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Time-dependent 
Schrödinger 
equation 
(Quantum Dynamics)
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Time-dependent Schrödinger's Equation

Schrödinger postulated the time-dependent equation: 

𝑖ℏ
𝛿𝛹 r, 𝑡
𝑑𝑡 = −

ℏ!

2𝑚∇! + 𝑉 r, 𝑡 𝛹 r, 𝑡

Which can be also written as:

𝑖ℏ
𝛿𝛹 r, 𝑡
𝑑𝑡 = 𝐸!𝛹 r, 𝑡

Thus,  𝐸! are eigenvalues of this equation.
It is easy to show that solutions of this equation are 
(for V const. in t):

ψ 𝑟, 𝑡 = ψ" 𝑟 e#i$! %/ℏ
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3
Time-dependent Schrödinger's Equation

Schrödinger postulated the time-dependent equation: 

𝑖ℏ
𝛿𝛹 r, 𝑡
𝑑𝑡 = −

ℏ!

2𝑚∇! + 𝑉 r, 𝑡 𝛹 r, 𝑡

It is easy to show that solutions of this equation are 
(for V const. in t):

ψ 𝑟, 𝑡 = ψ" 𝑟 e#i$! %/ℏ

ψ! is a properly normalized non-time-dependent wavefunction
ψ" 𝑟 = ei𝒌⋅𝒓

Thus:
ψ 𝑟, 𝑡 = e𝐢(𝒌⋅𝒓'(! ))/ℏ
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4
Time-dependent Schrödinger's Equation

Schrödinger postulated the time-dependent equation: 

𝑖ℏ
𝛿𝛹 r, 𝑡
𝑑𝑡 = −

ℏ!

2𝑚∇! + 𝑉 r, 𝑡 𝛹 r, 𝑡

It is easy to show that solutions of this equation are 
(V const. in t):

ψ 𝑟, 𝑡 = e𝐢(𝒌⋅𝒓'(! ))/ℏ

Schrödinger chose a specific sign (+) of the spatial part, thus it is definitely a wave 
propagating in the positive directions for all positive energies E 
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Contrast to classical wave equations

Remember the classical 3D wave equation

∇!𝜙 −
1
𝑐!
𝛿!𝜙
𝛿𝑡! −𝑐

! = 0

Were we had also general solutions in the form:

ψ 𝑟, 𝑡 = ψ- e i 𝒌⋅𝒓'. )

Note that this equation has a second derivative with respect to time,
as opposed to the first derivative in the time-dependent Schrödinger equation
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6
Relation to the t.i.S.E.

Time-dependent S.E.

𝑖ℏ
𝛿𝛹 r, 𝑡
𝑑𝑡 = −

ℏ!

2𝑚∇! + 𝑉 r, 𝑡 𝛹 r, 𝑡

It is easy to show that the solution of this equation is:
ψ 𝑟, 𝑡 = ψ" 𝑟 e#i$! %/ℏ

If we insert ψ 𝑟, 𝑡 explicitly in the S.E. above we obtain 

(if V constant in t):

− ℏ"

!+
∇! + 𝑉 r ψ" 𝑟 = 𝐸" ψ" 𝑟
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7
Relation to the t.i.S.E.

ψ 𝑟, 𝑡 = ψ" 𝑟 e#i$! %/ℏ

ψ! satisfies the time-independent S.E.:

− ℏ"

!+
∇! + 𝑉 r ψ" 𝑟 = 𝐸" ψ" 𝑟

which can be also written as:

!𝐻ψ! = 𝐸! ψ!
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8
Relation to the t.i.S.E.

ψ 𝑟, 𝑡 = ψ" 𝑟 e#i$! %/ℏ

ψ! satisfies the time-independent S.E.:

− ℏ"

!+
∇! + 𝑉 r ψ" 𝑟 = 𝐸" ψ" 𝑟

In fact, we had a solution ψ 𝑟, 𝑡 for the time-dependent 
equation where the spatial behavior of the wavefunction 
did not change its form with time.

