
12 Strong-Field and Dynamical Tests
of Relativistic Gravity

We now take the theoretical frameworks for discussing compact body dynamics and
gravitational radiation that we developed in the preceding two chapters, and apply them
to study current and future tests of general relativity in the strong-field and dynamical
regimes. This effort began with the discovery of binary pulsars beginning in 1974, and in
Section 12.1, we will discuss these remarkable systems and their implications for testing
relativistic gravity. The detection of gravitational waves from an inspiraling binary black
hole system in 2015 brought to fruition the ability to test gravitational theories in the
strong-field dynamical regime using the gravitational waves themselves. In Section 12.2
we will describe how information about the sources of the waves and about the underlying
theory can be extracted from the detected signal, and will discuss the tests that have been
carried out since 2015. Another kind of test of strong-field gravity involves exploring the
spacetime near otherwise stationary compact objects using probes such as stars, small black
holes and gas. Many of these tests are still works in progress; we will give some examples
in Section 12.3. Finally, Section 12.4 will close this chapter with a brief description of
cosmological tests.

12.1 Binary Pulsars

The summer of 1974 was an eventful one for Joseph Taylor and Russell Hulse. Using the
Arecibo radio telescope in Puerto Rico, they had spent the time engaged in a systematic
survey for new pulsars. During that survey, they detected 50 pulsars, of which 40 were
not previously known, and made a variety of observations, including measurements of
their pulse periods to an accuracy of one microsecond. But one of these pulsars, denoted
B1913+16,1 was peculiar: besides having a pulsation period of 59 ms, shorter than that
of any known pulsar except the one in the Crab Nebula, it also defied any attempts to
measure its period to ±1μs, by making “apparent period changes of up to 80μs, from
day to day, and sometimes by as much as 8μs, over 5 minutes” (Hulse and Taylor, 1975).
Such behavior is uncharacteristic of pulsars, and Hulse and Taylor rapidly concluded that
the observed period changes were the result of Doppler shifts due to orbital motion of
the pulsar about a companion (for a popular account of the day-by-day detective work

1 At the time of the discovery, pulsars were denoted PSR, followed by the right ascension and declination. PSR
was ultimately replaced by “B”, for pulsars whose coordinates were referred to the 1950.0 epoch. Most pulsars
discovered since 1993 are labeled with “J”, have coordinates referred to the 2000.0 epoch, and include minutes
in the declination. We will use the current conventions.
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273 12.1 Binary Pulsars

involved see Will (1986)). By the end of September, 1974, Hulse and Taylor had obtained
an accurate “velocity curve” of this “single line spectroscopic binary.” The velocity curve
was a plot of apparent period of the pulsar as a function of time. By a detailed fit of this
curve to a Keplerian two-body orbit, they obtained the following elements of the orbit
of the system: K1, the semiamplitude of the variation of the radial velocity of the pulsar;
Pb, the period of the binary orbit; e, the eccentricity of the orbit; ω0, the longitude of
periastron at a chosen epoch (September 1974); a1 sin ι, the projected semimajor axis of
the pulsar orbit, where ι is the inclination of the orbit relative to the plane of the sky; and
f1 = (m2 sin ι)3/(m1+m2)

2, the mass function, where m1 and m2 are the mass of the pulsar
and companion, respectively. In addition, they obtained the “rest” period Pp of the pulsar,
corrected for orbital Doppler shifts at a chosen epoch.

However, at the end of September 1974, the observers switched to an observation
technique that yielded vastly improved accuracy (Taylor et al., 1976). That technique
measures the absolute arrival times of pulses (as opposed to the period, or the difference
between adjacent pulses) and compares those times to arrival times predicted using the
best available pulsar and orbit parameters. The parameters are then improved by means of
a least-squares analysis of the arrival-time residuals. With this method, it proved possible
to keep track of the precise phase of the pulsar over intervals as long as six months
between observations. This was partially responsible for the improvement in accuracy.
Other improvements over the years included the sophisticated use of multi-wavelength
data to suppress the effects of interstellar dispersion on the radio signals, the use of GPS
time transfer to improve the timing precision, and a major upgrade of instrumentation at
the Arecibo radio telescope between 1993 and 1997. The results of these analyses using
data reported in 2016 are shown in column 3 of Table 12.1 (Weisberg and Huang, 2016);
in Section 12.1.1 we will define the Keplerian and post-Keplerian parameters.

The discovery of B1913+16 caused considerable excitement in the relativity community,
because it was realized that the system could provide a new laboratory for studying
relativistic gravity. Post-Newtonian orbital effects would have magnitudes of order
v2

1 ∼ K2
1 ∼ 5 × 10−7, or m/r ∼ f1/a1 sin ι ∼ 3 × 10−7, a factor of ten larger

than the corresponding quantities for Mercury’s orbit, and the shortness of the orbital
period (∼ 8 hours) would amplify any secular effect such as the periastron shift. This
expectation was confirmed by the announcement in December 1974 (Taylor, 1975) that
the periastron shift had been measured to be 4.0 ± 1.5 ◦ yr−1 (compare with Mercury’s 43
arcseconds per century!), implying (see below) that the total mass of the system was about
2.8 M�. Moreover, the system appeared to be a “clean” laboratory, unaffected by complex
astrophysical processes such as mass transfer.

The pulsar radio signal was never eclipsed by the companion, placing limits on the
geometrical size of the companion, and the dispersion of the pulsed radio signal showed
little change over an orbit, indicating an absence of dense plasma in the system, as
would occur if there were mass transfer from the companion onto the pulsar. These
data effectively ruled out a main-sequence star as a companion: although such a star
could conceivably fit the geometrical constraints placed by the eclipse and dispersion
measurements, it would produce an enormous periastron shift (>5000 ◦ yr−1) generated
by tidal deformations due to the pulsar’s gravitational field. Other candidates for the
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Table 12.1 Arrival-time parameters for binary pulsars, and their values in B1913+16. Numbers in
parentheses denote errors in the last digit. Data taken from Weisberg and Huang (2016).

Parameter Symbol (units) Value in B1913+16

(i) Astrometric and pulsar parameters
Right ascension α 19h15m27.s99942(3)
Declination δ 16◦06′27.′′3868(5)
Pulsar period Pp (ms) 59.030003217813(11)
Derivative of period Ṗp 8.6183(3)× 10−18

(ii) Keplerian parameters
Projected semimajor axis a1 sin ι (s) 2.341776(2)
Eccentricity e 0.6171340(4)
Orbital period Pb (day) 0.322997448918(3)
Longitude of periastron ω0(

◦) 292.54450(8)
Julian date of periastron passage T0 (MJD) 52144.90097849(3)

(iii) Post-Keplerian parameters
Mean rate of periastron advance 〈ω̇〉 (◦ yr−1) 4.226585(4)
Redshift/time dilation γ′ (ms) 4.307(4)
Derivative of orbital period Ṗb (10−12) −2.423(1)
Range of Shapiro delay r (μs) 9.6 +2.7

−3.5

Shape of Shapiro delay s = sin ι 0.68 +0.10
−0.06

companion that were considered early on were a helium main-sequence star, a white dwarf,
a neutron star and a black hole. Any of these would be consistent with the evolutionary
models for binary systems of two massive stars that were popular at the time. In these
models, one massive star evolves more rapidly, undergoing a supernova explosion and
leaving a neutron star remnant. Mass transfer from the companion star serves to spin up
the neutron star to its present 59 ms rotation period (this is the so-called pulsar recycling
model, believed to be responsible for the class of millisecond pulsars). Subsequently, the
massive companion star evolved rapidly, possibly undergoing its own explosion, leaving
one of the four remnants listed earlier.

The first two companion candidates, the helium star and the white dwarf, fell out of
favor because of the complete absence of evidence for orbital perturbations that would be
induced by tidal or rotational deformation effects. A black hole companion was disfavored
when the observed pericenter advance indicated that the total mass of the system was about
2.8 M�; most evolutionary scenarios leading to black holes, and data on X-ray binaries
containing black holes suggest that black holes in such systems are significantly more
massive than 1.4 M�. A neutron star remnant from a supernova explosion of the companion
star was viewed as the most compatible with the near equality of the two masses, with
the large orbital eccentricity (mass loss from the second supernova explosion can easily
lead to disruption of the system), and with the utter orbital “cleanliness” of the system.
In this scenario, the companion neutron star is the younger of the two. No evidence was
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ever found for pulsed radiation from the companion, so it is either a pulsar whose signal
does not intersect the Earth, or more likely is a dead pulsar, having spun down to a stage
where it is no longer able to generate the magnetic fields required to emit radio waves. The
main pulsar is an old, weakly magnetized, recycled pulsar, with very weak radio emission
(indeed it was barely above the detection threshold set by Hulse in 1974), and a very low
spin-down rate.

Within weeks of the discovery, it was recognized that the system might be a testing
ground for gravitational radiation damping (Wagoner, 1975; Damour and Ruffini, 1974).
The observable effect of this damping is a secular decrease in the period of the orbit (see
Section 11.5). However, the timescale for this change, according to general relativity, is so
long (∼ 109 yr) that it was thought that 10–15 years of data would be needed to detect
it. However, with improved data acquisition equipment and continued ability to “keep in
phase” with the pulsar with the arrival-time method, Taylor and his collaborators surpassed
all expectations, and in December 1978 they announced a measurement of the rate of
change of the orbital period in an amount consistent with the prediction of gravitational
radiation damping in general relativity (Taylor et al., 1979; Taylor and McCulloch, 1980).
In 1993, Hulse and Taylor were awarded the Nobel Prize in Physics for this discovery.

In 1990, two more binary pulsars were detected, one eerily similar to B1913+16 in its
orbital parameters. Today, more than 220 binary pulsars have been detected, of which 70
have orbital periods shorter than one day (the shorter the period, the more relativistic the
system). These include the famous “double pulsar,” where, for a time, pulses from both
neutron stars were also detected; several pulsars with a white dwarf companion; and most
recently, a pulsar in a triple system, orbited by two white dwarfs. There are also a number of
pulsars with planets revolving around them; while these are fascinating in their own right,
they are less interesting for relativity. We will describe the more important denizens of this
zoo of binary pulsars and their implications for testing relativistic gravity in Section 12.1.2,
but first we turn to the arrival-time analysis for studying these systems.

12.1.1 Arrival-time analysis for binary pulsars

The analysis and interpretation of data from binary pulsars is based on an “arrival-time”
framework, originally carried out by Blandford and Teukolsky (1976) and extended by
Epstein (1977), Haugan (1985), Damour and Deruelle (1986) and Damour and Taylor
(1992). Here we present a simplified version that illustrates the basic parameters that can
be measured, and how they can be interpreted in order to test theories of gravity.

We begin by setting up a suitable coordinate system (see Figure 12.1). We choose
quasi-Cartesian coordinates (t, x) in which the physical metric is of post-Newtonian order
everywhere, except in the neighborhood and interior of the pulsar and its companion (if
the latter is also compact), and is asymptotically flat. The origin of the coordinate system
coincides with a suitably chosen center of mass of the binary system, assumed to be at rest
with respect to the solar system. The reference X− Y plane is the plane of the sky, with the
X-axis conventionally pointing toward the North celestial pole. The observer is chosen
to be at great distance on the negative Z-axis. The orbit of the pulsar is characterized
by the standard osculating orbit elements described in Section 6.4.2, and illustrated in
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Fig. 12.1 Orbits of a binary pulsar system.

