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One-Dimensional 
Potentials II
(with extension to the 3D case)
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Harmonic Oscillator
Harmonic oscillators are ubiquitous and appear every time when one is 
dealing with a system that can oscillate around its equilibrium state (e.g.
atoms, molecules, solids, electromagnetic field, etc).

The typical classical representation of the armonic 
oscillator is a mass m attached to a  spring.

Acoording to the Hooke’s law:

The solution has the form:

with                        

𝐹 = −𝑘𝑥 = 𝑚
d!𝑥
d𝑡!

𝑥(𝑡) = 𝐴 sin 𝜔𝑡 + 𝐵 cos 𝜔𝑡 𝜔 ≡
𝑘
𝑚

Angular 
frequency of 
oscillations
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Harmonic Oscillator
Acoording to the Hooke’s law:

The solution has the form:

with                        

𝐹 = −𝑘𝑥 = 𝑚
d!𝑥
d𝑡!

𝑥(𝑡) = 𝐴 sin 𝜔𝑡 + 𝐵 cos 𝜔𝑡 𝜔 ≡
𝑘
𝑚

Angular 
frequency of 
oscillations

𝑉 𝑥 =
1
2𝑘𝑥

!

The potential energy is:

=
1
2
𝑚𝜔!𝑥!
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Harmonic Oscillator
Acoording to the Hooke’s law:Acoording to the Hooke’s law:

The solution has the form:

with                        

𝐹 = −𝑘𝑥 = 𝑚
d!𝑥
d𝑡!

𝑥(𝑡) = 𝐴 sin 𝜔𝑡 + 𝐵 cos 𝜔𝑡 𝜔 ≡
𝑘
𝑚

Angular 
frequency of 
oscillations

𝑉 𝑥 =
1
2
𝑘𝑥! =

1
2
𝑚𝜔!𝑥!

The potential energy is:
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Harmonic Oscillator
Let’s imagine that we are studying a particle moving in one dimension, 
subject to a conservative force with a corresponding potential energy 
function U (x).

Expansion in Taylor series around x0

V 𝑥 ≅ V 𝑥! + 𝑉" 𝑥! 𝑥 − 𝑥! + #
$𝑉

"" 𝑥! 𝑥 − 𝑥! $

For small 𝑥 − 𝑥!

𝑉 𝑥 =
1
2
𝑘𝑥!

Like a harmonic

oscillator potential
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Harmonic Oscillator
The quantum problem is to solve the S.E. for the potential:

V x = !
"
𝐾 𝑥 " = !

"
𝑚𝜔 " 𝑥 "

Thus, the Hamiltonian will be:

𝐻 =
𝑝 "

2𝑚 +
1
2 𝐾 𝑥

"

While the T.I.S.E. for a particle moving in a simple harmonic oscillator:

/ !0
/1 !

= $2
ℏ!

#
$
𝐾 𝑥 $ − 𝐸 𝜓

= $2
ℏ!

#
$
𝑚𝜔 $ 𝑥 $ − 𝐸 𝜓

We can write:

− ℏ!

)*
+ !,
+- !

= 𝐸 − .
)
𝑚𝜔 ) 𝑥 ) 𝜓 or   − ℏ!

)*
+ !

+- !
+ .

)
𝑚𝜔 ) 𝑥 ) 𝜓 =𝐸 𝜓

With  𝑘 = 𝜔$𝑚
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Harmonic Oscillator
We can write:

− $
ℏ4

− ℏ!

$2
/ !0
/1 !

+ #
$
𝑚𝜔 $ 𝑥 $ 𝜓 =− $

ℏ4
𝐸 𝜓

Then  
ℏ
24

/ !0
/1 !

− 24
ℏ
𝑥 $𝜓 = − $

ℏ4
𝐸 𝜓

With      𝜉 = 24
ℏ 𝑥,    𝜖= $5

ℏ4

We have:
+ !,
+0 !

− 𝜉) − 𝜖 𝜓 = 0
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Harmonic Oscillator
We can write:
ℏ
24

/ !0
/1 !

− 24
ℏ
𝑥 $𝜓 = − $

ℏ4
𝐸 𝜓 With      𝜉 = 24

ℏ 𝑥,    𝜖= $5
ℏ4
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Harmonic Oscillator
We can write:
ℏ
24

/ !0
/1 !

