

Harmonic Oscillator

Harmonic oscillators are ubiquitous and appear every time when one is dealing with a system that can oscillate around its equilibrium state (e.g. atoms, molecules, solids, electromagnetic field, elc).

The typical classical representation of the armonic oscillator is a mass m attached to a spring.
Acoording to the Hooke's Law:

$$
F=-k x=m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}
$$

$$
\begin{aligned}
& \text { The solution has the form: } \\
& \qquad x(t)=A \sin (\omega t)+B \cos (\omega t) \quad \text { with } \quad \omega \equiv \sqrt{\frac{k}{m}}
\end{aligned}
$$

CATTICE UIBRATIONS

Angular frequency of
oscillations

Harmonic Oscillator

Acoording to the Hooke's Law:
$F=-k x=m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}$
The solution has the form:
$x(t)=A \sin (\omega t)+B \cos (\omega t)$

with $\omega \equiv \sqrt{\frac{k}{m}}$

Angular frequency of oscillations

The potential energy is:

$$
V(x)=\frac{1}{2} k x^{2}=\frac{1}{2} m \omega^{2} x^{2}
$$

Harmonic Oscillator

Acoording to the Hooke's Law:
$F=-k x=m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}$
The solution has the form:
$x(t)=A \sin (\omega t)+B \cos (\omega t)$
The potential energy is:

$$
V(x)=\frac{1}{2} k x^{2}=\frac{1}{2} m \omega^{2} x^{2}
$$

Harmonic Oscillator

Let's imagine that we are studying a particle moving in one dimension, subject to a conservative force with a corresponding potential energy function $U(x)$. For small $\left(x-x_{0}\right)$

$$
E_{q}=V+E_{k}
$$

Expansion in Taylor series around x_{0}

$$
V(x) \cong V\left(x_{0}\right)+V^{i}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} V^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}
$$

Like a harmonic oscillator potential

$$
V(x)=\frac{1}{2} k x^{2}
$$

Harmonic Oscillator

The quantum problem is to solve the S.E. for the potential:
$\mathrm{V}(\mathrm{x})=\frac{1}{2} K x^{2}=\frac{1}{2} m \omega^{2} x^{2}$
Thus, the Hamiltonian will be:
$H=\frac{p^{2}}{2 m}+\frac{1}{2} K x^{2}$
While the T.I.S.E. for a particle moving in a simple harmonic oscillator:

$$
\begin{aligned}
\frac{d^{2} \psi}{d x^{2}} & =\frac{2 m}{\hbar^{2}}\left(\frac{1}{2} K x^{2}-E\right) \psi \\
& =\frac{2 m}{\hbar^{2}}\left(\frac{1}{2} m \omega^{2} x^{2}-E\right) \psi
\end{aligned}
$$

with $k=\omega^{2} m$

We can write:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=\left(E-\frac{1}{2} m \omega^{2} x^{2}\right) \psi \quad \text { or } \quad\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2}\right) \psi=E \psi
$$

Harmonic Oscillator

We can write:
$-\frac{2}{\hbar \omega}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2}\right) \psi=-\frac{2}{\hbar \omega} E \psi$

Then $\frac{\hbar}{m \omega} \frac{d^{2} \psi}{d x^{2}}-\frac{m \omega}{\hbar} x^{2} \psi=-\frac{2}{\hbar \omega} E \psi$
We can apply the chain rule to get higher order derivatives:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} u} & =\frac{\mathrm{d} x}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}} & =\frac{\mathrm{d}^{2} x}{\mathrm{~d} u^{2}} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(\frac{\mathrm{d} x}{\mathrm{~d} u}\right)^{2} \cdot \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}
\end{aligned}
$$

