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Abstract
Cannabinoid receptors, endocannabinoids and the enzymes responsible for their biosynthesis and degradation constitute the 
endocannabinoid system. In recent decades, the endocannabinoid system has attracted considerable interest as a potential 
therapeutic target in numerous pathological conditions. Its involvement in several physiological processes is well known, such 
as in energy balance, appetite stimulation, blood pressure, pain modulation, embryogenesis, nausea and vomiting control, 
memory, learning and immune response, among others, as well as in pathological conditions where it exerts a protective role 
in the development of certain disorders. As a result, it has been reported that changes in endocannabinoid levels may be related 
to neurological diseases such as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and multiple sclerosis, as well 
as anorexia and irritable bowel syndrome. Alterations in the endocannabinoid system have also been associated with cancer, 
affecting the growth, migration and invasion of some tumours. Cannabinoids have been tested in several cancer types, including 
brain, breast and prostate cancers. Cannabinoids have shown promise as analgesics for the treatment of both inflammatory and 
neuropathic pain. There is also evidence for a role of the endocannabinoid system in the control of emotional states, and can-
nabinoids could prove useful in decreasing and palliating post-traumatic stress disorder symptoms and anxiolytic disorders. The 
role of the endocannabinoid system in addictions has also been examined, and cannabinoids have been postulated as alternative 
and co-adjuvant treatments in some abuse syndromes, mainly in ethanol and opioid abuses. The expression of the endocannabi-
noid system in the eye suggests that it could be a potential therapeutic target for eye diseases. Considering the importance of the 
endocannabinoid system and the therapeutic potential of cannabinoids in this vast number of medical conditions, several clinical 
studies with cannabinoid-based medications are ongoing. In addition, some cannabinoid-based medications have already been 
approved in various countries, including nabilone and dronabinol capsules for the treatment of nausea and vomiting associated 
with chemotherapy, dronabinol capsules for anorexia, an oral solution of dronabinol for both vomiting associated with chemo-
therapy and anorexia, a Δ9-tetrahydrocannabinol/cannabidiol oromucosal spray for pain related to cancer and for spasticity and 
pain associated with multiple sclerosis, and an oral solution of cannabidiol for Dravet and Lennox–Gastaut syndromes. Here, 
we review the available efficacy, safety and tolerability data for cannabinoids in a range of medical conditions.
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1  Introduction

Initially, the term ‘cannabinoids’ was used to designate a 
group of specific compounds present in the Cannabis sativa 
plant, which is known for its psychoactive effects and which 
has been used in medicine since ancient times [1, 2]. For 
example, in traditional Chinese medicine, cannabis was used 

for the treatment of asthma, malaria and gout, and in India 
for neuralgias, convulsions and migraines [3, 4]. In the nine-
teenth century, the use of cannabis became very popular 
in Europe and USA, where ethanolic extracts of cannabis 
(known as cannabis tincture) were also utilised to treat vari-
ous disorders such as convulsions in infants, tetanus, chol-
era and rabies, among others. However, these disappeared 
from therapeutic use in the first half of the twentieth cen-
tury owing to an inability to prepare standardised cannabis 
preparations, which resulted in the risk of producing over- or 
under-dosed formulations [4–7].

The  most  re levan t  cannab ino ids  a re  Δ 9-
tetrahydrocannabinol (Δ9-THC), the most abundant cannabi-
noid and the one mainly responsible for the psychoactive 
properties of cannabis, and cannabidiol (CBD), the second 

http://orcid.org/0000-0003-2468-6177
http://crossmark.crossref.org/dialog/?doi=10.1007/s40265-018-0996-1&domain=pdf


1666	 A. I. Fraguas‑Sánchez, A. I. Torres‑Suárez 

Key Points 

The expression of the endocannabinoid system, and especially 
of cannabinoid receptors, has been found to be altered in a 
great number of disorders, making it a potential therapeutic 
target.

Cannabinoids, particularly Δ9-tetrahydrocannabinol, have 
demonstrated efficacy as analgesics, antiemetic agents and anti-
spastic agents.

Δ9-Tetrahydrocannabinol has shown beneficial effects as an 
add-on therapy for the treatment of neuropathic pain in com-
bination with opioids, and might enable the required dosage of 
opioids to be lowered.

Cannabidiol has demonstrated its effectiveness as an anti-
convulsant agent, being especially helpful in the treatment of 
Lennox–Gastaut and Dravet syndromes.

terminals and non-neuronal tissues including the uterus, 
prostate, testis, stomach, vascular endothelium and skeletal 
system, among others. CB2 receptors have a more limited 
distribution and are mainly located in the immune system, 
in both cells and tissues [10, 11]. However, it has been dem-
onstrated that CB2 receptors are also present in the CNS (but 
only in glial cells, not in nerve cells), especially under cer-
tain circumstances, such as in inflammation [12, 13]. It has 
to be taken into account that some effects of cannabinoids, 
including endocannabinoids, are mediated by non-cannab-
inoid receptors such as other G-protein-coupled receptors 
GPR55 and GPR19, transient receptor potential vanilloid 
channels and peroxisome proliferator-activated receptors 
[14]. In fact, the GPR55 receptor has been postulated to be 
part of the endocannabinoid system (ECS).

With respect to endocannabinoids, the most relevant com-
pounds are N-arachidonoylethanolamine, commonly known 
as anandamide (AEA), and 2-arachydonoilglycerol (2-AG). 
Both are synthesised on demand. The mechanisms respon-
sible for their synthesis and degradation are summarised in 
Fig. 2 [15–20].

Cannabinoid receptors, endocannabinoids and the 
enzymes responsible for their biosynthesis and degrada-
tion constitute the ECS. In recent decades, the ECS has 
attracted considerable interest as a potential therapeutic tar-
get in numerous pathological conditions. Its involvement in 
several physiological processes is well known, such as in 
energy balance, appetite stimulation, blood pressure, pain 
relief, embryogenesis, nausea and vomiting control, mem-
ory, learning and immune response, among others [21–24], 
as well as in pathological conditions where it exerts a protec-
tive role in the development of certain disorders. As a result, 
it has been reported that changes in endocannabinoid levels 

Fig. 1   Chemical structures of 
the main representative endo-, 
phyto- and synthetic can-
nabinoids. THC tetrahydrocan-
nabinol

most abundant and lacking psychoactive activity. However, 
the discovery of specific receptors for these compounds in 
the 1990s demonstrated that membrane receptors medi-
ated cannabinoid effects. This discovery led to the search 
for endogenous ligands that activate them, which are called 
endogenous cannabinoids or endocannabinoids. Today, the 
term cannabinoids not only includes plant cannabinoids, also 
known as phytocannabinoids, but also endocannabinoids and 
the synthetic analogues of both groups. The major cannabi-
noids of each group are shown in Fig. 1.

To date, two cannabinoid receptors have been studied: 
CB1 and CB2 [8, 9]. CB1 receptors have a ubiquitous dis-
tribution, being found predominantly in the central nervous 
system (CNS) [in nerve cells], but also in peripheral nerve 
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may be related to neurological diseases such as Parkinson’s 
disease (PD), Huntington’s disease (HD) or multiple sclero-
sis (MS), as well as anorexia and irritable bowel syndrome 
[25–29]. Alterations in the ECS have also been associated 
with cancer, affecting the growth, migration and invasion of 
some tumours [30–33] (Fig. 3).

Considering the importance of the ECS and the ther-
apeutic potential of cannabinoids in a vast number of 
medical conditions, several clinical studies with can-
nabinoid-based medications are ongoing. Specifically, 
some cannabinoid-based medications have already been 
approved for the treatment of nausea and vomiting associ-
ated with chemotherapy, anorexia, pain related to cancer, 
and spasticity and pain associated with MS (shown in 
Table 1). This work provides a review of the preclini-
cal and clinical data of cannabinoid use in therapeutics, 
especially of indications with high evidence.

2 � Cannabinoids and Neurological Disorders

2.1 � Multiple Sclerosis

2.1.1 � Preclinical Studies

Some authors have described altered expression of the ECS 
in MS, which mediates disease progression. For example, 
a study undertaken post-mortem in the brain of MS donors 
evidenced that the expression of CB1 and CB2 receptors was 
increased [34]. Interestingly, in plasma samples obtained 
from patients with MS with different clinical subtypes of 
the disease (relapsing-remitting, secondary-progressive 
and primary-progressive), an increase in messenger RNA 
levels of both CB1 and CB2 receptors was only found in 
patients with primary-progressive MS. However, the levels 
of several endocannabinoids (AEA, palmitoylethanolamide 

Fig. 2   Scheme showing principal anandamide (AEA) and 2-arachy-
donoilglycerol (20AG) synthesis and degradation pathways. AEA is 
obtained from N-arachidonoyl phosphatidylethanolamine (NAPE) via 
NAPE-phospholipase D (PLD). NAPE is synthesised by the trans-
lation of an arachidonoyl group to phosphatidylethanolamine (PE) 
through the action of N-acetyltransferase (NAT). 2-AG is mainly 
obtained through the action of a diacylglycerol lipase (DAGL) from 

diacylglycerol (DAG), formed from phosphatidylinositol (PI) via 
phospholipase-C (PLC) or by an alternative route, in which a phos-
phatidic acid hydrolase (PAH) hydrolyses phosphatidic acid (PA) 
generating DAG. Finally, the fatty acid amide hydrolase (FAAH) and 
monoacylglycerol lipase (MAGL) are the principal enzymes responsi-
ble for AEA and 2-AG degradation respectively

Fig. 3   Potential therapeutic applications of cannabinoids. AIDS acquired immunodeficiency disease, CBD cannabidiol, THC tetrahydrocannabi-
nol
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and oleoylethanolamide) were elevated in all MS sub-
types. The levels of AEA were especially high in second-
ary-progressive disease, probably owing to the decline of 
fatty acid amide hydrolase (FAAH) expression (its major 
metabolising enzyme) [35]. Similar results were noted 
in peripheral lymphocytes and the cerebrospinal fluid of 
patients with MS, with a rise of AEA levels. In relaps-
ing-remitting MS samples, an increase of N-arachidonoyl 

phosphatidylethanolamine (NAPE) activity and a decrease 
of FAAH action were also detected, although no differences 
in 2-AG levels were reported [36, 37]. Studies in mouse 
models of MS also noted elevated AEA in brain and spi-
nal cord samples, being specially marked in the spinal cord 
(≈ 200%). Even though no differences in 2-AG levels were 
found in human samples, it was higher in the spinal cord of 
mice [38].