− 24
ℏ
𝑥 $𝜓 = − $

ℏ4
𝐸 𝜓 With      𝜉 = 24

ℏ 𝑥,    𝜖= $5
ℏ4
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Harmonic Oscillator
We can write:

𝑑 $𝜓
𝑑𝜉 $

− 𝜉$ − 𝜖 𝜓 = 0

And for 𝜉 ≫ 1 (it means very large x)

𝑑 $𝜓
𝑑𝜉 $

≈ 𝜉 $𝜓

With approximate solutions:

𝜓 𝜉 ≃ 𝐴 e89 !/$ +𝐵 e;9 !/$

The second term with B cannot be normalized thus, 

let’s consider: 𝜓 𝜉 = ℎ 𝜉 e89 !/$

And hope that ℎ 𝜉 will be a function simpler than 𝜓 𝜉

because
e;9 ! → ∞

for 𝜉 → ∞
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Harmonic Oscillator
The second derivative of

𝜓 𝜉 ≃ ℎ 𝜉 e89 !/$

Is:

And     
+ !,
+0 !

− 𝜉) − 𝜖 𝜓 = 0 becomes:

d$𝜓
d𝜉$ =

d$ℎ
d𝜉$ − 2𝜉

dℎ
𝑑𝜉 + 𝜉$ − 1 ℎ e8 ⁄9! $

d)ℎ
d𝜉)

− 2𝜉
dℎ
d𝜉

+ 𝜉) − 1 ℎ e3 ⁄0! ) − 𝜉) − 𝜖 ℎe3 ⁄0! ) = 0

d)ℎ
d𝜉) − 2𝜉

dℎ
d𝜉 + 𝜖 − 1 ℎ = 0
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Harmonic Oscillator

Let’s try with a solution of the form of a power series in 𝜉:

d)ℎ
d𝜉)

− 2𝜉
dℎ
d𝜉

+ 𝜖 − 1 ℎ = 0

ℎ 𝜉 = 𝑎5 + 𝑎.𝜉 + 𝑎)𝜉) +⋯ =;
675

8

𝑎6𝜉9

dℎ
d𝜉

= 𝑎. + 2𝑎)𝜉 + 3𝑎:𝜉) +⋯ =;
675

8

𝑖 𝑎6𝜉93.

d)ℎ
d𝜉)

= 2𝑎) + 2 ⋅ 3 𝑎: 𝜉 + 3 ⋅ 4𝑎;𝜉) +⋯ =;
675

8

𝑖 + 1 𝑖 + 2 𝑎6<) 𝜉9
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Harmonic Oscillator

We can re-write the S.E. as:

d)ℎ
d𝜉)

− 2𝜉
dℎ
d𝜉

+ 𝜖 − 1 ℎ = 0

ℎ 𝜉 ==
#$%

&

𝑎#𝜉'

dℎ
d𝜉

==
#$%

&

𝑖 𝑎#𝜉'(!

d"ℎ
d𝜉" ==

#$%

&

𝑖 + 1 𝑖 + 2 𝑎#)" 𝜉'

;
675

8

𝑖 + 1 𝑖 + 2 𝑎6<)− 2 𝑖 𝑎6 + 𝜖 − 1 𝑎6 𝜉9 = 0
Thus:

;
675

8

𝑖 + 1 𝑖 + 2 𝑎6<) 𝜉9 − 2𝜉 𝑖 𝑎6𝜉93. + 𝜖 − 1 𝑎6𝜉9 = 0

…the coefficient of each power of 𝜉 must vanish!
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Harmonic Oscillator

This recursion formula is entirely equivalent to the Schrödinger equation itself.

14

;
675

8

𝑖 + 1 𝑖 + 2 𝑎6<)− 2 𝑖 𝑎6 + 𝜖 − 1 𝑎6 𝜉9 = 0

…the coefficient of each power of 𝜉 must vanish!

𝑖 + 1 𝑖 + 2 𝑎6<)− 2 𝑖 𝑎6 + 𝜖 − 1 𝑎6 = 0

𝑎+,- =
2𝑖 + 1 − 𝜖
𝑖 + 1 𝑖 + 2

𝑎+
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Harmonic Oscillator

Starting with a given  a0

15

ℎ 𝜉 = 𝑎" + 𝑎#𝜉 + 𝑎!𝜉! +⋯ =(
$%"

&

𝑎$𝜉'