We have:

$$
\frac{d^{2} \psi}{d \xi^{2}}-\left(\xi^{2}-\epsilon\right) \psi=0
$$

Harmonic Oscillator

$$
\begin{aligned}
& \begin{array}{l}
\frac{h}{m \omega} \frac{d^{2} \psi}{d x^{2}}-\frac{m \omega}{\hbar} x^{2} \psi=-\frac{2}{\hbar \omega} E \psi \quad \text { with } \quad \xi=\sqrt{\frac{m \omega}{\hbar}} x, \quad \epsilon=\frac{2 E}{\hbar \omega}
\end{array} \\
& \frac{d \psi}{d x}=\frac{d \xi}{d x} \cdot \frac{d \psi}{d \xi} \\
& \frac{d^{2} \psi}{d x^{2}}=\frac{d^{2} \xi}{d x^{2}} \cdot \frac{d \psi}{d \xi}+\left(\frac{d \xi}{d x}\right)^{2} \cdot \frac{d^{2} \psi}{d \xi^{2}}= \\
& =\frac{1}{\infty}+\frac{m \omega}{\pi} d^{2} \psi
\end{aligned}
$$

Harmonic Oscillator

$$
\begin{aligned}
& \text { We can write: }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{2} \psi}{d x^{2}}=\frac{m \omega}{f} \frac{d^{2} \psi}{d \xi^{2}} \\
& \infty \frac{d^{2} \psi}{d \varepsilon^{2}}-\left(\xi^{2}-\varepsilon\right) \psi=0
\end{aligned}
$$

Harmonic Oscillator

We can write:

$$
\frac{d^{2} \psi}{d \xi^{2}}-\left(\xi^{2}-\epsilon\right) \psi=0
$$

And for $|\xi| \gg 1$ (it means very large x)

$$
\frac{d^{2} \psi}{d \xi^{2}} \approx \xi^{2} \psi
$$

With approximate solutions:
$\psi(\xi) \simeq A \mathrm{e}^{-\xi^{2} / 2}+B \mathrm{e}^{+\xi^{2} / 2}$
because
The second term with B cannot be normalized thus, Let's consider: $\quad \psi(\xi)=h(\xi) e^{-\xi^{2} / 2}$

And hope that $h(\xi)$ will be a function simpler than $\psi(\xi)$

Harmonic Oscillator

巡
The second derivative of

$$
\psi(\xi) \simeq h(\xi) e^{-\xi^{2} / 2}
$$

Is:

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} \xi^{2}}=\left[\frac{\mathrm{d}^{2} h}{\mathrm{~d} \xi^{2}}-2 \xi \frac{\mathrm{~d} h}{d \xi}+\left(\xi^{2}-1\right) h\right] \mathrm{e}^{-\xi^{2} / 2}
$$

And $\frac{d^{2} \psi}{d \xi^{2}}-\left(\xi^{2}-\epsilon\right) \psi=0 \quad$ becomes:

$$
\begin{gathered}
{\left[\frac{\mathrm{d}^{2} h}{\mathrm{~d} \xi^{2}}-2 \xi \frac{\mathrm{~d} h}{\mathrm{~d} \xi}+\left(\xi^{2}-1\right) h\right] \mathrm{e}^{-\xi^{2} / 2}-\left(\xi^{2}-\epsilon\right) h \mathrm{e}^{-\xi^{2} / 2}=0} \\
=>\frac{\mathrm{d}^{2} h}{\mathrm{~d} \xi^{2}}-2 \xi \frac{\mathrm{~d} h}{\mathrm{~d} \xi}+(\epsilon-1) h=0
\end{gathered}
$$

Harmonic Oscillator

$\frac{\mathrm{d}^{2} h}{\mathrm{~d} \xi^{2}}-2 \xi \frac{\mathrm{~d} h}{\mathrm{~d} \xi}+(\epsilon-1) h=0$
Let's try with a solution of the form of a power series in ξ :

$$
\begin{aligned}
& h(\xi)=a_{0}+a_{1} \xi+a_{2} \xi^{2}+\cdots=\sum_{i=0}^{\infty} a_{i} \xi^{\mathrm{i}} \\
& \frac{\mathrm{~d} h}{\mathrm{~d} \xi}=a_{1}+2 a_{2} \xi+3 a_{3} \xi^{2}+\cdots=\sum_{i=0}^{\infty} i a_{i} \xi^{\mathrm{i}-1} \\
& \frac{\mathrm{~d}^{2} h}{\mathrm{~d} \xi^{2}}=2 a_{2}+2 \cdot 3 a_{3} \xi+3 \cdot 4 a_{4} \xi^{2}+\cdots=\sum_{i=0}^{\infty}(i+1)(i+2) a_{i+2} \xi^{\mathrm{i}}
\end{aligned}
$$