Table 1   Formulations based on cannabinoids

AIDS acquired immune deficiency syndrome, CBD cannabidiol, CBDV cannabidivarin, MS multiple sclerosis, THC tetrahydrocannabinol
a Approval indicated in Canada
b It is approved in more than 20 countries worldwide and, within Europe, in Austria, the Czech Republic, Denmark, Finland, France, Germany, 
Ireland, Island, Israel, Luxembourg, the Netherlands, Norway, Italy, Poland, Slovakia, Spain, Switzerland, Sweden and the UK
c In patients who did not respond properly to conventional antiemetic treatments
d It is approved for the treatment of Dravet syndrome and Lennox–Gastaut syndrome. It is being evaluated for tuberous sclerosis complex
e Withdrawn from the global market because of its psychological side effects, including depression and suicidal impulses
f In several states in USA, cannabis extracts are approved for post-traumatic stress disorder
g Including pain, insomnia, stress, MS and depression

Brand name Cannabinoid compo-
nent

Administration route Dosage form Indications Countries

Sativex® Nabiximols (Can-
nabis sativa extracts 
including mainly 
Δ9-THC and CBD at 
a ratio of 1:1)

Oromucosal Spray MS spasticity, symp-
tomatic relief of 
neuropathic pain in 
MSa

Pain in patients with 
advanced cancera

Canada, Mexico and 
several European 
countries, among 
othersb

Cesamet® Nabilone (Δ9-THC 
analogue)

Oral Capsules Nausea and vomit-
ing induced by 
chemotherapyc

UK, Ireland, USA, 
Canada

Canemes® Nabilone (Δ9-THC 
analogue)

Oral Capsules Nausea and vomiting 
induced by chemo-
therapy

Germany, Austria

Marinol® Dronabinol ((-)-trans-
Δ9-THC)

Oral Capsules Anorexia related 
to weight loss in 
patients with AIDS

Nausea and vomit-
ing induced by 
chemotherapyc

UK, Ireland, USA, 
Canada

Syndros® Dronabinol ((-)-trans-
Δ9-THC)

Oral Solution Anorexia related 
to weight loss in 
patients with AIDS

Nausea and vomit-
ing induced by 
chemotherapyc

USA

Epidiolex® Pure plant-derived 
CBD

Oral Solution Resistant epileptic 
syndromesd

USA

GWP42006 ® CBDV (plant extracts) Oral – Epilepsy, autism Not approved
Acomplia ® Rimonabant 

(SR141716)
Oral Tablets Obesity Withdrawne

Cannabis extracts (e.g. 
Tilray)

Δ9-THC and CBD at 
different ratios

Oral Solution and capsules Variousg Canada, South 
America, Australia, 
New Zealand and 
Europe

Dried flowers 
(Bedrocan®)

Δ9-THC and CBD at 
different ratios

Oral Plant material Variousg Europe
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The administration of several cannabinoid receptor ago-
nists (Ki values are listed in Table 2) including Δ9-THC, 
WIN 55,212-2, JWH-133 (a more selective CB2 agonist) 
and methanandamide (AEA analogue) was shown to lessen 
tremor and spasticity associated with this pathology in 
mouse models of MS. This action appeared to involve can-
nabinoid receptors because the use of specific antagonists of 
these receptors produced an exacerbation of symptoms that 
was more marked with CB1 blockage [39]. Other authors 
have also identified the CB1 receptor as primarily responsi-
ble for cannabinoid anti-spastic action because the spasticity 
reduction of CB2 agonists was absent in CB1-deficient mice 
[40]. Finally, the inhibition of endocannabinoid metabolis-
ing enzymes has also been studied, and FAAH inhibitors 
reduced spasticity [41]. This inhibition led to an increase 
in AEA levels, suggesting a potential role of AEA in MS 
pathology.

Interestingly, monoacylglycerol lipase (MAGL) inhibitors 
lowered neuronal excitotoxicity and avoided demyelisation 
[42], delaying disease progression in these models of MS 
[43]. Feliú and co-workers have also recently examined the 
relationship between 2-AG and demyelisation in a progres-
sive model of MS, where the inhibition of MAGL, with the 
consequent increase of 2-AG, modulated neuroinflammation 
and diminished the deposit of chondroitin sulphate proteo-
glycans, which impair axon regeneration and remyelination 
around demyelinated lesions [44].

Recently, in a mouse model of MS, Elliott and co-workers 
described that CBD (20 mg/kg intraperitoneally adminis-
tered) attenuated experimental autoimmune encephalo-
myelitis with the triggering of different anti-inflammatory 
pathways, including a decline of proinflammatory cytokines, 
the induction of anti-inflammatory cytokines and the gain of 
myeloid-derived suppressor cells [45].

2.1.2 � Clinical Studies

Having clearly established the role of the ECS in MS disease 
and the therapeutic potential of cannabinoids in ameliorating 

disease progression and in treating motor symptoms and 
disability, several clinical studies have been conducted in 
patients with MS to evaluate the efficacy of cannabinoids, 
and these have produced contradictory results (Tables 3 and 
4). Killestein et al. recorded that neither C. sativa extracts 
nor Δ9-THC (orally administered) were efficient in improv-
ing muscle spasticity [46]. However, the dosage of Δ9-THC 
used by this group (2.5 or 5 mg) was too low. Ungerleider 
et al. discovered that dosages of 7.5 mg of Δ9-THC were 
necessary to achieve a significant improvement in spasticity 
[47].

The CAMS study also indicated that oral administration 
of both cannabis extracts and Δ9-THC at doses of 2.5–25 mg 
for 15 weeks resulted in no significant differences com-
pared with the placebo group in the treatment of spasticity 
when evaluated with the Ashworth Scale. However, a slight 
improvement of mobility and pain was appreciated in the 
cannabinoid-treated group [48], as well as a slight improve-
ment in spasticity after 12 months of treatment with Δ9-
THC. This was also indicated, but not objectively confirmed, 
by the patients treated with cannabis extracts [49]. Arguably, 
the Ashworth Scale is not the best option to measure spas-
ticity, and the absence of a significant difference could be 
attributed to this issue.

In another study (MUSEC), patients treated with the same 
cannabis extracts exhibited a nearly two-fold improvement in 
muscle stiffness compared with the placebo group [50]. The 
efficacy of a Δ9-THC/CBD oromucosal spray (nabiximols 
[Sativex]®) was also tested, producing a reduction in spastic-
ity not greater than the oral administration of Δ9-THC or the 
cannabis extracts mentioned previously [51–53] (Table 1). 
Moreover, the maintenance of Δ9-THC/CBD oromucosal 
spray efficacy in spasticity relief was confirmed by a long-
term trial (with a mean of 3.4 years of treatment) [54]. Inter-
estingly, a 19-week follow-up trial revealed that the Δ9-THC/
CBD oromucosal spray as an add-on treatment also signifi-
cantly reduced MS spasticity compared with placebo. An 
improvement of spasm frequency, sleep disturbances and 
global clinical profile in the cannabinoid-treated group was 
perceived as well [55]. In addition, this preparation has been 
proven useful as an analgesic for central neuropathic pain 
associated with MS, lowering pain intensity, and improv-
ing sleep disorders after 4 weeks of treatment [56] and this 
study was extended for up to 2 years as an open-label study, 
duplicating the same results [57]. However, some adverse 
effects were evident in a high number of cannabis-treated 
patients, although most of them were judged to be mild to 
moderate in severity, including somnolence, dizziness and 
dry mouth [57].

The efficacy of cannabinoids in the management of uri-
nary incontinence associated with MS has also been con-
sidered. On this point, Brady and co-workers reported that 
the oral-mucosal administration of a Δ9-THC/CBD spray 

Table 2   Ki values of different cannabinoid receptor agonists

THC tetrahydrocannabinol

Agonists CB1 (nM) CB2 (nM)

CP 55,940 0.6 0.7
HU-210 0.061 0.52
JWH-015 383 13.8
JWH-133 677 3.4
Methanandamide 28.3 868
Nabilone 1.84 2.19
WIN 55,212-2 62.3 3.3
Δ9-THC 53.3 75
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for 8 weeks and Δ9-THC for a further 8 weeks resulted in an 
improvement of bladder incontinence, decreasing the vol-
ume and number of episodes and nocturia, among others 
[58]. Similar effects were found in a sub-study of the CAMS 
trial, where the administration of cannabis extracts (Δ9-THC 
and CBD at a 2:1 ratio) also reduced incontinence episodes 
[59]. Finally, Kavia et al. also noted that the administration 
of a Δ9-THC/CBD oromucosal spray for 10 weeks improved 
bladder dysfunction without statistical significance [60].

Although several studies undertaken in murine models 
of MS have reported that cannabinoids (including WIN 
55,212-2 and JWH-015) produced an anti-inflammatory 
effect (with the moderation of interferon-γ production and 
the inhibition of proinflammatory cytokine expression) [61, 
62], a small clinical study with patients receiving oral canna-
bis extracts (with standardised levels of Δ9-THC, CBD and 
minor cannabinoids) demonstrated significant proinflamma-
tory activity that was not observed in patients treated with 
dronabinol. This effect could be attributed to non-Δ9-THC 
cannabinoids, but this may be unreliable and further studies 
are necessary [63]. Finally, a more recent study has evalu-
ated the effect of Δ9-THC in disease advancement in patients 
in the progressive phase of MS, and it was judged ineffective 
[64].