𝑎$(! =
2𝑖 + 1 − 𝜖
𝑖 + 1 𝑖 + 2

𝑎$

𝑎) =
1 − 𝜖
2 𝑎D

𝑎" =
5 − 𝜖
12

𝑎! =
5 − 𝜖 1 − 𝜖

24 𝑎5 =
5 − 𝜖 1 − 𝜖

4! 𝑎E
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Harmonic Oscillator

Given a1

Thus, given a0 and a1 I can generate an and hence ℎ, which is a sum of ”even” and “odd” 
functions:

16

ℎ 𝜉 = 𝑎" + 𝑎#𝜉 + 𝑎!𝜉! +⋯ =(
$%"

&

𝑎$𝜉'

𝑎$(! =
2𝑖 + 1 − 𝜖
𝑖 + 1 𝑖 + 2

𝑎$

𝑎! =
3 − 𝜖
6 𝑎" 𝑎# =

7 − 𝜖
20 𝑎! =

7 − 𝜖 3 − 𝜖
5! 𝑎"

ℎ 𝜉 = ℎ) 𝜉 + ℎ* 𝜉
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Harmonic Oscillator

…not all solution are acceptable:

17

;
675

8

𝑖 + 1 𝑖 + 2 𝑎6<)− 2 𝑖 𝑎6 + 𝜖 − 1 𝑎6 𝜉9 = 0

𝑎$%& =
2𝑖 + 1 − 𝜖
𝑖 + 1 𝑖 + 2 𝑎$

For very large 𝑖, 1 − 𝜖 can be neglected w.r.t. 2𝑖.    

𝑎6<) ≈
2
𝑖
𝑎6

When applied recursively N times, and considering only even indexes

𝑎$>;$? ≈
2$@

2𝑖 2𝑖 + 2 … 2𝑖 + 2𝑁 𝑎$> =
2@

𝑖 𝑖 + 1 … 𝑖 + 𝑁 𝑎$>
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Harmonic Oscillator
18

For very large 𝑖, 1 − 𝜖 can be neglected w.r.t. 2𝑖.    

𝑎6<) ≈
2
𝑖
𝑎6

When applied recursively N times, and considering only even indexes

𝑎$>;$? ≈
2$@

2𝑖 2𝑖 + 2 … 2𝑖 + 2𝑁 𝑎$> =
2@

𝑖 𝑖 + 1 … 𝑖 + 𝑁 𝑎$>

Although I was considering very large indexes i, I can extend the expression 
above to all indexes because this will not affect the asymptotic behavior, of h 
thus                               

𝑎6 ≈
𝑎5
𝑖
2 !
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Harmonic Oscillator
19

For very large 𝑖, 1 − 𝜖 can be neglected w.r.t. 2𝑖.    

Then:

𝑎6 ≈
𝑎5
𝑖
2 !

ℎ 𝜉 =;
675

8

𝑎6𝜉9 ≈ 𝑎5;
675

8
1
𝑖
2 !

𝜉9 ≈ 𝑎5;
675

8
1
𝑖! 𝜉

)9 ≈ 𝐶 𝑒0!
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Harmonic Oscillator

But we were looking for:               𝜓 𝜉 ≈ ℎ 𝜉 e30 !/)

Thus, for high values of 𝜉 it would be:               
𝜓 𝜉 ≈ 𝐶 e0 !/)

But this cannot be accepted for the normalization problem.
The only way in which we can avoid that 𝜓 →∞ as 𝜉→∞
is to stop power series at some finite value of i. 
This implies, from the recursion relation that:

ϵ = 2𝑛 + 1
where  𝑛 is a non-negative integer.

20

ℎ 𝜉 ≈ 𝐶 𝑒0!
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Harmonic Oscillator
This implies, from the recursion relation                                     that: 
ϵ = 2𝑛 + 1
But:            𝜖= )H

ℏI

Thus:

E = n +
1
2

ℏ𝜔

Here, the quantization of energy is also evident!

We conclude that a particle moving in a harmonic potential has quantized 
energy levels that are equally spaced by an energy ℏ𝜔, where  𝜔 is the classical 
oscillation frequency. 
The lowest energy state ( 𝑛=0) has energy  (1/2)ℏ𝜔, called zero-point energy.

21

𝑎6<) =
2𝑖 + 1 − 𝜖
𝑖 + 1 𝑖 + 2

𝑎6
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Hermite polynomials
What about the w.f.?
𝜓 𝜉 ≃ ℎ 𝜉 e89 !/$

Hermite polynomials

22

𝜓J(𝜉) =
𝑚𝜔
𝜋ℏ

⁄. ; 1
2J𝑛!