Harmonic Oscillator

$$
\frac{\mathrm{d}^{2} h}{\mathrm{~d} \xi^{2}}-2 \xi \frac{\mathrm{~d} h}{\mathrm{~d} \xi}+(\epsilon-1) h=0
$$

We can re-write the S.E. as:

$$
\begin{aligned}
& h(\xi)=\sum_{i=0}^{\infty} a_{i} \xi^{\mathrm{i}} \\
& \frac{\mathrm{~d} h}{\mathrm{~d} \xi}=\sum_{i=0}^{\infty} i a_{i} \xi^{\mathrm{i}-1} \\
& \frac{\mathrm{~d}^{2} h}{\mathrm{~d} \xi^{2}}=\sum_{i=0}^{\infty}(i+1)(i+2) a_{i+2} \xi^{i}
\end{aligned}
$$

$$
\sum_{i=0}^{\infty}(i+1)(i+2) a_{i+2} \xi^{i}-2 \xi i a_{i} \xi^{i-1}+(\epsilon-1) a_{i} \xi^{i}=0
$$

Thus: $\sum_{i=0}^{\infty}\left[(i+1)(i+2) a_{i+2}-2 i a_{i}+(\epsilon-1) a_{i}\right] \xi^{i}=0$
...the coefficient of each power of ξ must vanish!

Harmonic Oscillator

$\sum_{i=0}^{\infty}\left[(i+1)(i+2) a_{i+2}-2 i a_{i}+(\epsilon-1) a_{i}\right] \xi^{i}=0$
...the coefficient of each power of ξ must vanish!

$$
(i+1)(i+2) a_{i+2}-2 i a_{i}+(\epsilon-1) a_{i}=0
$$

$$
a_{i+2}=\frac{2 i+1-\epsilon}{(i+1)(i+2)} a_{i}
$$

Harmonic Oscillator

$$
\begin{aligned}
h(\xi) & =a_{0}+a_{1} \xi+a_{2} \xi^{2}+\cdots=\sum_{i=0}^{\infty} a_{i} \xi^{\mathrm{i}} \\
a_{i+2} & =\frac{2 i+1-\epsilon}{(i+1)(i+2)} a_{i}
\end{aligned}
$$

Starting with a given ao

$$
\begin{aligned}
& a_{2}=\frac{1-\epsilon}{2} a_{0} \\
& a_{4}=\frac{5-\epsilon}{12} a_{2}=\frac{(5-\epsilon)(1-\epsilon)}{24} a_{0}=\frac{(5-\epsilon)(1-\epsilon)}{4!} a_{0}
\end{aligned}
$$

Harmonic Oscillator

$$
\begin{aligned}
& h(\xi)=a_{0}+a_{1} \xi+a_{2} \xi^{2}+\cdots=\sum_{i=0}^{\infty} a_{i} \xi^{i} \\
& a_{i+2}=\frac{2 i+1-\epsilon}{(i+1)(i+2)} a_{i}
\end{aligned}
$$

Given a_{1}

$$
a_{3}=\frac{3-\epsilon}{6} a_{1} \quad a_{5}=\frac{(7-\epsilon)}{20} a_{3}=\frac{(7-\epsilon)(3-\epsilon)}{5!} a_{1}
$$