Even though some clinical trials have not achieved sig-
nificant improvement in the symptoms associated with MS, 
including spasticity, muscle stiffness, disability and pain, 
most studies mention a subjective amelioration perceived by 
the cannabinoid-treated patients compared with the control 
group. The differences in results could be attributed to the 
different doses employed, the different design of each study 
and to a placebo response. Adverse effects, in general, were 
classified as mild to moderate (e.g. dizziness, somnolence, 
headache and dry mouth).

In conclusion, the Δ9-THC/CBD oromucosal spray might 
be a beneficial tool in the treatment of MS, especially for 
spasticity relief, with no severe adverse effects. In fact, this 
medication is already approved in some countries for the 
treatment of spasticity and neuropathic pain related to MS 
(Table 1).

2.2 � Epilepsy

2.2.1 � Preclinical Studies

The role of the ECS in endogenous protection against exci-
totoxicity has been observed, signalling it as a potential 
target for the treatment of neurodegenerative disorders that 
have excitotoxic events as their main characteristic. In this 
context, Marsicano and co-workers have reported that CB1 
receptors in mice models participate in protecting against 
kainic acid-induced excitotoxicity, with CB1-negative mice 
having many more severe seizures than CB1-positive mice. 

They have also pointed to an increase in AEA levels in the 
hippocampus, while 2-AG levels remained unaltered [65], 
suggesting a possible protective role of AEA. However, 
other authors have noted significantly higher levels of 2-AG 
in the hippocampal region in the rat pilocarpine model of 
epilepsy [66]. The inhibition of FAAH and MAGL enzymes, 
with the consequent increase of AEA and 2-AG levels, also 
exerts a protecting role in seizures induced by kainic acid 
in a rat convulsion model [67, 68]. The involvement of the 
endocannabinoid system in anticonvulsant effects has also 
been recently described. Shirzadian et al. showed that the 
blockage of CB1 receptors (using AM251) in mice models 
that employed pentylenetetrazole to induce seizures avoided 
the anticonvulsant action of acute foot-shock stress at doses 
of 1 pg/kg to 100 μg/kg, which also suggested a CB1 con-
nection [69].

Wallace et al. also showed that Δ9-THC administration 
considerably decreased the seizures induced by kainic acid 
in the rat model and that this also involved CB1 receptors 
[66]. Cannabidivarin (CBDV), another phytocannabinoid, 
has also been proven to lessen seizures in a broad range of 
rodent models, such as maximal electroshock and audiogenic 
seizures in mice and pentylenetetrazole-induced seizures in 
rats, without affecting normal motor function. This cannabi-
noid also significantly attenuated seizures in the pilocarpine-
induced seizure model in combination with valproate [70, 
71]. Amada and co-workers demonstrated a reduction in 
seizure severity in the pentylenetetrazole-induced seizure 
model, suppressing the expression of several genes (Fos, 
Egr1, Arc, Ccl4 and Bdnf) related to seizure induction in 
the CBDV responder group [71]. Unlike Δ9-THC, the anti-
convulsant action of CBDV seemed to be mediated by non-
cannabinoid receptors, specifically by transient receptor 
potential vanilloid-1 channels [72, 73].

2.2.2 � Clinical Studies

Considering the potential participation of the ECS in seizure 
management and the ability of some cannabinoids to con-
trol this, several studies have been performed with patients 
(Table 5). Several non-interventional studies have reported 
that smoking marijuana may have a beneficial action on 
controlling seizures in conjunction with antiepileptic drugs 
[74–76]. However, another non-interventional study pro-
duced contrary results, namely that cannabis use did not 
affect seizures in patients with epilepsy [77].

The effect of oral cannabis extracts has also been evalu-
ated in several cases of child epilepsy. In this respect, Porter 
and Jacobson found that the oral administration of CBD-
enriched cannabis extracts as add-on therapy lowered seizure 
frequency in 84% of patients, achieving a seizure reduction 
higher than 80% in 42% of responding patients. An improve-
ment of behaviour, sleep and alertness were also detected 
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[78]. Other authors have supported these findings [79]. The 
administration of cannabis extracts containing CBD and 
Δ9-THC at a ratio of 20:1 also exhibited anticonvulsant effi-
cacy of around 89% and an improvement in sleep, mood and 
motor skills [80].

Press et al. evidenced that cannabis extracts were very 
effective in treating Lennox–Gastaut Syndrome, decreas-
ing seizure frequency in 88.9% of patients, although some 
adverse effects (including seizure worsening) were evident 
in some cases, which limited cannabis therapeutic use [81]. 
Another study also highlighted great benefit in Dravet syn-
drome [82]. Maa and Figi provided an account of a girl 
with Dravet syndrome, where treatment with oral cannabis 
extracts containing Δ9-THC and CBD markedly altered her 
nocturnal seizure frequency from 50 per day to two to three 
per month [83]. The administration of CBD oral solution 
(Epidiolex®) has also proven to ameliorate the frequency 
and duration of seizures in six of seven patients with febrile 
infection-related epilepsy syndrome [84].

A study in children and young adults with Dravet syn-
drome also described that the administration of CBD oral 
solution as an adjuvant with standard antiepileptic drugs 
produced an improvement in seizure frequency greater than 
50% in 43% of patients [85]. In a study undertaken with 
more than 200 patients, the same authors also documented 
the anticonvulsant efficacy of CBD, with a median decline in 
motor seizures of 36.5%. Although, in general, CBD had an 
adequate safety profile, some adverse effects were detected, 
limiting its therapeutic use. Most of them were mild to mod-
erate in severity (e.g. somnolence, loss of appetite and diar-
rhoea) but some patients showed severe side effects such as 
status epilepticus [86].

Recently, a study involving the use of cannabis to treat 
epilepsy in children reported more severe seizures in those 
using cannabis compared with non-users. However, high 
variability was evident in cannabis preparations, most of 
them with a high content of Δ9-THC and low levels of CBD. 
This could explain the inefficacy of these extracts. Therefore, 
CBD is probably the most promising cannabinoid for treat-
ing seizures [87]. In particular, Dravet and Lennox–Gas-
taut syndromes appeared to exhibit high response rates. 
In fact, an oral solution based on pure plant-derived CBD 
(Epidiolex®) (NCT02397863) has been recently approved 
in USA for the treatment of both epileptic syndromes in 
patients 2 years of age and older. It is also being evaluated in 
tuberous sclerosis complex (NCT02544763) [88, 89] and as 
a promising pharmacotherapy in adults for disorders related 
to cannabis use (NCT03102918).

Another CBD oral solution is under study for epilepsy 
(NCT03355300, NCT03336242). Finally, a compound based 
on CBDV is under clinical study (NCT02365610) to evalu-
ate its potential antiepileptic activity as add-on therapy in 
patients with inadequately controlled focal seizures.

In conclusion, CBD has displayed clear effectiveness as 
an anticonvulsant drug, especially for children with epileptic 
syndromes. The absence of Δ9-THC psychoactive activity 
and its good safety profile make CBD a good therapeutic 
option in these disorders. In fact, an oral solution contain-
ing CBD has been recently approved for these purposes 
(Table 1).

2.3 � Parkinson’s Disease

2.3.1 � Preclinical Studies

As a result of the high expression of the ECS in the basal 
ganglia, its role in movement control has been examined 
and its activation identified as being related to motor inhibi-
tion [90, 91]. Regarding ECS expression in PD, an analysis 
performed in post-mortem brain samples from patients with 
this disorder described lowered expression of CB1 receptors 
in some areas of the basal ganglia (caudate nucleus, anterior 
dorsal putamen and external segment of the globus palli-
dus). However, they remained unaltered in other brain areas 
(nucleus accumbens, anterior and posterior ventral putamen, 
and substantia nigra) [92]. Cerebrospinal fluid samples from 
patients at different stages of PD were also tested and indi-
cated more than a two-fold rise in the levels of AEA. This 
AEA up-regulation was disease-stage independent [93]. 
Finally, higher levels of AEA have also been detected in 
animal models of PD. Gubellini and co-workers noted higher 
striatal levels of AEA and lower activity of the AEA mem-
brane transporter and FAAH enzyme in several rat models. 
Nevertheless, 2-AG levels remained unchanged [94].

The role of FAAH and MAGL inhibitors has also been 
investigated. On the one hand, the inhibition of MAGL pre-
vented induced motor impairment in the chronic methyl-
4-phenyl-1,2,3,6-tetrahydropyridine mouse model and 
increased the number and the density of dopaminergic 
neurons, suggesting the neuroprotective role of 2-AG [95]. 
On the other hand, FAAH inhibition also prevented motor 
deficits in both chronic methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine and haloperidol-induced catalepsy mouse models. 
However, with respect to its neuroprotective effect, opposing 
results have been presented. While Celorrio et al. stated that 
the FAAH inhibitor URB597 did not reduce dopamine cell 
death, Viveros-Paredes and co-workers reported that it gave 
rise to a protecting effect because it inhibited dopaminergic 
neuronal death [96, 97].

