Schrödinger's wave equation?

The Schrödinger's aquation is a very useful relation.

It solves many problems for quantum mechanical particles that have mass, such as electrons moving much slower than the velocity of light but behaving like waves.

Electrons as waves

de Broglie model: electron wavelength is given by

$$
\lambda=\frac{h}{p}
$$

With p the electron moment and the Planck's constant

$$
h=6.62606957 \times 10^{-34} J s
$$

Electrons as waves

Helmholtz wave equation

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} x^{2}}+k^{2} \psi=0 \quad \text { with } \quad k=\frac{2 \pi}{\lambda}
$$

This is working for simple (monochromatic) waves, and has solutions like:

$$
\mathrm{e}^{\mathrm{i} k x}, \mathrm{e}^{-\mathrm{i} k x}, \cos (k x), \sin (k x)
$$

Helmholtz wave equation in 3D

$$
\nabla^{2} \psi \equiv \frac{\delta^{2} \psi}{\delta x^{2}}+\frac{\delta^{2} \psi}{\delta y^{2}}+\frac{\delta^{2} \psi}{\delta z^{2}}=-k^{2} \psi
$$

and has solutions like:

$$
\left.\mathrm{e}^{\mathrm{i} k \cdot r}, \mathrm{e}^{-\mathrm{i} k \cdot r}, \cos (\boldsymbol{k} \cdot \boldsymbol{r}), \sin \boldsymbol{k} \cdot \boldsymbol{r}\right)
$$

\boldsymbol{k} and \boldsymbol{r} are vectors

From Helmholtz to Schrödinger

de Broglie model:
definition:

$$
\lambda=\frac{h}{p}
$$

Then: $\quad k=\frac{2 \pi p}{h}=\frac{p}{\hbar}$
We can rewrite the Helmholtz equation

$$
\nabla^{2} \psi=-\frac{p^{2}}{\hbar^{2}} \psi \quad \text { or } \quad-\hbar^{2} \nabla^{2} \psi=p^{2} \psi
$$

From Helmholtz to Schrödinger

We can divide both ides by he mass

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=\underbrace{\underbrace{}_{\text {Kinetic Energy }}}_{\substack{p^{2} \\ 2 m}}
$$

In general:

$$
E_{T O T}=E_{k i n}+V(\boldsymbol{r})
$$

From Helmholtz to Schrödinger

So:
$E_{\text {kin }}=\frac{p^{2}}{2 m}=E_{\text {TOT }}-V(r)$
Helmholiz wave equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=\frac{p^{2}}{2 m} \psi
$$

becomes:
Schrödinger wave equation $-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=(E-V(\boldsymbol{r})) \psi$

Schrödinger's time independent equation

$$
E \psi=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r)\right) \psi
$$

Born's postulate

The probability $P(r)$ of finding an electron near any specific point r is proportional to the modulus squared
$|\psi(r)|^{2}$ of the wavefunction $\psi(r)$

$$
|\psi(r)|^{2}
$$

is the "probability density"

Born's postulate

$|\psi(\mathbf{r})|^{2}$ is the "probability density"
For some very small (infinitesimal) volume $d^{3} \mathbf{r}$ around \mathbf{r}, the probability of finding the particle in that volume is

$$
P(\mathbf{r}) d^{3} \mathbf{r} \propto|\psi(\mathbf{r})|^{2} d^{3} \mathbf{r}
$$

The sum of such probabilities should equal to 1, i.e.,

$$
\int P(\mathbf{r}) d^{3} \mathbf{r}=1
$$

Normalization of the wfc

In general, solvina the Schrödinger's equation will give some ψ for which $\int|\psi(\mathbf{r})|^{2} d^{3} \mathbf{r} \neq 1$.

We will have to normalize the wfc. If we have that:

$$
\int|\psi(\mathbf{r})|^{2} d^{3} \mathbf{r}=\frac{1}{|a|^{2}}
$$

Then we can multiply the wfc by a constant, obtaining the normalized wfc: $\psi_{N}=a \psi$
And now: $\int\left|\psi_{N}(\mathbf{r})\right|^{2} d^{3} \mathbf{r}=1$

Normalization of the wfc

Then we can multiply the wfc by a constant, obtaining the normalized wfc: $\psi_{N}=a \psi$
And now: $\quad \int\left|\psi_{N}(\mathbf{r})\right|^{2} d^{3} \mathbf{r}=1$
The normalized wfc solve the problem of correspondence between probability density and modulus squared of the wfc , and it will still be a solution of the SE due to its linearity.

Linearity of quantum mechanics

In Schrödinger's equation we could multiply both sides of the equation by a constant and the equation would still hold.

If ψ is a solution of Schrödinger's equation, also a ψ Will solve the same equation because Schrödinger's equation is linear

Diffraction by two slits

This is a key experiment that probed the wave behavior of light. The experiment in optics is known as Young's slits, after Thomas Young performed it in the very early 1800s

Diffraction by two slits

(bright spots: Interference Fringes)

Diffraction by two slits

Diffraction by two slits

> Constructive interference
> $d \sin \theta=m \lambda$, for $m=0,1,-1,2,-2, \ldots)$

Diffraction by two slits

Constructive interference $d \sin \theta=m \lambda$
But：
and for small angle $\tan \theta=\frac{\Delta y}{L}$
 $\tan \theta=\sin \theta$

Thus：$y_{m}=L \frac{m \lambda}{d}$

The distance between adjacent
fringes is：$\Delta y=\frac{L \lambda}{d}$

Diffraction by two slits

If instead of thinking about light waves incident on two slits we think about an electron wave incident on those same two slits, we have some apparent problems.

A particle has to go through one slit or the other. Surely a particle can not go through
 two slits.

Part of our difficulty here is that we 'pretend' to have definite position for the particle

Diffraction by two slits

The quantum mechanical view of this is that the elctrons propagate as a wave... The act of hitting the screen causes a measurement of position to be made, according to Born's rule:
the wave function collapses into one with a definite position with a probability proportional to the modulus squared.