Figure 12.1. However, instead of using the definitions of Eq. (6.73) based on the true
anomaly f, we use definitions based on the so-called “eccentric anomaly” u (see PW,
section 3.2.4 for detailed discussion), which is more useful in an arrival-time analysis.
It is directly related to time by the equation

u − e sin u = n(t − T0) , (12.1)

where n is the “mean anomaly,” defined by n ≡ (Gm/a3)1/2 = 2π/Pb, where a is the
semimajor axis, Pb is the orbital period of the binary, and T0 is the time of pericenter
passage. We include the modified EIH parameter G, because that parameter (including
possible contributions from the sensitivities of the compact bodies) will govern the quasi-
Newtonian limit used to describe the osculating elements in a given theory. The true and
eccentric anomalies are related by the equations

cos f =
cos u − e

1 − e cos u
, sin f =

√
1 − e2 sin u

1 − e cos u
. (12.2)

With the center of mass X = (m1x1 + m2x2)/m chosen to be at rest at the origin, the orbits
of the pulsar (1) and companion (2) are given by

x1 =
m2

m
x , x2 = −m1

m
x , (12.3)

where x = x1 − x2 is given by

x = a
[
( cos u − e)eP +

√
1 − e2 sin u eQ

]
, (12.4)

where eP and eQ are unit vectors defined by Eq. (8.29); they point in the direction of the
pericenter of body 1 and perpendicular to that vector within the orbital plane (Figure 12.1).
Note that the unit vector in the direction of the orbital angular momentum is given by
ĥ= eP × eQ. The distance between the two bodies is given by r = a(1 − e cos u).
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Any perturbation of the two-body system will induce periodic and secular changes in the
orbit elements that can be calculated using the Lagrange planetary equations (6.74).

We next consider the emission of the radio signals by the pulsar. Let τ be proper time as
measured by a hypothetical clock in an inertial frame that is momentarily comoving with
respect to the pulsar. The time of the Nth rotation of the pulsar is given in terms of the
rotation frequency ν of the neutron star by

N = N0 + ντ +
1
2
ν̇τ 2 +

1
6
ν̈τ 3 + . . . , (12.5)

where N0 is an arbitrary integer, and ν̇ = dν/dτ |τ=0, ν̈ = d2ν/dτ 2|τ=0. We will ignore the
possibility of discontinuous jumps, or “glitches,” in the rotation frequency of the pulsar, or
of drifts of the phase of the radio beam with respect to the neutron star’s rotation phase.
These are complicated issues that are still not fully understood. We ultimately wish to
determine the arrival time of the Nth pulse on Earth.

Outside the pulsar and its companion, the metric in our chosen coordinate system
is given by the modified EIH metric, Eq. (10.28). Because we are interested in the
propagation of the radio signal away from the system, we will ignore the possibility of large
strong-field corrections to the metric in the close vicinity of the pulsar or its companion.
The main result of such effects will be either to add a constant term in the emission time
formula (12.5) that can be absorbed into the arbitrary value of N0, or to multiply terms
by a constant factor, such as the redshift at the surface of the neutron star, that can be
absorbed into the unknown intrinsic value of ν. Modulo such factors, proper time τ in the
local comoving inertial frame, evaluated at the pulsar’s center of mass, can be related to
coordinate time t by

dτ = dt
[

1 − α∗
2

m2

r
− 1

2
v2

1 + O(ε2)

]
, (12.6)

where we have dropped the constant contribution of the pulsar’s gravitational potential
at the point in the inertial frame chosen to be the point of “emission” of the signal,
α∗

1 m1/|xem − x1|, and have ignored the difference between the velocity of the emission
point and the pulsar’s center of mass x1. The two correction terms in Eq. (12.6) are the
gravitational redshift and the second-order Doppler shift, or time dilation.

Using Eqs. (12.1) and (12.4), it is simple to show that v2
1 = G(m2

2/m)(2/r − 1/a), and
thus that

dτ
dt

= 1 − m2

a
α∗

2 + Gm2/m
1 − e cos u

+
Gm2

2
2ma

. (12.7)

Integrating with respect to t, we obtain

τ =
[
1 − m2

a

(
α∗

2 + G m2

2m

)]
te −

m2

a

(
α∗

2 + Gm2

m

) Pb

2π
e ( sin u − sin u0) , (12.8)

where u and u0 are the values of the eccentric anomaly at t = te and t = 0, respectively.
The factor multiplying te can be absorbed into the definition of the frequency ν, and the
constant term involving u0 can be dropped. Although these constants may actually undergo
secular or periodic variations in time due to orbital perturbations or other effects, these will
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be small perturbations of post-Newtonian corrections, and will have negligible effect. Thus
we obtain

τ = te −
m2

a

(
α∗

2 + Gm2

m

) Pb

2π
e sin u . (12.9)

After emission, the pulsar signal travels along a null geodesic. We can therefore use the
method in Sections 6.1 and 7.2 to calculate the coordinate time taken for the signal to travel
from the pulsar to the solar system barycenter x0, with the result

tarr − te = |x0(tarr)− x1(te)|+ (α∗
2 + γ∗

2 )m2 ln

[
2r0(tarr)

r(te) + n · x(te)

]
, (12.10)

where r0 = |x0|, n = x0/r0 and we have used the fact that r0 � r1. The second term in
Eq. (12.10) is the Shapiro time delay of the pulsar signal in the gravitational field of the
companion. The time delay due to the pulsar’s own field is constant to the required accuracy
and has been dropped. The effect of the companion’s motion during the propagation of the
signal across the orbit is a higher post-Newtonian effect, and thus has been ignored.

In practice, one must take into account the fact that the measured arrival time is that
at the Earth and not at the barycenter of the solar system, and will therefore be affected
by the Earth’s position in its orbit and by its own gravitational redshift and Doppler-shift
corrections. In fact, it is the effect of the Earth’s orbital position on the arrival times that
permits accurate determinations of the pulsar’s position on the sky. It is also necessary to
take into account the effects of interstellar dispersion on the radio signal. These effects can
be handled in a standard manner and will not be treated here.

Now, because r0 � r, we may write

|x0(tarr)− x1(te)| = r0(tarr)− x1(te) · n + O(r/r0) . (12.11)

Combining Eqs. (12.10) and (12.11), resetting the arrival time by the constant offset r0,
evaluating r and x1 at tarr instead of at te, and dropping higher-order terms, we obtain

te = tarr + (x1(tarr) · n) (1 + v1(tarr) · n)−ΔtS(tarr) , (12.12)

where ΔtS is the Shapiro term in Eq. (12.10).
We can now combine Eqs. (12.9) and (12.12) and substitute the result into Eq. (12.5)

to relate tarr to the pulse number N. Here we must include another effect that can occur
in theories of gravity that violate SEP (Eardley, 1975), whereby the local gravitational
constant at the location of the pulsar may depend on the gravitational potential of the
companion, that is,

GL = G0

(
1 − η∗2

m2

r

)
, (12.13)

where η∗ is a parameter that depends on the theory, and possibly on the sensitivities of the
two bodies. As GL varies during the orbital motion, the structure of the pulsar, its moment
of inertia, and thus its intrinsic rotation rate will vary, according to

Δν

ν
= −ΔI

I
= κ(1)

ΔGL

GL
= −κ(1)η

∗
2

m2

r
, (12.14)
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where κ(1) is the sensitivity of the moment of inertia of body 1 to variations in GL. Thus
Eq. (12.5) should be rewritten

N = N0 + ντ +

∫
Δνdτ +

1
2
ν̇τ 2 +

1
6
ν̈τ 3 + . . . , (12.15)

where to the necessary order, and modulo constants,∫
Δνdτ = −νκ(1)η

∗
2

m2

a
Pb

2π
e sin u , (12.16)

and where we have not applied a similar correction to the smaller terms involving ν̇ and ν̈.
Substituting Eqs. (12.9), (12.12), and (12.16) into (12.15), and dropping the constant N0

we obtain the timing formula

tarr = ν−1N −ΔR(u)−ΔE(u) + ΔS(u)−
1
2
ν̇ν−3N2 − 1

6
ν̈ν−4N3 + . . . , (12.17)

where the three “delay” terms are given by

ΔR(u) = xF(e,ω, u)
[
1 + xḞ(e,ω, u)

]
,

ΔE(u) = γ′ sin u ,
ΔS(u) = 2r ln [1 − e cos u − sF(e,ω, u)] , (12.18)

where

x ≡ a1 sin ι =
m2

m
a sin ι ,

γ′ ≡ e m2

(
Pb

2πGm

)1/3 (
α∗

2 + Gm2

m
+ κ(1)η

∗
2

)
,

r ≡ 1
2
(α∗

2 + γ∗
2 )m2 ,

s ≡ sin ι . (12.19)

The function F(e,ω, u) is given by

F(e,ω, u) ≡ sinω( cos u − e) + cosω(1 − e2)1/2 sin u , (12.20)

where Ḟ = dF/dt, and u is related to tarr by

u − e sin u = n(tarr − T0) . (12.21)

Equation (12.17) gives tarr in terms of the pulse number N, a set of orbital and relativistic
parameters, and the intrinsic spin parameters ν, ν̇ and ν̈. From an initial guess for the
values of these parameters, a prediction for the arrival time of the Nth pulse can be made.
The difference between the predicted arrival time and the observed arrival time is then
used to correct the parameters using a suitable parameter estimation technique, such as
least-squares.

The term ΔR in Eq. (12.17) is called the “Roemer” delay. It is simply the shift in arrival
time caused by the change in the pulsar’s location relative to the center of mass. The
amplitude is controlled by the parameter x, the projected semimajor axis of the pulsar on
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the plane of the sky. The evolution of this term with respect to tarr is governed by the orbital
period Pb, the eccentricity e, the pericenter angle ω and the pericenter time T0 . Because
this is a purely geometric effect coupled with Newtonian gravity, these five parameters are
known as the “Keplerian” parameters of the system, as listed in Table 12.1. This is the
time-domain version of the standard technique for determining orbits in Newtonian single-
line spectroscopic binary systems whereby one measures the Doppler shift of the pulse
period or spectral line. Notice that the combination

f1 ≡ x3
(

2π
Pb

)2

= G (m2 sin ι)3

m2 , (12.22)

is the standard “mass function” of spectroscopic binaries.
The Roemer delay is the dominant correction, of order r/τ ∼ v ∼ ε1/2. The Einstein and

Shapiro terms are of order ε. Thus, if the orbit elements a, e, ω, ι experience any secular
changes, they will be observable in the Roemer term, if at all (a change in the angle of
nodes Ω will be unobservable, as it merely rotates the system about the line of sight). It is
conventional to define

ω = ω0 + 〈ω̇〉(t − t0) + . . . ,

Pb = Pb0 +
1
2

Ṗb(t − t0) + . . . , (12.23)

where ω0 and Pb0 and their time derivatives are defined at a chosen epoch t0. Note that
the factor 1/2 in the expression for Pb comes from the formal definition of Pb in terms
of the semimajor axis a. One then substitutes Eqs. (12.23) into ΔR and includes ω̇ and
Ṗb as parameters to be estimated. The parameters ω̇ and Ṗb are two of the post-Keplerian
parameters listed in Table 12.1.

In principle one could include secular variations in e and ι; such variations have
recently been detected in B1913+16 (Weisberg and Huang, 2016), resulting from a spin-
orbit induced precession of the orbital plane. Furthermore, as we saw in Sections 8.2
and 8.4, and will reiterate below, it has been possible to search for periodic varia-
tions in these parameters in some systems, and to place important limits on violations
of SEP.

The term ΔE is the Einstein term, also called the Redshift/time dilation term, with
amplitude γ′. The parameter γ′ (not to be confused with the PPN parameter γ) is another
post-Keplerian parameter. Note that, once e and Pb are determined from the Roemer term,
it depends only on the masses of the bodies and possibly on their sensitivities, through α∗

2 ,
G, κ1, and η∗2 .