The blockage of CB1 also produced antiparkinsonian 
activity in rat models of PD. In this respect, El-Banoua and 
co-workers demonstrated that the administration of a CB1 
antagonist (SR141716A, also known as rimonabant) into the 
striatum, globus pallidus and subthalamic nucleus reduced 
motor asymmetry in parkinsonian rats (using a unilateral 
6-hydroxydopamine-induced nigra lesion model). While 
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at the dorsal striatum level, the effect was associated with 
the modulation of dopaminergic receptor function, with 
an increase of D1 receptor function and a decrease of D2 
receptor function, at the pallidus and subthalamic nucleus 
that relationship was not appreciated [98]. However, 
González et al. stated that it was not related to dopamin-
ergic, GABAergic, or glutamatergic transmission changes 
at the striatal level [99]. Interestingly, Kelsey et al. showed 
that SR141716A also enhanced the effect of moderate doses 
of L-DOPA, proposing its use as add-on therapy [100]. The 
potential antiparkinsonian activity of Δ9-THCV has also 
been evaluated in a 6-hydroxydopamine-induced nigra lesion 
model, ameliorating parkinsonism and delaying disease pro-
gression (with preservation of tyrosine hydroxylase-positive 
neurons), with the involvement of CB2 receptors [101].

Despite its potential in rodents, SR141716A did not 
exhibit antiparkinsonian activity in primates (probably a 
more suitable model for predicting its therapeutic utility) 
[102]. A study in patients with PD also recorded the failure 
of this compound to improve parkinsonian motor disability 
[103].

2.3.2 � Clinical Studies

Cannabis extracts orally administered for 4 weeks achieved 
neither an objective nor subjective improvement in dyski-
nesia and parkinsonism. However, an improvement in Mini-
Mental State Examination results implied a possible rapid 
pro-cognitive action of cannabis [104]. In contrast, CBD, 
after daily oral administration (controlled study) at doses 
of 75 or 300 mg/day, has ameliorated motor symptoms and 
the quality of life in patients with PD with no psychiatric 
co-morbidities [105]. As add-on therapy, it has also helped 
with psychosis, and rapid eye movement sleep behaviour 
disorders in patients with PD [106, 107]. However, these 
last two studies were open-label and case reports, respec-
tively, and more controlled research is probably required. In 
conclusion, CBD can improve the quality of life of patients 
with PD, although further studies are needed.

2.4 � Alzheimer’s Disease

The expression of ECS components has been investigated in 
brain samples of patients with AD. Studies involving brain 
areas with a high density of Aβ plaques (hippocampus and 
entorhinal and parahippocampal cortices) have detected an 
up-regulated expression of FAAH and CB2 in glial cells 
associated with senile plaques, with FAAH activity also ele-
vated while CB1 density remained unchanged in the vicinity 
of these structures [108]. Nevertheless, Ramirez et al. found 
that CB1 expression was lowered in AD brains [109]. Some 
years later, Solas et al. noted similar results and described 
higher expression of CB2 in patients with AD, using cortical 

brain tissues (Brodmann area 10). This over-expression was 
correlated with amyloid-β-42 (Aβ-42) levels. Lower levels 
of CB1 were also reported [110]. Finally, an experiment in 
a mouse model of AD also revealed the involvement of CB2 
receptors in the neuropathology of this disorder, indicating 
that CB2-deleted mice had higher levels of Aβ-42 and aug-
mented plaque deposition [111].

All the previous studies suggest CB2 targeting for new 
therapeutic approaches and, in fact, several cannabinoid 
receptor agonists have been examined. For example, JWH-
015 (a selective CB2 agonist) in vitro induced the removal 
of Aβ plaques from human AD tissues, and also from THP-1 
macrophages even at a very low concentration (1 nM), 
achieving a plaque decrease of around 39% [112]. Research 
with transgenic amyloid precursor-protein mice has also 
demonstrated that the oral administration of both JWH-015 
and WIN 55,212-2 at doses of 0.2 mg/kg/day for 4 months 
was able to moderate inflammation and cortical Aβ levels, 
probably owing to an increase in Aβ clearance. JWH-015, 
but not WIN 55,212-2, also improved cognitive deficit in 
mice, implying the involvement of CB2 [113].

Other authors have shown that the intracerebroventricular 
administration of WIN55,212-2 in rats prevented microglial 
activation induced by Aβ, cognitive impairment and loss of 
neuronal markers [109]. Fakhfouri et al.’s study supported 
these data. In a mouse model of AD, WIN55,212-2 exerted 
neuroprotective and anti-inflammatory activity opposing 
the damage induced by Aβ in a mechanism that not only 
involved CB1 and CB2, but also peroxisome proliferator-
activated receptor-γ [114].

MDA-7 (a CB2 selective agonist) intraperitoneally admin-
istered for 14 days to rats also promoted Aβ clearance and 
reverted cognitive deficiency. Interestingly, it decreased up-
regulated CB2 levels, indicating the potential involvement of 
these receptors in the neuropathology of AD [115].

JWH-133 intraperitoneally administered at doses of 
0.2 mg/kg/day for 5 weeks, has also been reported to ame-
liorate memory impairment in mice in the pre-symptomatic 
and early symptomatic stages of the disease. This effect 
was attributed to a decline in inflammation, stress oxidative 
responses to Aβ and tau hyperphosphorylation around Aβ 
plaques [116].

In addition to cannabinoid receptor agonists, CBD, which 
binds to these receptors with low affinity, has been cited as 
having beneficial effects in AD. In this respect, CBD intra-
peritoneally administered at doses of 2.5 or 10 mg/kg/day 
for 7 days reduced neuroinflammation induced by Aβ [117]. 
Using higher doses (20 mg/kg/day intraperitoneally admin-
istered for 3 weeks) also reversed cognitive deficits in AD 
mouse models [118] and after long-term exposition (20 mg/
kg/day orally administered for 8 months) prevented social 
recognition deficits in AD mouse models [119]. Finally, Aso 
and co-workers confirmed that the combination of Δ9-THC 
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and CBD was more therapeutically beneficial than the com-
pounds administered alone, and that they lowered Aβ-42 
levels and changed plaque composition, as well as manifest-
ing anti-inflammatory properties [120].

Considering all these findings, it could be concluded that 
the ECS, and especially CB2 receptors, are involved in AD 
neuropathology and that targeting these receptors may be 
useful in ameliorating disease symptoms. However, the util-
ity of cannabinoids in this disorder is not yet confirmed and 
further studies are necessary.

2.5 � Huntington’s Disease

2.5.1 � Preclinical Studies

Numerous studies have described altered ECS expression 
in the areas involved in HD, suggesting a role in disease 
progression. Post-mortem studies of the brains of patients 
with HD have revealed a significant loss of CB1 (nearly 
97.5%) in basal ganglia structures, especially in the globus 
pallidus [121, 122]. Experiments with rodent models of HD 
have shown similar results, with lower expression of CB1 
receptors in the lateral striatum, cortex and hippocampus in 
initial phases of the disease [123–125], which is associated 
with disease progression [126]. With regard to CB2 recep-
tors, higher levels have been evidenced in striatal microglia, 
exerting a preventive role in disease progression as a result 
of the attenuation of microglial activation [127].

Endocannabinoid levels have also been found to be 
altered in HD mice models, but providing conflicting 
results. Bisogno and co-workers reported a decrease of 2-AG 
(between 30 and 60%), AEA and palmitoylethanolamidein 
striatum, an increase of AEA (around 50%) and a reduction 
of 2-AG (close to 28%) in the cortex and similar values in 
the hippocampus, compared with healthy mice [128]. Dave 
et al. found much higher levels (around 147%) of 2-AG in 
the cortex and lower levels (nearly 67%) of AEA in the hip-
pocampus [125]. The expression of the enzymes responsible 
for endocannabinoid synthesis and degradation has also been 
shown to be diminished, and lower levels of diacylglycerol 
lipase and N-arachidonoyl phosphatidylethanolamine-phos-
pholipase D have been detected in the striatum [129].

Studies in animal models of HD have indicated that 
Δ9-THC augments the neurotoxicity induced by malonate 
[130], but exerts a neuroprotective effect against neurotoxic-
ity induced by 3-nitropropionic acid, via CB1. This implies 
the participation of these receptors in disease pathogenesis 
[131]. Cannabidiol (in a CB1-independent manner) and 
WIN-55-212 also attenuated 3-nitropropionic acid-induced 
neurotoxicity. The mechanisms responsible for WIN-55-212 
activity appeared to be related to endocannabinoid-signal-
ling induction and N-methyl-d-aspartate receptor hypo-
function [132, 133].

2.5.2 � Clinical Studies

Some clinical studies have also been completed, showing 
that the administration of both oral CBD (10 mg/kg/day 
for 6 weeks) and a Δ9-THC/CBD oromucosal spray did not 
improve the motor, cognitive and functional symptoms of 
patients with HD [134, 135]. However, in a pilot study, Cur-
tis et al. noted that nabilone enhanced chorea and cognitive 
problems [136]. These findings indicate that more studies 
are needed to establish the potential use of cannabinoids 
in HD.

3 � Cannabinoids as Antiemetic Agents

The clinical efficacy of cannabis in this field was evalu-
ated for the first time in 1975, when Sallan and co-work-
ers observed that the oral administration of Δ9-THC had 
antiemetic properties in patients receiving chemotherapy 
[137]. Since then, the antiemetic efficacy of cannabinoids 
has been widely reviewed.

3.1 � Preclinical Studies

Darmani studied the involvement of CB1 receptors in emesis 
in shrew models, demonstrating that the blockage of CB1, 
but not CB2, receptors with specific antagonists, induced 
emesis. Δ9-THC and the synthetic cannabinoids CP 55,940 
and WIN 55,212-2, selective agonists to CB1 receptors, 
intraperitoneally administered reverted this, with CP 55,940 
producing the greatest effect [138]. CP 55,940 also sup-
pressed the emesis induced by cisplatin with median effec-
tive dose (ED50) values of 0.09 mg/kg [139].

