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One-Dimensional 
Potentials
(with extension to the 3D case)
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Infinite Square Well (or particle in 1D box)

Consider a particle of mass m and energy E moving in the following potential:

𝑉(𝑥) = &0, 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝑎
∞, otherwise

0 𝑎 𝑥

V 𝑥

Because these potentials are 
infinitely high,
but the particle's energy E is finite,
we presume there is no possibility 
of finding the particle in these 
regions outside the well (box)
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Infinite Square Well (or particle in 1D box)

Consider a particle of mass m and energy E moving in the following potential:

𝑉(𝑥) = &0, 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝑎
∞, otherwise

Since !!

!"!𝜓 𝑥 = #$
ℏ! 𝑉 x − 𝐸 𝜓 𝑥

to have finite !
!

!"!𝜓 𝑥 , boundary conditions are:

While inside the well, for 0<x<a the S.E. can be written (i.e. Helmholtz wave eq.):           

𝜓 𝑂 = 𝜓 𝑎 = 𝑂

d%𝜓 𝑥
𝑑𝑥% = −

2𝑚𝐸
ℏ! 𝜓 𝑥 = −

2𝑚
ℏ!

ℏ!𝑘%
2𝑚 𝜓 𝑥 d%𝜓 𝑥

𝑑𝑥% = −𝑘%𝜓 𝑥

0 𝑎 𝑥

V 𝑥
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𝑘! =
2𝑚𝐸
ℏ!

𝑘 =
2𝑚𝐸
ℏ

E =
𝑝!

2𝑚 =
𝑘!ℏ!

2𝑚

4
Infinite Square Well (or particle in 1D box)

Consider a particle of mass m and energy E moving in the following potential:

𝑉(𝑥) = &0, 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝑎
∞, otherwise

d%𝜓 𝑥
𝑑𝑥% = −𝑘%𝜓 𝑥

𝐸 ≥ 0

𝜓 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥
Possible solutions are:

If I would consider 
negative Energy one 
can show that it is 
impossible to satisfy 
the boundary 
conditions

0 𝑎 𝑥

V 𝑥
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Infinite Square Well (or particle in 1D box)

d%𝜓 𝑥
𝑑𝑥% = −𝑘%𝜓 𝑥

𝜓 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥
Possible solutions are:

𝜓 0 = 𝐴 sin 0 + 𝐵 cos 0 = 𝐵 =0

𝜓 𝑥 = 𝐴 sin 𝑘𝑥Thus:

A and B are arbitrary constant 
that must be fixed by imposing 
the boundary conditions:

𝜓 𝑂 = 𝜓 𝑎 = 𝑂
Considering @  boundary x=0:
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Infinite Square Well (or particle in 1D box)

𝜓 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥
Possible solutions are:

𝜓 0 = 𝐴 sin 0 + 𝐵 cos 0 = 𝐵 =0

𝜓 𝑎 = 𝐴 sin 𝑘𝑎 = 0

Thus:

A and B are arbitrary constant 
that must be fixed by imposing 
the boundary conditions:

𝜓 𝑂 = 𝜓 𝑎 = 𝑂

𝜓 𝑥 = 𝐴 sin 𝑘𝑥
And @ a:

Considering @  boundary x=0:

1. 𝐴 = 0 𝜓 𝑥 = 0

2. 𝑠𝑖𝑛 𝑘𝑎 = 𝑂 𝑘𝑎 = 0,±𝜋, ±2𝜋,…

Trivial solution
This is verified if:
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Infinite Square Well (or particle in 1D box)

𝑘! = 𝑛
𝜋
𝑎 𝑛 = 1, 2, 3…

En =
ℏ!𝑘-.

2𝑚 =
𝑛.𝜋.

𝑎.
ℏ!

2𝑚

d%𝜓 𝑥
𝑑𝑥% = −𝑘%𝜓 𝑥

𝜓 𝑎 = 𝐴 sin 𝑘𝑎 = 0
With boundary conditions:

i𝑓: 𝑠𝑖𝑛 𝑘𝑎 = 𝑂 𝑘𝑎 = ±𝜋, ±2𝜋, ±3𝜋,…

Thus:                          with

Then:

𝜓 𝑥 = 𝐴 sin 𝑘𝑥
Possible solutions are:

Because B=0
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Infinite Square Well (or particle in 1D box)

The energy values are discrete!
In contrast to the classical case, a quantum particle in the 
infinite square well cannot have just any energy.

En =
𝑛!𝜋!

𝑎!
ℏ!

