

Introduzione alle linee di trasmissione

prof. Emilio Martines

Dipartimento di Fisica "G. Occhialini"

Università degli Studi di Milano-Bicocca

emilio.martines@unimib.it

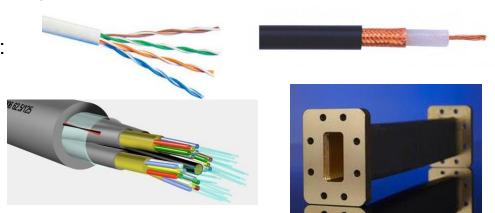
Introduzione

La **linea di trasmissione** è il componente elettronico per trasportare segnali (nel campo dell'elettronica) ed energia (nel campo dell'elettrotecnica) su grandi distanze.

Essa è una struttura che presenta proprietà geometriche ed elettromagnetiche invarianti lungo la direzione in cui avviene la propagazione del segnale, detta **asse**.

Esempi (ad intervallo di frequenza crescente):

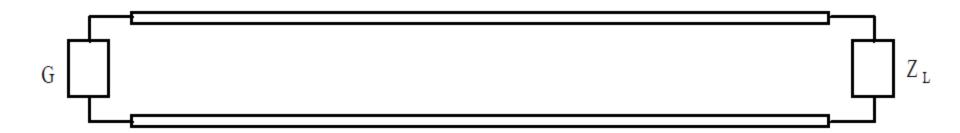
- doppino di fili (basse frequenza);
- cavo coassiale (radiofrequenza);
- guida d'onda cava (microonde);
- fibra ottica (visibile).



Secondo una diversa definizione, linee di trasmissione e guide d'onda sono concetti diversi. Tuttavia, molti concetti sono applicabili ad entrambe, anche se la descrizione fisica è diversa.

La linea di trasmissione

Le linee di trasmissione propriamente dette sono strutture lineari in cui sono presenti almeno due conduttori che connettono un **generatore G** ad un **carico Z_L**.



In generale, sappiamo che quando un carico è connesso ad un generatore, per massimizzare il trasferimento di potenza occorre che l'impedenza del carico sia uguale all'impedenza interna del generatore (tipicamente, 50Ω resistivi).

Ma cosa accade quando fra i due è frapposta una linea di trasmissione?

Esempi di linee di trasmissione

Due esempi di linee di trasmissione molto diffuse sono la **linea bifilare** ed il **cavo coassiale**:

1) **linea bifilare**: due conduttori rettilinei, di solito a sezione cilindrica, tenuti separati e paralleli da un supporto isolante; impiegata a bassa frequenza

2) **cavo coassiale**: un conduttore centrale cilindrico, detto centrale, pin o caldo, coassiale ad un secondo conduttore tubolare esterno, detto schermo, massa o freddo; lo spazio tra i due conduttori e riempito da un materiale isolante (tipicamente polietilene o teflon).

Modello a parametri distribuiti

Alle alte frequenze, se la linea è lunga rispetto alla lunghezza d'onda, non si può ignorare la propagazione del campo elettromagnetico: istante per istante in diverse sezioni si avranno diverse tensioni e diverse correnti (non tensioni e correnti costanti).

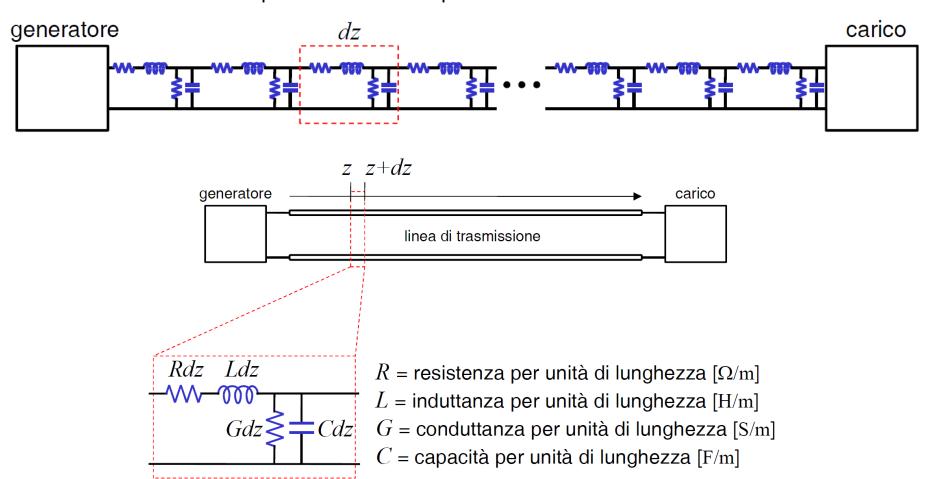
I fenomeni di propagazione del campo elettromagnetico in una linea di trasmissione alle frequenze per cui la lunghezza d'onda è confrontabile (o minore) con le dimensioni della linea stessa e in presenza di attenuazione vengono trattati con modello a **parametri distribuiti**. $\lambda \leq d$ (*d* lunghezza della linea di trasmissione).