Other authors have published similar results. In shrew 
models of cisplatin-induced emesis, Δ9-THC intraperito-
neally administered also reduced animal vomiting (ED50: 
1.8 mg/kg) and the frequency of vomiting (ED50: 0.36 mg/
kg) [140] and these findings have also been observed in fer-
rets. Δ9-THC moderated nausea (ED50: 0.1 mg/kg) and vom-
iting (ED50: 0.05 mg/Hg) via CB1 receptors, lowering neu-
ronal activation induced by emetic stimuli in some regions 
of the dorsal vagal complex [141]. Rock et al. evidenced 
the implication of CB2 in emesis control with HU-308 
(CB2 selective agonist), which did not completely block but 
lessened nausea induced by lithium chloride in rats [142]. 
Finally, CBD was also described as decreasing the emesis 
induced by lithium chloride or cisplatin in shrews, but only 
at low doses (2.5–5 mg/kg) in a CB1-independent manner. 
At higher doses (40 mg/kg), it exhibited emetic properties 
[143, 144], but this biphasic effect may be attributed to its 
interaction with different receptors.

The antiemetic activity of endocannabinoids has also 
been examined. On the one hand, studies in ferrets have 
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demonstrated that exogenous administration of AEA and 
2-AG reduced emesis induced by morphine-6-glucuronide. 
While CB1 receptors mediated AEA effect, the activity of 
2-AG appeared to involve both CB1 and CB2 receptors [12]. 
However, Sticht et al. found that exogenous 2-AG decreased 
the vomiting induced by lithium chloride in a mechanism 
independent of CB1 and Sharkey and co-workers reported 
that the antiemetic efficacy of AEA also involved non-can-
nabinoid receptors. TPRV1 involvement was suggested [145, 
146]. On the other hand, the increase of endogenous endo-
cannabinoid levels also proved to be useful, as the inhibi-
tion of endocannabinoid re-uptake transport and degradative 
enzymes (FAAH and MAGL) exerted antiemetic properties 
[12, 147, 148].

3.2 � Clinical Studies

Nabilone (1 mg) has been shown to control nausea and 
vomiting in patients receiving chemotherapy and to be 
more efficient than prochlorperazine or domperidone 
(20 mg) orally administered before and during chemo-
therapy [149]. Meiri et  al. observed that dronabinol 
(2.5 mg orally administered) showed similar efficacy to 
that of ondansetron (16 mg intravenously administered) to 
palliate nausea and vomiting caused by anticancer treat-
ments, and that the combination of both drugs did not 
result in an efficacious increase [150]. However, Lane and 
co-workers indicated that the combination of dronabinol 
and prochlorperazine (10 mg every 6 h) was more effi-
cient than either of the single drugs in diminishing these 
side effects, and moderated the severity and duration of 
the episodes. Some adverse reactions were detected in the 
dronabinol-treated group, although the combination with 
prochlorperazine lessened their frequency, suggesting that 
they could become a good combination therapy to treat 
these negative reactions to chemotherapy [151] (Table 6).

Some studies have also been performed with paediatric 
oncology patients (Table 7). Abrahamov et al. reported 
that Δ8-THC, a plant cannabinoid with lower psychoac-
tive activity than Δ9-THC, orally administered (18 mg/
m2) 2 h before chemotherapy and continued every 6 h for 
24 h, prevented vomiting in children (eight patients aged 
3–13 years) with several blood cancers (acute lymphoblas-
tic leukaemia, Hodgkin’s lymphoma and Burkitt’s lym-
phoma). No major adverse effects were observed, and only 
two children exhibited irritability and increased euphoria, 
reactions that are difficult to evaluate in paediatrics [152].

Dronabinol (orally administered at doses mainly of 
2.5 mg/m2 every 6 h as needed and always lower than 
5 mg/m2) also proved useful as an antiemetic agent in 
children (aged ≤ 18 years) with several cancers (mainly 
leukaemia and sarcoma) who were receiving moderate- 
and high-risk chemotherapy in 95% of the cases. Although 

60% of the patients experienced a good response rate to 
this cannabinoid (0–1 emesis events), which suggests its 
potential use in treating chemotherapy-induced nausea and 
vomiting, the authors have insisted on the need for further 
studies using patients as their own controls to truly estab-
lish the role of dronabinol [153].

A recent study conducted in children (aged ≤ 18 years) 
with various cancers (including leukaemia, lymphomas, 
brain carcinomas and other solid tumours) demonstrated 
the poor effect of nabilone (orally administered) in combi-
nation with several antiemetic regimens in treating chem-
otherapy-induced vomiting. Notwithstanding, these differ-
ences in the efficacy of cannabinoids could be attributed to 
chemotherapy programmes. The common adverse effects 
of cannabinoids (relaxation, dizziness and euphoria) were 
also noted in patients receiving nabilone [154].

Finally, it is important to mention that the antiemetic 
efficacy of cannabinoids has also been examined in treat-
ing postoperative nausea and vomiting, and judged as 
ineffective. Kleine-Brueggeney and co-workers reported 
that the intravenous administration of Δ9-THC (0.125 mg/
kg) after surgery showed low antiemetic efficacy and, to 
the contrary, patients experienced relevant psychotropic 
side effects, which is unacceptable in the risk-benefit ratio 
[155]. Consequently, the use of CB2-selective compounds 
would probably have a better side-effect profile.

In conclusion, Δ9-THC-related compounds show a clear 
usefulness in the treatment of chemotherapy-induced nausea 
and vomiting. In fact, nabilone capsules are approved for this 
purpose in several countries (Table 1). They may also be 
beneficial in the paediatric oncology population, where no 
serious adverse effects were detected. However, additional 
studies are probably required in this respect.

4 � Cannabinoids as Analgesics

4.1 � Preclinical Studies

The ECS appears to be involved in pain and is expressed 
in the areas responsible for pain control, and endocannabi-
noids have in fact been postulated as pain modulators. In this 
regard, the exogenous administration of endocannabinoids 
has been shown to decrease painful episodes. For instance, 
in rodent models with both inflammatory and neuropathic 
pain, the two major endocannabinoids, AEA and 2-AG, dis-
played analgesic activity. In the case of AEA, this effect 
involved CB1 and/or TPRV-1 receptors [156–158]. The 
increase of endogenous endocannabinoid levels (via FAAH 
and MAGL inhibition) also showed an analgesic effect. For 
example, Lichtman et al. described that the previous admin-
istration of FAAH inhibitors (10 mg/kg intravenously) pro-
moted AEA (50 mg/kg intraperitoneally)-induced analgesia 
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in mouse models with inflammatory pain [159]. Similar 
results were later reported by Jayamanne et al., who showed 
that the systemic administration of FAAH inhibitors in rats 
reduced allodynia and thermal hyperalgesia in an inflamma-
tory model, but not neuropathic pain. The co-administration 
of CB1 and CB2 antagonists lowered these effects, suggest-
ing the role of these receptors in analgesic activity [160].

Some authors have also observed that, in inflammatory 
pain models, peroxisome proliferator-activated receptor-α 
blocked the analgesia induced by FAAH inhibitors, suggest-
ing their contribution [161, 162]. Spradley and co-workers 
evidenced that the peripheral inhibition of MAGL and 
FAAH enzymes in rats lessened the pain induced by capsai-
cin. While the effect of MAGL inhibitors was mediated by 
both CB1 and CB2 receptors, the activity of FAAH inhibitors 
was blocked by CB1 antagonists [163]. In another rat model 
of inflammatory pain (formalin-induced damage), similar 
results were also found by Guindon et al., who demonstrated 
that MAGL inhibition produced analgesia in CB1 and CB2 
receptors in a dependent manner [164].

Although Jayamanne and co-workers did not note anal-
gesic activity in neuropathic pain models, opposite results 
have been published by other authors. For instance, Chang 
et al. reported that FAAH inhibitors had an analgesic effect 
in both inflammatory and neuropathic models of pain, in a 
mechanism that also involved opioid receptors [165]. Simi-
lar results were presented by Jhaveri and co-workers in rats 
[166]. Woodhams and collaborators added that MAGL inhi-
bition also had anti-nociceptive activity at the level of the 
spinal cord in rats [167]. Finally, Clapper and co-workers 
described that the rise of AEA levels via FAAH inhibition 
participated in pain initiation with the involvement of CB1 
receptors [168].

4.2 � Clinical Studies

The results obtained in the aforementioned pre-clinical stud-
ies suggest that the ECS plays a role in pain modulation, and 
show the therapeutic potential of cannabinoids as analge-
sics for the treatment of both inflammatory and neuropathic 
pain. As a result, clinical research is ongoing in this field 
(Tables 8, 9, 10).

The oral administration of Δ9-THC (2.2–10 mg/day) 
reduced pain in patients with spinal cord injury and MS 
[169, 170]. Lower doses of nabilone (1  mg/day) also 
achieved pain relief in patients with chronic upper motor 
neuron syndrome [171] and in patients with diabetic periph-
eral neuropathy [172].

The sublingual administration of Δ9-THC/CBD spray 
(in a range of doses between 2.5 and 120 mg/day) effected 
analgesic activity in patients experiencing neuropathic pain 
of many origins (e.g. spinal cord injury, brachial plexus 

damage, limb amputation, post-herpetic neuralgia, rheuma-
toid arthritis and complex regional pain syndrome).

Δ9-THC- and CBD-enriched extracts also relieved pain. 
However, some adverse effects were detected in cannabis-
treated patients, including nervous system disorders, psychi-
atric effects and gastrointestinal symptoms, which are typical 
of cannabinoids. Moreover, in some patients receiving Δ9-
THC-enriched extracts, transient hypotension and intoxica-
tion with rapid initial dosing were observed [173–177].

Recently, an observational study in patients using 
Trokies® lozenges (containing C. sativa extracts for buccal 
delivery of cannabinoids) for 1–12 weeks indicated satis-
factory pain relief (self-reported) in 90% of the patients. 
Some adverse events were observed, including dizziness, 
dry mouth, throat irritation and unsteadiness, but none were 
serious [178]. Ajulemic acid (CT-3), a synthetic analogue 
of a metabolite of Δ9-THC, orally administered for 7 days 
(at doses of 40 mg/day for the first 4 days and 80 mg/day 
for the following 3 days) also lowered pain in patients with 
neuropathic pain compared with placebo, without major 
adverse effects (in some patients dry mouth and tiredness 
were noted) [179].