The final relativistic term is the Shapiro delay ΔS, dependent upon the “range” parameter
r, and the “shape” parameter s. The former depends on the mass of the companion and
possibly on sensitivities, while the latter is simply sin ι.

The final two post-Keplerian parameters in our discussion are 〈ω̇〉 and Ṗb, whose
predicted forms are given by Eqs. (10.49) and (11.85). Box 12.1 summarizes these
predictions for the post-Keplerian parameters.
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Box 12.1 Predictions for post-Keplerian parameters

Here we summarize the predictions for the post-Keplerian parameters in alternative theories of gravity.
Redshift/time dilation:

γ′ = e m2

(
Pb

2πGm

)1/3 (
α∗

2 + G m2

m
+ κ(1)η

∗
2

)
,

Shapiro delay range:

r =
1
2
(α∗

2 + γ∗
2 )m2 .

Shapiro delay shape:

s = sin ι .

Rate of advance of periastron

〈ω̇〉 = 6π
Pb(1 − e2)

(
2πGm

Pb

)2/3

PG−2 .

Derivative of orbital period

Ṗb = −192π
5

(
2πGM

Pb

)5/3

F(e)− 2πκDηS2
(

2πGm
Pb

)
G(e) . (12.24)

The coefficientsα∗
2 andγ∗

2 appear in the post-Newtonian metric of body 2 [Eqs. (10.28)], while the parameter
η∗2 and the sensitivity κ(1) refer to the effect of the field of body 2 on the moment of inertia of body 1
[Eqs. (12.13)–(12.16)]. The quantity G appears in the quasi Newtonian limit of the modified EIH equations
of motion, a = −Gmx/r3, while P is given by Eq. (10.48). The functions F(e) and G(e) are given by
Eq. (11.84);κD is the dipole radiation parameter of the theory, andS is related to the difference in sensitivities
between the two bodies.

In general relativity, the post-Keplerian parameters simplify to

γ′ = em2

(
Pb

2πm

)1/3 (
1 +

m2

m

)
,

r = m2 ,

s = sin ι ,

〈ω̇〉 = 6π
Pb(1 − e2)

(
2πm

Pb

)2/3

,

Ṗb = −192π
5

(
2πM

Pb

)5/3

F(e) , (12.25)

where

F(e) = (1 − e2)−7/2
(

1 +
73
24

e2 +
37
96

e4
)

. (12.26)
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The formulae for Ṗb include gravitational radiation contributions only through
quadrupole order. They ignore other sources of energy loss, such as tidal dissipation, mass
loss from the system, energy loss from the pulsar emission or via magnetic interactions
between the two bodies. To date, there has not been an example of a binary pulsar system
where these mechanisms come close to the energy loss via gravitational radiation. If such
an system were found, it would very likely be deemed too “dirty” to provide quantitative
tests of relativistic gravity, though it might well yield interesting physics of other types.

However there is a contribution to Ṗb that cannot be ignored. If the center of mass of the
binary system is accelerating relative to that of the solar system, then both the orbital and
pulsar periods will change at a rate given by

Ṗb

Pb
=

Ṗp

Pp
= r̈0 = a · n +

1
r0

[
v2 − (v · n)2] , (12.27)

where v and a are the relative velocity and acceleration, respectively, between the binary
system and the solar system. The first term is the projection of the acceleration along the
line of sight, while the second, called the Shklovskii effect, represents the effect of variation
of the line of sight. If we assume that the binary system (b) and the solar system (�) are
on circular orbits around the galaxy with angular velocities Ωb and Ω�, distances from the
galactic center rb and r�, and longitudes relative to the galactic center φb and φ�, then
Eq. (12.27) takes the form

Ṗb

Pb
=

Ṗp

Pp
= (Ωb − Ω�)

2 rbr�
r0

(
cosφ− rbr�

r2
0

sin2φ

)
, (12.28)

where φ ≡ φb −φ�. We will see that this effect is significant for some binary pulsars, such
as B1913+16, but not important for others, such as the double pulsar, depending on their
distance from the solar system and precise location in the galaxy.

12.1.2 A zoo of binary pulsars

Here we describe some of the most interesting binary pulsar systems from the point of
view of testing relativistic gravity. For the most part, we will discuss the implications of
the system for general relativity. In Section 12.1.3, we will discuss bounds placed by binary
pulsar observations on various alternative theories of gravity.

The Hulse-Taylor binary pulsar B1913+16

The measured values of 〈ω̇〉, γ′ and Ṗb shown in Table 12.1 provide three constraints on the
two masses m1 and m2, given by Eqs. (12.25) in Box 12.1. It is conventional to plot these
three constraints, including their uncertainties, on an m1 − m2 plane. If general relativity
is correct, they must overlap at a single point, within the uncertainties. The plot is shown
in the left panel of Figure 12.2. The 〈ω̇〉 constraint fixes the total mass of the system to be
2.8284 M�, accurate to about a part in 106; this is the black line in Figure 12.2, with the
width of the line much larger than the actual uncertainty. The γ′ constraint fixes the quantity
(m2/m)(1+m2/m); this is the dark grey line in Figure 12.2. From the intersection of these
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Fig. 12.2 Left: m1 − m2 plot for B1913+16. Right: Time of periastron passage as a function of time from 1975 to 2013.
The curve is the prediction of general relativity for Ṗb given by Eq. (12.25); the points are the measured values
with error bars multiplied by a factor of 400. The large gap in data during the middle 1990s occurred during the
upgrade of the Arecibo Radio Telescope. Image reproduced with permission from Weisberg and Huang (2016),
copyright by AAS.

two constraints, we obtain the values for the individual masses, m1 = 1.438 ± 0.001 M�
and m2 = 1.390 ± 0.001 M� (the error is dominated by the uncertainty in γ′).

The Ṗb constraint fixes the chirp mass of the system M = η3/5m; because m is known,
this constrains η. However, in this case, the galactic acceleration effect is important.
Using data on the location and proper motion of the pulsar, combined with the best
information available on galactic rotation; the current value of this effect is Ṗgal

b =

−(0.025 ± 0.004) × 10−12. Subtracting this from the measured post-Keplerian parameter
Ṗb shown in Table 12.1 gives the corrected value Ṗcorr

b = − (2.398 ± 0.004) × 10−12.
This value and its uncertainty are used to plot the dPb/dt curve in Figure 12.2. It is
the hyperbolic curve shown in the inset in Figure 12.2 which ranges from zero to three
solar masses, and the light grey band parallel to the 〈ω̇〉 constraint in the blow-up of the
intersection point “a,” which ranges over about 0.05 M�. The three curves overlap at a
common point, within the uncertainties.

Another way to check the agreement with general relativity is to use the masses inferred
from the intersection of the 〈ω̇〉 and γ′ constraints along with the expression for Ṗb in
Eq. (12.25) to predict the value ṖGR

b = −(2.40263 ± 0.00005) × 10−12. This agrees with
the measured value after the galactic correction, in other words,

Ṗcoor
b

ṖGR
b

= 0.9983 ± 0.0016 . (12.29)

Although the uncertainties in the measured post-Keplerian parameter Ṗb continue to
decrease, in part because of the decrease of statistical errors with observation time T as
T−3/2, the uncertainties in the parameters that go into the galactic correction are now
the limiting factor in the accuracy of the test of gravitational wave damping in general
relativity. In fact, if one assumes that general relativity is correct, then the binary pulsar is
providing improved data on the galactic rotation curve.
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A third way to display the agreement with general relativity is to compare the observed
phase of the orbit with a theoretical template phase as a function of time. If Pb varies
slowly in time, then to first order in a Taylor expansion, the orbital phase is given by
Φb(t) = 2πt/Pb0 − πṖb0t2/P2

b0 + . . . . The time of periastron passage T0 is given by
Φ(T0) = 2πN, where N is an integer. Consequently, the periastron time will not grow
linearly with N. Thus the cumulative difference between periastron time T0 and NPb0, the
quantities actually measured in practice, should vary according to

T0 − NPb0 ≈ Ṗb0

2P3
b0

N2 ≈ 1
2

Ṗb0

Pb0
t2 . (12.30)

The right panel of Figure 12.2 shows the comparison between the measured times and the
predicted times of periastron passage. Even after a nearly five-year gap in observations
while the Arecibo radio telescope was undergoing a major upgrade, the measured
periastron times landed right on top of the predicted curve.

The consistency among the constraints provides a test of the assumption that the
two bodies behave as “point” masses, without complicated tidal effects, obeying the
general relativistic equations of motion including gravitational radiation. This supports
the evolutionary model whereby the pulsar is an old recycled pulsar and the companion is
a young but dead pulsar. It is also a test of the adherency of general relativity to the SEP in
the presence of strong gravity, in that the highly relativistic internal structure of the neutron
stars does not influence their orbital motion.

Observations indicate that the pulse profile is varying with time (Kramer, 1998; Weis-
berg and Taylor, 2002), which suggests that the pulsar is undergoing geodetic precession on
a 300-year timescale as it moves through the curved spacetime generated by its companion
(see Section 9.1.1). The amount is consistent with GR, assuming that the pulsar’s spin
is suitably misaligned with the orbital angular momentum. Unfortunately, the evidence
suggests that the pulsar beam may precess out of our line of sight by 2025.

The precession of the pulsar’s spin is accompanied by a precession of the orbital plane,
since the total angular momentum of the system is constant up to the changes induced
by gravitational radiation reaction. One consequence of this is that the orbital inclination
has increased enough that, with the aid of improved measurement accuracy, the Shapiro
delay has become measurable (see Table 12.1). Another consequence is that variations in
the projected semimajor axis x and eccentricity e must now be included in the analysis,
leading to somewhat larger errors in the redshift/time dilation parameters γ′ than those
presented in earlier analyses (see, e.g., Weisberg et al. (2010)).

The “double” pulsar J0737-3039A,B

This binary pulsar system, discovered by Burgay et al. (2003), was already remark-
able for its extraordinarily short orbital period (0.1 days) and large periastron advance
(16.8995◦ yr−1), but then the companion was also detected as a pulsar (Lyne et al., 2004).
Because two projected semimajor axes could be measured, the mass ratio was obtained
directly and to high precision from the ratio of the values of the Keplerian parameters
x1 = a1 sin ι and x2 = a2 sin ι, since x1/x2 = m2/m1 modulo post-Newtonian corrections
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‘

Fig. 12.3 Mass-mass plots for the double pulsar. Image courtesy of Michael Kramer.

(see Table 12.2). In Figure 12.3, the line labeled “R” is that mass ratio, and the white
area is the allowed region for the masses, set by the measurement of the two Keplerian
mass functions f1 = x3

1(2π/Pb)
2 and f2 = x3

2(2π/Pb)
2 combined with the condition

that | sin ι| ≤ 1. Then, the individual masses were obtained by combining the mass
ratio with the periastron advance, assuming general relativity to be valid. The results
are mA = 1.3381 ± 0.0007 M� and mB = 1.2489 ± 0.0007 M�, where A denotes the
primary (first) pulsar. From these values, one finds that the orbit is nearly edge-on, with
sin ι = 0.9997, a value which is completely consistent with that inferred from the Shapiro
delay shape parameter s = sin ι. In fact, the five measured post-Keplerian parameters plus
the ratio of the projected semimajor axes give six constraints on the masses. As seen in
Figure 12.3, all six overlap within their measurement errors (Kramer et al., 2006). The fact
that the overlap region, shown in detail in the inset, is so close to the vertex of the allowed
region is another indication that the orbit is nearly edge-on. Note that Figure 12.3 is based
on more recent data than that quoted in Kramer et al. (2006), described in this discussion
and listed in Table 12.2.