A queste frequenze i collegamenti elettrici tra due punti non possono più infatti essere descritti da un sistema a **parametri concentrati** come nel caso delle reti elettriche.

Supponiamo che i parametri elettrici (resistenza, induttanza, capacità) siano distribuiti uniformemente lungo la linea di trasmissione.

Modello a parametri distribuiti

La linea di trasmissione può essere considerata come una sequenza di infiniti circuiti di lunghezza infinitesima *dz*, ciascuno costituito da una resistenza in serie ad un'induttanza e da un elemento conduttivo in parallelo ad uno capacitivo.



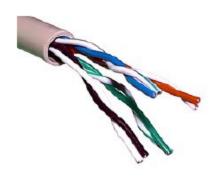
Esempi di valori dei parametri distribuiti

RG-59 Coax

$$R = 36 \text{ m}\Omega/\text{m}$$

 $L = 430 \text{ nH/m}$
 $G = 10 \mu \Omega/\text{m}$
 $C = 69 \text{ pF/m}$
 $Z_0 = 75 \Omega$

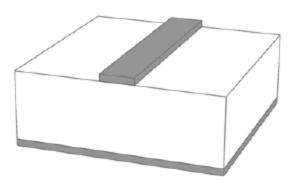
CAT5 Twisted Pair



$$R = 176 \text{ m}\Omega/\text{m}$$

 $L = 490 \text{ nH/m}$
 $G = 2 \mu \Omega/\text{m}$
 $C = 49 \text{ pF/m}$
 $Z_0 = 100 \Omega$

Microstrip



$$R = 150 \text{ m}\Omega/\text{m}$$

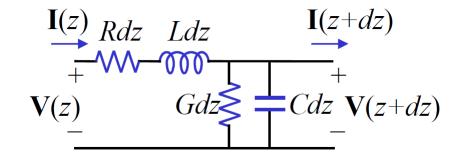
 $L = 364 \text{ nH/m}$
 $G = 3 \mu \Omega/\text{m}$
 $C = 107 \text{ pF/m}$
 $Z_0 = 50 \Omega$

 Z_0 è l'**impedenza caratteristica**, il cui significato verrà illustrato nel seguito.

Modello a parametri distribuiti

La tensione V(z) e la corrente I(z) nel tratto infinitesimo variano secondo le **leggi di Kirchoff.**

Nell'ipotesi di alimentare la linea con una frequenza $f = \omega/2\pi$ si ha:



$$I(z) = I(z+dz) + (Gdz + i\omega Cdz)V(z+dz)$$

$$V(z) = V(z+dz) + (Rdz + i\omega Ldz)I(z+dz).$$

Equazioni dei telegrafisti

$$\begin{split} I(z) &= I(z+dz) + (Gdz + i\omega Cdz)V(z+dz) \\ V(z) &= V(z+dz) + (Rdz + i\omega Ldz)I(z+dz). \end{split}$$

Dividendo per dz e andando al limite $dz \rightarrow 0$ si ottiene:

$$\begin{array}{lcl} \frac{dV(z)}{dz} & = & -(R+i\omega L)I(z) \\ \frac{dI(z)}{dz} & = & -(G+i\omega C)V(z). \end{array}$$

Queste due equazioni differenziali accoppiate sono dette equazioni dei telegrafisti.

Esse mostrano come la tensione e la corrente variano lungo la linea a causa della sua non idealità.