‘Smoked’ cannabis has also been shown to improve 
pain. Cigarettes containing 3.56% of Δ9-THC were efficient 
in relieving pain associated with sensory neuropathy in 
patients with human immunodeficiency virus, with a good 
safety profile [180], and this has been corroborated by other 
authors. Ellis and co-workers, using cigarettes with a Δ9-
THC content in the range of 1–8%, also evidenced pain relief 
in distal sensory predominant polyneuropathy, associated 
with human immunodeficiency virus [181]. These cannabis 
formulations also reduced neuropathic pain in patients with 
spinal cord injury, peripheral neuropathy, complex regional 
pain syndrome and nerve injury, among others.

Interestingly, cigarettes with a low (3.5%) and high (7%) 
content of Δ9-THC exhibited similar efficacy [182]. Lower 
doses (1.29% of Δ9-THC) were also efficient, duplicating 
a similar analgesic effect as the formulation with a 3.5% 
content [183]. However, in patients with post-traumatic and 
post-surgical neuropathy, opposite results were found, and 
cigarettes with a Δ9-THC content lower than 9.4% did not 
produce significant pain amelioration [184]. In patients with 
diabetic peripheral neuropathy, dose-dependent analgesic 
activity was reported with cigarettes containing 1.4% and 
7% of Δ9-THC [185]. These results suggest that the required 
dose might depend on pain origin.

It could also be influenced by the inconsistent bioavail-
ability of cannabinoids. Vaporised cannabis extracts con-
taining Δ9-THC and both Δ9-THC/CBD (ratio 1:1) have 
also been tested in cancer pain that did not respond to opi-
oid treatments. While in the Δ9-THC- and CBD-treated 
group, significant improvement in pain intensity was 
measured compared with placebo, in the Δ9-THC group, 
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non-significant values were obtained. These data imply that 
CBD could improve the analgesic efficacy of Δ9-THC [186].

Reports indicate that CBD exerts an inverse agonism in 
CB2 receptors and this may be responsible for the analge-
sic efficacy of CND. Nevertheless, a small study of pain in 
patients with cancer noted that the sublingual administra-
tion of C. sativa extracts with a similar content of Δ9-THC 
and CBD did not result in significant differences in pain 
compared with placebo. In the responder group, a two-
fold higher decrease was reported in cannabinoid-treated 
patients, but without significance. A larger study is prob-
ably necessary [187].

Interestingly, the analgesic activity of cannabinoids as 
add-on therapy has also been evaluated. To this end, the 
administration of vaporised cannabis (cigarettes contain-
ing 3.56% of Δ9-THC) lowered pain (around 27%) in opi-
oid (morphine or oxycodone)-treated patients with several 
pathologies (arthrosis, peripheral neuropathy, musculoskel-
etal pain, fibromyalgia, migraine, cancer and MS). Morphine 
and oxycodone plasma concentrations remained unaltered 
[188].

Similar results were produced with dronabinol, orally 
administered (5–60 mg/day), in patients with cancer receiv-
ing opioid therapy (morphine, oxycodone, hydrocodone or 
hydromorphone). This cannabinoid appeared to decrease 
pain intensity and to improve overall patient satisfaction 
[189].

These results suggest that cannabinoids could be a good 
alternative as add-on therapy with opioids and might reduce 
the required doses of opioids and thus diminish their adverse 
effects. Finally, nabilone (oral administration of 2 mg/day) 
was also useful as an analgesic in gabapentin-treated patients 
with relapsing-remitting MS, reducing pain intensity (using 
a visual analogue score) [190]. Despite the published find-
ings in animal models, the FAAH inhibitor PF-04457845 
(4 mg orally administered) demonstrated a lack of analgesic 
activity in patients with osteoarthritis of the knee [191], but 
these effects could be attributed to the differences between 
species, necessitating further studies.

Finally, regarding the safety profile of cannabinoids, they 
were well tolerated in general, although most clinical studies 
in cannabinoid-treated patients have observed some adverse 
effects, typically related to cannabis consumption (e.g. som-
nolence, dizziness and gastrointestinal, drowsiness and psy-
chedelic symptoms). The majority were classified as mild to 
moderate, but some patients experienced limited toxicities.

In conclusion, cannabinoids, especially Δ9-THC- and Δ9-
THC/CBD-containing formulations, show clear utility in the 
treatment of neuropathic pain. In this way, nabilone capsules 
are approved (in Canada) as an analgesic (Table 1). Dronabi-
nol is currently being evaluated as an analgesic in patients 
with bone metastases from breast cancer (early phase I 

study; NCT03661892) and as add-on therapy in patients 
with chronic pain who are taking opioids (NCT00153192).

5 � Cannabinoids and Psychiatric Disorders

5.1 � Post‑Traumatic Stress Disorder

5.1.1 � Preclinical Studies

Burstein et al. recently reported in a rat model of post-trau-
matic stress disorder (PTSD) that cannabinoids (specifically 
WIN55, 212-2) and FAAH inhibitors (URB597), intraperi-
toneally administered, prevented alterations (including 
social recognition memory, passive coping, anhedonia, fear 
retrieval and anxiety-like behaviour) induced by shock and 
situational reminders. Both agents also improved depres-
sion-like symptoms. These actions involved alterations in 
brain-derived neurotrophic levels, which are known to be 
related to these disorders [192] and whose levels were meas-
ured as lowered after cannabinoid treatments [193].

These results are in agreement with other studies, rein-
forcing the possible use of cannabinoids for coping with 
PTSD symptoms [194, 195]. Δ9-THC alone or in combina-
tion with CBD could also be beneficial because it displayed 
mitigation of dysfunctional aversive memory in rat models 
[196].

5.1.2 � Clinical Studies

Studies have shown a high prevalence of cannabis use in 
patients with PTSD, suggesting that cannabinoids could 
improve PTSD symptoms [197]. Moreover, Hill et  al. 
recently indicated that an endocannabinoid deficiency state 
may imply more stress susceptibility and predisposition 
to the development of psychopathology associated with 
a trauma. This may be the biological explanation of why 
patients with PTSD use cannabis for coping with fear [198].

Fraser reported that the oral administration of nabilone 
before bedtime produced a total cessation or an improve-
ment in nightmare severity in 72% of patients (male and 
female) with PTSD [199]. This was supported by Jetly et al. 
who emphasised the utility of nabilone in treating night-
mares in a double-blind placebo-controlled trial in male 
military patients with PTSD in which conventional therapy 
was inefficient [200]. However, in the latest study, the doses 
necessary to achieve this effect were higher, which could 
be attributed to a difference in the severity of symptoms 
(probably higher in military patients) or to the sex of the 
patients (Table 11).

To recapitulate, cannabis extract could be useful in 
decreasing and palliating PTSD symptoms. Currently, in 
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several states in USA, medical cannabis is approved for these 
purposes, but additional studies are required.

5.2 � Tourette Syndrome

The potential use of cannabinoids in Tourette syndrome (TS) 
was suggested for the first time at the end of the 1980s, when 
a case report study evidenced that smoking cannabis was 
efficient in treating tics and behavioural symptoms in male 
patients with this disorder [201]. Some years later, Hemming 
and Yellowlees supported this with the account of the cessation 
for more than 1 year of symptoms in a woman with TS who 
smoked cannabis every night [202]. In general, numerous users 
of cannabis with TS have noted an improvement in symptoms.

The oral administration of cannabinoids has also proved 
useful. The oral administration of Δ9-THC reduced tics in 
a patient with severe TS [203]. A double-blind placebo-
controlled trial reported that a single oral dose of Δ9-THC 
(5–10 mg) significantly reduced tics and obsessive-com-
pulsive behaviour [204]. Finally, a case report has shown 
that the administration of two puffs of the Δ9-THC/CBD 

oromucosal spray twice daily reduced the frequency and the 
severity of motor and vocal tics in a 26-year-old man with 
resistant TS [205] (Table 11).

The therapeutic use of cannabinoids in this disorder is 
not yet well confirmed and is under research. In fact, sev-
eral clinical studies are ongoing with (1) Δ9-THC/CBD 
oromucosal spray (NCT03087201), (2) vaporised medi-
cal cannabis with different Δ9-THC and CBD content 
(NCT03247244) and (3) dronabinol and palmitoylethan-
olamide (NCT03066193, NCT03651726).

5.3 � Anxiety Disorders

Cannabinoids have shown potential benefit in anxiolytic 
disorders. Cannabidiol (300 mg) has exhibited anxiolytic 
properties in healthy volunteers submitted to a stressful situ-
ation, specifically in the case of a simulated public speech. 
Cannabidiol only decreased anxiety after speaking, and 
was evaluated using the Visual Analogue Mood Scale and 
the State-trait Anxiety Inventory, while diazepam (10 mg) 

Table 7   Studies undertaken in paediatric oncology patients to evaluate the efficacy of cannabinoids in treating chemotherapy-induced nausea 
and vomiting

THC tetrahydrocannabinol

Cannabinoid-based 
treatments

Study type Administration 
route/dosage form 
and dose of can-
nabinoids

Anti-emetic drugs Administration 
schedule

Tolerability/efficacy References

Δ8-THC Interventional (open 
label)

Oral route/solution/
dose of Δ8-THC

Metoclopramide 
(0.3 mg/kg)

2 h before and every 
6 h (for 24 h) after 
chemotherapy 
cycles

Δ8-THC reported 
to block com-
pletely the 
emesis-induced 
by chemotherapy, 
being more 
efficient than 
metoclopramide. 
Δ8-THC dem-
onstrated a good 
safety profile

[152]

Dronabinol Observational (ret-
rospective)

Oral route/ 
2.5–5 mg/m2 of 
dronabinol

– Every 6 h as needed Patients showed, 
in general, good 
response rates to 
dronabinol

[153]

Nabilone in combi-
nation with 5-HT3 
antagonists

Observational (ret-
rospective)

Oral route 5-HT3 antagonists Starting the first 
chemotherapy 
cycle and stopping 
24 h after the last 
cycle

Nausea and vomit-
ing control in 
nabilone-treated 
patients were 
poor. Some 
adverse effects 
(mild to moderate 
in severity) were 
detected in 34% of 
children receiving 
cannabis (e.g. 
sedation, dizziness 
and euphoria)

[154]
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reduced anxiety before and after the speech [206]. These 
data were supported by Bergamaschi et al. who showed that 
pre-treatment with CBD (at doses of 600 mg) significantly 
decreased anxiety, discomfort and cognitive impairment 
during a speech [207]. This cannabinoid was also efficient 
in patients with social anxiety disorder, where a significant 
decline in anxiety was detected [208].