2𝑚

Solutions

d%𝜓 𝑥
𝑑𝑥% = −𝑘%𝜓 𝑥

t.i.S.E.

𝜓# 𝑥 = 𝐴 sin
𝑛𝜋
a
𝑥
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Infinite Square Well (or particle in 1D box)

In general, solving the S.E. means finding eigenvalues and 
eigenfunctions of the eigenvalue equation for the matrix (𝐻, 
which is the Hamiltonian (energy) operator:

En =
𝑛!𝜋!

𝑎!
ℏ!

2𝑚

Solutions

d%𝜓 𝑥
𝑑𝑥% = −𝑘%𝜓 𝑥

t.i.S.E.

Eigenvalues

Eigenfunctions

𝐸𝜓 = −
ℏ!

2𝑚 ∇! + 𝑉(𝒓) 𝜓This was the (time independent) S.E. :

5𝐻ψ" = 𝐸" ψ" t.i.S.E.

𝜓# 𝑥 = 𝐴 sin
𝑛𝜋
a
𝑥
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Eigensolutions

Each eigenfunction ψ- is associated with a particular
eigenvalue 𝐸- :

5𝐻ψ" = 𝐸" ψ"

It is possible to have more than one eigenfunction with a 

It is possible to have more than one eigenfunction with 
a given eigenvalue, this is known as degeneracy. 
The number of such states with the same eigenvalue is 
called the degeneracy. 
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Normalization of the wavefunctions

The eigenvalues of the energy operator are discrete!
In contrast to the classical case, a quantum particle in the 
infinite square well cannot have just any energy.

How can we find the constant A?
By exploiting the ortho-normalization condition

*
/

0
𝜓! 𝑥 ∗ 𝜓2 𝑥 𝑑𝑥 = δ!2

d%𝜓 𝑥
𝑑𝑥% = −𝑘%𝜓 𝑥 Eigenvalues

Eigenfunctions

Solutionst.i.S.E.

En =
𝑛!𝜋!

𝑎!
ℏ!

2𝑚

𝜓# 𝑥 = 𝐴 sin
𝑛𝜋
a
𝑥
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Infinite Square Well (or particle in 1D box)

How can we find the constant A?
By exploiting the normalization condition

*
/

0

𝜓! 𝑥 3𝑑𝑥 = 1 𝜓# 𝑥 = 𝐴 sin
𝑛𝜋
a 𝑥with

>
$

%

𝐴 ! sin! 𝑘𝑥 d𝑥 = 1

= 𝐴 ! − &
!
%
#'
𝑠𝑖𝑛 #'

%
𝑥 cos #'

%
𝑥 + &

!
𝑥
$

%
= 𝐴 ! &

!
𝑎 = 1

𝐴 = E2 𝑎 𝜓# 𝑥 = E2 𝑎 sin
𝑛𝜋
a 𝑥and
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Infinite Square Well (or particle in 1D box)

What about the orthogonality of the w.f.?
One can check that

*
/

0
𝜓! 𝑥 ∗ 𝜓2 𝑥 𝑑𝑥 = 0 𝜓# 𝑥 = 𝐴 sin

𝑛𝜋
a 𝑥with

𝑛 ≠ 𝑚and

We can say that the 
𝜓" are always 
orthogonal, for any 
value of A. 

Proof on Griffiths’s chap 2.2.



M
a

te
ria

ls 
Sc

ie
nc

e

14
Infinite Square Well (or particle in 1D box)

For n=1:

𝜓4 𝑥 is called the ground state, corresponding to the minimum 
eigenvalue, thus minimum energy of the particle, the so called 
“zero-point energy.

The other 𝜓! 𝑥 are the excited states.

En =
𝑛!𝜋!

𝑎!
ℏ!

2𝑚
d%𝜓 𝑥
𝑑𝑥% = −𝑘%𝜓 𝑥

Solutionst.i.S.E.

𝜓# 𝑥 = E2 𝑎 sin
𝑛𝜋
a
𝑥

𝜓& 𝑥 = E2 𝑎 sin
𝜋
a 𝑥

E1 =
𝜋!

𝑎!
ℏ!

2𝑚
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Infinite Square Well (or particle in 1D box)

𝜓! 𝑥 are like the standing waves on the string.

En =
𝑛!𝜋!

𝑎!
ℏ!

2𝑚

Solutions

𝜓# 𝑥 = E2 𝑎 sin
𝑛𝜋
a
𝑥

1 node           2 nodes       … n-1 nodes

𝜓!𝜓& 𝜓(
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Infinite Square Well (or particle in 1D box)

𝜓! 𝑥 are like the standing waves on the string.