Because of the location of the system, galactic proper-motion effects play a significantly
smaller role in the interpretation of Ṗb measurements than they did in B1913+16; this
and the reduced effect of interstellar dispersion means that the accuracy of measuring the
gravitational-wave damping will eventually beat that from the Hulse-Taylor system. It may
ultimately be necessary for the data analysis to include 2PN corrections, for example in the
periastron advance.
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Table 12.2 Parameters of other binary pulsars. Values for Ṗb include corrections for galactic kinematic
effects. Numbers in parentheses denote errors in the last digit. See the text for references.

Parameter J0737–3039(A,B) J1738+0333 J1141–6545

(i) Keplerian
a1 sin ι (s) 1.415032(1)/1.516(2) 0.34342913(2) 1.858922(6)
e 0.0877775(9) (3.4 ± 1.1)× 10−7 0.171884(2)
Pb (day) 0.10225156248(5) 0.354790739872(1) 0.1976509593(1)

(ii) Post-Keplerian
〈ω̇〉 (◦ yr−1) 16.8995(7) 5.3096(4)
γ′ (ms) 0.386(3) 0.77(1)
Ṗb (10−12) −1.25(2) −0.0259(32) −0.401(25)
r (μs) 6.2(3)
s = sin ι 0.9997(4)

The geodetic precession of pulsar B’s spin axis has also been measured by monitoring
changes in the patterns of eclipses of the signal from pulsar A as it passes through the
magnetosphere surrounding pulsar B, with a result in agreement with general relativity
to about 13 percent (Breton et al., 2008). The constraint on the masses from that effect,
denoted ΩSO is also shown in Figure 12.3. In fact, pulsar B has precessed so much that its
signal no longer sweeps by the Earth, so it has gone “silent.” For a recent overview of the
double pulsar, see Burgay (2012).

J1738+0333: A white-dwarf companion

This is an ultra-low-eccentricity, 8.5-hour period system in which the white-dwarf
companion is bright enough to permit detailed spectroscopy, allowing the companion mass
to be determined directly to be 0.181 M�. The mass ratio is determined from Doppler
shifts of the pulsar signal and of the spectral lines of the companion, giving the pulsar
mass 1.46 M�. Ten years of observation of the system yielded both a measurement of the
apparent orbital period decay, and enough information about its parallax and proper motion
to account for the substantial galactic effect to give a value of the intrinsic period decay of
Ṗb = (−25.9 ± 3.2) × 10−15 in agreement with the predicted effect of general relativity
(Freire et al., 2012). But because of the asymmetry in the sensitivities of the bodies in
the system, the result also places a significant bound on the existence of dipole radiation,
predicted by many alternative theories of gravity. Data from this system were also used
to place a tight bound on the PPN parameter α1 (see Section 12.1.3 for discussion of these
tests of alternative theories).

J1141–6545: A white-dwarf companion

This system is similar in some ways to the Hulse-Taylor binary: short orbital period
(0.2 days), significant orbital eccentricity (0.172), rapid periastron advance (5.3◦ yr−1) and
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massive components (mp = 1.27± 0.01 M�, mc = 1.02± 0.01 M�). The key difference is
that the companion is again a white dwarf. The intrinsic Ṗb has been measured in agreement
with general relativity to about 6 percent, again placing limits on dipole gravitational
radiation (Bhat et al., 2008).

J0348+0432: The most massive neutron star

Discovered in 2011 (Lynch et al., 2013; Antoniadis et al., 2013), this is another neutron-
star white-dwarf system, in a very short-period (0.1 day), low-eccentricity (2×10−6) orbit.
Timing of the neutron star and spectroscopy of the white dwarf have led to mass values
of 0.172 M� for the white dwarf and 2.01 ± 0.04 M� for the pulsar, making it the most
massive accurately measured neutron star yet. This supported an earlier discovery of a
2 M� pulsar (Demorest et al., 2010); such large masses rule out a number of heretofore
viable soft equations of state for nuclear matter, assuming general relativity to be correct.
The orbit period decay agrees with the general relativistic prediction within 20 percent and
is expected to improve steadily with time.

J0337+1715: Two white-dwarf companions

This remarkable system was reported by Ransom et al. (2014). It consists of a 2.73 mil-
lisecond pulsar of 1.4378(13)M�, with extremely good timing precision, accompanied by
two white dwarfs in coplanar circular orbits. The inner white dwarf (m = 0.19751(15)M�)
has an orbital period of 1.629 days, with e = 6.9177(2)× 10−4, and the outer white dwarf
(m = 0.4101(3)M�) has a period of 327.26 days, with e = 3.5356196(4)× 10−2. This is
an ideal system for testing the Nordtvedt effect in the strong-field regime. Here the inner
system is the analogue of the Earth–Moon system, and the outer white dwarf plays the role
of the Sun. Because the outer semimajor axis is about 1/3 of an astronomical unit, the basic
driving perturbation is comparable to that provided by the Sun on the Earth–Moon system.
However, the self-gravitational binding energy per unit mass (sensitivity) of the neutron
star is almost a billion times larger than that of the Earth, greatly amplifying the potential
size of the Nordtvedt effect. In 2018, Archibald et al (Nature, in press) reported a bound
of 2.6 parts per million on any difference in acceleration between the neutron star and the
white dwarf, representing an improvement over lunar laser ranging of about a factor of 10.

Other binary pulsars

Two of the earliest binary pulsars, B1534+12 and B2127+11C, discovered in 1990, failed
to live up to their early promise despite being similar to the Hulse-Taylor system in most
respects (both were believed to be double neutron-star systems). The main reason was the
significant uncertainty in the kinematic effect on Ṗb of local accelerations, that of the galaxy
in the case of B1534+12, and that of the host globular cluster in the case of B2127+11C.

A class of wide-orbit binary millisecond pulsar (WBMSP) systems, containing a pulsar
and a white dwarf in low-eccentricity orbits has been used to place interesting bounds on
the Nordtvedt effect. See Section 8.1 for a discussion.
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12.1.3 Tests of alternative theories

Soon after the discovery of the binary pulsar B1913+16 it was widely hailed as a new
testing ground for relativistic gravitational effects. As we have seen in the case of general
relativity, in most respects, the system has lived up to, indeed exceeded, the early expecta-
tions. In many ways, the double pulsar topped the Hulse-Taylor binary in this regard.

In another respect, however, B1913+16 only partially lived up to its promise, namely as
a direct testing ground for alternative theories of gravity. The origin of this promise was
the discovery (Eardley, 1975; Will, 1977) that alternative theories of gravity generically
predict the emission of dipole gravitational radiation from binary star systems. As one
fulfillment of this promise, Will and Eardley (1977) worked out in detail the effects of
dipole gravitational radiation in the bimetric theory of Rosen (1974), and when the first
observation of the decrease of the orbital period was announced in 1979, the Rosen theory
suffered a fatal blow. A wide class of alternative theories of that period also failed the
binary pulsar test because of dipole gravitational radiation (Will, 1977).

On the other hand, the early observations of B1913+16 already indicated that, in general
relativity, the masses of the two bodies were nearly equal, so that, in theories of gravity
that are in some sense “close” to general relativity, dipole gravitational radiation would not
be a strong effect, because of the apparent symmetry of the system. The Rosen theory, and
others like it, are not “close” to general relativity, except in their predictions for the weak-
field, slow-motion regime of the solar system. When relativistic neutron stars are present,
theories like these can predict strong effects on the motion of the bodies resulting from their
internal highly relativistic gravitational structure (violations of SEP). As a consequence,
the masses inferred from observations of the periastron shift and γ′ may be significantly
different from those inferred using general relativity, and may be different from each other,
leading to strong dipole gravitational radiation damping.

By contrast, the Brans-Dicke theory is close to general relativity, roughly speaking
within 1/ωBD of the predictions of the latter, for large values of the coupling constant ωBD.
Thus, despite the presence of dipole gravitational radiation, the Hulse-Taylor binary pulsar
provides only a weak test of pure Brans-Dicke theory, not competitive with solar-system
tests.

However, the discovery of binary pulsar systems with a white dwarf companion, such
as J1738+0333, J1141–6545, and J0348+0432 has made it possible to perform strong
tests of the existence of dipole radiation. This is because such systems are necessarily
asymmetrical, since the gravitational binding energy per unit mass, or sensitivity of white
dwarfs is of order 10−4, much less than that of the neutron star. Already, significant bounds
have been placed on dipole radiation using J1738+0333 and J1141–6545.

Because the gravitational-radiation and strong-field properties of alternative theories
of gravity can be quite different from those of general relativity and each other, it is
difficult to parametrize these aspects of the theories in the manner of the PPN framework.
In addition, because of the generic violation of the Strong Equivalence Principle in these
theories, the results can be very sensitive to the equation of state and mass of the neutron
star(s) in the system. In the end, there is no way around having to analyze every theory in
turn. On the other hand, because of their relative simplicity, scalar-tensor theories provide
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an illustration of the essential effects, and so we will begin by discussing binary pulsars
within this class of theories.

Scalar-tensor theories

We combine the results of Section 10.3.2, notably Eqs. (10.48), (10.49), (10.59), and
(10.65) to obtain the metric coefficients α∗ and γ∗ and the periastron advance rate
〈ω̇〉. We then combine Eqs. (11.84), (11.85), and (11.121) to obtain Ṗb. Recalling that
Pb = 2π(a3/Gm)1/2 where

G = 1 − ζ + ζ(1 − 2s1)(1 − 2s2) , (12.31)

and ζ = (4 + 2ω0)
−1, we obtain expressions for the post-Keplerian parameters in scalar-

tensor theories:

γ′ = e m2

(
Pb

2πGm

)1/3 (
1 − 2ζs2 + Gm2

m
+ 2ζ(1 − 2s2)(1 + 2λ)κ(1)

)
.

r = m2(1 − ζ) ,
s = sin ι ,

〈ω̇〉 = 6π
Pb(1 − e2)

(
2πGm

Pb

)2/3 [
1 +

1
3
(
2γ̄ − β̄+ −Δβ̄−

)]
,

Ṗb = −192π
5

(
2πGM

Pb

)5/3

F(e)− 8πζηS2
(

2πGm
Pb

)
G(e) . (12.32)

In the limit ζ → 0, we recover general relativity, and all structure dependence disappears.
The first term in Ṗb is the combined effect of quadrupole and monopole gravitational
radiation, post-Newtonian corrections to dipole radiation, and a dipole-octupole coupling
term, all contributing at 0PN order, while the second term is the effect of dipole radiation,
contributing at the dominant −1PN order.

Unfortunately, because of the near equality of neutron star masses in typical double
neutron star binary pulsars, dipole radiation is somewhat suppressed, and the bounds
obtained are typically not competitive with the Cassini bound on scalar-tensor theories.
Figure 12.4 uses the α0-β0 parametrization of scalar-tensor theories of Damour and
Esposito-Farèse, to display bounds from a variety of systems and experiments. The bounds
from the three binary neutron star systems B1913+16, J0737–3039, and B1534+12 are
not close to being competitive with the Cassini bound on α0, or with lunar laser ranging
(LLR) bounds, except for those generalized scalar-tensor theories with β0 < 0, where
the strong gravity of the neutron stars induces spontaneous scalarization effects (Damour
and Esposito-Farèse, 1998). Recall that α0 = (3 + 2ω0)

−1/2 = [ζ/(1 − ζ)]1/2 and
β0 = 2ω′

0φ0/(3 + 2ω0)
2 = 2λ/(1 − ζ).

On the other hand, a binary pulsar system with dissimilar objects, such as one with
a white dwarf or black hole companion, is a more promising testing ground for dipole
radiation. As a result, the neutron-star-white-dwarf systems J1141–6545 and J1738+0333
yield much more stringent bounds. Indeed, the latter system surpasses the Cassini bound
for β0 > 1 and β0 < −2, and is close to that bound for the pure Brans-Dicke case β0 = 0
(Freire et al., 2012).
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Fig. 12.4 Bounds on scalar-tensor theories from solar-system and binary-pulsar tests. Image reproduced with permission
from Freire et al. (2012), copyright by Oxford University Press.