Thus, given a_{0} and a_{1} I can generate a_{n} and hence h, which is a sum of "even" and "odd" functions:

$$
h(\xi)=h_{\mathrm{o}}(\xi)+h_{\mathrm{e}}(\xi)
$$

Harmonic Oscillator

$\sum_{i=0}^{\infty}\left[(i+1)(i+2) a_{i+2}-2 i a_{i}+(\epsilon-1) a_{i}\right] \xi^{i}=0$
...not all solution are acceptable:

$$
a_{i+2}=\frac{2 i+1-\epsilon}{(i+1)(i+2)} a_{i}
$$

For very large $i, 1-\epsilon$ can be neglected w.r.t. $2 i$.
$\Rightarrow \quad a_{i+2} \approx \frac{2}{i} a_{i}$
When applied recursively N times, and considering only even indexes

$$
a_{2 i+2 \mathrm{~N}} \approx \frac{2^{2 N}}{2 i(2 i+2) \ldots(2 i+2 N)} a_{2 i}=\frac{2^{N}}{i(i+1) \ldots(i+N)} a_{2 i}
$$

Harmonic Oscillator

For very large $i, 1-\epsilon$ can be neglected w.r.t. $2 i$.
$\Rightarrow \quad a_{i+2} \approx \frac{2}{i} a_{i}$
When applied recursively N times, and considering only even indexes

$$
a_{2 i+2 \mathrm{~N}} \approx \frac{2^{2 N}}{2 i(2 i+2) \ldots(2 i+2 N)} a_{2 i}=\frac{2^{N}}{i(i+1) \ldots(i+N)} a_{2 i}
$$

Although I was considering very large indexes i, I can extend the expression above to all indexes because this will not affect the asymptotic behavior, of h thus

$$
a_{i} \approx \frac{a_{0}}{\left(\frac{i}{2}\right)!}
$$

Harmonic Oscillator

For very large $i, 1-\epsilon$ can be neglected w.r.t. $2 i$.

$$
a_{i} \approx \frac{a_{0}}{\left(\frac{i}{2}\right)!}
$$

Then:

$$
h(\xi)=\sum_{i=0}^{\infty} a_{i} \xi^{\mathrm{i}} \approx a_{0} \sum_{i=0}^{\infty} \frac{1}{\left(\frac{i}{2}\right)!} \xi^{\mathrm{i}} \approx a_{0} \sum_{i=0}^{\infty} \frac{1}{i!} \xi^{2 \mathrm{i}} \approx C e^{\xi^{2}}
$$

Harmonic Oscillator

$$
h(\xi) \approx C e^{\xi^{2}}
$$

But we were looking for: $\quad \psi(\xi) \approx h(\xi) e^{-\xi^{2} / 2}$
Thus, for high values of ξ it would be:

$$
\psi(\xi) \approx C e^{\xi^{2} / 2}
$$

But this cannot be accepted for the normalization problem. The only way in which we can avoid that $\psi \rightarrow \infty$ as $\xi \rightarrow \infty$ is to stop power series at some finite value of i. This implies, from the recursion relation that:

$$
\epsilon=2 n+1
$$

where n is a non-negative integer.

Harmonic Oscillator

This implies, from the recursion relation $a_{i+2}=\frac{2 i+1-\epsilon}{(i+1)(i+2)} a_{i}$ that:
$\epsilon=2 n+1$
But: $\quad \epsilon=\frac{2 E}{\hbar \omega}$
Thus:

$$
E=\left(n+\frac{1}{2}\right) \hbar \omega
$$

Here, the quantization of energy is also evident!
We conclude that a particle moving in a harmonic potential has quantized energy levels that are equally spaced by an energy $\hbar \omega$, where ω is the classical oscillation frequency.
The lowest energy state ($n=0$) has energy (1/2) $\hbar \omega$, called zero-point energy.

Hermite polynomials

What about the w.f.?
$\psi(\xi) \simeq h(\xi) \mathrm{e}^{-\xi^{2} / 2}$
The $h(\xi)$ functions are polynomials of degree n in ξ either entirely odd or entirely even.

