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Wave packets
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2
Free Particle and Wave Packets

u Let’s consider firstly a freely propagating particle not interacting with 
anything (and any potential)

u In classical mechanics we know that the particle is moving with constant 
velocity v and conserving the momentum p=mv and kinetic energy K=mv2/2 

u In quantum mechanics we know that the states of this particle must satisfy 
the S.E. with potential V=0

𝑖ℏ
𝛿𝛹 r, 𝑡
𝑑𝑡

= −
ℏ!

2𝑚
∇! 𝛹 r, 𝑡
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3
Free Particle and Wave Packets

u We have seen that stationary states of the S.E. and thus of this free particle 
are:

𝛹 r, 𝑡 = e"i#! $/ℏ ψ𝑝

𝑖ℏ
𝛿𝛹 r, 𝑡
𝑑𝑡 = −

ℏ!

2𝑚∇! 𝛹 r, 𝑡

Must be an eigenvector of he t.i.S.E.
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Free Particle and Wave Packets

𝛹 r, 𝑡 = e"i#! $/ℏ ψ𝑝

It is evident that: 𝐸' =
'"

!(
as in expected from classical mechanics

In 1D we can also write:

𝑖ℏ
𝛿𝛹 x, 𝑡
𝑑𝑡 = −

ℏ!

2𝑚
𝛿
𝑑𝑥

!

𝛹 x, 𝑡

With:

ψ 𝑥, 𝑡 =
1
2𝜋ℏ e

𝐢(+,"#! $/ℏ)
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Free Particle and Wave Packets

According to de Broglie hypothesis, corresponds to motion of a free 
particle and is described by a plane-wave

ψ 𝑥, 𝑡 = ψ. e i +,"/ $

5

𝑝 =
ℎ
𝜆 𝜆 = 2 ⁄𝜋 𝑘 =

ℎ
𝑝

𝑝 = ℏ𝑘

𝑘 = ⁄𝑝 ℏ
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Free Particle and Wave Packets
We can also write the w.f.:

ψ 𝑥, 𝑡 =
1
2𝜋ℏ

e𝐢(+,"#! $/ℏ)

with:

ψ 𝑥, 𝑡 = 0
!1ℏ

e 2 𝒑𝒙"#!$ /ℏ

And, it is clear that by inserting the w.f. into the S.E. we get

𝐸' =
𝑝2

2𝑚

6
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Free Particle and Wave Packets

According to de Broglie hypothesis, corresponds to motion of a free 
particle and is described by a plane-wave

ψ 𝑥, 𝑡 = ψ. e i +,"/ $

7

𝑝 =
ℎ
𝜆 𝜆 = 2 ⁄𝜋 𝑘 =

ℎ
𝑝

𝑝 = ℏ𝑘

𝑘 = ⁄𝑝 ℏ

𝐸𝑝 =
𝑝!

2𝑚 =
ℏ!𝑘!

2𝑚
𝐸𝑝 = ℏ𝜔

𝜔 =
ℏ𝑘!

2𝑚

But,

and
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Free Particle and Wave Packets

ψ 𝑥, 𝑡 = ψ. e i +,"/ $

The motion of the wave is characterized by phase velocity 𝑣𝑝

8

𝜔 =
ℏ𝑘!
2𝑚

𝑣𝑝 =
𝜔
𝑘 𝛹 = 𝐴 𝑐𝑜𝑠 𝑘𝑥 −𝜔𝑡Why?

After a time period T the 
Front will propagate for 
x = 𝜆
Thus, it’s phase velocity is:

𝑣𝑝 =
𝜆
𝑇
=
2 ⁄𝜋 𝑘
2 ⁄𝜋 𝜔

=
𝜔
𝑘
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Free Particle and Wave Packets

ψ 𝑥, 𝑡 = ψ. e i +,"/ $

The motion of the wave is characterized by phase velocity vp

9

𝑣𝑝 =
𝜔
𝑘 =

ℏ𝑘!
2𝑚𝑘 =

ℏ𝑘
2𝑚

=
𝑝
2𝑚

𝜔 =
ℏ𝑘!
2𝑚

What?
But classically the 
particle moves with 
velocity 

𝑣𝑝 =
𝑝
2𝑚

Thus: 
𝑣𝑐 =

𝑝
𝑚
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Group Velocity

ψ 𝑥, 𝑡 = ψ. e i +,"/ $

To overcome this problem, it was suggested that the actual states of 
a particle are not represented by stationary states but by their 
superposition, so-called wave-packet.

