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Classical Mechanics, 
what we need for?
MECHANICS, OSCILLATOR, WAVES

Surprisingly, many concepts from the classical mechanics remain 
valid in quantum mechanics, such as:
kinetic energy, momentum, potential energy, force…
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Newtonian classical mechanics VS Hamiltonian CM:
same physics but different mathematical approaches

We will mainly deal with the non-relativistic quantum mechanics:
any particles with mass must effectively be moving much slower 
than the velocity of light.

P.S. Photons do have to travel at the velocity of light,  but they 
have no mass…we can still avoid to explicitly include he relativistic 
effects for most of the physic of photons.
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Momentum and kinetic energy

Classical momentum for a particle of mass m

It is a vector, because it has a direction.

The kinetic energy for the motion is:

𝒑 = 𝑚 𝒗

𝐸!"# =
𝑝$

2𝑚
It was also expressed as

1
2
𝑚𝑣!
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Momentum and kinetic energy
The kinetic energy for the motion is:

𝐸!"# =
𝑝$

2𝑚

𝑝$ ≡ 𝒑 ⋅ 𝒑
where

The vector dot product of p with itself
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Potential energy
It is the energy due to position and typically denoted by V in QM.
Not to be confused with the voltage!

Can be written as:

𝒓 is the vector position

Potential energy depends only on the position (where the particle is),
not about the path (how it got there).

𝑉 𝒓
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Potential energy
Potential energy depends only on the position (where the particle is),
not about the path (how it got there).

Fields with this property are called 
CONSERVATIVE

The change in potential energy 
going around any closed path, e.g., 
PATH 1+PATH 2 is zero.

Good examples are gravitational fields and electrostatic fields.
Some other fields are not conservative, e.g., frictional force.
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Total Energy energy
It is the sum of potential and kinetic energy.

When written as a function of position and momentum, it can be 
called classical Hamiltonian.

Thus, for a classical particle with mass 𝑚 in a 
conservative potential 𝑉 𝒓 , the Hamiltonian will be:

H = %!

$&+ 𝑉 𝒓
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Force as a gradient of potential
In quantum mechanics, we rarely use the force directly as in the 
Newton's law. 
We can express the same idea by thinking of a force as the gradient
of the potential energy.  We will use these potentials in QM, instead 
of the forces directly.

𝑉 𝑏𝑉 𝑎

Δx

𝑎 𝑏 x

Δ𝑉 = −𝐹Δ𝑥

𝐹 = −
Δ𝑉
Δ𝑥

Thus:

F

V b − V(a) = Δ𝑉
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Force as a gradient of potential
In quantum mechanics, we rarely use the force directly as in the 
Newton's law. 
We can express the same idea by thinking of a force as the gradient
of the potential energy.  We will use these potentials in QM, instead 
of the forces directly.

Δ𝑉 = −𝐹Δ𝑥

𝐹 = −
Δ𝑉
Δ𝑥

Thus:

Why negative? 

F in the definition of potential 
energy is the force exerted by the 
force field, e.g., gravity, spring 
force, etc. 
The potential energy V is equal to 
the work you must do against that 
force …
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Force as a gradient of potential
In quantum mechanics, we rarely use the force directly as in the 
Newton's law. 
We can express the same idea by thinking of a force as the gradient
of the potential energy.  We will use these potentials in QM, instead 
of the forces directly.

Δ𝑉 = −𝐹Δ𝑥

𝐹 = −
Δ𝑉
Δ𝑥

Thus:

Why negative? Example spring…

𝑉 𝑎 =0

Δ𝑥

𝑎 𝑏 xF

𝑉 𝑏 >0

Δ𝑉 = − −𝐾Δ𝑥 Δ𝑥
Fspring
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Force as a gradient of potential

𝐹 = −
d𝑉
d𝑥

In the limit of infinitesimal Δ𝑥 :

we can generalize our idea of the relation between potential and force to 
three dimensions, with force as a vector, by using the gradient operator:

!𝐹 = −∇𝑉 ≡ −
𝛿𝑉
𝛿𝑥 𝐢 +

𝛿𝑉
𝛿𝑦 𝐣 +

𝛿𝑉
𝛿𝑧 𝐤
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Harmonic Oscillator

x

𝐹! = −𝐾𝑥
Fs

The spring will act a 
restoring force FS on the 
mass M proportional to 
the displacement x, with 
K the spring constant.