However, in a controlled study performed with volunteers, 
Δ9-THC (10 mg orally administered) augmented anxiety com-
pared with placebo. Some adverse events, including sedation 
and psychotropic symptoms, were reported in the Δ9-THC-
treated group. In the same study, CBD demonstrated anxio-
lytic activity. The difference between both cannabinoids could 
be attributed to their effect in different areas of the brain, 
and the activation of limbic and paralimbic regions by CBD 
appeared to be responsible for its anxiolytic action [209]. 
However, the therapeutic potential of CBD as an anxiolytic is 
not well confirmed and further studies are required, especially 
in patients with real anxiety disorders and not in volunteers.

6 � Cannabinoids as Anti‑Tumour Drugs

The aberrant expression of the ECS in cancer indicates that 
it may be a potential target for anticancer treatments [210]. 
In fact, numerous cannabinoid compounds have been proven 
to inhibit the growth of a great number of tumours, both 
in vitro and in vivo, and cannabinoid receptors mediate part 
of these effects.

6.1 � Brain Cancer

In the 2000s, the work of the Guzman group in gliomas 
(reviewed in [211]) reported the wide application of can-
nabinoids as anticancer treatments in these neoplasms. 
Recent studies have demonstrated that CB1 receptors are 
overexpressed in glioblastomas [212] and also in paediatric 
low-grade gliomas, where higher levels have been related to 
tumour involution, as a result of apoptosis generation and 
cell-cycle arrest, induced by the activation of these receptors 
[213]. CB2 receptors are also highly expressed in glioblas-
tomas and astrocytomas and related to tumour grade [212, 
214–216].

With respect to endocannabinoids, while some authors 
have observed that AEA levels are lower in gliomas, com-
pared with non-tumour tissue [212, 217], others have 
detected higher levels of this endocannabinoid in gliomas 
and also in meningiomas [218]. Regarding 2-AG levels, they 
were up-regulated in both brain tumours [212, 218].

Finally, cannabinoids have shown anti-tumour activity 
in brain cancer. Several authors have recorded that AEA 
inhibited in-vitro proliferation of several glioma cells (U87, 

U251, C6 and H4) via apoptosis induction [219–221]. It also 
decreased the migration and invasion of these cells [222, 
223]. In addition to AEA, 2-AG and other endocannabinoids 
reduced the proliferation of C6 glioma cells [224] and these 
effects were mediated via cannabinoid receptors [225]. Can-
nabidiol and Δ9-THC, administered alone or in combination, 
have also displayed an anti-proliferative effect on several 
glioma cell lines, inducing apoptosis, with the participation 
of CB2 receptors [226, 227].

6.2 � Breast Cancer

The expression of the ECS has also been reported as altered 
in breast cancer, with CB2 receptors overexpressed. In fact, 
it has been determined that more than 90% of HER-2 posi-
tive tumours have this overexpressed cannabinoid receptor 
[228] and this is related to a poor prognosis, probably owing 
to the activation of HER2 pro-oncogenic pathways [229]. 
Other studies associate the CB2 receptor overexpression 
with major recurrence-free survival in patients with both 
oestrogen-receptor positive and negative mammary tumours.

AEA, 2-AG and other minor endocannabinoids applied 
in vitro have inhibited the proliferation of breast cancer cells, 
via CB1 receptors [230, 231]. Several phytocannabinoids 
(including Δ9-THC and CBD) and synthetic cannabinoids 
(such as WIN-55,212-2 and JWH-133) have also exhibited 
anti-proliferative activity in a cannabinoid receptor-depend-
ent manner [232, 233].

The ECS plays a role in the anti-migration and anti-inva-
sion influence of some cannabinoids. This occurs because 
CB2 receptors mediate the inhibition of the invasive capacity 
in several breast cancer cells induced by Δ9-THC, owing to a 
decrease of the activity of metalloproteinase-2 [228]. How-
ever, the anti-invasive properties of the AEA analogue meth-
anandamide involve CB1 receptors [234]. Last, the additive 
potential of cannabinoids combined with other anti-tumour 
drugs (including tamoxifen and cisplatin) has been proposed 
in the treatment of breast carcinomas [235].

6.3 � Prostate Cancer

The expression of both CB1 and CB2 receptors is heightened 
as compared with normal prostatic tissue [236, 237], and the 
overexpression of CB1 receptors has been associated with a 
major Gleason score and metastasis incidence, serving as 
a negative marker for the outcome in prostate cancer [238, 
239]. Sundry studies have evidenced the anti-proliferative 
activity of cannabinoids in prostate tumours. Anandamide 
inhibits the proliferation of cells (PC-3, DU-145 and LNCaP) 
[240, 241] and primary cultures of prostate carcinoma [237] 
via CB1 receptors. However, the anti-proliferative activity of 
CBD and Δ9-THC does not involve cannabinoid receptors.
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The invasion of prostate cancer cells is also decreased 
by endocannabinoids. In fact, 2-AG has been postulated as 
a potential inhibitor of androgen prostate tumour invasion, 
with the involvement of CB1 receptors [242]. Noladin ether 
also exerted an anti-invasive effect in this type of cancer 
[243]. Finally, the increase of endogenous 2-AG levels via 
MAGL inhibition also interfered with cancer progression. 
Nomura and co-workers described that MAGL inhibitors 
lowered the invasive capacity of prostate carcinomas and 
that this effect was partially reversed by the blockage of CB1 
receptors [244]. The disruption of MAGL activity also hin-
dered epithelial growth factor-receptor expression, reducing 
the proliferation induced by epithelial growth factor [245].

6.4 � Other Carcinomas

Although brain, breast and prostate are probably the most 
researched cancers relating to cannabinoids, these com-
pounds have demonstrated anticancer activity in other types 
of tumours such as in lung carcinomas, where it was reported 
for the first time in 1975 the ability of several cannabinoids 
(including Δ9-THC) to inhibit tumour growth. Cannabidiol, 
JWH-133 and WIN-55,512-22 also impede the proliferation 
of lung cancer cells [246].

In hepatocarcinoma, both CB1 and CB2 receptors were 
also found overexpressed compared with healthy liver (3.07- 
and 5.44-fold respectively) [247] and this overexpression 
has been associated with better free-survival rates [248]. 
Anandamide also exerted anti-proliferative activity in these 
tumours in a cannabinoid-receptor independent manner 
[249, 250]. However, the cytotoxic effect of Δ9-THC and 
the synthetic cannabinoids WIN-55,512-22 and JWH-133 
was mediated by CB2 receptors [251–253]. Finally, both CB1 
and CB2 agonists have been shown to hinder the invasion of 
hepatocarcinoma cells, down-regulating the expression of 
the metalloproteinases MMP-2 and MMP-9 [254].

The aforementioned studies suggest the participation 
of the ECS in cancer disease and the potential anti-tumour 
activity of cannabinoids, perhaps as combined therapy with 
other antitumor drugs. However, the possible use of can-
nabinoids as chemotherapy is not as clear and depends on 
cancer type. Among all cannabinoids, Δ9-THC and CBD 
appear to be the most promising. The combination of sev-
eral cannabinoids could also be beneficial, owing to their 
entourage effect.

Among all cancers, brain and breast carcinomas are where 
they have the most promising application, and it is true that 
these are probably the most analysed. In this respect, it is 
important to highlight that clinical studies have already been 
undertaken. In fact, a pilot clinical analysis in patients with 
glioblastoma multiforme noted the ability of Δ9-THC, intra-
tumourally administered, to reduce tumour growth and at 
the same time maintain a safe profile [255]. Currently, two 

clinical trials are being carried out to determine the efficacy 
and safety of Δ9-THC/CBD in combination with temozo-
lomide, in these tumours (NCT03529448, NCT01812603) 
[256]. In addition, another clinical study is now being con-
ducted with CBD (in combination with chemotherapy) in 
the treatment of glioblastoma, myeloma and gastrointestinal 
carcinomas (NCT03607643) [257].

7 � Cannabinoids and Addiction Treatments

The role of the ECS in addictions has also been examined, 
and cannabinoids have been postulated as alternative and 
co-adjuvant treatments in some abuse syndromes, mainly in 
ethanol and opioid abuses. A relationship between ethanol 
tolerance and dependence and the ECS was reported for the 
first time in the 1990s when Basavarajappa and co-workers 
demonstrated that long-term ethanol consumption decreased 
the expression of CB1 receptors in the CNS [258]. Since 
then, other authors have also published similar results [259, 
260] and have indicated that CB1 blockage might be a good 
strategy in treating alcoholism [261–263].

Nevertheless, Rubio and co-workers have suggested that 
the inactivation of these receptors might be detrimental in 
ethanol withdrawal [264]. Interestingly, Hungund and Basa-
varajappa showed that CB1 receptors might also be involved 
in voluntary ethanol intake [265] as an AEA transporter 
whose inhibition reduces the self-administration of ethanol 
[266].