Equazioni dei telegrafisti come equazioni d'onda

$$\frac{dV(z)}{dz} = -(R + i\omega L)I(z)$$

$$\frac{dI(z)}{dz} = -(G + i\omega C)V(z).$$

Derivando la prima equazione rispetto a z e sostituendo con la seconda (e viceversa) si ottiene:

$$\begin{array}{lcl} \frac{d^2V(z)}{dz^2} & = & (R+i\omega L)(G+i\omega C)V(z) \\ \\ \frac{d^2I(z)}{dz^2} & = & (R+i\omega L)(G+i\omega C)I(z). \end{array}$$

Introduciamo la costante di propagazione definita da:

$$\gamma^2 = (R + i\omega L)(G + i\omega C).$$

Si ha:

$$\frac{d^2V(z)}{dz^2} = \gamma^2V(z)$$
$$\frac{d^2I(z)}{dz^2} = \gamma^2I(z).$$

Costante di propagazione

Il quadrato della costante di propagazione, definita da $\gamma^2 = (R + i\omega L)(G + i\omega C)$.

può essere riscritto come
$$\gamma^2 = RG - \omega^2 LC + i\omega (RC + GL)$$
.

Ponendo
$$\gamma = \alpha + i\beta$$
 si ha $\gamma^2 = \alpha^2 - \beta^2 + 2i\alpha\beta$.

che nell'ipotesi
$$\alpha << \beta$$
 diventa $\gamma^2 = -\beta^2 + 2i\alpha\beta$.

Si ottiene:
$$\beta^2 = -RG + \omega^2 LC$$

$$2\alpha\beta = \omega(RC + GL)$$

$$\alpha = \frac{\omega(RC + GL)}{2\sqrt{\omega^2 LC - RG}}$$

$$\beta = \sqrt{\omega^2 LC - RG}$$

Nel limite
$$\it R << \omega \it L$$
, $\it G << \omega \it C$:
$$\alpha \approx \frac{(RC+GL)}{2\sqrt{LC}}$$
 $\it \beta \approx \omega \sqrt{LC}$.

In questo limite α è indipendente dalla frequenza, mentre β vi dipende in maniera lineare.

Impedenza caratteristica

La soluzione generale delle equazioni d'onda è:

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$

$$I(z) = I_0^+ e^{-\gamma z} + I_0^- e^{\gamma z}$$

Le quattro costanti non sono indipendenti. Infatti, sostituendo la prima relazione in

$$\frac{dV(z)}{dz} = -(R + i\omega L)I(z)$$

si trova

$$\begin{split} I(z) &= \frac{\gamma}{R+i\omega L}V_0^+e^{-\gamma x} - \frac{\gamma}{R+i\omega L}V_0^-e^{\gamma x} = \\ &= \sqrt{\frac{G+i\omega C}{R+i\omega L}}V_0^+e^{-\gamma x} - \sqrt{\frac{G+i\omega C}{R+i\omega L}}V_0^-e^{\gamma x} \end{split}$$

La soluzione generale è quindi:

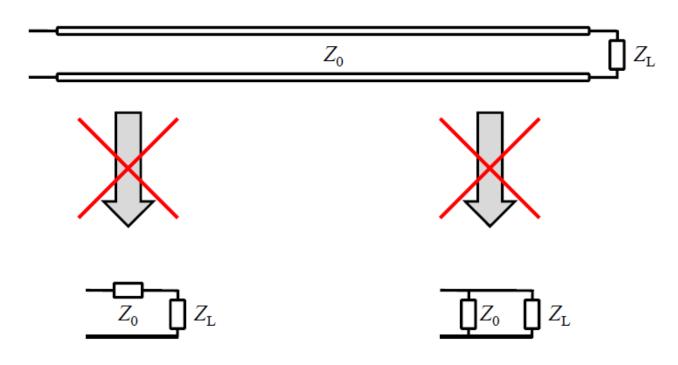
$$\begin{split} V(z) &= V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z} \\ I(z) &= \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{\gamma z}, \end{split}$$

dove si è definita **l'impedenza caratteristica** della linea: $Z_0 = \sqrt{\frac{R + i\omega L}{G + i\omega C}}$

Nel limite non dissipativo
$$R \ll \omega L$$
, $G \ll \omega C$: $Z_0 \approx \sqrt{\frac{L}{C}}$.

Cosa non è l'impedenza caratteristica?

Cosa **non è** l'impedenza caratteristica?



L'impedenza caratteristica **non è** un carico equivalente che può essere sostituito all'interno del circuito al posto della linea!

Esempio: cavo coassiale

Abbiamo visto che una linea non dissipativa ha un'impedenza caratteristica reale data da

$$Z_0 \approx \sqrt{\frac{L}{C}}$$
.