The minus sign is because of the restoring force trying to pull the mass back 
and resetting x to 0. 
This will create a simple harmonic oscillator.
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Harmonic Oscillator

x

𝐹! = 𝑀𝑎 = 𝑀
d"𝑥
d𝑡" = −𝐾𝑥

FsSo:  #
!$
#%!

= − &
'
𝑥 = −𝜔"𝑥

We define      𝜔" = &
'
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Harmonic Oscillator

x

Fs

So:  #
!$
#%!

= − (
'
𝑥 = −𝜔"𝑥

We define      𝜔" = (
'

We have solutions like  
𝑥 ∝ sin𝜔𝑡

With 𝜔 = ⁄𝑘 𝑀 angular freq𝜔 = 2𝜋𝑓
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Simple harmonic oscillator
It is a physical system described by the equation: 

#!$
#%!

= −𝜔"𝑥

Many examples:
• Spring systems (and not just the simple classical one)
• Electrical resonator
• Acoustic resonators
• Linear oscillators (in general)
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Classical wave equation

We're going to be looking at the equation that describes waves 
on a string, and therefore, how you get the different notes.

Plucking the guitar strings, they 
make notes…
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Classical wave equation

The diagram shows a short section of a string, stretched in the x 
direction, and the forces acting on it. It is stretched by a tension T, 
and its equilibrium position is along the x axis.
This small section have a mass dm and will experience vertical 
displacement along y axis.
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Classical wave equation

A force T sin θ2 pulls mass dm 
upwards
A force T sin θ1 pulls mass dm 
downwards

The sum of forces in the y direction is
Fy = T sin θ2 − T sin θ1.

Using the small angle approximation,
sin θ ≅ tan θ = ∂y/∂x. So we may write: 𝐹) = 𝑇

𝛿𝑦
𝛿𝑥 "

− 𝑇
𝛿𝑦
𝛿𝑥 *

Fy1

Fy2
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Classical wave equation

The total force depends on the difference in slope between the two ends: 
if the string were straight, the two forces would add up to zero (for any 
slope).

𝐹) = 𝑇
𝛿𝑦
𝛿𝑥 "

−
𝛿𝑦
𝛿𝑥 *



M
a

te
ria

ls 
Sc

ie
nc

e

Classical wave equation

Considering a mass per unit length is ρ
dm = ρ dx

By applying second newtons law:
Fy = may

but, we can wrie
ay =  ∂vy/∂t  =  ∂y2/∂t2. 

Thus:

𝐹) = 𝑇 +)
+$ "

− +)
+$ *

= ρ dx +
!)
+%!
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Classical wave equation

Because the last term expresses the change in first derivative between x1 and x2, 
it correspond to the second derivative…we get:

𝐹% = 𝑇 &%
&' !

− &%
&' (

= ρ dx &
!%
&)!

+!)
+%!

= ,
-

"#
"$ !

. "#
"$ %

/$

Rearranging it:

!""
!#"
= $
%
!""
!&"
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Classical wave equation
!""
!#"
= $
%
!""
!&"

If                       we will get:𝑣'= $
%

!""
!#"
-𝑣' !

""
!&"

= 0
Which is a classical wave equation 
for a wave with velocity : 𝑣= $

%
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Wave equation solutions
!""
!#"
-𝑣' !

""
!&"

= 0
General solutions are functions like:
which is a wave travelling to the right at speed v

𝑓(𝑥 − 𝑣𝑡)
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Wave equation solutions
!""
!#"
-𝑣' !