It is worth pointing out that the bounds displayed in Figure 12.4 have been calculated
using a specific choice of scalar-tensor theory, in which the function A(ϕ) is given by

A(ϕ) = exp

[
α0(ϕ− ϕ0) +

1
2
β0(ϕ− ϕ0)

2
]

, (12.33)

where α0 and β0 are arbitrary parameters, and ϕ0 is the asymptotic value of the scalar field.
In the notation for scalar tensor theories used here, this theory corresponds to the choice

ω(φ) = −3
2
+

1
2(α2

0 − β0 lnφ)
, (12.34)

where φ0 = A(ϕ0)
−2 = 1. The parameters ζ and λ are given by ζ = α2

0/(1 + α2
0), and

λ = β0/2(1 + α2
0). It is useful to note that the PPN parameter combination 4β − γ − 3,

which governs the Nordtvedt effect and other violations of SEP in the post-Newtonian limit
is given by

4β − γ − 3 = 2ζ(1 + 2λ) =
2α2

0
1 + α2

0

(
1 +

β0

1 + α2
0

)
, (12.35)

which vanishes when β0 
 −1. This partially explains the distorted “spike” in the curve
for lunar laser ranging, where the violation of SEP is suppressed, and no useful bound can
be obtained. Something similar is occurring in the other curves, albeit complicated by the
strong gravity effects taking place in the neutron stars.
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The bounds shown in Figure 12.4 were calculated using a polytropic equation of state,
which tends to give lower maximum masses for neutron stars than do more realistic
equations of state. It is not known how much the use of stiffer equations of state would
alter the bounds on this class of theories.

Other theories

Bounds on various versions of TeVeS theories have also been established, with the tightest
constraints again coming from neutron-star-white-dwarf binaries (Freire et al., 2012); in
the case of TeVeS, the theory naturally predicts γ = 1 in the post-Newtonian limit, so the
bounds from Cassini are irrelevant here.

Strong constraints on the Einstein-Æther and Khronometric theories were also set using
binary pulsar measurements, exploiting both gravitational-wave damping data, and data
related to preferred-frame effects (Yagi et al., 2014a, 2014b). For Einstein-Æther theory,
for example, the approximate bounds were c+ < 0.03 and c− < 0.003.

12.2 Inspiralling Compact Binaries and Gravitational Waves

A new era for testing general relativity began on September 14, 2015, with the first
detection of gravitational waves by LIGO (Abbott et al., 2016c). The signal, denoted
GW150914, was the final burst of gravitational waves from the inspiral and merger of
two black holes. Even though the signal was detectable above the noise for only 0.2
seconds, three phases could be clearly delineated: a “chirp” phase of increasing amplitude
and frequency, corresponding to the late inspiral phase, a “merger” phase, where the two
black holes were becoming one, and a “ringdown” phase, where the final, perturbed black
emitted exponentially damped radiation from its quasinormal mode oscillations before
settling down to a stationary black hole (see Figure 12.5 for an illustration). Analysis of
the chirp radiation showed that the black holes had masses 26 and 39 M�, while analysis
of the ringdown radiation revealed that the final black hole had a mass of 62 M� and
a spin parameter χ 
 0.67. The three solar masses converted to energy during the
process corresponded to an approximate luminosity of 3.6 × 1056 erg s−1, larger than the
luminosity of all the stars in the observable universe combined.

Already with the first detection, important tests of general relativity were carried out.
One test checked the consistency between the observed signal and theoretical template
waveforms based on combining post-Newtonian theory with numerical relativity within
general relativity. Another test placed a bound on the mass of the graviton that improved
upon the bound derived from solar system dynamics. The fourth detection, GW170814,
which included the Virgo detector (Abbott et al., 2017c), resulted in an interesting test of
the polarization content of the gravitational waves. The most recent detection GW170817
was a binary neutron-star inspiral (Abbott et al., 2017d). This observation was notable
because it was also observed across the entire electromagnetic spectrum, with major
implications for gamma-ray bursts, the neutron-star equation of state, and the synthesis of
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Fig. 12.5 Schematic gravitational wave from binary inspiral, showing the inspiral, merger and ringdown parts of the
waveform.

the heaviest elements (Abbott et al., 2017e). It also produced a very precise direct bound
on the difference between the speeds of gravitational waves and light. When the analysis
is complete, it may also contribute additional tests of relativistic gravity.

In this section we will lay the groundwork for discussing gravitational waves from
binary inspiral within general relativity and scalar-tensor theory, and then will discuss a
few parametrized frameworks for analysing alternative theories. Finally we will describe
the results from specific tests carried out so far. This field is truly just beginning, and so it
is likely that much of what is presented here will soon be out of date!

12.2.1 Compact binary inspiral in general relativity

To keep the discussion simple, we will assume that general relativity is correct and that the
two compact bodies are in quasi-circular orbits, which means orbits that are circular apart
from the adiabatic inspiral induced by gravitational radiation. For compact binaries that
have evolved in isolation for considerable time, this turns out to be an excellent approxi-
mation. As we learned in Section 11.5.2, the orbital eccentricity decreases with semimajor
axis approximately as e = e0(a/a0)

19/12 = e0(P b/Pb0)
19/18. Thus, for example, by the

time the Hulse-Taylor binary pulsar B1913+16 has spiralled inward until its orbital period
is around 0.1 seconds, so that its gravitational waves will be entering the LIGO-Virgo
sensitive band, its eccentricity will be 10−6. On the other hand, for an “extreme mass-ratio
inspiral,” in which a stellar-mass compact object is injected from a surrounding star cluster
into a highly eccentric orbit around a supermassive black hole, there may not be enough
time for the orbit to circularize, and thus it may be important to include eccentricity.

We will also assume that the bodies are spinning, but we will assume that the spins are
either aligned or anti-aligned with the orbital angular momentum. This means that we will
ignore the precessions of the spins and of the orbital plane that result from spin-orbit and
spin-spin coupling (see Section 9.1 for discussion). These precessions have the effect of
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modulating the amplitude and phase of the gravitational waveform in complex ways. There
has not been sufficient information in the short binary black hole waveforms observed so
far to detect precession effects, but they will surely be important for binary black hole
inspirals in the future. Similarly, it is not yet known whether spin precession played a role
in the binary neutron-star inspiral event. For simplicity, we will ignore such complications,
and treat only the aligned spin cases.

We will ignore tidal interactions. For binary black holes, these effects are unimportant
until the onset of the actual merger of two event horizons. For systems containing neutron
stars they will also be unimportant until the final few orbits, but then the signature of tidal
distortion and even disruption of the neutron star as imprinted on the gravitational wave
signal could carry important information about the equation of state of the matter in the
neutron star. In order to test alternative theories of gravity, it is desirable to avoid regimes
where such complex phenomena could occur.

Finally, we will treat only the part of the inspiral that is governed by the post-Newtonian
approximation.

To obtain the relevant conditions for a circular orbit, we take the PPN two-body equation
of motion (6.70) without the J2 term, choose the PPN parameters for general relativity and
impose the constraint ṙ = r̈ = 0. This yields a condition on the orbital angular velocity ω

given by ω2 = (m/r3)[1−(3−η)m/r]. Including the spin-orbit and spin-spin contributions
to the equations of motion, Eqs. (9.4a) and (9.4b), along with 2PN terms in the equations of
motion (see, for example, Blanchet et al. (1995a)), we obtain

ω2 =
m
r3

[
1 − m

r
(3 − η)−

(m
r

)3/2∑
a

(
2

m2
a

m2 + 3η
)

ĥ · χa

+
(m

r

)2
{

6 +
41
4
η + η2 − 3

2
η
(
χ1 · χ2 − 3ĥ · χ1ĥ · χ2

)}]
, (12.36)

where χa = Sa/m2
a, and ĥ is the unit vector in the direction of the orbital angular

momentum x × v. Similarly, the energy of the circular orbit is given by

E = −η
m2

2r

[
1 − 1

4
m
r
(7 − η) +

(m
r

)3/2∑
a

(
2

m2
a

m2 + η

)
ĥ · χa

− 1
8

(m
r

)2 {
7 − 49η − η2 − 4η

(
χ1 · χ2 − 3ĥ · χ1ĥ · χ2

)}]
. (12.37)

The rate of loss of energy is given by Eq. (11.109), with spin-orbit and spin-spin effects
added (Kidder et al., 1993; Kidder, 1995),

dE
dt

= −32
5
η2
(m

r

)5
[

1 − m
r

(
2927
336

+
5
4
η

)

+
(m
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)3/2
{

4π − 1
12
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a

m2 + 75η
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+
(m

a

)2
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293383
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+
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9

η − η

48

(
223χ1 · χ2 − 649ĥ · χ1ĥ · χ2

)}]
. (12.38)
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The orbital angular frequency ω = 2πfb, where fb is the binary orbit frequency. But for
quadrupole radiation from a circular orbit, the gravitational-wave frequency F is given
by F = 2fb. Combining Eqs. (12.36), (12.37), and (12.38) we can obtain an equation for
the evolution of the gravitational-wave frequency with time as a function of F, given by
dF/dt = (dE/dt)/(dE/dF), or

dF
dt

=
96π

5
F2(πMF)5/3

[
1 −

(
743
336

+
11
4
η

)
(πmF)2/3 + (4π − β)(πmF)

+

(
34103
18144

+
13661
2016

η +
59
18

η2 + σ

)
(πmF)4/3

]
, (12.39)

where β and σ are the spin-orbit and spin-spin contributions, given by

β ≡ 1
12
∑

a

(
113

m2
a

m2 + 75η
)

ĥ · χa ,

σ ≡ η

48

(
−247χ1 · χ2 + 721ĥ · χ1ĥ · χ2

)
. (12.40)

Note that (πmF)2/3 ∼ v2 ∼ m/r. If the source is at a sufficiently great distance that
cosmological redshifts become significant, then the observed frequency Fobs = F/(1 + Z)
and the observed time interval is dtobs = (1 + Z)dt. Then Eq. (12.39) applies equally well
to the observed quantities provided that we define the “observed” or redshifted masses
Mobs = M(1 + Z) and mobs = m(1 + Z).

Combining Eqs. (11.47) and (11.108) for a circular orbit, and substituting r =

m1/3(2πF)−2/3[1 + O(ε)] into the wave amplitude, we can write the response function
S(t) of a laser interferometer in the general form

S(t) =
M
R

Q(angles)(πMF)2/3 cosΦ(t) , (12.41)

where Φ(t) = 2φ(t) = 2π
∫ t F(t′)dt′ is the gravitational-wave phase. Integrating

Eq. (12.39) to obtain F as a function of t, and then integrating to obtain the phase, we obtain

Φ(F) = Φc −
1

16
(πMF)−5/3

[
1 +

5
3

(
743
336

+
11
4
η

)
(πmF)2/3 − 5

2
(4π − β)(πmF)

+5
(

3058673
1016064

+
5429
1008

η +
617
144

η2 − σ

)
(πmF)4/3

]
, (12.42)

where Φc is a constant. Thus we have an accurate prediction (under the chosen
assumptions) for the gravitational-wave signal at the detector. This is essential for
confirming a detection and for the measurement of the source parameters (Cutler et al.,
1993), which include distance, position in the sky, orientation of the orbital plane, and
the masses and spins of the companions. Roughly speaking, the measured signal (which
includes detector noise) is passed through a linear filter constructed from the theoretical
signal S(t;θ) and the spectral density of the detector noise (Wainstein and Zubakov, 1962).
The theoretical signal is expressed as a function of an abstract vector θ, which collectively
represents the source parameters, such as R, tc, M, η, and so on. The signal-to-noise ratio
S/N is then computed (see below). The actual values of these parameters θ̃ are unknown
prior to the measurement. When θ = θ̃, the linear filter becomes the Wiener optimum
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filter which is well known to yield the largest possible signal-to-noise ratio (Wainstein and
Zubakov, 1962). A detection can be confirmed and the source parameters determined by
maximizing S/N over a broad collection of expected signals S(t;θ), loosely referred to
as “templates.” This method is called “matched filtering”; see Finn and Chernoff (1993),
Cutler and Flanagan (1994), and Poisson and Will (1995) for the foundations of this
approach for binary inspiral.