Per un cavo coassiale con conduttori di diametro D₁ e D₂, dalle leggi dell'e.m. si ha

$$C = \epsilon \cdot \frac{2\pi}{\log(D_2/D_1)}$$

$$L = \mu \cdot \frac{\log(D_2/D_1)}{2\pi}$$

L'impedenza caratteristica, nel caso non dissipativo, vale quindi

$$R_0 = \sqrt{\frac{L}{C}} = \frac{1}{2\pi} \sqrt{\frac{\mu_0 \mu_R}{\epsilon_0 \epsilon_R}} log \frac{D_2}{D_1} \simeq \sqrt{\frac{\mu_R}{\epsilon_R}} log \frac{D_2}{D_1} \cdot 60\Omega$$

In pratica i cavi coassiali commerciali vengono costruiti in modo tale da avere un'impedenza caratteristica di 50 Ω .

Esistono anche cavi coassiali per la trasmissione di segnali televisivi con impedenza caratteristica di 75 Ω .

Soluzioni d'onda

Abbiamo detto che la soluzione generale dell'equazione dei telegrafisti è

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{\gamma z},$$

che riscritte in forma complessa introducendo anche la componente temporale armonica descrivono **l'onda di tensione e l'onda di corrente**. Ad esempio, per la tensione vale

$$V(z,t) = V(z)e^{i\omega t} = V_0^+ e^{-\gamma z + i\omega t} + V_0^- e^{\gamma z + i\omega t}$$

Scrivendo γ in forma complessa, le soluzioni d'onda si riscrivono come

$$\begin{split} V(z,t) &= V_0^+ e^{-\alpha z} e^{i(\omega t - \beta z)} + V_0^- e^{\alpha z} e^{i(\omega t + \beta z)} \\ I(z,t) &= \frac{V_0^+}{Z_0} e^{-\alpha z} e^{i(\omega t - \beta z)} - \frac{V_0^-}{Z_0} e^{\alpha z} e^{i(\omega t + \beta z)}. \end{split}$$

Considerando le quantità reali, ad esempio per la tensione, si può anche scrivere:

$$\Re[V(z,t)] = |V_0^+|e^{-\alpha z}\cos(\omega t - \beta z + \phi^+) + |V_0^-|e^{\alpha z}\cos(\omega t + \beta z + \phi^-)$$

Soluzioni d'onda

$$\Re[V(z,t)] = |V_0^+|e^{-\alpha z}\cos(\omega t - \beta z + \phi^+) + |V_0^-|e^{\alpha z}\cos(\omega t + \beta z + \phi^-)$$

La soluzione trovata si compone di un'onda che si propaga in direzione di z crescenti, con **numero d'onda** β e un'**attenuazione** avente lunghezza caratteristica $1/\alpha$, e di un'onda che si propaga in direzione opposta, con la medesima lunghezza caratteristica di attenuazione.

Il primo termine è detto **onda diretta**, e si propaga dal generatore al carico, mentre il secondo è detto **onda riflessa**, e si propaga dal carico al generatore.

 α è il **coefficiente di attenuazione**, espresso in Neper/m o in dB/m (1 Neper = 8.686 dB). β è il **numero d'onda**, legato alla lunghezza d'onda e alla velocità di fase dalle note relazioni:

$$\lambda = \frac{2\pi}{\beta} \qquad \qquad v_p = \frac{\omega}{\beta}$$

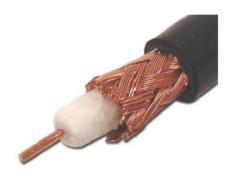
Analogamente si ottiene per la corrente la somma di due termini contro-propaganti, con la stessa velocità di fase e la stessa lunghezza d'onda.

Nel limite $R \ll \omega L$, $G \ll \omega C$, si ottiene una **propagazione non dispersiva** con $v_p = \frac{1}{\sqrt{LC}}$.

Sempre in questo limite,
$$\alpha = \frac{1}{2} \left(\frac{R}{Z_0} + GZ_0 \right)$$
 e se G è trascurabile $\alpha = \frac{R}{2Z_0}$.

