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Wave packets

Fundamentals of Quantum Mechanics for Materials Scientists
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» Lets consider ﬁfLrsEbj a freely propagating particle not interacting with
ahvthLv\g (and any Po&eu&iatj

> In classical mechanics we know that the particle is moving with constant
velocity v and conserving the momentum p=mv and kinetic energy K=amv?/2

> In quantum mechanics we kinow that the states of this particle must so&isﬁ,
the 5.E. with potential V=0

,h&u(r,t)_ h* V2 W(r, &)
: dt 2m .
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y 6¥(r,t)  h? C2
l dt ~  2m Lt

> We have seen that stationary states of the S.£. and thus of this free particle
are:

W(r t) = e—iEp t/h lpp

Must be an eiqenvector of he LLS.E.
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W(r t) = e—iEp t/h L|Jp

2

It is evident that: £, = f—m as i expected from classical mechanics

In 1D we can also wrike:

,h(W(x, o) O R .
l dt | 2mdx 2
Wikh:
L|J(x t) — L ei(kx— Ept/h)
: VZnh
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According to de Broglie hypothesis, corresponds to motion of a free
particle and is described gj a plane-wave

Yt 0) = o el -0

h {
P A

o




Free Particle and Wave Packets

We can also write the wi:

P(x, t) =
wikh:

lll(x, t) = \/2—3 ei(Px—Ept)/h

1 ei(kx—Ep t/h)

\

2mh

And, it is clear that bj inserting the wi. into the S.E. we qet
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Free Particle and Wave Packets

According to de Broglie hypothesis, corresponds to motion of a free
particle and is described gj a plane-wave

§x,0) = o el -0

p
\) HINe . pZ g hzkz
Cp=hk ™ T om T 2m
P = i
o e ot and Ep -l ha) .
k=p/h Bl hk




DEGLI STUDI

Science
ONVTIN I

Free Particle and Wave Packets

é
2
a4
—_
2
Z
-
]

oo Materials

==

 hk?

ll](x, t) 18 Ll—’O ei(kx—oo t) = “

The motion of the wave is characterized by phase velocity v,

W ’ /}; | ﬂ/‘”f‘p
Yo 8A T = A cos(kx — wt) As

ANA,

After a btime period T the
Front will propagate for

X =41

Thus, it’s phase velocity is:

_A_Zn/k W
vp_T_Zn/a)_k
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Free Particle and Wave Packets

2
ll](x t) 18 Lle ei(kx—oo t) W = hi
’ 2m

The motion of the wave is characterized bv phase velocily

aEls 00
Tk T2mk  2m  2m

Thus: Whak?
D But classically the V.=
e par&ide moves with c
2m velocity

P
m
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p p
e = ——
p 2m vc m

P, t) = o el ¥=ed

To overcome this problem, it was suggested that the actual stotes of
a particle are not represented by stationary states but by their
superposition, so-called wave-packet.

The stationary states are uniform in space and time, thus it is
not meaningful to discuss ahy movement associated with
them,

But, the wave-packet is (quite) Localized in space at any time.

To understand this, we have to introduce the concept of group
vei.o«t:iiv..
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Group Velocity

The velocity of a wave packet or pulse is the "group velocity”.

dw

UQ:E

To understand this, let’s consider a total wave made up out of
a superposition of two waves:

U(x, t) = el[k+30x—(@+30)t] 4 o 1[(k-3k)x—(w-J)t]

Both propagating to the right, one al frequency o +6w, with a wavevector k +5k,
and one at a frequehfy ® -6w and a wavevector k -6k,
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Group Velocity

To understand this, lets consider a total wave made up out of
a superposition of two waves:

N

W(x, t) = o L [(k+0K)x—(@+0w)t] 4 ol[(k—0k)x—(w-0w)t]

We can rewrite ik as: |
W(x, t) = 2cos(dw t — 9k x) e! kx—wt)

Which can be seen as a wave:
IMMMA A I

ol (kx—wt)

Mmodulated bj an ehvelope,
cos(dw t — dk x)

Which is moving at a group velocity:
0w dw

vy =—- or in the Limik of very small dw and 9k v, = =

MATARTAAA RS ATAATA' 2
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Group Velocity