It has been established that it is the phasing of the signal that plays the largest role in
parameter estimation. This is because a slight variation in the parameters can quickly cause
h(t;θ) to get out of phase with respect to the true signal h(t; θ̃), thus seriously reducing
S/N from its maximum possible value. Therefore a good match between the phases of the
template and the measured signal throughout the observed cycles singles out, to a large
extent, the value of the source parameters.

The leading term in Φ(F) gives the chirp mass. If there is sufficient sensitivity to measure
the 1PN correction term, then because of the dependence on η and m, one can measure the
individual masses m1 and m2. Measuring higher-order terms can give information about
the spins, and can also yield tests of general relativity.

The key ingredient in matched filtering is the Fourier transform of S(t), given by S̃(f) =
(2π)−1 ∫∞

−∞ S(t)e2πiftdt. Using the stationary phase approximation, and confining attention
to positive frequencies, it is straightforward to show that

S̃(f) = Af−7/6eiψ(f) , (12.43)

where A ∝ M5/6Q(angles)/R, and

ψ(f) = 2πftc −
π

4
+ f
∫ f

f′−2Φ(f′)df′ , (12.44)

where tc is the time corresponding to the phase Φc, and the gravitational-wave frequency F
is to be replaced by the Fourier frequency f in Eq. (12.42). In general relativity, the phase
ψ(f) is given by

ψ(f) = 2πftc − Φc −
π

4
+

3
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]
.

(12.45)

Then, for a detector characterized by a Gaussian noise spectral density Sn(f), the signal-
to-noise ratio associated with a measurement of a signal S(t) is given by

S/N ≡ 4
∫ ∞

0

|S̃(f)|2
Sn(f)

df . (12.46)

Defining the Fisher information matrix by

Γab ≡ 2
∫ ∞

0

S̃∗,aS̃,b + S̃,aS̃∗,b
Sn(f)

df , (12.47)

where subscripts ,a and ,b denote partial derivatives with respect to one of the parameters
θa characterizing the signal, it can be shown that the error σa in measuring the parameter
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θa, and the correlation coefficients cab between parameters θa and θb are obtained from the
inverse of the Fisher matrix, according to the prescription

σ2
a = 〈(Δθa)2〉 = (Γ−1)aa ,

cab =
〈ΔθaΔθb〉

σaσb
=

(Γ−1)ab

σaσb
. (12.48)

This sensitivity to phase is one of the keys to testing general relativity with gravitational
waves. In an alternative theory of gravity, the coefficients that appear in Eq. (12.45) may
differ from those in general relativity, and if those differences depend on a parameter, such
as the scalar-tensor coupling parameter ω0, one can use matched filtering to place a bound
on such parameters.

12.2.2 Compact binary inspiral in scalar-tensor theories

At present, the evolution of the gravitational-wave frequency in scalar-tensor theory cannot
be written down to the same PN order as that displayed in Eq. (12.39) for general relativity.
This is because dipole gravitational radiation contributes to the waveform at −0.5PN order
and to the energy flux at −1PN order, and therefore to obtain terms in dF/dt at nPN order
beyond the quadrupole term, one needs to evaluate the scalar wave field and the equations
of motion to (n+ 1)PN order. In addition, the clean expansion in powers of (πmF)2/3 ∼ v2

shown in Eq. (12.39) is no longer so clean when dipole radiation is present. Even though
the dipole term is formally of leading order, its contribution to the waveform and energy
flux is proportional to ζ. Since solar-system experiments already place the constraint ζ <

10−5, and S is typically less than 0.5, the dipole flux is likely to be small compared to the
quadrupole flux in the late inspiral phase, where v > 10−2, except for situations where
spontaneous scalarization yields extremely large values of S . Thus a double expansion of
quantities such as dF/dt and Φ(F) must be carried out, with one parameter being (πmF)2/3,
the other being the ratio of the two dominant types of flux (see Sennett et al. (2016) for
discussion). The expansions will look very different depending on whether the evolution
is dipole-radiation dominated or quadrupole-radiation dominated.

Here we will keep things simple, and work only to the equivalent of quadrupole order,
mainly to demonstrate how dipole radiation alters the frequency evolution of the inspiral
(Will, 1994). From the binary equation of motion (10.69) without spins, we follow the
method described in Section 12.2.1 to obtain the quasicircular orbit expressions (compare
Eqs. (12.36) and (12.37))

ω2 =
Gm
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[
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. (12.49)

From Eqs. (11.59), the energy loss rate from a quasicircular orbit is given by
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= − 8
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− , (12.50)
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where κ1 is given by Eq. (11.121). The final result for the evolution of the gravitational-
wave frequency is

dF
dt

=
96π

5
F2(πGMF)5/3

[
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5
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]
, (12.51)

where
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Whereas in general relativity, the post-Newtonian corrections to the leading quadrupole
frequency evolution are given by a power series in increasing powers of (πGmF)2/3, the
dipole correction term depends on a negative power that parameter, reflecting its −1PN

nature. But by measuring the evolution of F in an inspiral, one can place a bound on the
scalar-tensor parameter ζ. Unfortunately, for the sensitivities of the advanced LIGO-Virgo
instruments, the bounds are not likely to be competitive with the solar-system bound (Will,
1994), except possibly for scalar-tensor theories that admit spontaneous scalarization,
leading to anomalously large values of S±. On the other hand, such bounds would be
derived from tests of the strong-field dynamical regime, not the weak field, slow motion
regime of the solar system. Note, however, that for binary black hole inspirals, with
s1 = s2 = 1/2, the gravitational-wave signal is identical to that of general relativity,
after rescaling the masses by the factor 1 − ζ, so no test of basic scalar-tensor theory is
possible for such sources. One needs a neutron star inspiral, such as the event GW170817,
to test these theories.

Sennett et al. (2016) have analyzed the next-order contributions to the frequency and
phase evolution.

12.2.3 Compact binary inspiral in other theories

Compact binary inspiral in other theories of gravity has not been analyzed systematically
in the same manner as have general relativity and scalar-tensor theories, so only limited
conclusions about alternative theories can be drawn from the gravitational-wave detections
made to date (Yunes et al., 2016). On the other hand, a number of phenomenological
parametrizations have been developed that make it possible to place some preliminary
bounds on general classes of theories.

Bounds on the graviton mass and the speed of gravitational waves

If gravitation is propagated by a massive field, as in massive gravity theories (Section 5.7),
then the velocity of gravitational waves will depend upon their wavelength as v2

g = 1 −
(λ/λg)

2 [Eq. (11.10)], where λg = h/mg is the graviton Compton wavelength. In the case
of inspiralling compact binaries, gravitational waves emitted at low frequency early in the
inspiral will thus travel slightly more slowly than those emitted at high frequency later,
resulting in an offset in the relative arrival times at a detector. This modifies the observed
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frequency evolution of the observed inspiral gravitational waveform, similar to that caused
by post-Newtonian corrections to the quadrupole evolution (Will, 1998).

To make this quantitative, we consider the propagation of a massive “graviton” in a
background Friedmann-Robertson-Walker (FRW) homogeneous and isotropic spacetime,
with the line element

ds2 = −dt2 + a2(t)[dχ2 +Σ2(χ)(dθ2 + sin2θdφ2)] , (12.53)

where a(t) is the scale factor of the universe and Σ(χ) is equal to χ, sinχ or sinhχ if the
universe is spatially flat, closed or open, respectively. For a graviton moving radially from
an emitter at χ = χe to a receiver at χ = 0, it is straightforward to show that the component
of the graviton’s four-momentum pχ = constant. Using the fact that m2

g = −pαpβgαβ =

E2 − a−2p2
χ, where E = p0, together with pχ/E = dχ/dt, we obtain
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= −1
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ga2

p2
χ

)−1/2

, (12.54)

where p2
χ = a2(te)(E2

e −m2
g). Assuming that Ee � mg, expanding Eq. (12.54) to first order

in (mg/Ee)
2 and integrating, we obtain
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Consider gravitons emitted at two different times te and t′e, with energies Ee and E′
e, and

received at corresponding arrival times (χe is the same for both). Assuming that Δte ≡
te − t′e 	 a/ȧ, and noting that mg/Ee = (λgFe)

−1, where Fe is the emitted frequency, we
obtain, after eliminating χe,
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[
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D
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e
− 1
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e

2

)]
, (12.56)

where Z ≡ a0/a(te)− 1 is the cosmological redshift, and

D ≡ (1 + Z)
a0

∫ ta

te
a(t)dt

=
1 + Z

H0

∫ Z

0

dZ′

(1 + Z′)2[ΩM(1 + Z′)3 +ΩΛ]1/2 , (12.57)

where a0 = a(tr) is the present value of the scale factor. The expression in the second line
corresponds to a spatially flat universe with matter density parameter ΩM and dark-energy
parameter ΩΛ, with ΩM+ΩΛ = 1. Note that D is not a conventional cosmological distance
measure, like the luminosity distance given by

DL ≡ (1 + Z)a0

∫ ta

te

dt
a(t)

=
1 + Z

H0

∫ Z

0

dZ′

[ΩM(1 + Z′)3 +ΩΛ]1/2 . (12.58)

For a standard ΛCDM cosmology, D/DL ranges from unity at Z = 0 to 0.3 at Z = 3.
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Because the arrival time of the signal now depends on frequency, the observed frequency
evolution is given by

dF
dt

=
dFr

dtr
= (1 + Z)−1 dFe

dte
dte
dtr

. (12.59)

where we have inserted the redshift factor linking Fr with Fe. We now calculate dtr/dte
using Eq. (12.56), and insert the general relativistic quadrupole evolution for dFe/dte,
Eq. (12.39), including the 1PN correction. We are assuming here that, in whatever massive
gravity theory is being employed, the intrinsic frequency evolution of the system is given
by the formulae from general relativity, ignoring corrections of fractional order (r/λg)

2,
where r is the size of the binary system. Since solar-system bounds already imply that
λg > 1012 km, these are likely to be small corrections. We then obtain, for the observed
frequency evolution,

dF
dt

=
96π

5
F2(πMF)5/3

[
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(
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4
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)
(πmF)2/3 + . . .

]
, (12.60)

where F, m, and M are the observed frequency and masses, and where

βg =
96
5

π2Dηm
λ2

g(1 + Z)
. (12.61)

The effect of the graviton mass is to modify the coefficient of the 1PN term in the frequency
evolution. Thus with sufficiently accurate measurements of the frequency evolution, it
is possible to measure the individual masses and to place a bound on βg. Early studies
estimated that advanced LIGO-Virgo detectors could place a bound λg > 1012 km, while
the LISA space detector could place a bound λ > 1016 km (Will, 1998; Berti et al., 2005;
Stavridis and Will, 2009; Arun and Will, 2009).

The dispersion relation E2 = p2 + m2
g for a massive graviton is Lorentz invariant.