Hence, if the spatial part of the wavefunction is ψ" steady 
in time
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9
Relation to the t.i.S.E.

ψ 𝑟, 𝑡 = ψ" 𝑟 e#i$! %/ℏ

Hence, if the spatial part of the wavefunction is ψ" steady 
in time

Still the full wavefunction, with that chose of the time 
dependent part e#i$! %/ℏ guarantees that time-independent 
and time-dependent Schrödinger equations are 
consistent.
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Stationary states

ψ 𝑟, 𝑡 = ψ" 𝑟 e#i$! %/ℏ

ψ 𝑟, 𝑡 is a stationary state, because the probability 

density  ψ$!
! is not changing with time, and ψ 𝑟, 𝑡

corresponds to a unique value for the energy 𝐸"

ψ 𝑟, 𝑡 / = ψ! 𝑟 ∗ ei(! )/ℏ ψ! 𝑟 e'i(! )/ℏ = ψ! 𝑟 / = ψ(!
/
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Time-dependent Schrödinger's Equation

𝑖ℏ
𝛿𝛹 r, 𝑡
𝑑𝑡 = −

ℏ!

2𝑚∇! + 𝑉 r, 𝑡 𝛹 r, 𝑡

Unlike the time-independent one, is not an eigenvalue equation. It 
is not an equation that only has solutions for a particular set of 
values of some parameter.

It allows us to predict the evolution in time of the system:
If we knew Ψ(r,to) for all r, we  could deduce how the 
wavefunction changes in time at every position, i.e., Ψ(r,t) at all 
times.
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Superposition Principle
If a quantum system is in one of the two states 𝑆" and 𝑆#, where 
ψ"(𝑟, 𝑡) and ψ#(𝑟, 𝑡) are the corresponding solutions of the S.E., then
the quantum system can also be in a state formed by the linear 
superposition of these states. Thus,

is also a solution of the tdSE! 

12

a1,a2 are complex
number

Ψ,-! 𝑟, 𝑡 = 𝑎,Ψ, 𝑟, 𝑡 + 𝑎!Ψ! 𝑟, 𝑡
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Superposition Principle
We have seen that the solution of the t.d.S.E. (for V const. in t) 
are:

Ψ 𝑟, 𝑡 = ψ" 𝑟 e#i$! %/ℏ

ψ! is a properly normalized time-independent wavefunction and 
Ei is the corresponding energy eigenvalue

Because of the linear superposition principle, any sum of such 
solutions is also a solution.
Let’s start by expanding the spatial solution at t=0:

13

ψ(#) =&'!
!

 ψ!(#)  
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Superposition Principle
We have seen that the solution of the t.d.S.E. (for V const. in t) 
are:

Ψ 𝑟, 𝑡 = 𝜓" 𝑟 e#i$! %/ℏ

ψ! is a properly normalized non-time-dependent wavefunction 
and Ei is the corresponding energy eigenvalue

We can now expand also time-dependent function:

14

Ψ(#, %) = ()!
!

 Ψ!(#, %) = ()!
!

 ψ!(#) e"i %! &/ℏ 
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Superposition Principle

We know this is a solution of the time-dependent Schrödinger 
equation because it is made up from a linear combination of 
solutions to the equation.
As a check, at t = 0 this correctly gives the known spatial form 
of the solution.

15

Ψ(#, %) = ()!
!

 +!(#) e"i %! &/ℏ 

Ψ(#, 0) = ()!
!

 +!(#) = +(#)  
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Expansion in the energy eigenstates

Thus, if we expand the spatial wavefunction in the energy 
eigenstates at t = 0, we have solved for the time evolution of 
the state thereafter; 
we have no further integration to do, merely a calculation of 
the sum to obtain the w.f. at each time of interest to us.

16

Ψ(#, %) = ()!
!