Hermite polynomials
They are the so called Hermite polynomials

One can write the normalized whf. as:

$$
\psi_{n}(\xi)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} H_{n}(\xi) \mathrm{e}^{-\xi^{2} / 2}
$$

$$
\begin{gathered}
H_{0}=1 \\
H_{1}(\xi)=2 \xi \\
H_{2}(\xi)=4 \xi^{2}-2 \\
H_{3}(\xi)=8 \xi^{3}-12 \xi \\
H_{4}(\xi)=16 \xi^{4}-48 \xi^{2}+12
\end{gathered}
$$

Harmonic Oscillator solutions

$$
\begin{aligned}
& \psi_{n}(\xi)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} H_{n}(\xi) \mathrm{e}^{-\xi^{2} / 2} \\
& \mathrm{E}=\left(\mathrm{n}+\frac{1}{2}\right) \hbar \omega
\end{aligned}
$$

The allowed energy levels are equally spaced, separated by an amount $\hbar \omega$, with w the classical oscillation frequency.

Like the potential well, there is also a "zero point energy" the first allowed state is not at zero energy, but instead here at $n \omega / 2$ compared to the classical minimum energy

Infinitely thick barrier (or potential step)

Consider a particle of mass m and energy E moving in the following potential:
$V(x)=\left\{\begin{array}{lc}V_{0}, & \text { for } x \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$
The quantum mechanical wave is incident from the left on the barrier

It can be reflected from the barrier into the
 region on the left.

General solutions of the equation on the left side:

$$
\psi_{l e f t}(x)=C e^{i k x}+D e^{-i K x}
$$

Infinitely thick barrier (or potential step)

Let's consider $\mathrm{E}<\mathrm{V}_{0}$
ie., the particle does not have enough energy to get over this barrier.

The ti. S.E. inside the barrier will be:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=-\left[V_{0}-E\right] \psi
$$

General solutions of the equation on the right side:

$$
\psi_{\text {right }}(x)=F e^{\kappa x}+G e^{-\kappa x}
$$

$$
\text { Now } \quad \kappa=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar}
$$

Infinitely thick barrier（or potential step）

芯
合
各
己
26 BICOCCA
Let＇s consider $E<V_{0}$
i．e．，the particle does not have enough energy to ge

Creneral solutions of the equation on the right side：

$$
\psi_{\text {right }}(x)=F e^{\kappa x}+G e^{-\kappa x}
$$

The ti．S．E．inside the barrier will be：

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=-\left[V_{0}-E\right] \psi
$$

$$
\begin{aligned}
& \mathrm{E}=\frac{p^{2}}{2 m}+V_{0}=\frac{k^{2} \hbar^{2}}{2 m}+V_{0} \\
& \boldsymbol{k}^{2}=\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}} \\
& \text { 川 } \\
& k=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar} \\
& \text { Now } k=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar}
\end{aligned}
$$

Is real，while K should be imaginary

Infinitely thick barrier (or potential step)

Let's consider E < V_{0}
ie., the particle does not have enough energy to get over this barrier.
The ti. S.E. inside the barrier will be:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=-\left[V_{0}-E\right] \psi
$$

General solutions of the equation on the right side:

$$
\psi_{\text {right }}(x)=F e^{\kappa x}+G e^{-\kappa x}
$$

Fro to have a square-integrable

$$
\psi_{\text {right }}(x)=G e^{-\kappa x}
$$

*This is an exponential function, not really a wave function wavefunctions

Infinitely thick barrier (or potential step)

Let's consider E < V_{0}
i.e., the particle does not have enough energy to get over this barrier.

General solutions of the $S_{S} E$. on the right side:

$$
\psi_{\text {right }}(x)=G e^{-k x}
$$

This solution means that the wave inside the barrier is not zero, but it falls off exponentially!

So there must be a probability of finding the particle inside the barrier.

This phenomena is often called tunneling.

Infinitely thick barrier (or potenial step)

Let's consider boundary conditions:
Continuity of the wavefunction and its derivative at $x=0$ gives us two equations: $C+D=G$
$i k(C-D)=-k G$.
which we can solve for the ratios

$$
\frac{D}{C}=\frac{k-\mathrm{ik}}{k+i \kappa} \quad \frac{G}{C}=\frac{2 k}{k+i \kappa}
$$

Thus

$$
\left|\frac{D}{C}\right|^{2}=1 \quad \text { or } \quad|D|^{2}=|C|^{2}
$$

We have total reflection of the wavefunction!