""
!&"

= 0
Similarly, we could have functions like:
which is a wave travelling to the left at speed v

𝑔(𝑥 + 𝑣𝑡)
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Wave equation solutions

!""
!#"
-𝑐' !

""
!&"

= 0

Often, we work with waves travelling at the light velocity c, thus:

𝑓(𝑥 ± 𝑐𝑡)with

Often, we're interested in waves that are oscillating at one 
specific angular frequency ω, thus we've got a temporal 
behaviour of this form (or any combination of these):

𝑇 𝑡 = e!"# , e$!"# , cos 𝜔𝑡 , sin(𝜔𝑡)
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Wave equation solutions

!""
!#"
-𝑐' !

""
!&"

= 0

Often, we work with waves travelling at the light velocity c, thus:

𝑇 𝑡 = e!"# , e$!"# , cos 𝜔𝑡 , sin(𝜔𝑡)

𝑓(𝑥 − 𝑐𝑡)with

Temporal behaviour of this form (or any combination of these):

We can write a solution of the wave equation as some product
of the variation in x times the variation in t:

𝜙 𝑥, 𝑡 = 𝑋 𝑥 𝑇 𝑡



M
a

te
ria

ls 
Sc

ie
nc

e

Wave equation solutions

𝑇 𝑡 = e!"# , e$!"# , cos ±𝜔𝑡 , sin(±𝜔𝑡)
Temporal behaviour of this form (or any combination of these):

We can write a solution of the wave equation as some product
of the variation in x times the variation in t:

𝜙 𝑥, 𝑡 = 𝑋 𝑥 𝑇 𝑡 d"𝜙
d𝑡" = −𝜔"𝜙And we will have

That we can put back into the wave equation:
!"(
!#"

-𝑐' !
"(
!&"

= 0 Obtaining: 𝑐'
𝛿'𝜙
𝛿𝑥' + 𝜔

'𝜙 = 0
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Wave equation solutions

𝑇 𝑡 = e!"# , e$!"# , cos ±𝜔𝑡 , sin(±𝜔𝑡)
Temporal behaviour of this form (or any combination of these):

We can write a solution of the wave equation as some product
of the variation in x times the variation in t:

𝜙 𝑥, 𝑡 = 𝑋 𝑥 𝑇 𝑡 d"𝜙
d𝑡" = −𝜔"𝜙And we will have

d"𝑋(𝑥)
d𝑥"

+ 𝑘"𝑋 𝑥 = 0

Thus the remaining spatial part equation is:

with 𝑘# =
𝜔#

𝑐#
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Wave equation solutions

d"𝑋(𝑥)
d𝑥" + 𝑘"𝑋(𝑥) = 0

The remaining spatial part equation is:

Helmholtz wave equation

𝑘# =
𝜔#

𝑐#
with

This is working if we have only one frequency (monochromatic wave). 
A simple version of the general expression for a sine wave travelling in the positive x direction is:

𝜙 = 𝐴 sin 𝑘𝑥 − 𝜔𝑡
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Wave equation solutions

d"𝑋(𝑥)
d𝑥" + 𝑘"𝑋(𝑥) = 0

The remaining spatial part equation is:

Temporal part:

𝑘# =
𝜔#

𝑐#
with

𝜙 = 𝐴 sin 𝑘𝑥 − 𝜔𝑡General solution:

#!0
#%!

= −𝜔"𝜙
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Standing waves
A combination of waves travelling one to the right and one to the 
left is:

𝜙(x, t) = sin 𝑘𝑥 − 𝜔𝑡 + sin 𝑘𝑥 + 𝜔𝑡
≡ 2cos 𝜔𝑡 sin 𝑘𝑥

This gives a standing waves, because it is
always the same shape in space.

𝑘 =
𝑛𝜋
𝐿 𝜔 =

𝑛𝜋𝑐
𝐿