 Ψ!(#, t) = ()!
!

 ψ!(#) e"i %! &/ℏ 
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Time evolution of states
We can predict the evolution of a quantum mechanical state.

We take this state, we decompose it into a superposition of the 
energy eigenstates.

We add the complex exponential factors and we add up the 
result o obtain the time evolution of the w.f.

17

Ψ(#, %) = ()!
!

 ψ!(#) e"i %! &/ℏ 

Ψ(#, 0) =()!
!

 +!(#)  
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Eigenfunctions

We analyze the linear superposition of 𝜓" and 𝜓# resulting in: 

18

Ψ 𝑥, 𝑡 = =1 𝑎 sin
𝜋
a
𝑥 e#i$# %/ℏ + sin

2𝜋
a
𝑥 e#i$" %/ℏ

𝜓. 𝑥 = =2 𝑎 sin
𝑛𝜋
a
𝑥

Note that each eigenfunction is multiplied by the time-
dependent complex exponential 

And the superposition is normalized! 

e#i$! %/ℏ

0 𝑎 𝑥

V 𝑥
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eLinear superposition for an infinite potential well

linear superposition of 𝜓" and 𝜓# resulting in: 

Let’s calculate the probability density:

19

Ψ 𝑥, 𝑡 ! = ⁄, 0 sin 1
2
𝑥 ei$# %/ℏ + sin !1

2
𝑥 ei$" %/ℏ

sin 1
2
𝑥 e#i$# %/ℏ + sin !1

2
𝑥 e#i$" %/ℏ =	

sin! 𝜋
a 𝑥 + sin! 2𝜋

a 𝑥 + sin 𝜋
a 𝑥 sin 2𝜋

a 𝑥 ei($"#$#) %/ℏ+e−i($"#$#) %/ℏ

𝑎

Ψ 𝑥, 𝑡 = =1 𝑎 sin
𝜋
a
𝑥 e#i$# %/ℏ + sin

2𝜋
a
𝑥 e#i$" %/ℏ
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eLinear superposition for an infinite potential well

linear superposition of 𝜓" and 𝜓#.
Let’s calculate the probability density:

20

Ψ 𝑥, 𝑡 ! = ⁄, 0 sin!
1
2
𝑥 + ⁄, 0 sin!

!1
2
𝑥 +

+ ⁄, 0 sin
1
2
𝑥 sin !1

2
𝑥 ei($"#$#) %/ℏ+e−i($"#$#) %/ℏ

ei($"#$#) %/ℏ+e−i($"#$#) %/ℏ = 2 cos
𝐸! − 𝐸,

ℏ
𝑡

Ψ 𝑥, 𝑡 ! =

= =1 𝑎 sin!
𝜋
a
𝑥 + sin!

2𝜋
a
𝑥 + 2 cos

𝐸! − 𝐸,
ℏ

𝑡 sin
𝜋
a
𝑥 sin

2𝜋
a
𝑥
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eLinear superposition for an infinite potential well

linear superposition of 𝜓" and 𝜓#, the probability density:

Is oscillating in time at an angular frequency:

𝜔#" =
𝐸# − 𝐸"

ℏ =
3𝐸"
ℏ

The oscillating frequency depends only on the energy difference 
E2-E1, and the absolute energy origin does not matter

21

Ψ 𝑥, 𝑡 ! =

= =1 𝑎 sin!
𝜋
a
𝑥 + sin!

2𝜋
a
𝑥 + 2 cos

𝐸! − 𝐸,
ℏ

𝑡 sin
𝜋
a
𝑥 sin

2𝜋
a
𝑥
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Linear superposition for an infinite 
potential well

22

Let’s remember the single solutions 𝜓! and 𝜓":

0 a a

a

xx
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Linear superposition for an infinite 
potential well

23

a

Ψ1 𝑥, 𝑡 / = ψ1 𝑥 ∗ ei(! )/ℏ ψ1 𝑥 e'i(" )/ℏ = ψ1 𝑥 /

The probability density are 
the same, ψ" 𝑥, 𝑡 # = ψ" 𝑥 #,
do not depend on time: 
They are stationary!