𝜓! 𝑥 are orthonormal.

𝜓! 𝑥 form a complete basis set (it will be clearer in a few slides)

En =
𝑛!𝜋!

𝑎!
ℏ!

2𝑚

Solutions

𝜓# 𝑥 = E2 𝑎 sin
𝑛𝜋
a
𝑥

E1
E2

E3

𝜓!

𝜓&

𝜓(
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Infinite Square Well (or particle in 1D box)

• We started out using the de Broglie 
hypothesis: electrons behave like propagating 
waves

• We constructed a simple wave equation that 
could describe such effects for electrons.

Now we find that,
if we put that particle in a box, then we find 
that:
• there are only discrete values of that energy 

possible, with specific wave functions 
associated with each such value of energy.

We have found the first truly “quantum” 
behaviour showing “quantum” steps in energy 
between the different allowed states.

E1
E2

E3

𝜓!

𝜓&

𝜓(
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Infinite Square Well (or particle in 1D box)

This ”quantum" behaviour is very different 
from the classical case:

• there is only a discrete set of possible values 
for the energy

• there is a minimum possible energy for the 
particle, corresponding to n = 1, the "zero-
point" energy.

• the particle is not uniformly distributed over 
the box, and its distribution is different for 
different energies.

• Each successively higher energy state has one 
more “node” in the eigenfunction.

E1
E2

E3

𝜓!

𝜓&

𝜓(
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Parity of wavefunctions
This ”quantum" behaviour is very different 
from the classical case:

• the particle is not uniformly distributed over 
the box, and its distribution is different for 
different energies.

E1
E2

E3

𝜓!

𝜓&

𝜓(

For this symmetric well problem the functions alternate 
between being even (𝜓4, 𝜓5,…) and odd (𝜓3, 𝜓6,…).

Thus, all the solutions have a definite parity.
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Orders of magnitude for energy in QM  

1 eV (electron-volt) ≅1.602×10−19	J	is the kinetic energy acquired by an 
electron as it passes through 1 V of electrical potential.

Let’s assume the dimension a of the box is 0.5 nm (i.e. Bohr 
radius):

E1 =
'!

%!
ℏ!

!*
≈ 2.4 ×10−19	J ≈1.5	eV

E2 = 4 E1 = 6 eV

E2− E1 = 4.5 eV
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Complete basis set

𝜓! 𝑥 form a complete basis set.

Thus, any other function (between x=0 and x=a) can be written 
as a linear superposition of them:

𝑓 𝑥 = +
-PQ

R

𝑐" 𝜓" 𝑥 =
2
𝑎+
-P.

R

𝑐# sin
𝑛𝜋
𝑎 𝑥

𝜓# 𝑥 = E2 𝑎 sin
𝑛𝜋
a 𝑥
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Basis set

“basis set of functions” or “basis : set of functions such as the 
𝜓! 𝑥 that can be used to represent a function such as the 𝑓 𝑥

The set of coefficients (amplitudes) 𝑐! is then the “representation” 
of 𝑓 𝑥 in the basis 𝜓!.

The sets of eigenfunctions, solutions of our quantum mechanical 
problems are complete sets (mathematically very useful).

𝑓 𝑥 = ,
./0

1

𝑐. 𝜓. 𝑥 =
2
𝑎,
./!

1

𝑐. sin
𝑛𝜋
𝑎 𝑥
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Basis set

This is nothing but the Fourier series for 𝑓 𝑥 .

How do we find 𝑐!? 

…by the so-called Fourier trick:

𝑓 𝑥 = ,
./0

1

𝑐. 𝜓. 𝑥 =
2
𝑎,
./!

1

𝑐. sin
𝑛𝜋
𝑎 𝑥
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Fourier series

This is something that can be applied in general, not just for the square well. 

𝑓 𝑥 = ,
./0

1

𝑐. 𝜓. 𝑥 Let’s multiply both sides by 𝜓* 𝑥 ∗

5𝜓2 𝑥 ∗ 𝑓 𝑥 𝑑𝑥 =7

./0

1

𝑐.5𝜓2 𝑥 ∗ 𝜓. 𝑥 𝑑𝑥
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25
Fourier series

This is something that can be applied in general, not just for the square well. 

𝑓 𝑥 = ,
./0

1

𝑐. 𝜓. 𝑥 Let’s multiply both sides by 𝜓* 𝑥 ∗

5𝜓2 𝑥 ∗ 𝑓 𝑥 𝑑𝑥 =7

./0

1

𝑐.5𝜓2 𝑥 ∗ 𝜓. 𝑥 𝑑𝑥

= ,
./0

1

𝑐.𝛿2. 𝑥 𝑑𝑥 = 𝑐2
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26
Fourier series

This is something that can be applied in general, not just for the square well. 