Esempi

RG-59 Coax



$$R = 36 \text{ m}\Omega/\text{m}$$

$$L = 430 \text{ nH/m}$$

$$G = 10 \ \mu \text{O/m}$$

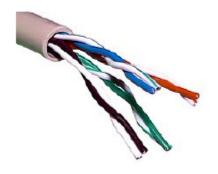
$$C = 69 \text{ pF/m}$$

$$Z_0 = 75 \Omega$$

$$v_p = 1/(LC)^{1/2} = 1.83 \times 10^8 \text{ m/s} = 0.61 \text{ c}$$

$$\alpha = R/2Z_0 = 2.4 \times 10^{-4} \text{ m}^{-1}$$

CAT5 Twisted Pair



$$R = 176 \text{ m}\Omega/\text{m}$$

$$L = 490 \text{ nH/m}$$

$$G = 2 \mu \nabla / m$$

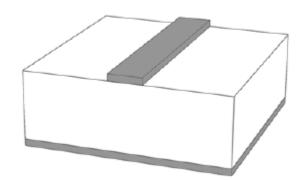
$$C = 49 \text{ pF/m}$$

$$Z_0 = 100 \ \Omega$$

$$v_p = 1/(LC)^{1/2} = 2.04 \times 10^8 \text{ m/s} = 0.68 \text{ c}$$

$$\alpha = R/2Z_0 = 8.8 \times 10^{-4} \text{ m}^{-1}$$

Microstrip



$$R = 150 \text{ m}\Omega/\text{m}$$

$$L = 364 \text{ nH/m}$$

$$G = 3 \mu \nabla / m$$

$$C = 107 \text{ pF/m}$$

$$Z_0 = 50 \ \Omega$$

$$v_p = 1/(LC)^{1/2} = 1.60 \times 10^8 \text{ m/s} = 0.53 \text{ c}$$

$$\alpha = R/2Z_0 = 8.8 \times 10^{-4} \text{ m}^{-1}$$
 $\alpha = R/2Z_0 = 1.5 \times 10^{-3} \text{ m}^{-1}$

Cosa è l'impedenza caratteristica?

$$\begin{array}{lcl} V(z,t) &=& V_0^+ e^{-\alpha z} e^{i(\omega t - \beta z)} + V_0^- e^{\alpha z} e^{i(\omega t + \beta z)} \\ I(z,t) &=& \frac{V_0^+}{Z_0} e^{-\alpha z} e^{i(\omega t - \beta z)} - \frac{V_0^-}{Z_0} e^{\alpha z} e^{i(\omega t + \beta z)}. \end{array}$$
 notare il segno meno

L'impedenza caratteristica è il rapporto tra tensione e corrente per un'onda propagantesi lungo la linea **in una sola direzione**, senza riflessioni.

Come vedremo più avanti, essa rappresenta anche l'impedenza d'ingresso di una linea adattata (ossia connessa ad un carico pari a Z_0).

Impedenza d'onda

Supponiamo ora di terminare la linea con un carico Z_L . L'impedenza del carico rappresenta una **condizione al contorno** che consente di determinare una relazione tra le ampiezze dell'onda incidente e riflessa.

L'impedenza in un punto z della linea sarà in generale dipendente dalla posizione, e sarà:

$$Z(z) = \frac{V(z)}{I(z)}$$

Per una linea **non dissipativa** (α = 0) si ha

$$Z(z) = Z_0 \frac{V_0^+ e^{-i\beta z} + V_0^- e^{i\beta z}}{V_0^+ e^{-i\beta z} - V_0^- e^{i\beta z}}$$

Ponendo l'origine della coordinata z sul carico, si ottiene

$$\frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

L'ampiezza dell'onda riflessa dipende quindi dai valori dell'impedenza caratteristica e dell'impedenza di carico.

Coefficiente di riflessione

Si definisce **coefficiente di riflessione** di tensione, il rapporto tra l'ampiezza dell'onda riflessa e quella dell'onda diretta, misurato sul carico.

Il coefficiente di riflessione è un numero complesso, il cui modulo è compreso tra 0 e 1.

$$\rho = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

In alternativa possiamo trovare l'impedenza del carico conoscendo il coefficiente di riflessione (parte reale e immaginaria):

$$Z_L = Z_0 \frac{1+\rho}{1-\rho}.$$

Si definisce **linea adattata** una linea connessa ad un carico pari alla sua impedenza caratteristica, $\mathbf{Z_L} = \mathbf{Z_0}$. In tal caso, non ci sono riflessioni dell'onda incidente ($\rho = 0$).

Quando invece la linea è **disadattata**, la sovrapposizione di onda incidente ed onda riflessa crea **un'onda stazionaria** lungo la linea. Il carico rappresenta una discontinuità.