The probability density for n=1

x
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Linear superposition for an infinite 
potential well

24

Ψ/ 𝑥, 𝑡 / = ψ/ 𝑥 ∗ ei(# )/ℏ ψ/ 𝑥 e'i(" )/ℏ = ψ/ 𝑥 /

The probability density are 
the same, ψ# 𝑥, 𝑡 # = ψ# 𝑥 #,
do not depend on time: 
They are stationary!

a

Similarly for for n=2

x
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eLinear superposition for an infinite potential well

linear superposition of 𝜓" and 𝜓#.
Let’s calculate the probability density:

25

Ψ 𝑥, 𝑡 ! =

= =1 𝑎 sin!
𝜋
a
𝑥 + sin!

2𝜋
a
𝑥 + 2 cos

𝐸! − 𝐸,
ℏ

𝑡 sin
𝜋
a
𝑥 sin

2𝜋
a
𝑥 =

= 𝐴 ψ, 𝑥 !+ ψ! 𝑥 ! + 2 cos
𝐸! − 𝐸,

ℏ
𝑡 ψ, 𝑥 ψ! 𝑥

𝜓$ 𝑥 = 52 𝑎 sin
𝑛𝜋
a 𝑥
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eLinear superposition for an infinite potential well

linear superposition of 𝜓" and 𝜓#.
Let’s calculate the probability density:

26

Ψ 𝑥, 𝑡 ! = 𝐴 ψ, 𝑥 !+ ψ! 𝑥 ! + 2 cos
𝐸! − 𝐸,

ℏ
𝑡 ψ, 𝑥 ψ! 𝑥

ax0

Ψ 𝑥, 𝑡 !
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eLinear superposition for the harmonic oscillator

Generally, a linear superposition of two energy eigenstates 𝜓)
and 𝜓*, with energy 𝐸) and 𝐸* gives a probability density that 
oscillates at the angular frequency 

𝜔)* =
𝐸) − 𝐸*

ℏ

Hence, if we have a superposition wavefunction

Ψ05 𝑥, 𝑡 = 𝐶0 𝜓0 𝑥 e#i$$ %/ℏ + 𝐶5 𝜓5 𝑥 e#i$% %/ℏ

The probability density will be:

Ψ 𝑥, 𝑡 ! = ⋯

27
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eLinear superposition for the harmonic oscillator

Hence, if we have a superposition wavefunction

Ψ05 𝑥, 𝑡 = 𝐶0 𝜓0 𝑥 e#i$$ %/ℏ + 𝐶5 𝜓5 𝑥 e#i$% %/ℏ

The probability density will be:

Ψ 𝑥, 𝑡 !

= 𝐶0 ! 𝜓0 𝑥 ! + 𝐶5 ! 𝜓5 𝑥 !

+ 2 𝐶0∗𝜓0
∗(𝑥)𝐶5𝜓5 𝑥 cos

𝐸0 − 𝐸5
ℏ

𝑡 − Θ05

Where										Θ05=arg(𝐶0𝜓0 𝑥 𝐶5∗𝜓5
∗(𝑥))

28



M
a

te
ria

ls 
Sc

ie
nc

eLinear superposition for the harmonic oscillator

Let’s remember the 𝜓+ and 𝜓" for the harmonic oscillator

29

ωℏ/2

3ωℏ/2

𝐸𝑛𝑒𝑟𝑔𝑦
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eLinear superposition for the harmonic oscillator

Let’s remember the 𝜓+ for the harmonic oscillator

The w.f. adding the
time dependent factor:

The probability density
is still the same

30

ωℏ/2

3ωℏ/2

𝐸𝑛𝑒𝑟𝑔𝑦

Ψ7 𝑥, 𝑡 = 𝜓7 𝑥 e#i$& %/ℏ

Ψ7 𝑥, 𝑡 ! = ψ7 𝑥 !
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eLinear superposition for the harmonic oscillator

Let’s remember the 𝜓+ for the harmonic oscillator

The w.f. adding the
time dependent factor:

The probability density
is still the same

31

ωℏ/2

3ωℏ/2

𝐸𝑛𝑒𝑟𝑔𝑦

Ψ, 𝑥, 𝑡 = 𝜓, 𝑥 e#i$# %/ℏ

Ψ, 𝑥, 𝑡 ! = ψ, 𝑥 !
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eLinear superposition for the harmonic oscillator

A superposition of 𝜓+ and 𝜓" will get a probability density 
oscillating at the angular frequency 

𝜔 =
𝐸" − 𝐸+

ℏ

The probability density
will be:

Ψ 𝑥, 𝑡 # = 𝜓+ 𝑥 + 𝜓" 𝑥 #

= 𝜓+ 𝑥 # + 𝜓" 𝑥 #

+2cos 𝜔𝑡 𝜓+ 𝑥 𝜓" 𝑥

32

x
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eCoherent state for the harmonic oscillator

The linear superpositions that correspond best to our classical 
understanding of harmonic oscillators are known as 
“coherent states”.

The coherent state for a harmonic oscillator of frequency ω is

Ψ, 𝜉, 𝑡 = H
$-+

.

𝐶,$ 𝜓$ 𝜉 e/i $0"# 12/ℏ

Where                       and

𝐶,$ =
𝑁$𝑒/,

𝑛! 𝜓$(𝜉) =
𝑚𝜔
𝜋ℏ

⁄" 6 1
2$𝑛!

𝐻$(𝜉)e/7
!/#

33
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eCoherent state for the harmonic oscillator

The modulus squared of the expansion coefficietnts

𝐶!" # =
𝑁" 𝑒$!

𝑛!
Is the Poisson distribution with mean value N 
and standard deviation 𝑁

This is explaining, for example, the Poissonian distribution in a laser 
beam

34



M
a

te
ria

ls 
Sc

ie
nc

eCoherent state for the harmonic oscillator

Let’s plot the probability density:

Ψ, 𝜉, 𝑡 = H
$-+

.

𝐶,$ 𝜓! 𝜉 e/i $0"# 12/ℏ

Where

𝐶,$ =
𝑁$𝑒/,

𝑛!

N=1

35

x

Ψ8 𝜉, 𝑡 !
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eCoherent state for the harmonic oscillator

Let’s plot the probability density:

Ψ, 𝜉, 𝑡 = H
$-+

.

𝐶,$ 𝜓! 𝜉 e/i $0"# 12/ℏ

Where

𝐶,$ =
𝑁$𝑒/,

𝑛!

N=100
The distribution is now much 
sharper, but the amplitude is increasing,
keeping same area.

36

x

Ψ8 𝜉, 𝑡 !
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eCoherent state for the harmonic oscillator

The sharp peak here is going 
backwards and forwards, beginning to 
look quite like a classical oscillator.

For large N, the probability distribution 
will appear to be very localized relative 
to the size of the oscillation.

Thus, we do have a correspondence that 
we can get from the quantum back to the 
classical.

37

x

Ψ8 𝜉, 𝑡 ! N=100
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eCoherent state for the harmonic oscillator

In general, a system in a linear 
superposition of multiple energy eigen 
states does not have a simple harmonic 
motion

Any linear superposition of two different 
states will oscillate at a frequency 
corresponding to the energy separation 
of the two states.

But the simple oscillatory motion, when 
we have a complicated superposition of a 
large number of states, as in the coherent 
state, is a special consequence of the fact 
that all the energy levels are equally 
spaced (or with integer ratio). 

38

x

Ψ8 𝜉, 𝑡 ! N=100


