5.—Mass-to-light ratios of several clusters derived from weak lensing.

Cluster M=L Remark Reference
MS 1224 800h virial mass � 3 times smaller Fahlman et al.

(σv = 770 km s�1) (1994)
reconstruction out to � 30

A 1689 (400�60)h mass smoother than light Tyson & Fischer
near center; mass steeper (1995)
than isothermal from Kaiser (1995)
(200�1000)h�1 kpc

Cl 1455 520h dark matter more concen- Smail et al.
trated than galaxies (1995)

Cl 0016 740h dark matter more concen- Smail et al.
trated than galaxies (1995)

A 2218 440h gas mass fraction Squires et al.
< 4%h�3=2 (1996a)

A 851 200h mass distribution agrees Seitz et al. (1996)
with galaxies and X-rays

A 2163 (300�100)h gas mass fraction Squires et al.
� 7%h�3=2 (1997)

a tighter bound, p̄ < 0:9 per cent in a 2.8 arcminute field. On
the other hand, Villumsen (1995a), using the Mould et al. (1994)
data, claimed a detection at a level of p̄ = (2:4� 1:2) per cent
(95% confidence limit). There is clearly no consensus yet, but
the field is still in its infancy.

Villumsen (1995b) has discussed how the two-point angular
correlation function of faint galaxies is changed by weak lens-
ing and how intrinsic clustering can be distinguished from clus-
tering induced by lensing. The random magnification by large-
scale structures introduces additional scatter in the magnitudes of
cosmologically interesting standard candles such as supernovae
of type Ia. For sources at redshifts z � 1, the scatter was found
to be negligibly small, of order ∆m� 0:05 magnitudes (Frieman
1996; Wambsganss et al. 1997).

4.3.2. Large-Scale QSO-Galaxy Correlations

Fugmann (1990) noticed an excess of Lick galaxies in the vicin-
ity of high-redshift, radio-loud QSOs and showed that the excess
reaches out to � 100 from the QSOs. If real, this excess is most
likely caused by magnification bias due to gravitational lensing.
Further, the scale of the lens must be very large. Galaxy-sized
lenses have Einstein radii of a few arc seconds and are clearly
irrelevant. The effect has to be produced by structure on scales
much larger than galaxy clusters.

Following Fugmann’s work, various other correlations of
a similar nature have been found. Bartelmann & Schneider
(1993b, 1994; see also Bartsch, Schneider, & Bartelmann 1997)
discovered correlations between high-redshift, radio-loud, op-
tically bright QSOs and optical and infrared galaxies, while
Bartelmann, Schneider & Hasinger (1994) found correlations
with diffuse X-ray emission in the 0:2 � 2:4 keV ROSAT
band. Benı́tez & Martı́nez-González (1995, 1997) found an ex-
cess of red galaxies from the APM catalog around radio-loud
QSOs with redshift z � 1 on scales . 100. Seitz & Schneider
(1995b) found correlations between the Bartelmann & Schnei-
der (1993b) sample of QSOs and foreground Zwicky clusters.
They followed in part an earlier study by Rodrigues-Williams
& Hogan (1994), who found a highly significant correlation be-
tween optically-selected, high-redshift QSOs and Zwicky clus-
ters. Later, Rodrigues-Williams & Hawkins (1995) detected

similar correlations between QSOs selected for their optical vari-
ability and Zwicky clusters. Wu & Han (1995) searched for asso-
ciations between distant radio-loud QSOs and foreground Abell
clusters and found a marginally significant correlation with a
subsample of QSOs.

All these results indicate that there are correlations between
background QSOs and foreground “light” in the optical, infrared
and soft X-ray wavebands. The angular scale of the correlations
is compatible with that expected from lensing by large-scale
structures. Bartelmann & Schneider (1993a, see also Bartelmann
1995a for an analytical treatment of the problem) showed that
current models of large-scale structure formation can explain the
observed large-scale QSO-galaxy associations, provided a dou-
ble magnification bias (Borgeest, von Linde, & Refsdal 1991) is
assumed. It is generally agreed that lensing by individual clusters
of galaxies is insufficient to produce the observed effects if clus-
ter velocity dispersions are of order 103 kms�1 (e.g. Rodrigues-
Williams & Hogan 1994; Rodrigues-Williams & Hawkins 1995;
Wu & Han 1995; Wu & Fang 1996). It appears, therefore,
that lensing by large-scale structures has to be invoked to ex-
plain the observations. Bartelmann (1995a) has shown that con-
straints on the density perturbation spectrum and the bias fac-
tor of galaxy formation can be obtained from the angular cross-
correlation function between QSOs and galaxies. This calcula-
tion was recently refined by including the non-linear growth of
density fluctuations (Sanz, Martı́nez-González, & Benı́tez 1997;
Dolag & Bartelmann 1997). The non-linear effects are strong,
and provide a good fit to the observational results by Benı́tez &
Martı́nez-González (1995, 1997).

4.3.3. Lensing of the Cosmic Microwave Background

The random deflection of light due to large-scale structures also
affects the anisotropy of the cosmic microwave background
(CMB) radiation. The angular autocorrelation function of the
CMB temperature is only negligibly changed (Cole & Efstathiou
1989). However, high-order peaks in the CMB power spectrum
are somewhat broadened by lensing. This effect is weak, of or-
der� 5% on angular scales of. 100 (Seljak 1996; Seljak & Zal-
darriaga 1996; Martı́nez-González, Sanz, & Cayón 1997), but it
could be detected by future CMB observations, e.g. by the Planck
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Microwave Satellite.

4.3.4. Outlook: Detecting Dark Matter Concentrations

If lensing is indeed responsible for the correlations discussed
above, other signatures of lensing should be found. Fort et al.
(1996) searched for shear due to weak lensing in the fields of
five luminous QSOs and found coherent signals in all five fields.
In addition, they detected foreground galaxy groups for three of
the sources. Earlier, Bonnet et al. (1993) had found evidence for
a coherent shear pattern in the field of the lens candidate QSO
2345+007. The shear was later identified with a distant cluster
(Mellier et al. 1994; Fischer et al. 1994).

In general, it appears that looking for weak coherent image
distortions provides an excellent way of searching for otherwise
invisible dark matter concentrations. A systematic technique for
this purpose has been developed by Schneider (1996a). Weak
lensing outside cluster fields may in the near future allow ob-
servers to obtain samples of mass concentrations which are se-
lected purely on the basis of their lensing effect. Such a selec-
tion would be independent of the mass-to-light ratio, and would
permit the identification and study of nonlinear structures in the
universe with unusually large mass-to-light ratios. This would
be complementary to the limits on compact masses discussed in
Sect. 2.3.2..

Acknowledgements

The authors thank Rosanne Di Stefano, Andreas Huss, Chris Ko-
chanek, Tsafrir Kolatt, Shude Mao, Peter Schneider and Uroš
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Mao, S., Paczyński, B. 1991, ApJ, 374, L37
Mao, S., Kochanek, C.S. 1994, MNRAS, 268, 569
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Martı́nez-González, E., Sanz, J.L., Cayón, L. 1997, ApJ, 484, 1
Mathez, G., Fort, B., Mellier, Y., Picat, J.-P., Soucail, G. 1992, A&A, 256, 343
Mellier, Y., Fort, B., Kneib, J.-P. 1993, ApJ, 407, 33
Mellier, Y., Dantel-Fort, M., Fort, B., Bonnet, H. 1994, A&A, 289, L15
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Paczyński, B., Stanek, K.Z., Udalski, A., Szymański, M., Kałuzny, J., Kubiak,
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