Mirshekari et al. (2012) considered extensions to theories of gravity that effectively violate
Lorentz invariance, in which the dispersion relation could take the form

E2 = p2 + m2
g + Apα , (12.62)

where A and α are two parameters characterizing the Lorentz violation. For example, in
some extra-dimension theories, α = 4 and A is a parameter of the order of the square of
the Planck length. Mirshekari et al. (2012) studied the bounds that could be placed on mg
and A for various values of α.

Tests of the massive graviton hypothesis have now been carried out using data from
gravitational-wave detections. Data from the discovery event GW150914, led to the bound
λg > 1013 km (Abbott et al., 2016c,d). This was improved to 1.6 × 1013 km by combining
data from the three events GW150914, GW151226, and GW170104. (Abbott et al.,
2017b).

This limit is comparable to the solar-system limit, which comes from assuming that
massive gravity also implies a modification of the Newtonian potential by the inclusion of
a Yukawa factor, that is, U = (m/r)e−r/λg . Data on Mercury’s perihelion advance and on
orbits of the outer planets imply that λ > 1012 km (Talmadge et al., 1988), although recent
improvements in knowledge of Mercury’s orbit described in Section 7.3 probably push
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that bound above 1013 km. Some have argued for a larger bound on λg from galactic and
cluster dynamics (Hiida and Yamaguchi, 1965; Hare, 1973; Goldhaber and Nieto, 1974),
noting that the evidence of bound clusters and of clear tidal interactions between galaxies
argues for a range λg at least as large as a few megaparsecs (6 × 1019 km). However, in
view of the uncertainties related to the amount of dark matter in the universe, and the fact
that massive gravity theories frequently include other modifications of gravity on large
scales, these bounds should be viewed with caution. Even the dynamical arguments used
to establish these large-scale bounds have been questioned recently (Christodoulou and
Kazanas, 2017; Mukherjee and Sounda, 2017). Bounds on the Lorentz-violating dispersion
parameter A were also placed using combined data from GW150914, GW151226, and
GW170104 (Abbott et al., 2017b).

A very strong bound was placed on the difference in speed between light and
gravitational waves using the binary neutron-star event GW170817 (Abbott et al., 2017a).
Because the gravitational-wave event could be associated with the gamma-ray burst event
GRB170817A in the galaxy NGC 4993, the observed time difference between the two
signals, 1.74 ± 0.05 s, combined with the estimate of the distance of 42.9 ± 3.2 Mpc,
produced the bound

− 3 × 10−15 < cg − 1 < 7 × 10−16 . (12.63)

Bounds on polarizations of gravitational waves

A restricted test of gravitational-wave polarizations was carried out in 2017, when the
Virgo detector joined LIGO for several weeks toward the end of LIGO’s second observing
run. Using data from the binary black hole inspiral GW170814, seen in all three detectors,
a Bayesian analysis was carried out in which a fit to the data was carried out for pure tensor
response (i.e., including only F+ and F× in the response), pure scalar response (only FS and
FL) and pure vector response (only FV1 and FV2). The quadrupole response was strongly
favored over the two alternatives by Bayes factors of 200 and 1000, respectively (Abbott
et al., 2017c).

Parametrizations of binary inspiral signals

Several frameworks have been developed, modeled on the PPN formalism, in which
arbitrary parameters are introduced into the predicted gravitational-wave signal from
binary inspiral in order to encompass alternative theories of gravity. Arun et al. (2006a)
wrote the Fourier phase ψ(f) of Eq. (12.45) in the form

ψ(f) = 2πftc − φc −
π

4
+
∑

k

3
128η

(πMf)(k−5)/3αk , (12.64)

where αk are arbitrary parameters. The general relativistic values of the parameters can be
read off from the coefficients inside the square brackets of Eq. (12.45) (see also Arun et al.
(2006b) and Mishra et al. (2010)).

Yunes and Pretorius (2009) extended this post-Newtonian parametrization to include
nongeneral relativistic frequency dependences, in the form
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ψ(f) = 2πftc − φc −
π

4
+

N−1∑
k=0

φk(πMf)bk , (12.65)

where φk and bk are each a set of N parameters. This parametrization allows for the
presence of dipole radiation, which begins at order (πMf)−7/3. They also included
parametrized waveform templates for both the merger and ringdown phase. This is known
as the parametrized post-Einsteinian (PPE) formalism.

These parameterizations were extended and adapted for specific use within the LIGO-
Virgo data analysis pipeline, based on Bayesian model selection (Li et al., 2012; Agathos
et al., 2014). This “test infrastructure for general relativity” (TIGER) was used in a joint
analysis of the data from GW150914 and GW151226 to place limits on the various
parameters of the model (Abbott et al., 2016a). For example, the 0PN, 1PN, and 1.5PN

coefficients in the model were consistent with general relativity to between 10 and 20
percent; higher PN-order coefficients were more poorly constrained. With more detections,
these constraints are likely to improve.

12.3 Exploring Spacetime near Compact Objects

One of the difficulties of testing GR in the strong-field regime is the possibility of con-
tamination by uncertain or complex physics. In the solar system, weak-field gravitational
effects can in most cases be measured cleanly and separately from nongravitational effects.
The remarkable cleanliness of many binary pulsars permits precise measurements of
gravitational phenomena in a strong-field context. The gravitational waves from inspiraling
compact binaries detected by LIGO and Virgo appear to be likewise amazingly clean, not
entirely surprising, since four of the first five detections involved binary black holes.

Unfortunately, nature is rarely so kind. Still, under suitable conditions, qualitative and
even quantitative strong-field tests of GR are possible. The combination of improved
astronomical observations in all wavelength bands, from radio to gamma rays, and better
theoretical and computational modelling of complex physical processes have offered the
promise of performing striking tests of strong-field predictions of GR. This is a rapidly
evolving field, and therefore we will be unable to give a thorough account here. Instead we
will give a few examples of interesting arenas where possible astrophysical tests of general
relativity might occur, and will otherwise refer readers to a number of recent reviews
(Psaltis, 2008; Berti et al., 2015; Johannsen, 2016).

12.3.1 SgrA∗: A black hole in the galactic center

Lynden-Bell and Rees (1971) suggested that there might be a supermassive black hole in
the center of the Milky Way, and Balick and Brown (1974) observed a bright, unresolved
synchroton radio source at the precise galactic center, naming it Sagittarius A∗, or SgrA∗

for short. While evidence mounted for the existence of massive black holes in the centers
of quasars and active galactic nuclei, a black hole in the Milky Way remained only an
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intriguing possibility until advances in infrared interferometry and adaptive optics made
it possible to detect stars very near the location of SgrA∗ and to observe their orbital
motions (Eckart and Genzel, 1996; Ghez et al., 1998). A major breakthrough came with
the unambiguous determination of the orbit of the star denoted S2 with an orbital period
of about 16 years, and projected semimajor axis of 0.1 arcseconds (Schödel et al., 2002;
Ghez et al., 2003). This made it possible, using Kepler’s third law, to determine the mass
of the black hole directly. Combined with more recent data on S2 and on other stars in the
central cluster, this has led to an estimate for the black-hole mass of 4.4 ± 0.4 × 106 M�
and an improved value for the distance to the galactic center of 8.3 ± 0.4 kiloparsecs (see
Genzel et al. (2010) for a thorough review of SgrA∗). In addition to opening a window on
the innermost region of the galactic center, the discovery of these stars has made it possible
to contemplate using orbital dynamics to probe the curved spacetime of a rotating black
hole, with the potential to test general relativity in the strong-field regime.

Soon after the detection of stars orbiting SgrA∗, numerous authors pointed out the
relativistic effects that are potentially observable, including the gravitational redshift and
time-dilation effects (Zucker et al., 2006) and the pericenter advance (Jaroszynski, 1998;
Fragile and Mathews, 2000; Rubilar and Eckart, 2001; Weinberg et al., 2005; Kraniotis,
2007). Although these effects were not detectable with the instrumentation at the time,
notably the infrared interferometer at the Keck Observatory in Hawaii and the Very Large
Telescope infrared Interferometer (VLTI) at the European Southern Observatory, the next
generation of the instrumentation may bring relativistic tests within reach. The upgrade of
the VLTI, known as GRAVITY, made its first observations of the galactic center in June
2016 (GRAVITY Collaboration et al., 2017). The Thirty Meter Telescope (TMT), currently
under development, will also have the capability to make such measurements.

For example, the gravitational redshift of spectra of the stars S2 and S102 will be
detectable during their next pericenter passages in 2018 and 2021, respectively. The
pericenter precession of S2 is another target for detection in 2018. In general relativity,
the leading contribution to the pericenter advance rate is given by ω̇ = 6πm/Pba(1 − e2).
However, if the precession of the orbit is being measured astrometrically from Earth, then
we must project the orbit onto the plane of the sky and determine the rate of change of the
relevant point on the orbit as seen from Earth. Thus the projected pericenter shift is given
by ω̇proj = [a(1 ± e)/R]ω̇ cos ι where the plus (minus) sign corresponds to measuring the
shift at apocenter (pericenter), ι is the inclination of the orbit, and R is the distance to the
galactic center. Using the mass and distance of SgrA∗ quoted earlier, the result is

ω̇proj = 98.3μas yr−1
(

1 yr
Pb

)
cos ι
1 ∓ e

, (12.66)

where the minus sign now corresponds to a measurement at apocenter. For S2 and S102,
the rates are 37 and 23 microarcseconds per year. Current observations of S2 and S102 are
within a factor of 10 of measuring the precession (Hees et al., 2017).

Among the goals of second-generation projects such as GRAVITY and the TMT are
astrometric precisions of tens of microarcseconds per year, and sensitivities enabling the
detection of stars orbiting much closer to the black hole than the S-stars (if such stars exist).
This makes it possible to consider doing more than merely detect relativistic effects, but
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Table 12.3 Orbital parameters of selected stars orbiting the galactic center black hole SgrA∗. Data taken
from Gillessen et al. (2009) and Meyer et al. (2012).

Star a (a.u) e ι(◦) Pb (yr)

S2 1020 ± 8 0.880 ± 0.003 135.25 ± 0.47 15.8 ± 0.1
S4 2470 ± 160 0.406 ± 0.022 77.83 ± 0.32 59.5 ± 2.6
S5 2080 ± 350 0.842 ± 0.017 143.7 ± 4.7 45.7 ± 6.9
S9 2430 ± 430 0.825 ± 0.020 81.0 ± 0.7 58.0 ± 9.5
S14 2125 ± 83 0.963 ± 0.006 99.4 ± 1.0 47.3 ± 2.9
S38 1160 ± 340 0.802 ± 0.041 166 ± 22 18.9 ± 5.8
S102 812 ± 32 0.68 ± 0.02 151 ± 3 11.5 ± 0.3

rather to provide the first test of the black hole “no-hair” or uniqueness theorems of general
relativity (Will, 2008). According to those theorems, an electrically neutral black hole is
completely characterized by its mass m and angular momentum J. As a consequence, all
the multipole moments of its external spacetime are functions of m and J. Specifically, the
quadrupole moment Q2 = −J2/m.

To see how such a test might be carried out, we work in the post-Newtonian limit, and
write down the equation of motion for a test body in the field of a body with mass m,
angular momentum J, and quadrupole moment Q2. This can be obtained from Eq. (6.70),
using general relativistic values of the PPN parameters, setting η = 0, and including the fact
that the dimensionless quadrupole moment J2 and Q2 are related by mR2J2 = −Q2. We
also include the spin-orbit terms from Eq. (9.4a), with γ = 1, α1 = 0, and S1 = m1 = 0,
hence σ = 0. The result is

dv
dt

= −mn
r2

[
1 + v2 − 4m

r

]
+

4mvṙ
r2

− 2J
r3

[
2v × e − 3ṙn × e − 3r−1n(h · e)

]
− 3

2
Q2

r4

[
5n(n · e)2 − 2e(n · e)− n

]
, (12.67)

where v is the velocity of the body, n = x/r, h = x × v, and e = J/J is a unit vector
along the symmetry axis of the black hole. If we define a dimensionless spin parameter χ
by χ ≡ J/m2, then, for a Kerr black hole, 0 ≤ χ ≤ 1 and Q2 = −M3χ2.