Linea aperta
$$(Z_1 = \infty)$$
: $\rho = 1$

Linea cortocircuitata (
$$Z_1 = 0$$
): $\rho = -1$

I valori di potenza lungo una linea disadattata variano in dipendenza dal carico:

$$\begin{split} |V(z)|^2 &= (V_0^+ e^{-i\beta z} + V_0^- e^{i\beta z})(V_0^+ e^{-i\beta z} + V_0^- e^{i\beta z})^* \\ &= (|V_0^+| e^{-i(\beta z - \phi^+)} + |V_0^-| e^{i(\beta z + \phi^-)})(|V_0^+| e^{i(\beta z - \phi^+)} + |V_0^-| e^{-i(\beta z + \phi^-)}) \\ &= |V_0^+|^2 + |V_0^-|^2 + 2|V_0^+| |V_0^-| \cos(2\beta z - \phi^+ + \phi^-) \end{split}$$

dove

$$V_0^+ = |V_0^+|e^{i\phi^+}$$
 $V_0^- = |V_0^-|e^{i\phi^-}$

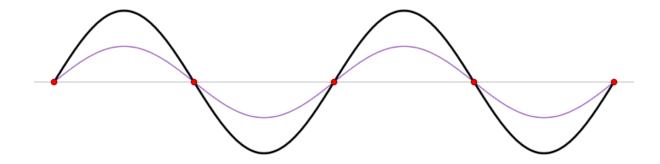
L'onda stazionaria ha periodicità spaziale $\lambda/2$.

Si definisce Rapporto di Onda Stazionaria (**ROS**) o Voltage Standing Wave Ratio (**VSWR**) la seguente quantità, che assume valori tra 1 e ∞ :

$$VSWR = \frac{|V_0^+| + |V_0^-|}{|V_0^+| - |V_0^-|}$$

Per una linea adattata, VSWR = 1. Per una linea aperta o cortocircuitata, VSWR = ∞ . La bontà dell'adattamento può essere verificata attraverso la misura della VSWR.

Esempio di formazione di un'onda stazionaria.



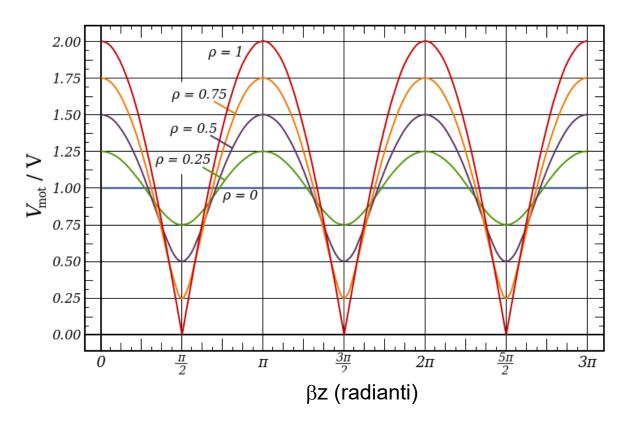
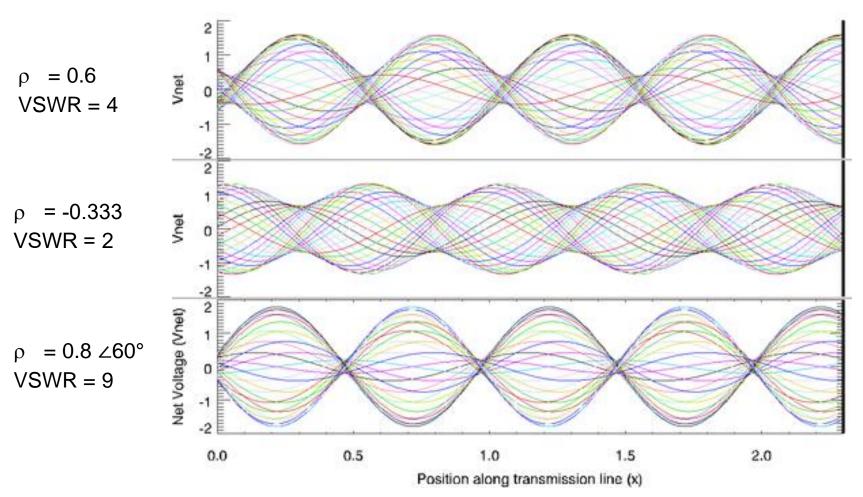


Diagramma della **tensione massima** (nel tempo) misurata lungo una linea senza perdita, per diversi valori del coefficiente di riflessione al carico.