To understand this, lets consider a total wave made up out of
a superposition of two waves:

w

W(x, t) = el [(k+R)x—(@+0)t] 4 o1 [(k-0)x—(w—0w)t]
We can rewrite it as I,
Which can be seen as a wave:
el (kx-wt)

Mmodulated bj an envelope, M
cos(dw t — dk x)

Which is moving at a group velocity:

v, = % or in the Limit of very small dw and ok v, = i—(:
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Group Velocity and dispersion

4
For waves in free space, the velocity of the waves does not
depend substantially on the frequency so
do / dkk =z 0 / k
Thus, phase and group velocities are equal.

—

When o is ot proportional to k, we have “dispersion’; e.q.,

Medium tn which the refractive index changes quite rapidly
with frequency

In waveguides, different modes propagate with different
velocities, so there is dispersion from the geometry of the
structure.
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Group Velocity for free electrons

For a par&iai.e such as an electron,
phase velocity and group velocilty of associated waves are almost
never the same,
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We have seen that from the EiS.E. we can derive:

_ hk?

W =
2m

Thus: o « k*

and...

the frequehaj w is not proportional to the wavevector k

and...
the propagation of the electron wave is always highly dispersive.
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Group Velocity for free electrons

For a par&ide. such as an elecktron,
phase velocity and group velocilty of associoted waves are
almost never the same,

We have seen that from the EiS.E. we can derive:

hk?
w=—
2m
In factk:
_dw  d hk* _hk _p i\ 2
vg_dk_dRZm_m_m =l E_vag

As exyet&ed atassicativf
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For particles such as electrohs we need a description in terms of
propagation as a superposition of waves

Lelts remember the Fourier Th.,

Px,t) = footT'(k) el tex—00) gk

1f we consider the w4 ot E=0

Y(x,0) = jw\TJ(k) e'kx g
Wikh s

P(k) « jootp(x, 0) e 1kx gy
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Motion of a Gaussian wave packet

There are many form of Linear superposition that could give
wavepacket,
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Lets inkroduce a particular wi. with a yrobabité&j Aiskribution called
Craussian diskribukion
Then, the initial state is represented by the normalized wave function, where

the an«\fu&ucie of the plane wave is modulated by the Gaussian function, and
it is called wave-pacicet: X-Xo

¥ ()|

1 i _(x—x0)2
IIJ(X, O) — e[l feo x 4 (Ax) 2
\/Ax\/ 2T

Wikth a probabéti&j ciehsi,&v:

(X — Xo) g
2 (Ax) %

[U(x,0)]# o exp [—
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Motion of a Gaussian wave packet

Thew, the initial state is represen&ed by the normalized wave function, where the
amplitude of the plane wave is modulated by the Gaussian function:

O

1 i _(x—xo)2
P(x,0) = e[I X4 @ax)?
\/Ax\/ 2T

Bj expioi&i,hg the Fourier Th:

(00}

(x — xo)z

d
4 (Ax) 2 o

P(k) e~ ko) %o j exp [_i (k — ko) (x — x0) —

— 00

Wich can be reduced lo:

(k) « e‘i"xOJ exp(—ify —y?)dy With — y =20

and L =2(k—kyAx
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Motion of a Gaussian wave packet

Thew, the initial state is represen&ed by the normalized wave function, where the
amplitude of the plane wave is modulated by the Gaussian function:

N
o

i (x—xp)?
lp(x,O) i 1 e[”(ox 4 (Dx) 2
\/Ax\/ 2T

Bj expioi&i,hg the Fourier Th:

-y W(k) x el kxo J exp(—iBy —y2)dy Introducing: Yo = —Iif/2

exp(2yy, — y2)= exp(¥o°) exp[— (Vo — ¥)?]