In fact, the genetic deletion of CB1 and the FAAH 
enzyme in mice interfered in voluntary ethanol consump-
tion, decreasing and increasing the intake, respectively 
[267–271]. Ortega-Álvaro et al. also evidenced that CB2 
receptor deletion enhanced the preference and vulner-
ability for alcohol intake, probably owing to an increase 
of tyrosine hydroxylase and µ-opioid receptor sensitivity 
induced by ethanol [272].

Regarding endocannabinoid levels after alcohol intake, 
conflicting results have been recorded. While, in certain 
areas of the brain, short-term exposure reduced both AEA 
and 2-AG levels (associated with a reduction of glutamate 
release) [273, 274], long-term consumption provoked an 
increase of endocannabinoid levels [275, 276].

Finally, studies in animal models treated with cannabi-
noid receptor agonists (WIN 55,212-2 and CP55-940) have 
described an increase of ethanol intake, probably owing 
to the enhancement, in part, of CB1 receptors [277–280]. 
With regard to CBD, it has shown an ability to prevent eth-
anol-induced brain injury, as a result of its neuroprotective 
properties [281, 282], and to reduce ethanol-reinforcing 
properties in mice.

Some clinical studies to evaluate the effect of cannabi-
noids in alcoholism treatment have also been performed. 
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The daily administration of rimonabant (20 mg/day for 
2 weeks) was ineffective in reducing ethanol consumption 
[283–285] probably because of only a partial blockage of 
CB1 receptors. Nevertheless, smoking cannabis decreased 
voluntary alcohol intake faster than in the case of cannabis 
non-users [286].

As we have mentioned previously, the combination of 
cannabinoids with opioids could be a good alternative to 
reduce antinociceptive doses and side effects associated 
with opioids. Some authors have associated cannabinoids 
with opioid drug reinforcement.

On the one hand, Solinas and co-workers described 
how CB1 receptor agonists (specifically Δ9-THC and 
WIN 55,212-2) increased heroin reinforcement, probably 
because of an interaction of CB1 and µ-opioid receptors in 
heroin-seeking rat models [287]. On the other hand, stud-
ies in monkeys have reported that the repeated administra-
tion of Δ9-THC not only did not enhance heroin reinforce-
ment, but probably also decreased it [288, 289].

Other authors have also noted the involvement of 
CB1 in opioid (morphine and heroin)-seeking properties 
[290–292]. Cannabidiol and inhibitors of AEA transport 
and the FAAH enzyme did not exhibit reinforcing prop-
erties and reduced morphine and heroin reinforcement, 
respectively [287, 293]. The dual inhibition of the FAAH 
and MAGL enzymes also lowered heroin-seeking behav-
iour [294]. Finally, the regular use of cannabis (mainly due 
to Δ9-THC) during adolescence has been related to higher 
vulnerability to drug relapse [295] and, during opioid 
addiction treatment, to an increase in withdrawal duration 
and craving symptoms [296].

8 � Cannabinoids and Retinal Diseases

The expression of the ECS in the eye suggests that it could 
be a potential therapeutic target for eye diseases. The lower 
intraocular pressure (IOP) of frequent cannabis users has led 
to the evaluation of cannabinoids as potential anti-glaucoma 
drugs [297]. In fact, it has been found that the activation 
of CB1 receptors by WIN 55,212-2, topically adminis-
tered, reduced IOP values rapidly [298–300]. Nevertheless, 
HU-308 (an agonist of CB2 receptors) did not have the same 
effect, indicating the involvement of CB1 receptors, but not 
CB2, in the control of IOP [301]. The oral administration of 
synthetic Δ9-THC also lowered ocular tension in patients. 
However, when it is administered topically, IOP decrease 
was achieved in animal models of glaucoma, but not in 
human patients [302].

As well as this, cannabinoids have also displayed a neuro-
protectant effect in glaucoma, preventing retinal cell death. 
In animal models, Δ9-THC has been shown not only to 
lower IOP, but also to moderate (by approximately 20%) the 

death of retinal ganglion cells [303]. Cannabidiol and WIN 
55,212-2 have also exhibited neuroprotectant activity [304, 
305]. Last, the inhibition of FAAH by URB597 also induced 
retinal ganglion cell neuroprotection, in a mechanism that 
involves CB1 receptors [306]. Consequently, some cannabi-
noids appear to lower IOP values, and could be useful in the 
treatment of eye pathologies with high IOP, although this is 
not completely clear, and further studies are required.

9 � Side Effects and Cannabis Addiction

Despite the therapeutic potential of cannabinoids in a great 
number of disorders, as we have already explained, the 
psychotropic side effects related to cannabis consumption, 
including euphoria and relaxation initially, and psychosis, 
hallucinations and depression later (Fig. 4) may limit their 
clinical use. Although a significantly higher adverse event 
rate has been detected in cannabis-treated patients compared 
with placebo groups, most clinical studies do not document 
serious events, and the side effects have been classified as 
low to moderate in severity, the most frequent being diz-
ziness, dry mouth, gastrointestinal disorders and tiredness. 
Interestingly, no major differences have been found in the 
incidence and type of side effects detected among the users 
of cannabis vs. isolated cannabinoids and, for the most part, 
the studies report similar safety profiles [307].

Finally, it is important to emphasise that, owing to its 
ability to activate the reward system, cannabis consump-
tion is potentially addictive and long-term use produces 
tolerance and dependence. Nevertheless, cannabis with-
drawal symptoms are not as severe as with other recrea-
tional drugs such as alcohol or cocaine, and they are char-
acterised by diarrhoea, insomnia, hyperhidrosis, heart rate 
alterations and irritability, among others [308–311].

10 � Cannabinoid and Administration Routes

In most clinical trials, cannabinoids are administered 
orally (using capsules and oil solution as dosage forms) 
and, despite the fact that this route is the preferred method, 
it has some limitations. Cannabinoid bioavailability via 
this route is low (6–13%) and erratic, as a result of the 
first stage of metabolism. Moreover, in the liver, Δ9-THC 
is transformed into 11-hydroxy-Δ9-THC, which displays 
even more psychoactive activity than Δ9-THC and triggers 
more undesirable effects. This erratic bioavailability could 
explain the differences between cannabinoid sensitivity 
(with respect to adverse effects) and efficacy. Oromucosal 
administration could be an alternative. By this route, the 
first stage of metabolism is avoided, and bioavailability is 
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slightly increased (10–25%). In general, in MS, it is the 
most evaluated route.

In the case of the inhaled route, cannabinoids exhibit 
greater and highly erratic bioavailability (2–56%), with a 
rapid onset of action. For instance, it could be useful in 
pain treatment, and preferable to the oral route. In fact, 
only clinical trials for the treatment of neuropathic pain 
evaluate this route, using, in general, cannabis cigarettes as 
the method of administration. However, vaporised devices 
would probably be preferable because of the adverse 
effects associated with smoking.

11 � Conclusions

The expression of the ECS has been reported to be altered 
in several pathologies, and it may become a potential 
‘new’ therapeutic target for the treatment of these disor-
ders. For example, in several neurological conditions, such 
as MS, PD and HD, an increased expression of CB2 recep-
tors (barely expressed in healthy CNS) has been detected, 
indicating that they may participate in disease progression. 
The expression of CB1 receptors has been found lowered 
or up-regulated, depending on pathology origin, but also 
altered in most cases. In tumours, an aberrant expression 
of cannabinoid receptors has also been documented and 
associated with poor disease prognosis in most carcino-
mas (e.g. breast, prostate and brain tumours). With respect 
to endocannabinoids, levels of AEA and/or 2-AG have 
been shown to be augmented, probably owing to a dimin-
ished expression and/or the activity of FAAH and MAGL 
enzymes, suggesting a protective role of endogenous can-
nabinoids in these disorders. In fact, the increase of endo-
cannabinoid levels by both their exogenous administration 
and the inhibition of endogenous cannabinoid degradation 

pathways could be a useful strategy in the treatment of 
several pathologies, including neurodegenerative diseases, 
nausea and vomiting, pain and several carcinomas.

The truth is that cannabis has been used in therapeu-
tics since ancient times for numerous disorders, although 
its psychoactive properties, attributed mainly to Δ9-THC, 
have limited its use. Currently, the possibility of prepar-
ing standardised formulations with an adequate dose of 
Δ9-THC may overcome this limitation. Indeed, the avail-
able formulations are, in general, well tolerated and can-
nabinoids are attracting much more attention in medicine. 
Currently, some cannabis extract-based preparations, con-
taining Δ9-THC and CBD at different ratios, are also avail-
able and recommended for several disorders (vomiting and 
pain, among others).

Extensive research has been carried out with cannabi-
noids in a broad range of conditions (neurodegenerative 
diseases, cancer, psychiatric illness and neuropathic pain, 
among others) with promising results. Nevertheless, most 
of this research, such as in cancer, is still experimental, and 
clear evidence of cannabinoid therapeutic utility has only 
been established for specific compounds in specific disor-
ders. For example, Δ9-THC has demonstrated its usefulness 
for the treatment of spasticity associated with MS, the nau-
sea and vomiting induced by chemotherapy, and neuropathy. 
Furthermore, CBD, via different mechanisms of action of 
Δ9-THC, has been shown to be useful in epilepsy, especially 
in child epileptic syndromes (Lennox–Gastaut and Dravet 
syndromes). In fact, several cannabis-based medicines are 
approved for these indications.

In conclusion, cannabinoids have displayed a broad range 
of potential therapeutic benefits and, despite the psychoac-
tive effects of cannabis, the possibility of preparing stand-
ardised preparations with adequate doses makes these pro-
spective therapeutic agents. However, not all cannabinoids 

Fig. 4   Adverse effects associated with cannabis consumption
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are useful for all diseases, and more research is needed in 
this field.
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