The stationary states are uniform in space and time, thus it is 
not meaningful to discuss any movement associated with 
them.

But, the wave-packet is (quite) localized in space at any time.

To understand this, we have to introduce the concept of group 
velocity.

10

𝑣𝑝 =
𝑝
2𝑚 𝑣𝑐 =

𝑝
𝑚
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Group Velocity

The velocity of a wave packet or pulse is the “group velocity”.

𝑣𝑔 =
dω
dk

To understand this, let’s consider a total wave made up out of 
a superposition of two waves:

ψ 𝑥, 𝑡 = ei [ "#$" %& '#$' (] + ei [ "&$" %& '&$' (]

Both propagating to the right, one at frequency ω +δω, with a wavevector k +δk,
and one at a frequency ω −δω and a wavevector k −δk. 

11
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Group Velocity
To understand this, let’s consider a total wave made up out of 
a superposition of two waves:

ψ 𝑥, 𝑡 = ei [ "#$" %& '#$' (] + ei [ "&$" %& '&$' (]

We can rewrite it as:
ψ 𝑥, 𝑡 = 2cos(𝜕ω t − 𝜕𝑘 x) e i "%&'(

Which can be seen as a wave:
e i "%&'(
Modulated by an envelope,
cos(𝜕ω t − 𝜕𝑘 x)
Which is moving at a group velocity:
𝑣𝑔 =

$'
$+ or in the limit of very small 𝜕ω and 𝜕𝑘 𝑣𝑔 =

,'
,+

12
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Group Velocity
To understand this, let’s consider a total wave made up out of 
a superposition of two waves:

ψ 𝑥, 𝑡 = ei [ "#$" %& '#$' (] + ei [ "&$" %& '&$' (]

We can rewrite it as:
ψ 𝑥, 𝑡 = 2cos(𝜕ω t − 𝜕𝑘 x) e i "%&'(

Which can be seen as a wave:
e i "%&'(
Modulated by an envelope,
cos(𝜕ω t − 𝜕𝑘 x)
Which is moving at a group velocity:
𝑣𝑔 =

$'
$+ or in the limit of very small 𝜕ω and 𝜕𝑘 𝑣𝑔 =

,'
,+

13
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Group Velocity and dispersion
For waves in free space,  the velocity of the waves does not 
depend substantially on the frequency so 
dω / dk = ω / k 
Thus, phase and group velocities are equal. 

When ω is not proportional to k, we have “dispersion”, e.g.,

Medium in which  the refractive index changes quite rapidly 
with frequency

In waveguides, different modes propagate with different 
velocities, so there is dispersion from the geometry of the 
structure.

14
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Group Velocity for free electrons
For a particle such as an electron,
phase velocity and group velocity of associated waves are almost 
never the same.

We have seen that from the t.i.S.E. we can derive:

𝜔 =
ℏ𝑘-

2𝑚
Thus: 𝜔 ∝ 𝑘-
and…
the frequency ω is not proportional to the wavevector k
and…
the propagation of the electron wave is always highly dispersive.

15
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Group Velocity for free electrons
For a particle such as an electron,
phase velocity and group velocity of associated waves are 
almost never the same.

We have seen that from the t.i.S.E. we can derive:

𝜔 =
ℏ𝑘-

2𝑚
In fact:

𝑣$ =
%!
%&
= %

%&
ℏ&.

!'
= ℏ&

'
= (

'
or      𝐸 = )

!
𝑚𝑣$!

As expected classically!

16
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Free propagating wave packet

For particles such as electrons we need a description in terms of 
propagation as a superposition of waves

Let’s remember the Fourier Th.