L
—y5 — ¥* + 2yy,
~_
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Motion of a Gaussian wave packet

Thew, the initial state is represen&ed by the normalized wave function, where the
amplitude of the plane wave is modulated by the Gaussian function:

i (x—xp)?
P(x,0) = . ellkox 4(4x)*
\/Ax\/2n
Thus:
-+ P(k) x e~k eygj e=(y=¥0) gy With:

U(k) « e~1kx0 g f e~7’ dz
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Motion of a Gaussian wave packet

Thew, the initial state is represen&ed by the normalized wave function, where the
amplitude of the plane wave is moduloted by the Gaussian function:

N
N

i (x—x0)?
lp(x,O) i 1 e[”(ox 4 (Dx) 2
\/Ax\/ 2T

Thus:
(0.0)

P(k) oc e~lkxo ey&f e~%" dz
— 00

P

T(k) o e-1kxo—(kko)2(A0)? S /U _15 = —i(k — ko)Ax
F—“imati.v w;,&:;
. _(k—ko)z Lo
(k) o e['kxo 4 (Ak)? ar =
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Motion of a Gaussian wave packet

23
Thewn, the initial state is represeu&ed bvj the wavempatw'e&:
_ 1 iegate b ek
W(x, 0) —" Its Fourier Transform is (k) ——
1
Wikh Ax Ak = %

This illustrates an important property of wave-paciets:
if we wish to construct a packet that is very localized in x-space

(Le., f Ax is small) then we need to combine plane-waves with a

very wide range of different k-values (le., Ak will be Large),
and’the way around is also true.
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Motion of a Gaussian wave packet

So far, we have considered the wave-packet at t=o.
Let’s consider now the time evolution of the wavefunction:
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6 = [7 k) e'*® dk, with dK) =kx— w®)t

| U(K) | is strongly peaked around k=zko, thus, it is reasonable to Taylor
expamd p(kD o\bm& ko, alrd bj doing so one can show that:

exp[i(kox—wot) — (x—xo —Vgt)z{l —iZa(Ak)Zt}/(462)]
[1+12a(Ak) 2 t]1/2

P(x,t) «

Wikh:

dw(k d2w(k i
o = 0(ke), Wg=t NG R () — \/(AX)2+4OZAX)2
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Motion of a Gaussian wave packet

In foct, the probability distribution is still a Gaussion
with characteristic width o(t):

2
X—Xo— U t)
,0)|% o7 I(t —( 2
e 01 & 0710 exp [~ ]
ot t?
ot =J<Ax)2+4(AX)z
You may notice the time dependence of the
‘ S S S— S— N—

characteristic widkh;

thus, the width of our wave-packet grows as time
progresses
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Motion of a Gaussian wave packet

In fact, the probability distribution is still a Gaussian with characteristic
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widbh o(t):
(x —xp—v t)z
)% x oT1(t — 0ty
W(x, t)] o ()exp[ 2 02(0) ]
2¢2 d?w(ky)
“(OZJ“X)ZUOZAX)Z =

Note thot the rate of spreading of a wave-packet depends on the second
derivative of (k) with respect to k

This explains why a functional relationship between w and k is generally
kihown as a dispersion relation: ik determines how fast wave.-—-pa«clw.&s Grows
wikth Eime, :
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In fact, the probability distribution is still a Gaussian with characteristic
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widbh o(t):
(x —xp—v t)z
)% xoT1(t — Jaine
[W(x, t)] o ()EXP[ 202(0) ]
2t2
o(t) = j (A4x)2 + 402AX)2

However, when o is a Linear function of k there is no dispersion of wave-
pockets: wave-packets propagate without spreading.

This is the case of light waves: Light propagate through a vacuum withoukt
spreading. o

In fact, according to classical
electromagietism, the {req. of Light is: w = kc
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Free Particle and Wave Packets

In fact, the probability distribution is still a Gaussian with characteristic

N
(00)

widbh o(t):
(x —xg — v, t) :
2 -1 P g
W, 0)]2 e 0 71() exp[ o ]
dw
Ug = E

is known as the group-velocity,
While a F:'Lav\e-wo\ve travels ab the pka\se-vetoai,&j, v,=2w/k

a wcwe-—yaake& travels at the graup-vewti,&ﬁ, v,=dw/dk,

which is the effective uniform velocity of the particle

do d hk? hk  p

(e e
4 dk T dk 2Zm T
In case of linear dispersion relotions, the phase-velocity and the group-
velocity are identical.

As expe.t:&ed ttassitattvf