𝐻J(𝜉)e30
!/)

One can write the normalized w.f. as:

The ℎ 𝜉 functions are polynomials of 
degree n in 𝜉 either entirely odd or entirely 
even. 

They are the so called Hermite polynomials
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Harmonic Oscillator
23

𝜓J(𝜉) =
𝑚𝜔
𝜋ℏ

⁄. ; 1
2J𝑛!

𝐻J(𝜉)e30
!/)

solutions

E = n +
1
2

ℏ𝜔

The allowed energy levels are 
equally spaced, separated by an 
amount ℏ𝜔 , with ω the classical 
oscillation frequency. 

Like the potential well, there is also a “zero point energy” the first 
allowed state is not at zero energy, but instead here at ℏ𝜔 /2
compared to the classical minimum energy. 
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Infinitely thick barrier (or potential step)

Consider a particle of mass m and energy E moving in the following potential:

𝑉(𝑥) = N𝑉0, 𝑓𝑜𝑟 𝑥 ≥ 0
0, otherwise

0 𝑥

V0

The quantum mechanical wave is incident 
from the left on the barrier

It can be reflected from the barrier  into the 
region on the left. 

𝜓]^_` 𝑥 = 𝐶 𝑒6a- +𝐷𝑒36b- 𝑘 =
2𝑚𝐸
ℏ

As for the 
infinite 
square well

General solutions of the equation 
on the left side:
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25
Infinitely thick barrier (or potential step)

Let’s consider E < V0

i.e., the particle does not have enough energy to get over this barrier.

0 𝑥

V0

𝜓c6de` 𝑥 = 𝐹 𝑒f- +𝐺𝑒3f- κ =
2𝑚(𝑉0 − 𝐸)

ℏ
Now

General solutions of the equation 
on the right side:

The t.i. S.E. inside the barrier will be:

−
ℏ)

2𝑚
𝑑)𝜓
𝑑𝑥)

= − 𝑉0− 𝐸 𝜓
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26
Infinitely thick barrier (or potential step)

Let’s consider E < V0

i.e., the particle does not have enough energy to get over this barrier.

0 𝑥

V0

𝜓c6de` 𝑥 = 𝐹 𝑒f- +𝐺𝑒3f- κ =
2𝑚(𝑉0 − 𝐸)

ℏ
Now

Is real, while K should be imaginary

General solutions of the equation 
on the right side:

The t.i. S.E. inside the barrier will be:

−
ℏ)

2𝑚
𝑑)𝜓
𝑑𝑥)

= − 𝑉0− 𝐸 𝜓
𝑘! =

2𝑚(𝐸 − 𝑉0)
ℏ!

𝑘 =
2𝑚(𝐸 − 𝑉0)

ℏ

E =
𝑝!

2𝑚 + 𝑉0 =
𝑘!ℏ!

2𝑚 + 𝑉0
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Infinitely thick barrier (or potential step)

Let’s consider E < V0

i.e., the particle does not have enough energy to get over this barrier.

0 𝑥

V0

𝜓c6de` 𝑥 = 𝐹 𝑒f- +𝐺𝑒3f-

General solutions of the equation 
on the right side:

The t.i. S.E. inside the barrier will be:

−
ℏ)

2𝑚
𝑑)𝜓
𝑑𝑥)

= − 𝑉0− 𝐸 𝜓

F=0 to have a square-integrable 
wavefunctions

𝜓c6de` 𝑥 = 𝐺𝑒3f-
*This is an exponential function, not really a 
wave function
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Infinitely thick barrier (or potential step)

Let’s consider E < V0

i.e., the particle does not have enough energy to get over this barrier.

0 𝑥

V0General solutions of the S.E. on 
the right side:

This solution means that the wave inside 
the barrier is not zero, but it falls off 
exponentially!

So there must be a probability of finding 
the particle inside the barrier.

This phenomena is often called tunneling.

𝜓c6de` 𝑥 = 𝐺𝑒3f-
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Infinitely thick barrier (or potential step)

Let’s consider boundary conditions:
u Continuity of the wavefunction and its derivative at x=0 gives us two equations:
C+D=G
ik(C−D)=−κ G.

which we can solve for the ratios
𝐷
𝐶 =

𝑘−iκ
𝑘+iκ

𝐺
𝐶 =

2𝑘
𝑘+iκ

Thus
𝐷
𝐶

$
= 1 𝑜𝑟 𝐷 $= 𝐶 $

We have total reflection of the wavefunction!

0 𝑥

V0