We consider a body with orbital elements a, e, ι, Ω and ω defined using the plane of the
sky as the X–Y plane of the reference system (see Figure 6.1). The axis of the black hole
has an unknown orientation relative to the reference system. Substituting the perturbing
acceleration of Eq. (12.67) into the Lagrange planetary equations (6.74) and integrating
over an orbit, we obtain the changes Δe = Δa = 0, and

Δ� = AS − 2AJ cosα− 1
2

AQ(1 − 3 cos 2α) ,

ΔΩ =
sinα sinβ

sin ι
(AJ − AQ cosα) ,

Δi = sinα cosβ(AJ − AQ cosα) , (12.68)
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where

AS = 6πm/p ,

AJ = 4πJ/(mp3)1/2 ,
AQ = 3πQ2/mp2 , (12.69)

where Δ� = Δω+ cos ιΔΩ, and p = a(1− e2). The angles α and β are the polar angles
of the black hole’s symmetry axis e with respect to the star’s orbital plane defined by the
line of nodes eΩ, and the vector in the orbital plane e⊥ orthogonal to eΩ and h, according
to cosα ≡ e · ĥ, sinα cosβ ≡ e · eΩ and sinα sinβ ≡ e · e⊥.

The structure of the expressions for ΔΩ and Δι can be understood as follows:
Eq. (12.67) implies that the orbital angular momentum h precesses according to dh/dt =
ωP × h, where the orbit-averaged precession vector is given by ωP = e(AJ − AQ2 cosα).
The orbit element variations are given by dι/dt = ωP · eΩ and sin ι dΩ/dt = ωP · e⊥. As
a consequence, we have the purely geometric relationship,

sin ι dΩ/dt
di/dt

= tanβ . (12.70)

To get rough idea of the astrometric size of these precessions, we define an angular
precession rate amplitude Θ̇n = (a/R)An/Pb, where R is the distance to the galactic center
and Pb is the orbital period. Using m = 4.4× 106 M�, D = 8.3 kpc, we obtain the rates, in
microarcseconds per year,

Θ̇S ≈ 98.3 P−1
b (1 − e2)−1 ,

Θ̇J ≈ 1.07χP−4/3
b (1 − e2)−3/2 ,

Θ̇Q ≈ 1.3 × 10−2 χ2P−5/3
b (1 − e2)−2 , (12.71)

where Pb is measured in years. The observable precessions will be reduced somewhat
from these raw rates because the orbit itself must be projected onto the plane of the sky.
As we noted earlier, the contribution to Δ� is reduced by cos ι, and the contribution to
Δι is reduced by sin ι. For an orbit in the plane of the sky, changes in the inclination
are unmeasurable, and changes in the nodal angle become degenerate with changes in the
pericenter.

For the quadrupole precessions to be observable, it is clear that the black hole must have
a decent angular momentum (χ > 0.5) and that the star must be in a short-period high-
eccentricity orbit. For example, for χ = 0.7, Pb = 0.1 yr, and e = 0.9, the three amplitudes
listed in Eq. (12.71) have the values 5200, 195 and 8 μ as per year, respectively.

Although the pericenter advance is the largest relativistic orbital effect, it is not the most
suitable effect for testing the no-hair theorems. The frame-dragging and quadrupole effects
are small corrections of the leading Schwarzschild pericenter precession, and thus one
would need to know m, a and e to sufficient accuracy to be able to subtract that dominant
term to reveal the smaller effects of interest. Furthermore, the pericenter advance is affected
by a number of complicating phenomena, including 2PN effects, the disturbing effects of
surrounding mass in the form of gas, stars or dark matter, and the effects of tidal distortion
of the star near its pericenter.
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On the other hand, the precessions of the node and inclination are relatively immune
from such effects. Any spherically symmetric distribution of mass has no effect on
these orbit elements. As long as any tidal distortion of the star is quasi-equilibrium with
negligible tidal lag, the resulting perturbing forces are purely radial, and thus have no
effect on the node or inclination. On the other hand, even if a surrounding cluster of stars
is spherical on average, the “graininess” of the perturbing forces from a finite number of
such stars will have an effect on the orbital plane of a chosen target star. These perturbing
effects were studied for a range of hypothetical distributions of cluster stars by Merritt et al.
(2010) and Sadeghian and Will (2011)

In order to test the no-hair theorem using the precessions ΔΩ and Δι, we need to
measure four quantities, the magnitudes J and Q2, and the angles α and β. Thus it will
be necessary to measure ΔΩ and Δι for at least two stars whose orbital planes are
appropriately nondegenerate. Even if the precision is not sufficient to be sensitive to the
small quadrupole effect, it would still be possible to measure the spin magnitude and
direction of the black hole, which would shed light on how it evolved and grew during
the lifetime of the galaxy.

Observing stars is not the only way to explore the spacetime near SgrA∗. If a pulsar were
observed orbiting sufficiently close to the black hole, observations of its orbital precession
using pulsar timing rather than astrometry could also contribute to a test of the no-hair
theorem (Wex and Kopeikin, 1999; Liu et al., 2012). In addition to stars, there are a
number of gaseous disks orbiting the central black hole (Genzel et al., 2010). Working at
submillimeter wavelengths and linking a worldwide set of radio telescopes to form a giant
VLBI array, a collaboration known as the Event Horizon Telescope (EHT) is approaching
the capability of imaging SgrA∗ with event-horizon-scale angular resolution (Doeleman
et al., 2009). Observation of accretion phenomena in the innermost disk at these angular
resolutions could provide tests of the spacetime geometry very close to the black hole.
(Johannsen et al., 2016a,b). And combining data from stellar astrometry, pulsar timing and
EHT could have significant advantages for testing the no-hair theorem (Psaltis et al., 2016).

The observations needed to explore the strong-field region around SgrA∗ are very
challenging, but steady progress is being made, notably with GRAVITY and the EHT. In
addition, some luck will be called for: it is not known whether a population of sufficiently
bright young stars exists close enough to the black hole to make no-hair tests feasible. Nor
is it known if suitable pulsars exist sufficiently close to SgrA∗, although the discovery of a
magnetar (a pulsar with an extremely large magnetic field) in the neigborhood of the black
hole gives reason for hope.

12.3.2 Neutron stars and black holes

Neutron stars and stellar-mass black holes may also be important arenas for testing strong-
field gravity.

Studies of certain kinds of accretion known as advection-dominated accretion flow
(ADAF) in low-luminosity binary X-ray sources have yielded hints of the signature of the
black hole event horizon (Narayan and McClintock, 2008). The spectrum of frequencies
of quasi-periodic oscillations (QPO) from accretion onto black holes and neutron stars in
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binaries may permit measurement of the spins of the compact objects. Aspects of strong-
field gravity and frame-dragging may be revealed in spectral shapes of iron fluorescence
lines and continuum emission from the inner regions of accretion disks (Reynolds, 2013;
Miller and Miller, 2015). See Abramowicz and Fragile (2013) for a review of accretion
onto black holes and neutron stars.

The structure of neutron stars depends strongly on both the equation of state of nuclear
matter and the theory of gravity, and there is considerable degeneracy between these two
ingredients in such parameters as the mass and radius of the neutron star. However, the
discovery of the “I-Love-Q” phenomenon, a relation between the moment of inertia,
the Love number and the quadrupole moment of rotating neutron star models that is
remarkably insensitive to the equation of state (Yagi and Yunes, 2013), may break the
degeneracy and open up ways to test alternative theories of gravity.

For detailed reviews of strong-field tests of GR involving neutron stars and black holes
using electromagnetic observations, see Psaltis (2008) and Johannsen (2016).

12.4 Cosmological Tests

From a few seconds after the Big Bang until the present, the underlying physics of
the universe is well understood, in terms of a standard model of a nearly spatially flat
universe, 13.6 billion years old, dominated by cold dark matter and dark energy, called
the ΛCDM model. Notwithstanding some observational tensions, such as slightly differing
values of the Hubble parameter coming from different observational techniques, difficulties
accounting for the distribution of structures over all galactic scales, and the failure to date
to detect the fundamental particle that is presumed to constitute dark matter, the general
relativistic ΛCDM model agrees remarkably well with a wide range of observations.

Other theories, such as Brans-Dicke theory, are sufficiently close to general relativity
(for large enough ω0) that they conform to all cosmological observations, within the
uncertainties. Certain generalized scalar-tensor theories, however, could have small values
of ω at early times making aspects of early universe evolution highly non general
relativistic, while evolving to large ω today, thereby agreeing with all solar system and
astrophysical experiments, and hewing closely to late-time ΛCDM cosmology (Damour
and Nordtvedt, 1993a,b).

One way to test such theories is through Big-Bang nucleosynthesis (BBN), since the
abundances of the light elements produced when the temperature of the universe was about
1 MeV are sensitive to the rate of expansion at that epoch, which in turn depends on the
field equations of the theory. Because the universe is radiation-dominated at that epoch,
uncertainties in the amount of cold dark matter or dark energy (Λ) are unimportant. The
nuclear reaction rates are reasonably well understood from laboratory experiments and
theory, and the number of light neutrino families (3) conforms with evidence from particle
accelerators. Thus, within modest uncertainties, one can assess the quantitative difference
between the BBN predictions of general relativity and other theories of gravity under
strong-field conditions and compare with observations. For recent analyses, primarily
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within scalar-tensor theories see Santiago et al. (1997), Damour and Pichon (1999), Clifton
et al. (2005), and Coc et al. (2006).

A different class of theories has been developed in part to provide an alternative to the
dark energy of the standard ΛCDM model, by modifying gravity on large, cosmological
scales, while preserving the conventional solar and stellar-system phenomenology of
general relativity. The f(R) theories are examples. Since we are now in a period of what
may be called “precision cosmology,” one can begin to test alternative theories in this
class using the accumulation of data on many fronts, including the growth of large-scale
structure, cosmic background radiation fluctuations, galactic rotation curves, BBN, weak
lensing, baryon acoustic oscillations, and so on.

Apart from direct measurements of the expansion rate of the universe through the
observations of standard candles such as Type II supernovae, most information about
the universe comes from studying deviations from a homogeneous, isotropic Friedmann-
Robertson-Walker background spacetime, expressed roughly in the form

ds2 = −dt2 + a(t)2
[

dr2

1 − kr2 + r2(dθ2 + sin2θdφ2)

]
+ hμνdxμdxν , (12.72)

where t is proper time as measured by a clock at rest, a(t) is the scale factor, here with units
of distance, r, θ, φ, and xμ are dimensionless coordinates, and k = 0 or ±1 determines
the curvature of the spatial sections. Unlike the PPN formalism, where the background
spacetime was flat and it was relatively simple to characterize the deviations represented by
hμν , in the cosmological case, there are many different approaches, with a range of possible
gauge choices. In addition, the evolution of the background will itself depend on the theory
of gravity being studied. Finally the split between “background” and “perturbation” may
not be as clean as it was in the post-Newtonian case.

This has led to a rich variety of approaches to treating cosmological tests of gravitational
theories, including Amin et al. (2008), Daniel et al. (2010), Dossett et al. (2011), Dossett
and Ishak (2012), Zuntz et al. (2012), Hojjati et al. (2012), Baker et al. (2013), and Sanghai
and Clifton (2017). For a comprehensive review, see Ishak (2018). This is another rapidly
evolving field, and further details are beyond the scope of this book.