𝑓 𝑥 = ,
./0

1

𝑐. 𝜓. 𝑥

𝑐. = 5𝜓. 𝑥 ∗ 𝑓 𝑥 𝑑𝑥
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Orthogonality of eigenfunctions

In addition to being “complete”, the set of functions 𝜓% 𝑥 are “orthogonal”. 

5𝜓. 𝑥 ∗ 𝜓2 𝑥 𝑑𝑥 = 0 for 𝑛 ≠ 𝑚

Thus, the different eigenfunctions are orthogonal to one another.

If the functions are also normalized:  

5𝜓. 𝑥 ∗ 𝜓2 𝑥 𝑑𝑥 = δ.2 δ.2 = 0, 𝑛 ≠ 𝑚
δ.. = 1

Kronecker delta 

Orthogonality of eigenfunctions is also quite general in QM and orthonormal 
sets are very convenient mathematically
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Orthogonality of eigenfunctions

Orthogonality of eigenfunctions is also quite general in QM and orthonormal 
sets are very convenient mathematically

Two wavefunctions that are orthogonal, represent mutually exclusive quantum 
states

Or…they represent mutually exclusive possibilities: a particle cannot be in two 
different states at the same time

e.g. a particle cannot be in  two different places at the same time, nor can it 
have two different values of momentum (or velocity) at the same time
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Particle in a 3D box
T.I.S.E. in 3D: 

−
ℏ3

2𝑚
∇3 + 𝑉 r 𝜓 𝑟 = 𝐸𝜓 𝑟

Thus if V=0:
𝜕 3

𝜕𝑥 3
+
𝜕 3

𝜕𝑦 3
+
𝜕 3

𝜕𝑧 3
𝜓 = −

2𝑚
ℏ3

𝐸 𝜓 𝑟

The boundary conditions are   
𝑋(0)=𝑋(𝑎)=0 
𝑌(0)=𝑌(𝑎)=0
𝑍(0)=𝑍(𝑎)=0
Let’s us separate the variables by writing the w.f. as:

𝜓 𝑥, 𝑦, 𝑧 = 𝑋 𝑥 𝑌 𝑦 𝑍 𝑧
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Particle in a 3D box
By inserting the W.F. in the T.I.S.E.: 

𝜕 &

𝜕𝑥 & +
𝜕 &

𝜕𝑦 & +
𝜕 &

𝜕𝑧 & 𝜓 = −
2𝑚
ℏ& 𝐸 𝜓 𝑟

We have:
𝜕 3𝑋
𝜕𝑥 3 +

𝜕 3𝑌
𝜕𝑦 3 +

𝜕 3𝑍
𝜕𝑧 3 𝜓 = −

2𝑚
ℏ3

ℏ3k 3

2𝑚 𝜓 𝑟

= (−k#! − k$! − k%! )𝜓 𝑟

This equation is satisfied if:
𝜕 3𝑋
𝜕𝑥 3 = −k83

𝜕 3𝑋
𝜕𝑦 3 = −k93

𝜕 3𝑋
𝜕𝑧 3 = −k:3

k#!, k$! and k%! are 
spatial coordinates.
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Particle in a 3D box

u The solution to these equations are identical to that 
found for the 1D case:

𝑋 𝑥 =
2
𝑎 sin 𝑘; 𝑥

𝑌 𝑦 =
2
𝑎 sin 𝑘< 𝑦

𝑍 𝑧 =
2
𝑎 sin 𝑘= 𝑧

One should find the solution of:
𝜕 &𝑋
𝜕𝑥 &

= −k'&

𝜕 &𝑋
𝜕𝑦 &

= −k(&

𝜕 &𝑋
𝜕𝑧 &

= −k)&
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Particle in a 3D box
The solution to these equations are identical to that found for the 1D case:

𝑋 𝑥 = 3
0
sin 𝑘; 𝑥 with 𝑘; =

>! ?
0

𝑌 𝑦 = 3
0
sin 𝑘< 𝑦 with 𝑘< =

>" ?
0

𝑍 𝑧 =
2
𝑎
sin 𝑘= 𝑧 with 𝑘= =

𝑙= π
𝑎

lx, ly, and lz are positive integers and the energy of the system will be:

𝐸 = : ! ; ! ℏ!

!* % !
with   𝑙 3 = 𝑙;3 + 𝑙<3 + 𝑙=3