ψ 𝑥, 𝑡 = <
&/

/
=ψ 𝑘 ei "%&'( 𝑑𝑘

If we consider the w.f. at t=0

ψ 𝑥, 0 = <
&/

/
=ψ 𝑘 ei"% 𝑑𝑘

With

=ψ k ∝ <
&/

/
ψ x, 0 e&i+0 dx

17
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Motion of a Gaussian wave packet
There are many form of linear superposition that could give a 
wavepacket.

Let’s introduce a particular w.f. with a probability distribution called 
Gaussian distribution
Then, the initial state is represented by the normalized wave function, where 
the amplitude of the plane wave is modulated by the Gaussian function, and 
it is called wave-packet:

ψ 𝑥, 0 =
1

Δ𝑥 2𝜋
𝑒

i+# ," ,",# "

; <, "

With a probability density:

ψ x, 0 - ∝ exp −
x − x1 -

2 Δx -

18

𝛹 𝑥 !

Δ𝑥

X-X0

-3 -2 -1 0 1 2 3
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Motion of a Gaussian wave packet
Then, the initial state is represented by the normalized wave function, where the 
amplitude of the plane wave is modulated by the Gaussian function:

ψ 𝑥, 0 =
1

Δ𝑥 2𝜋
𝑒

i+# ," ,",# "

; <, "

By exploiting the Fourier Th:

2ψ 𝑘 ∝ e!i "!"! #!6
!$

$
𝑒𝑥𝑝 −i 𝑘 − 𝑘% 𝑥 − 𝑥% −

𝑥 − 𝑥% &

4 Δ𝑥 & 𝑑𝑥

Wich can be reduced to:

=ψ 𝑘 ∝ e&i"%! <
&/

/
exp −iβ 𝑦 − 𝑦 - 𝑑𝑦

Fourier Theorem

ψ 𝑥, 0 = B
"#

#
Cψ 𝑘 ei$% 𝑑𝑘

Cψ k ∝ B
"#

#
ψ x, 0 e"i&' dx

19

With 𝑦 = %&%!
-∆%

and 𝛽 = 2 𝑘 − 𝑘1 Δ𝑥
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Motion of a Gaussian wave packet
Then, the initial state is represented by the normalized wave function, where the 
amplitude of the plane wave is modulated by the Gaussian function:

ψ 𝑥, 0 =
1

Δ𝑥 2𝜋
𝑒 i"! %&

%&%! "

> ?% "

By exploiting the Fourier Th:

=ψ 𝑘 ∝ e&i"%! <
&/

/
exp −iβ 𝑦 − 𝑦 - 𝑑𝑦

20

𝑦1 = − ⁄𝑖𝛽 2Introducing:

exp 2𝑦𝑦H − y! = exp(𝑦H
!) exp[−(𝑦H − 𝑦)!]

−𝑦(! − 𝑦! + 2𝑦𝑦)
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Motion of a Gaussian wave packet
Then, the initial state is represented by the normalized wave function, where the 
amplitude of the plane wave is modulated by the Gaussian function:

ψ 𝑥, 0 =
1

Δ𝑥 2𝜋
𝑒 i"! %&

%&%! "

> ?% "

Thus:

=ψ 𝑘 ∝ e&i"%! e@!" <
&/

/
e& @&@! "𝑑𝑦

=ψ 𝑘 ∝ e&i"%! e@!" <
&/

/
e&A"𝑑𝑧

21

𝜋

𝑦 − 𝑦% = 𝑧
With:
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Motion of a Gaussian wave packet
Then, the initial state is represented by the normalized wave function, where the 
amplitude of the plane wave is modulated by the Gaussian function:

ψ 𝑥, 0 =
1

Δ𝑥 2𝜋
𝑒 i"! %&

%&%! "

> ?% "

Thus:

=ψ 𝑘 ∝ e&i"%! e@!" <
&/

/
e&A"𝑑𝑧

=ψ 𝑘 ∝ e&i"%!&("&"!)" ?% "

Finally

Bψ 𝑘 ∝ 𝑒
i+ ,#" +"+# "

; <+ "

22

𝑦% = −i
𝛽
2
= −i 𝑘 − 𝑘% Δ𝑥

Δ𝑘 =
1
2Δ𝑥

With:
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Motion of a Gaussian wave packet
Then, the initial state is represented by the wave-packet:

ψ 𝑥, 0 = *
+% !,

𝑒 i$! %" "#"! $

% &" $ Its Fourier Transform is Cψ 𝑘 = *
+$ !,

𝑒 i$ %!" '#'! $

% &' $

With        Δ𝑥 Δ𝑘 = 0
!