Tensione netta durante un periodo di oscillazione (i diversi colori corrispondo a diversi istanti)

Impedenza d'ingresso

Di particolare interesse è l'impedenza che la linea presenta al suo ingresso, $Z_{in} = Z(-d)$. Limitandoci alla linea non dissipativa:

$$Z_{in} = Z_0 \frac{Z_L + iZ_0 \tan \beta d}{Z_0 + iZ_L \tan \beta d}$$
 (esercizio: ricavare questa formula)

Casi particolari:

Linea adattata
$$(Z_L = Z_0) \rightarrow Z_{in} = Z_0 = Z_L$$
 per qualunque lunghezza della linea Linea in corto circuito $(Z_L = 0) \rightarrow Z_{in} = i Z_0 \tan(\beta d) \rightarrow \text{reattanza pura } (R_{in} = 0)$ Linea aperta $(Z_L = \infty) \rightarrow Z_{in} = -i Z_0 \cot(\beta d) \rightarrow \text{reattanza pura } (R_{in} = 0)$ $Z_{in} = Z_0 \cot(\beta d) \rightarrow \text{reattanza pura } (R_{in} = 0)$ $Z_{in} = Z_0 \cot(\beta d) \rightarrow \text{reattanza pura } (R_{in} = 0)$ $Z_{in} = Z_0 \cot(\beta d) \rightarrow \text{reattanza pura } (R_{in} = 0)$ $Z_{in} = Z_0 \cot(\beta d) \rightarrow \text{reattanza pura } (R_{in} = 0)$

Nel caso di una linea lunga esattamente $\lambda/2$ o un suo multiplo intero si ha Z_{in} = Z_L . Dunque, aggiungere un tratto di linea di lunghezza $\lambda/2$ non modifica l'impedenza d'ingresso.

Nel caso di una linea lunga esattamente $\lambda/4$ si ha $Z_{in} = Z_0^2/Z_L$. Si può dimostrare che in questo caso $V_L = -iZ_0I_{in}$ e $I_L = -iV_{in}/Z_0$ indipendentemente dal carico: collegando in parallelo N linee lunghe $\lambda/4$, le correnti sui carichi sono in fase e date da V_{in} e Z_0 .

Linea aperta e linea in corto circuito

Impedenza d'onda:
$$Z(z) = Z_0 \frac{e^{-i\beta z} + \rho e^{i\beta z}}{e^{-i\beta z} - \rho e^{i\beta z}}$$

Nel caso di una linea non dissipativa **chiusa in un corto circuito** (Z_L =0, ρ =-1), l'impedenza d'onda è:

$$Z(x) = i Z_0 \tan(\beta z)$$

In questo caso l'impedenza è una **reattanza pura** e per valori di $z < \lambda/4$ ($\beta z < \pi/2$) è di tipo induttivo, mentre è capacitiva per $\lambda/4 < z < \lambda/2$ ($\pi/2 < \beta z < \pi$), poi si alterna ogni $\lambda/4$.

Nel caso di una linea senza perdite **aperta** ($Z_L = \infty$, $\rho = 1$) l'impedenza d'onda è:

$$Z(x) = -i Z_0 \cot(\beta z)$$

In questo caso l'impedenza è una **reattanza pura** e per valori di $z < \lambda/4$ ($\beta z < \pi/2$) è di tipo capacitivo, mentre è induttiva per $\lambda/4 < z < \lambda/2$ ($\pi/2 < \beta z < \pi$), poi si alterna ogni $\lambda/4$.

Attenuazione lungo la linea

$$\left| \frac{V^+(z)}{V_0} \right| = e^{-\alpha z}$$

L'onda diretta, così come quella riflessa, viene attenuata lungo il suo percorso, in base al coefficiente di attenuazione α .

L' attenuazione lungo la linea di trasmissione viene misurata, in termini di potenza, secondo la formula:

$$A (dB) = 20 \log_{10}(V(z)/V_0) = 20 \log_{10}(e^{-\alpha z}) = 20 \alpha z \log_{10}(e) = 8.686 \alpha z$$

La quantità $8.686~\alpha$ rappresenta l'attenuazione della linea di trasmissione in dB/m.

L'attenuazione cresce con la frequenza!