This illustrates an important property of wave-packets: 
if we wish to construct a packet that is very localized in x-space 
(i.e., if Δx is small) then we need to combine plane-waves with a 
very wide range of different k-values (i.e., Δk will be large), 
and the way around is also true.

23

X or k

Δ𝑘

Δ𝑥
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Motion of a Gaussian wave packet
So far, we have considered the wave-packet at t=0.
Let’s consider now the time evolution of the wavefunction:

ψ x, t = ∫&/
/ =ψ k eiD + dk, with  ϕ k = k x − ω k t

| Cψ k | is strongly peaked around  𝑘=𝑘0, thus, it is reasonable to Taylor 
expand  𝜙(𝑘) about  𝑘0, and by doing so one can show that:

ψ x, t ∝
exp i k1 x − ω1 t − x − x1 − vE t

- {1 − i2α Δk - t}/ 4 σ-

1 + i2α Δk - t F/-

With:                        

ω1 = ω k1 , vE =
,' +!
,+ , α = ,"' +!

,+" ,	 σ t = Δx - + H" I"

> ?0 "

24
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Motion of a Gaussian wave packet
In fact, the probability distribution is still a Gaussian 
with characteristic width σ t :

ψ 𝑥, 𝑡 - ∝ σ&F 𝑡 exp −
𝑥 − 𝑥1 − 𝑣J 𝑡

-

2σ- 𝑡

σ t = Δx & +
α & t &

4 Δx &

You may notice the time dependence of the 
characteristic width; 
thus, the width of our wave-packet grows as time 
progresses

25
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Motion of a Gaussian wave packet
In fact, the probability distribution is still a Gaussian with characteristic 
width σ t :

ψ 𝑥, 𝑡 - ∝ σ&F 𝑡 exp −
𝑥 − 𝑥1 − 𝑣J 𝑡

-

2σ- 𝑡

σ t = Δx & +
α & t &

4 Δx &

Note that the rate of spreading of a wave-packet depends on the second 
derivative of  𝜔(𝑘) with respect to 𝑘

This explains why a functional relationship between ω and  𝑘 is generally 
known as a dispersion relation: it determines how fast wave-packets grows 
with time.

26

α =
d &ω k%
dk &
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Free Particle and Wave Packets
In fact, the probability distribution is still a Gaussian with characteristic 
width σ t :

ψ 𝑥, 𝑡 - ∝ σ&F 𝑡 exp −
𝑥 − 𝑥1 − 𝑣J 𝑡

-

2σ- 𝑡

σ t = Δx & +
α & t &

4 Δx &

However, when 𝜔 is a linear function of  𝑘 there is no dispersion of wave-
packets: wave-packets propagate without spreading.

This is the case of light waves: light propagate through a vacuum without 
spreading. 

27

𝜔 = 𝑘𝑐
In fact, according to classical 
electromagnetism, the freq. of light is:
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Free Particle and Wave Packets
In fact, the probability distribution is still a Gaussian with characteristic 
width σ t :

ψ 𝑥, 𝑡 - ∝ σ&F 𝑡 exp −
𝑥 − 𝑥1 − 𝑣J 𝑡

-

2σ- 𝑡

𝑣/ =
𝑑ω
𝑑𝑘

is known as the group-velocity.
While a plane-wave travels at the phase-velocity,  𝑣𝑝=𝜔/𝑘

a wave-packet travels at the group-velocity,  𝑣𝑔=𝑑𝜔/𝑑k,

which is the effective uniform velocity of the particle

In case of linear dispersion relations, the phase-velocity and the group-
velocity are identical. 

28

𝑣$ =
d𝜔
d𝑘 =

d
d𝑘
ℏ𝑘!
2𝑚 =

ℏ𝑘
𝑚 =

𝑝
𝑚

As expected classically!


